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ABSTRACT. An overview is given over a fair range of topics within spatial and 
spatial-temporal statistics. The theory presented is motivated by and illustrated 
with actual applications to real world problems. We describe and discuss models 
for three basic types of spatial processes: continuous random surfaces, mosaic 
phenomena, and events-against-background processes. Various combinations of 
these sometimes occur naturally in applications, like GauBian noise on top of a 
Markov random field in image restoration problems. Some of these combinations 
are also discussed. The applications we discuss are drawn from the areas of 
medical image analysis, pollution monitoring, characterisation of oil reservoirs, 
estimation of fish and whale stock, forestry surveillance via satellite, statistical 
meteorology, and symbol recognition. 
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1. Introduction 

1.1. What's special about spatial? Spatial statistical problems call for evaluation 
by exploratory data analysis, prediction and classification, simulation, and confirmatory 
statistics, and are accordingly in that respect well within traditional statistics. To pin­
point differences, consider a spatial process {Y(x ): x ED} with some m-dimensional Y(x) 
defined over some s-dimensional spatial or spatial-temporal reference region D. We have 
encountered s = 2, 3, 4 in our applications. Traditional statistical dependence between 

variables may occur in the Y -space, while the spatial reference x allows for dependencies 
in the reference dimensions. This is challenging from a stochastic modelling point of view 
and usually adds complexity to the sampling and estimation stages. The presence of a 
reference variable points to the importance of scale and changes from one scale to the 
other. The choice of scale is always crucial in spatial statistics. 

Spatial phenomena are complicated to understand and model. The objective of a 
study is often to evaluate characteristics of a single realisation {y( x ): x E D}, for ex­
ample, the hydrocarbon present in one particular petroleum reservoir. In this setting 
the data points y(xi), ... ,y(xn) are 'non-repeatable' and the observations may be depen­
dent through their spatial locations. In traditional statistics the underlying assumptions 

usually include 'repeatability' in the form of (nearly) independent and (nearly) identi­
cally distributed observations. In spatial statistics some sort of 'pseudo-repeatability' is 
often obtained by postulating various forms of spatial stationarity. Typical model as­

sumptions could be a constant mean EY(x) = m and/or a stationary covariance function 
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cov{Y(x1), Y(x2)} = C(x1 - x2). There are parallels to modelling of time series, but 
spatial problems are often a full degree more complicated, due to lack of ordering in the 
reference space, the fact that border areas of the reference domain often constitute a large 
proportion of D, and the large variety of sampling options which appear when the dimen­
sionality of D increases. The ergodicity assumption needed in both time series and spatial 
statistics is much harder to justify in the latter, since the dependence structure often is 
strong and D seldomly, with reasonable imagination, can be extended to infinity. Spatial 
correlation also tends to die out much more slowly than for a dependent one-dimensional 
process like time series. 

In easier i.i.d.-type problems there is always a Glivenko-Cantelli type theorem which 
says that one can be ambitious and fit even sophisticated realistic models; the problems 
are 'one-dimensionally' tied to a couple of underlying distributions and nothing else, and 
the information content of a data set is sufficient to assess intricate features of these. 
In complex spatial problems, on the other hand, the information content is more thinly 
spread out in a much larger quilt of interwoven problems. Just think of inferring the 
underlying probabilistic structure of a two-dimensional continuous random function from 
just observing its values in a finite number of locations for a single realisation! 

We have mentioned that sampling of spatial phenomena has several special features. 
The sampling support B is defined as the domain of the volume over which the sam­
pling is averaged, i.e. YB(xi) = jBj-l JB y(xi - u) du, writing lEI for the volume (or 
area) of B. A sampling support of zero is in many cases impossible. In petroleum ap­
plications, observations in wells are made on about .03 X .03 X .05 meter3 , which is of 
approximate zero support relative to the extent of the reservoir which is typically of size 
2500 X 5000 X 100 meter3 • Seismically collected data have a considerable support, however, 
approximately 100 x 100 x 10 meter3 , and this must be accounted for when the two types 
of data are combined. 

Data representativity in the form of a random sampling hypothesis is usually a ba­
sic assumption in traditional statistics. Sampling in non-regular regimes is frequent in 
applications of spatial statistics, however. 'Preferential sampling' of some sort is often 
performed in practice, planned or no-planned. One is of course tempted to use available 

data and knowledge about spatial continuity in order to confirm 'favourable areas' with 
extreme values of the process. This makes sense from most points of view except from the 
traditional statistical one. In the petroleum industry one is using seismic data in order to 
locate the first well in a prospect such that the chances for hitting oil is maximised. The 

fact that each exploratory well costs about US$ 30 million makes this even more sensi­
ble and almost mandatory. Consequently one particular challenge of spatial statistics is 
to correct for preferential sampling when for example predicting the total hydrocarbone 
volume. 

The spatial dependence entails that the information content in each sample may vary. 
In image analysis and remote sensing where regular sampling occurs the redundancy in the 
sometimes enormous data set is usually substantial. The amount of information in the set 

of observations is often much smaller than what traditionally would have been anticipated. 

Measurements of the variable of interest are often expensive or complicated to obtain. 

Spatial problems frequently involve indirect measurements, like seismic data, in order to 
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improve the spatial coverage of the data. This calls for multivariate spatial models, and 
often for multivariate calibration methods. 

The spatial reference in {Y( x ): x E D} provides good opportunities for stochastic 
modelling. The fact that sampling is scarce and that the spatial dependence complicates 
the exploratory data analysis renders model verification a very difficult task. When prepar­
ing a development plan for a North Sea oil reservoir only about 10-8 % of the reservoir 
volume is directly observable from well data. Geological experience and indirect seismic 
data are other sources of knowledge, and make the evaluation possible. The verification of 
the model must often be based on experience. 

In typical spatial models with extensive dependence between observations one can 
only seldomly find explicit closed-form estimators with good efficiency properties. Usually 
one has to rely on model fitting to the observations through iterative procedures and cross 
validation. Note that jackknife and bootstrap procedures are difficult to apply in spatial 
problems because of the complex dependence structure. 

We have so far primarily discussed spatial problems. Problems containing both spatial 
and temporal elements are considered with increasing interest, however. In this type of 
problems the samples are often abundant, particularly in the time dimension. This is 
caused by the increasing use of automatic sensors, and again there are often difficulties 
stemming from a high degree of data redundancy. The interdependence structure is even 
more complicated than for spatial problems, and even simple exploratory data analysis 
may turn out to be very complicated. 

1.2. Three ways of applying statistics. Let us return to 'general statistics' and 
its philosophy and use in spatial statistics problems. It seems appropriate and convenient 
to distinguish between three ways of applying statistical methodology: 

(i) Exploratory statistics is primarily concerned with the observations y( x1 ), ••• , y( Xn) 
and their characteristics. When exploring them a minimum of model assumptions is en­
forced. Usually only some statements about representativity are made, hence data displays 
and plots associated with summary statistics can be provided. Exploratory statistics is 
an important but still underused part of applied statistics. Its uses include generating 
hypotheses justifying model choices. 

(ii) Predictive statistics is primarily concerned with prediction and classification of 
realisations, either because the actual realisation is not observed or because it is observed 
with noise. An example of the former is interpolation from y(x!), ... , y(xn) to estimation 

of y( x) in other positions, perhaps with an uncertainty measure included, and an example 

of the latter is image restoration. Model assumptions are made only to meet the objective 
of prediction. In other words, the stochastic model is often constructed more for rea­
sons of pragmatism and convenience than for ambitiously and realistically describing the 
phenomenon under study. Thus a model could have only vague, intuitive connections to 
the physical phenomenon. Some clear relations from phenomenon to model are of course 
preferable, since this eases the justification of the model towards the users, but in the end 

the quality of the model is judged solely by its predictive success. This viewpoint, whereby 

statisticians finetune parameters of algorithms rather than estimate parameters of models, 

can of course be adopted also in more traditional frameworks of perhaps one-dimensional 
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independent or nearly independent realisations of some phenomenon, but is, we feel, par­
ticularly relevant for complex spatial problems. Model fitting is frequently made by cross 
validation based on the available observations. Prediction and classification methods find 
numerous uses in all sectors of applied statistics. 

(iii) Confirmatory statistics is mostly occupied with properties of the underlying phe­
nomenon {Y(x ): x E D}. It requires a stochastic model which in a stronger sense than 
with predictive statistics truly reflects the key features of the phenomenon, and model 
parameters must be interpreted in terms of it. The observations y(xi) are used to express 
the significance of these parameters. An example is the test for significant correlation 
between permeability and porosity in sandstone petroleum reservoirs. The quality of this 
statement is crucially dependent on the validity of the model. Confirmatory statistics are 
used primarily in such scientific contexts. 

The problems addressed in this article will utilise spatial statistics in a predictive set­
ting. Stochastic modelling constitutes a considerable part of the studies presented. This is 
necessary in order to integrate the different types of available information for the purpose 
of prediction or classification. Expert experience often constitutes an important source of 
information, which sometimes invites Bayesian and empirical Bayesian approaches. The 
Bayesian formalism has proved useful in pragmatic modelling, and since formal testing 
is seldom performed the disadvantages of the formalism are seldom exposed. Large data 
volumes with complicated intercorrelation structures and computer intensive solution al­
gorithms are other characteristics. 

1.3. Stochastic modelling. Phenomena that vary in space and/or time are fre­
quently observed in nature. The use of stochastic models and statistics in surveying such 
phenomena has proven useful. Stochastic modelling constitutes the artistic part of the 
analysis, and some rules of thumb should be kept in mind. The model formulation must 
be tailored to the question to be answered. Classification of discrete objects, predictions 
of a continuous surface, and identification of discontinuities require different model for­
mulations. If extensive knowledge about the phenomenon to be evaluated is available it 
should be used in the modelling. The scale at which the model is valid has to be specified. 
Consider a porous medium like sandstone; at micro scale a discrete spatial model based 
on pores and sand grains would be suitable, while on macro scale porosity could be rep­
resented by a continuous spatial model. The amount of available data will also influence 
the modelling. The problem of overfitting is well recognised in statistics, and in spatial­
temporal settings the number of parameters is often large and one encounters redundancies 
in the data. This makes the problem even more crucial. Bayesian approaches with prior 
qualified guesses on parameter valuies based on phenomenological information will reduce 
the problems of overfitting. As previously mentioned data analysis is often complex and 
efficient model estimators of known form are rarely available in spatial-temporal settings. 
Hence the possibilities for model verification, and for interpretation of and estimation of 
parameters, should be taken into consideration when choosing the statistical model. 

Spatial problems appear with complex interdependence structures, and a large variety 

of spatial models can be imagined. In this presentation a division into three natural main 
model classes has been made, and this corresponds roughly to the three types of models 
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most frequently encountered in spatial statistics literature. The division is into classes 
of well-defined mathematical objects, but is mainly motivated by the form of real spatial 
problems and by the form of the available data sources. 

(i) Models for continuous random surfaces, say {Z(x ): :z: E D} with Z(:z:) in some 
m-dimensional Euclidian space. The model most frequently used is the GauBian random 
function model, perhaps after an initial scale-transformation like taking logarithms. It 
maintains most of the favourable properties from non-spatial models when introducing 
higher dimensional spatial references. Typical tasks to be carried out include interpolation 
by estimated conditional expected value E{Z(z )iz( z1 ), ••• , z(zn)} and data-conditional 
simulation of {Zsim(z ): x E Dlz(x!), ... , z(xn)}. 

(ii) Models for mosaic phenomena, say { L( x ): x E D} with L( x) E {1, ... , K}. The 
Markov random fields constitute the most popular class of models, but tesselation tech­
niques are also used. These form an extremely large class of models and only small parts of 
their potential have been explored. Unfortunately, the nice mathematical properties found 
in the one-dimensional case are not maintained when higher-dimensional spatial references 
are introduced. The lack of ordering causes this. Most applications include stochastic sim­
ulations, as a means in itself or as some intermediate block, with the Metropolis algorithm 
or Gibbs sampler providing ways of generating realisations. 

(iii) Models for events-against-background processes, say {(x1,S!), ... ,(xn,Sn)}, in 
which Si is a set of attributes assigned to reference location Xi· The models most fre­
quently used are related to the theory of marked point processes. An example could be a 
simultaneous model for locations and heights of trees in a forest. This model can also be 
defined in a general manner, but usually only pairwise dependencies of marked points are 
modelled. Few exact analytical results are available for processes outside the simpler Pois­
son type ones. Statistical analysis of this type of models is typically carried out through 
simulation using variations of Ripley-Kelly's spatial birth-and-death algorithm. 

1.4. The present article. The material is organised as follows. Section 2 presents 
a generous list of application examples, sorted into problem areas. The emphasis is on 
describing problems and modelling ideas, and is not on 'solutions'. The applications have 
been chosen from a much longer list of projects we have worked on, with fellow statisticians 
at the Norwegian Computing Centre and surroundings and with clients. We have strived 
to represent the most important dimensions in this high-dimensional space of all spatial 
statistics applications. We have partly been guided by the degree of problem-solving 
success as criterion but also by the methodologically inclined statistician's view of what 
constitute interesting models and interesting problems. One of our aims is to show to the 
statistical community the kind of statistical problems that are currently deemed important 
to user groups. The application examples presented come from projects that are actually 
paid for by clients. Judging the usefulness of applied statistical models, methods and 
expertise by the willingness of users to spend money on them is not uninteresting. 

Section 3 presents basic methodology, introduces the most useful stochastic models, 
and discusses ways of analysing them. In particular models for the three main types of 
phenomena noted above are discussed, as well as a couple of 'combinations' where two 
different models work together. Four of Section 2's list of applications are returned to in 
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Section 4 for a more complete and more careful treatment, and suggested solutions to the 
actual real problems are described. Finally Section 5 gives some concluding remarks and 
points to some topics for future work. 

This is partly a review of several topics in spatial statistics with a broad range of 
examples. Some basic references about models in and uses of spatial statistics include 
Matern (1960), Yaglom (1962), Matheron (1973), Journel and Huijbregts (1978), Diggle 
(1983), Ripley (1981, 1988), Stoyan, Kendall, and Mecke (1987), and Cressie (1991 ). For 
the convenience of some readers we point out here what is supposed to be 'new contribu­
tions'., or perhaps only modest new insights into the use of old methods, in our article: 
The extended 'conjugate family' analysis for Bayesian Kriging in 3.1.0; some new reliable 
simulation methods for Gaufiian surfaces in 3.1.D; the quasi likelihood method in Section 
3.l.E for estimating covariance function parameters; comparison of maximum likelihood 
and maximum pseudo-likelihood for Markov chains in 3.2.B; the semi-Markov type random 
field models of 3.2.E; the ways of imposing global constraints on realisations from Markov 
random fields and marked point processes in Sections 3.2 and 3.4 respectively; and gen­
eralisations of Geman and Geman and of Besag methods in image restoration problems 
with correlated noise, in 3.4. In addition we hope that the ways by which we approach 
and solve some of the real world problems in Sections 2 and 4 contain some novel ideas in 
the respective problem areas. 

2. Range of applications 

In the following a collection of application examples are briefly described. Four of 
these are returned to in Section 4 for a more complete treatment, leading to suggested 
solutions to the actual real problems. 

2.1. Medical Image Analysis. 

2.1.A. Tumor identification [Lundervold, Moen, and Taxt (1988)]. Identification and 
classification of tumors in the human brain is obviously a problem of great importance. 
Magnetic resonance equipment provides the possibility for indirect measurement of various 
characteristics of the brain with three-dimensional spatial references. The data can be 
collected without surgery, hence minimising the chance of complications. The observations 
are indirect and the signal to noise ratio is low. A model based on hidden Markov random 
field theory with Gau:Bian noise is often used for segmenting the three-dimensional brain 
into various pathological units. The pathological units are modelled by requiring p(Xij = 
kirest of image) to depend upon units in the 5 X 5 neighbourhood of pixel (i,j) only. Here 
Xij denotes pathological unit type at pixel (i,j). The noise component is usually of the 
white noise type, or it may be spatially auto-correlated within some neighbourhood. See 
Sections 3.2 and 3.4. Usually no direct observations will be available, which means that 
unsupervised classification of the units must be made. Spatial models are required because 
of the areal extent of the pathological units and the spatially correlated noise. 

Experiences with medical image analysis have so far been encouraging, and the meth­
ods will hopefully be in commercial use in the near future. From a statistical point of view 
the traditional Markov random field theory has several shortcomings as a model for the 
pathological units. The problem surfaces in parameter estimation, where good estimators 
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for model parameters are hard to construct. Further studies of other models that are more 
directably suitable for segmentation are needed. 

2.1.B. Identification of heart dysfunction [Taxt, Lundervold, and Angelsen (1990), 
Storvik and Switzer (1992)]. Heart defects may appear as reduction in pumping capacity, 
reduced volume pumped, and as decline in elasticity of the heart walls. The dynamic 
behaviour of the heart can be observed by repeated three-dimensional grey-tone ultra­
sound images at 25-35Hz. The signal-to-noise ratio in each image is normally very poor, 
hence the time repetitions must be utilised. See Section 4.2 for further discussion. 

2.1.0. Noise reduction in Nuclear Magnetic Resonance imaging [Godtliebsen (1989)]. 
The common technique for reducing noise in NMR images is to take several measurements 
on the same slice and then average. This is time-consuming, expensive, and the patients 
sometimes move during acquisition time, thereby introducing additional noise. Hence a 
natural challenge is to devise statistical noise reduction algorithms that work on a single 
slice. One approach is to model the observed image as Yi = Xi + ei in pixel i, where 
the collection of Xi's come from some Markov random field and the ei 's are independent 
Gau:Bian zero mean noise. Studies indicate that the latter assumption is quite acceptable. 
The Markov random field assumption is less realistic, but can be used to derive image 
enhancement and image noise reduction techniques. Examples of such methods are in 
Section 3.4. Another method which can be motivated by the model assumptions is to 
replace observed grey level in a pixel with some weighted average of grey levels over the 
pixel and neigbouring pixels, with weights determined by the spread of the local data. This 
can be done in a suitable empirical Bayesian fashion. The study found that sound statistical 
techniques were able to reduce noise in a single picture with a factor of about three. This 
particular study was unusual in that a good approximation to the 'true scene' was available, 
taken to be the average of eight consecutive images of the same slice. Accordingly measures 
of restoration performance could be proposed and compared for different image analysis 
methods. 

2.2. Pollution Monitoring. 

2.2.A. Status of forest [Strand (1989)]. The decline in the quality of forest may be 
linked to increased pollution, and the Norwegian authorities have initiated an extensive 
sampling program. Sampling takes place in more than 2000 sites in a regular 9 X 9 km2 

grid over Norway every second year. Each site is 100m2 and each tree is located and 
characteristics like age, size, top density are sampled. The general environment at each 
site is also carefully sampled. A spatial regression model is used to analyse the data, 

see Section 3.1. The model is S(x) = ~f=1 f3di(x) + e(x), where S(x) is some variable 
representing status of forest and the fi(x)'s are known explanatory regressor functions like 
elevation, soil quality etc. The residuals e( x) are treated as a random function and its 
regional properties are evaluated in order to find differences due to unexplained factors, 
which could include air pollution. The data analysis exposes reasonably large regional 
differences, which at this stage is believed to be linked to pollution level. An extended 
analysis is planned. 

2.2.B. Air quality [Halvorsen and Strand (1987), H¢st, Omre, and Switzer (1991)]. The 
decline in air quality over Europe is a problem of concern. There are several sources for 

7 



the pollution, which is transported over long distances. Its solution calls for international 
cooperation. The European Meteorological Environment Program has established more 
than one hundred monitoring stations all over Europe. The air quality is characterised 
by the volume content of several chemical components, particle density, etc. Sampling is 
made on a daily basis. Consequently the pollution monitoring can be considered as a time­
and space problem, and one approach for evaluation of the problem is further discussed in 
Section 4.4. 

2.2.0. Combining satellite data with Jield data in pollution monitoring [H9ist, Omre, 
and Srebjli (1991)]. Some water quality variables from the Hvaler area in Norway have been 
analysed on the basis of both hard-to-get direct measurements and easy-to-get satellite 
data. The satellite data are abundant but of course very 'indirect', having a small positive 
correlation with the water quality variables. The challenge is to build a model that makes 
it possible to integrate these very different data types. On the basis of a validated model 
a map of the estimated water quality was produced, along with a map of the estimated 
uncertainty of the estimate. 

2.3. Reservoir Characterisation. 

2.3.A. Seismic Depth conversion [Omre, Halvorsen, and Berteig (1989), Abrahamsen, 
Omre, and Lia (1991), Abrahamsen (1992)). The petroleum is usually trapped under a 
geologic horizon having non-permeable characteristics, for example shale. Fortunately, 
these types of horizons can also be identified from seismic data. The sesmic data have 
good spatial coverage and consist of two-way reflection times down to the horizon. Note 
that the unit here is time, while the geologists are interested in depth to the horizon. By 
using depth observations in a small number of wells, seismic reflection time data and basic 
laws of physics, a model for depth conversion can be constructed. This is further discussed 
in Section 4.1. 

2.3.B. Simulation of facies architecture [Clemetsen, Hurst, Knarud, and Omre (1989), 
Hjort, Holden, and Omre (1989), H9iiberg, Omre, and Tjelmeland (1989, 1990), Omre 
(1992), Georgsen and Omre (1992), Tjelmeland and Holden (1992)]. The petroleum reser­
voirs in the North Sea appear as heterogeneous in the sense that several units of good 
and poor quality are packed. The units usually correspond to different rock types or fa­
cies. Their packing is according to certain geologic processes. The heterogeneity in the 
reservoirs has proven to have large impact on the production potential. 

The facies architecture is a consequence of the geologic processes, the dynamics of 
which are partly understood by the geologists. This constitutes the primary base for the 
modelling. The facies distribution can be observed in the wells, and this provides con­
straints on the model. Both Markov random fields and marked point processes have been 
used in modelling the facies architecture, see Sections 3.2 and 3.3. The former model pos­
tulates that p(Xij = klall other facies) is only dependent upon the neighbourhood facies, 
with Xij facies type in pixel location (i,j) and k E {1, ... , K} facies type. Sometimes 
there are as many as K = 12 facies types on the scene. Simulations of pseudo-reality 
constrained by some known values of z~ez are required. Simulation procedures from recent 
literature seem to converge very slowly, and exploring their properties is a difficult and 
time-consuming task. The marked point process traditionally applied has density of the 
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form fn(ml, ... ,mn) = const. exp{- L:?=l b(mi)- L:i<j c(mi,m;)}, with mi's being the 
marked points with information on location, size, shape, and facies characteristics. Often 
global constraints are necessary, and simulated realisations are pushed in the wished for 
direction by certain tricks. New model formulations of the 'semi-Markov' process type have 
also been studied and seem promising. In order to evaluate the impact of the heterogeneity 
on the production of petroleum, simulations of fluid flow are performed on realisations of 
the facies architecture. 

2.3.0. Simulation of fractures and faults [Omre and S¢lna (1990), Omre, S¢lna, Dahl, 
and T¢rudbakken (1992)]. The petroleum reservoirs in the North Sea are of sedimentary 
origin, and they have been changed by considerable tectonic activity. This has forced a 
complicated fracture and fault pattern on to the reservoirs. The location of large fault 
zones, i.e. those with offset above 10m, can be observed on the seismic data. The ac­
tual break pattern in the zone has been studied by geologists and is found to consist of 
swarms of smaller faults. This hetereogeneity is important for fluid flow. A more thorough 
presentation of the problem and model appear in Section 4.3. 

2.3.D. Interpretation of well log data [B¢lviken and Helgeland (1989), B¢lviken, Hel­
geland, and Storvik (1991)]. The petroleum reservoirs in the North Sea are located at a 
depth of approximately 3000 m. Wells are drilled to penetrate the reservoir in order to 
collect information about its characteristics. Few direct observations are available even in 
the wells. Logging tools are lowered down the well, however, and indirect measurements of 
radioactivity, acoustic reflection, conductivity etc., are collected every .25 min the reser­
voir zone. From these data the geologists would like to infer the geologic environment from 
which the reservoir originates. This entails determining the geologic sequences or sequence 
of rock types down the wells. The problem can be considered as a spatial segmentation 
problem based on multivariate data from the log tools. 

The model is based on hidden and in fact even on hidden hidden Markov random 
processes with Gau:Bian noise, see Sections 3.1 and 3.4. There are three ordered stages 
in the evaluation, say S --+ L --+ X, with sedimentary processes S creating a sequence of 
lithofacies L which again influence the responses of the logs X. The corner stone in the 
model used is that the unobservable part (S,L) has been generated by a Markov process 
while L can be observed with white Gau:Bian noise through X. The geological processes 
makes some sequences more probable a priori than others, hence a Bayesian dimension is 
added to the model. A general model has been constructed and is expected to be widely 
applicable, but the set of parameters must be reservoir specific, and has to be estimated 
for each reservoir. 

2.4. Sea Resources. 

2.4.A. Stock of capelin [Hjort and Murray (1912), Omre and S¢lna (1990)]. The 
fisheries in Norway are important for employment in the western and northern parts of 
the country and for the national export volume. The fish resources are renewable, but the 
reproduction cycle varies among the species. For capelin it is approximately four years in 
the Barent Sea. While capelin is a consumer of low level organisms like plancton it is being 
predated by cod in the winter season. The migration of capelin south to the Norwegian 
coast for spawning in winter causes the contact with cod. Both capelin and cod are of 
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commercial value, hence a multi-species catching strategy is required. 

There are surprising amounts of data available. Acoustic data, indirectly observing the 
echo-sounding reflected by fish with a three-dimensional reference, is abundant. There are 
thrawl samples as well. For several thousand capelin multi-dimensional observations of age, 
length, weight, stadium, etc. with space-time references are available each year. For large 
amounts of cod stomach content has been analysed with respect to fraction and volume of 
capelin. Presently only single-species models are operable, and time is the only reference 
variable. Multi-species models between capelin/cod are being developed, and both time 
and space references are discussed. It is at present problematic to verify a significant 
interaction between the two species based on available observations. A reliable space-time 
model for the species would compensate for some of the time and space variability, and 
may contribute to a more reliable analysis. Work is in progress on such matters. 

2.4.B. Stock of Minke whale [Schweder, 0ien, and H!2Sst (1990), Schweder and H!2Sst 
(1991)). Minke whales have been considered an endangered species and have been protected 
by the International Whaling Commission since 1986. The Norwegian authorities have 
during the last few years performed surveys in order to estimate the size of the stock. 
'Official estimates' have been suprisingly low compared to historical catch successes. A 
serious downward bias is expected in the predictions since these have been based on the 
assumption of complete sampling in the surveyed areas. Due to the fact that each whale 
surfaces only about 30 times per hour and that they can be difficult to detect in rough 
sea the actual detection success rate for whales passing close to the survey vessel, g(O), is 
probably significantly smaller than 1. 

There are two stochastic elements in the final estimator of the population size. One 
is the hazard probability Q( x, r ), the probability of sighting a whale surfacing at polar 
coordinates (x,r) relative to the vessel, given that the whale has not been observed before. 

The parametric form of Q(x,r) is a subject of continued discussion. Its parameters can 
be estimated from data provided by test surveys where two vessels were run in parallell 
and covered the same area. The second random element is the surfacing frequency for 
whales. This has been reproduced by simulation from a spatial Poisson. From this model 
the sampling success rate g(O) was found to be approximately 0.5, which means that about 
one out of two whales were observed. Thus the predicted number of whales is about twice 
as large as first anticipated. 

Methods developed here are partly of a general nature, and aim at being able to 
integrate very different types of data (viz. 'micro' and 'macro' data) in a consistent and 
meaningful framework. They should find applications in other areas as well. 

2.5. Other areas of application. 

2.5.A. Mapping of seabed: Spatial sampling strategy to find all shallow areas [Helge­
land, Hjort, and Sreb!2S ( 1984)]. Let Z ( x) be depth to the seabed in geographical location x. 
Mapping of Z ( x) based on point sampling is another problem of spatial interpolation, see 
Section 3.1. Suppose however that it is considered important to find all shallow banks, say 
where Z(x) is smaller than some level u. Term sets of the type {x: Z(x) < u} by Zu-areas. 
A question of spatial sampling strategy is therefore: what is a good regime for detecting 

all Zu-areas, and what is the probability of not detecting such an area? A solution based 
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on approximate shapes of excursion sets for GauBian random fields is given in the above 
reference. 

2.5.B. Automatic recognition of handwritten symbols [Hjort (1986), Hjort and Taxt 
(1988), Pripp (1991)]. Automatic recognition of printed or handwritten symbols is an 
established field with several well-explored approaches. Among these are several which are 
statistical in nature. The usual method comprises two main steps. The first is to extract a 
feature vector for the symbols, typically of dimension 10 or less. The second is to model the 
behaviour of feature vectors for each symbol type, and then estimate parameters, perhaps 
in cheap semi-automatic ways. Finally statistical discriminant analysis is used on future 
symbols. 

A more direct approach would be to model the statistical behaviour of the symbols 
themselves. We have some experience with modelling the boundaries of symbols as random 
closed curves in the plane, giving rather successful rates of correct classification. This is 
perhaps not a genuine spatial example since we merely model one-dimensional objects. 
But the following approach is spatial. Suppose the candidate symbol is digitised to form 

O's and 1 's on a rectangular grid. Thus a hand-drawn '8' could be digitised on a 20 X 20 
grid and be represented by the resulting collection of 400 O's and 1 's. Then a possibility is 
to model the mosaic process of 1 's on this lattice as a Markov random field, see Section 3.2. 
Each symbol class (say a hand-written '8') has its own mrf specification of the conditional 
probability of having a '1' in pixel location (i,j), given the rest of the image. It is of a 
certain form involving various 'award functions' designated by the modeller to encourage 
or discencourage certain types of local behaviour, and various parameters, some of which 
may be class-dependent and may vary over the scene. It is sometimes fruitful to impose 
global constraints too. The mrf parameters can be estimated from data by maximising the 
product of individual pseudo-likelihoods, see Section 3.2. Finally the estimated models are 
used to construct a classifier. 

2.5.C. Meteorology: Combining new satellite data with other information sources to 
improve prognoses [Homleid (1992)]. The Norwegian Institute of Meteorology uses two 
numerical weather prognosis models for the atmosphere. Input data for such models are 
observations from ships, radio buoys and sondes, and land based stations. One is also 

interested in exploiting satellite data, for example temperature and humidity profiles pro­
cessed from the TOVS satellite, to build better models for prognosis. Several methods 
have been tried out but so far the results are not convincingly better. One is currently 
exploring better ways of combining these very different data sources. The task seems 
to require (i) simply assessing the current data quality from the satellite, (ii) construct­
ing a successful spatial-temporal statistical model, drawing on both meteorology physics 
and empirical statistics, (iii) estimating necessary parameters and implementing prognosis 
formulas, and (iv) evaluating the performance compared to existing methods. Although 
satellite data obviously add important information to the problem, the improvements in 
prognosis quality by their inclusion seems to be rather small with the existing prognosis 
techniques. Research that aims at refining the statistical model formulations, and at a 

better statistical understanding of why the current improvements are so small, are under 
way. 
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3. Theoretical tools 

This section presents basic statistical theory that has been developed to solve prob­
lems like those listed in Section 2. As mentioned above a fruitful division of the various 
stochastic processes encountered is into continuous random surfaces, finitely-valued or mo­
saic phenomena, and events-against-background processes. Subsections 1, 2, 3 study these 
three basic types. In many problems different data sources may have to be combined, and 
some combination or other of the three basic model types is called for. Some situations of 
this sort are discussed in 3.4. 

3.1. Continuous random surfaces. The simplest spatial statistical model capable 
of describing interesting continuous or near continuous random surfaces is one with some 
smooth trend surface plus a spatially correlated Gau:Bian residual process. This model 
is introduced in the course of 3.1.A below. Various aspects of such models are discussed, 
including theory for spatial interpolation, Bayesian Kriging, simulation, and for estimating 
parameters in spatial covariance functions. 

3.1.A. The basic model. Let z = z( x) be a continuous or nearly continuous surface 
defined over some domain D of x-values, for example a rectangle in the plane. Suppose 
z( Xi )-data on z(.) are collected in n distinct locations x1, ... , Xn, and that some problem 
of interest can be phrased in terms of z(.), like that of spatial interpolation. The spatial 
statistical way of approaching such problems is to view z(.) as a realisation of a stochastic 
process Z(.). The idea is to translate prior knowledge to a suitable class of models for Z(.), 
typically viewed as a smooth trend surface plus spatially correlated residual, use data to 
estimate parameters, and answer the original z(. )-question under the model assumption 
and given all available information. To be specific, suppose that Z(.) is Gau:Bian with 
regression type trend surface plus zero mean Gau:Bian residual, say 

p 

Z(x) = m(x,f3) + e:(x) = Lf3;f;(x) + e:(x), (3.1) 
j=l 

where the f;(x)'s are known regressor functions (JI(x) would typically be the constant 1), 
the f3; 's are coefficient parameters, and where the covariance function 

cov{Z(x),Z(y)} = cov{e:(x),e:(y)} = u 2 K(x,y) (3.2) 

describes the variability and the degree of spatial continuity of the residual process. One 
often postulates shift invariance, so that K(x,y) is of the form K0 (x- y) for appropriate 
Ko(.) function, and in such cases it is convenient to choose K(x,x) = Ko(O) = 1 so that 
Var Z(x) = u 2 • The random function is isotropic if in addition K(x,y) only depends on 

the distance llx- yJJ, as in the popular case K(x, y) = exp{ -cllx- Yll}. 
At this point it is worth noting that the covariance function is only defined when Z(x) 

has finite variance. A richer class of measures for second order spatial characteristics is 

the so-called semi-variogram 

r(x,y) = tVar{Z(x)- Z(y)}, (3.3) 
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which requires only the variances of differences to be finite. When K is shift invariant and 

Var Z(x) = u2 < oo one has 1(x,y) = u 2{1- K(x,y)}. The idea of and value of requiring 
finite variances of only certain linear combinations of Z(.) is developed in the theory of 
intrinsic random functions, see remarks at the end of this section. The possible choices 
for semi-variogram functions are linked to the choice of p and /;(x)'s together with the 
requirement of producing nonnegative prediction variances; see also remarks below. We 
have chosen to present most of the general Gau:Bian random function theory in terms of 
spatial covariance functions. 

3.1.B. Spatial interpolation by universal Kriging, and its precision. Suppose interpo­
lation is called for. Let x be a new location point, and let us follow the program above. 
Under the Gau:Bian assumption 

( Z(x)),....., N {(f(x) 1{3) 2 (K(x,x) 
Zdat n+1 F{3 ' U k 

kl) 
K }, 

in which K is then X n matrix of K(xi,Xj), k and Zdat are the vectors with components 
respectively K(x,xi) and Z(xi), and finally F is the n X p matrix whose i'th row is 

f(xi) 1 = (JI(xi), ... , /p(xi)). Hence 

Z(x)jdata,....., N{m(x,{3) + k1K-1 (Zdat- m({3)), u 2 (K(x,x)- k 1K- 1k)}, 

writing m(f3) for the vector of m(xi,f3). Of course m(f3) = F{3 in the present case, but the 
notation is meant to suggest its natural generalisation to other regression functions. 

Specification and estimation of K(., .) is discussed in 3.1.E below. Suppose for now 
that a covariance function has been decided on. The natural estimator of {3 then emerges 
by minimising (Zdat- F{3)1K-1 (Zdat- Ff3). This is the weighted least squares as well as 
the maximum likehood principle, when the covariance function is assumed known. The 
result is 

~ I -1 I 1 1 {3 = HF K Zdat where H = (F K- F)- , 

constituting an unbiased estimator with covariance matrix u 2 H. The spatial interpolator 
used in the end is the estimated mean value of Z ( x) given the data, that is 

Note that it is unbiased predictor in the sense of having E{Z(x) - Z(x)} 0. The 
interpolation variance, or prediction error, can be shown to be 

Upe(x? = E{Z(x)- Z(x)} 2 

= u 2 [K(x,x)- k1K-1k + (f(x)- F 1K- 1k)1H(f(x)- F 1K- 1k)]. 
(3.5) 

Note that the mean squared error is computed w.r.t. (the random) Z(x) and not its mean 
value f( x )' {3, since the intention is to guess Z ( x) for the surface under study and not its 
trend surface. In particular Upe(x)2 is not the same as Var Z(x). 

The interpolator (3.4) is itself independent of the scale factor u 2 , which however 
is needed to assess the uncertainty as in (3.5). To estimate u 2 , when some covariance 

13 



structure K(.) has been decided on, note that Zda.t -FlJhas variance matrix u 2(K -F H F'), 
from which it follows that Q(lJ) = (Zda.t - FlJ)' K-1(Zda.t - FlJ) has mean value equal to 
u 2 times the trace of x-1(K- FH F'), which is Tr(In- H F' x-1 F)= Tr(In- Ip) = n- p 
by usual tricks. Thus Q(lJ)/( n- p) is unbiased, even in the present setting with correlated 
data. The maximum likelihood solution, trusting normality, is u2 = Q(lJ)Jn. We should 
stress that u 2 and K(.) are defined 'together' and should be estimated together. Modelling 
and estimating K(.) is the harder task, see 3.1.E below; u can be estimated as just described 
for given K(. ). It is also usual in geostatistics to estimate u 2 by cross validation techniques, 
see Davis (1973) and Solow (1990). 

Spatial interpolation of a random function with drift can be considered from a some­
what different perspective as well, that of choosing an optimal linear combination, un­
der different assumptions about spatial smoothness. Consider the interpolator Z*( x0 ) = 
2:::7=1 CiZ(xi) at point x = x0 , where the weights Ci are to be determined. Unbiasedness, 
in the sense of E{Z*(xo)- Z(xo)} = 0, is ensured by the constraints 2:::7=1 Ci/i(xi) = 
fi ( x0 ) for j = 1, ... , p. A natural avenue is to minimise the interpolation variance 
Var{Z*(x0 ) - Z(x0 )} under these constraints. This may be formulated as minimising 

Var L::7=o ciZ(xi) under L::7=o cd;(xi) = O, j = 1, ... ,p, where co = -1, and the task is 
solved by the Lagrange technique. The result is in fact Z(x) of (3.4), and this Lagrangian 
way of deriving it is the usual one in the geostatistics tradition. It is the called the uni­
versal Kriging interpolator, see for example Journel and Huijbregts (1978). Note that the 
Gau:Bian assumption, which was used to reach (3.4), is unnecessary in this construction. 

One sometimes uses (3.4), in that form or computed by constrained minimisation, 
with K(x,y) functions that are not genuine nonnegative definite covariance functions. 
The minimum requirements on the K function for guaranteeing nonnegative interpolation 
variances are that 

for all xo,x1, ... ,xn and all c1, ... ,cn satisfying the L::7=0 cd;(xi) = 0 constraints above. 
It is assumed here that K(x,y) = K(x- y). 

Consider cases for which h ( x) is the constant 1, i.e. the trend surface contains a con­
stant /31, and 2:::7=1 Ci = 1 among other constraints. Nonnegative interpolation variances 
are ensured by c' K c 2: 0 for all c vectors obeying certain constraints, where K is the 
matrix of K(xi- x;). In terms of the semi-variogram function (3.3) the criterion becomes 
c'rc :::; 0 with constraints on c, where r is the matrix of 1( Xi - x; ). 

Assume in particular that the regressor functions fi ( x) are polynomials in the co­
ordinates of x, of order k or less. The random functions having this property are called 
'generalised intrinsic functions of order k ', and the associated function K (.) is termed 'gen­
eralised covariance function of order k '. It is clear that this class of generalised covariance 
functions is larger than the class of simply nonnegative definite functions. 

By enforcing stronger assumptions on the form of the expected value one can choose 
among a larger class of generalised covariance functons. This approach to spatial inter­
polation is widely used in the geostatistics school, see Matheron (1973). It resembles the 
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'integration approach' used in time series analysis, see Box and Jenkins {1976). It can 
be shown, however, that interpolations based on assumptions of intrinsic random function 
hypotheses, of any given order k, are equivalent to those obtained from an appropriate 
universal Kriging with a GauBian random function model, see Christensen {1990). 

REMARKS. (i) A sound implementation is vital here, since inverting large matrices 
can be slow and unstable if done directly. Rather than using the mathematically and 
statistically informative (3.4) and (3.5) a good interpolation package would typically use 
derived formulae from Choleski triangularisation; see for example Ripley (1981, Section 
4.4). (ii) One valid variogram function, among others, is 

This family of variogram functions is said to have affine similarity properties and are used 
to model fractal phenomena, see for example Feder (1988). The H constant is called the 
Hurst exponent. The Brownian motion process in one dimension is of this type, with 
H = t· (iii) Note that Z(xi) = z(xi) and u;e(xi) = O, that is, the interpolator respects 
the data points. This is as it should be, since the real interest is interpolation of the actual 
z(.), rather than its underlying trend surface. In applications of classical nonparametric 
regression the problem is typically the opposite one of estimating the smooth trend, based 
on unrelated realisations at different locations. (iv) In locations x far from all sampled 
Xi's the interpolator is close to the trend estimate m(x,/i). (v) More robust estimates 
than the least squares /i could be used as well, without seriously affecting the reasoning 
or the results. The same remark applies also to more general forms for m(x,f3) than 
the linear one; exp(f3' x) is a case in point. (vi) The geostatistical Kriging techniques 
have been extended to cover multivariate cases, see for example the so-called co-Kriging 
method of Journel and Huijbregts {1978). Another extension is called factorial Kriging, 
see Sandjivy (1984), consisting in separating a random function into smoothly varying 
trend and a correlated residual term. (vii) The term Kriging was originally used for linear 
predictors, i.e. linear in the data points Z(xi)· A couple of nonlinear predictors have also 
adopted the Kriging term, however. Disjunctive Kriging is based on a Hermitean expansion 
of the bivariate characteristics of the random function, thereby extending the familiar 
correlation framework, see Matheron {1976). Indicator Kriging is based on a discretisation 
of the univariate variable into a set of linear combinations of indicator variables, hence 
providing estimates of the fractiles of the conditional distribution, see Journel (1983). 
(viii) Markovian properties of Gau:Bian random functions in the onedimensional case are 
easily defined and well understood. There are unexpected difficulties with the different 
possible definitions of Markovness in higher dimensions, however, and some of these lead 
to too restricted classes. See Adler (1981, Appendix) for a review. 

3.1.0. Bayesian Kriging. In some situations there is rather too little data to do 
interpolation like above with the wished for precision, but there is some prior knowledge 
about the trend surface. This invites Bayesian and empirical Bayesian considerations. The 

following treatment partly extends that of Omre (1987) and Omre and Halvorsen (1989). 
Other relevant references are Pilz (1990) and Le and Zidek (1991). 
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Let the model be as in (3.1) and (3.2) conditionally on {3, and suppose f3 is given some 
GauBian prior distribution, which we parameterise as Np{/30 , u 2 T}. For the moment we 
take o-2 to be known. The joint distribution of f3 and data Zdat is easily found to be 

In particular the posterior distribution of f3 is still normal. After using the convenient 
matrix identity (K + FT F')-1 = K-1 - K-1 FGTF'K-1 , where GT = (H-1 + T-1 )-1, 
one finds 

~ = E{f3idata} = f3o + TF'(K + FTF')-1(Zdat- Ff3o) 

= GTH-1 11 +(I- GTH-1 )f3o, 

VAR{f31data} = u 2 {T- TF'(K + FTF')-1 FT} 

--:- u 2(I- GTH-1 )T. 

(3.6) 

Note that the Bayes estimator f3 is a combination of the prior guess {30 and the usual 
estimate 11. Note also that in the case of a flat prior, which corresponds to moving the 
elements ofT so that its eigenvalues tend to infinity, then GTH-1 • I-HT-1 , in particular 
GT tends to H, ~tends to 11, and VAR{f31data} becomes o-2 H. 

This is information of value, but the imminent interest is interpolation and its uncer­
tainty. We find 

( Z ( x) ) N { ( f ( x) 'f3o ) 2 ( K ( x, x) + f ( x )' T f ( x), ( k + FT f ( x) )' ) } 
Zdat ""' n+1 Ff3o 'u k + FTf(x), K + FTF' . 

Our Bayesian Kriger becomes 

ZB(x) = E{Z(x)ldata} = f(x)'f3o + (k + FTJ(x))'(K + FTF')-1 (Zdat- Ff3o) 

= f(x)'~ + k'K-1(Zdat- F~), 

with associated Bayesian prediction error 

O"be(x) 2 = E{(ZB(x)- Z(x)?ldata} 

= Var{Z(x)ldata} 

(3.7) 

= o-2 [K(x, x) + f(x)'Tf(x)- (k + FTf(x))'(K + FTF')- 1(k + FTf(x))]. 
(3.8) 

Again there is a natural correspondence for a flat prior, in that the Bayesian interpolator 
converges to Z(x) when the covariance matrix T for the f3 prior tends to infinity, and 
O"be ( x) tends to O"pe( x ). More informatively, calculations show that 

and GTH-1 is close to I- HT- 1 when Tis large compared to H. This means that in 
situations where Tis large (vague prior information) and/or 11 is close to f3o (good prior 
guess) the Bayesian and the traditional viewpoints lead to the same quantitative results, 
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regarding interpolator and prediction variance, but with two quite different perspectives. 
Many statisticians have learned from experience that users very often prefer and relate 
better to the Bayesian interpretation. 

The case of T = 0 corresponds to certainty about trend surface f( x )' {3 = f( x )' {30 , 

and ZB(x) = f(x)'f3o + k'K-1 (Zdat- Ff3o) is as in so-called simple Kriging with known 
trend. The other extreme is when T is very large, corresponding to prior ignorance about 
{3, where ZB(x) becomes as in universal Kriging. There is accordingly a 'Bayesian bridge' 
from simple to universal kriging. 

The Bayesian apparatus becomes more useful and flexible when uncertainty about 
the scale factor u 2 is modelled as well. The mathematically simplest Bayesian solution is 
the following: Suppose the prior distribution for ( u2 , {3) is such that u2 "' inverse gamma 
(a,{) and f3iu 2 "'Np{{3o,u2 T}, i.e. 

Then calculations show that ( u 2 , {3) given data Zdat is exactly of the same type, but with 
updated parameters: 

(u2 ,{3)idata "'inverse gamma(a,;y) x Np(p, u 2 GT }. 

Here a = a + tn and ;y = ' + tnu2 + Hff- f3o)' LT(P- f3o), writing u2 = (Zdat -
FP)'K-1 (Zdat- FlJ)In for the non-Bayesian estimator and LT = T- 1 GTH-1 • In partic­
ular the Bayesian predictor is as in (3. 7) above, and the Bayes estimate of u 2 is 

2 2 a - 1 2 nl2 2 ...... ...... u =E{u !data}= I u0 + I {u +(f3-f3o)'LT(f3-f3o)ln}, 
a-1+n 2 a-1+n 2 

where u~ = Eu2 = {I (a - 1) is the prior guess value. The Bayesian prediction error is as 
in (3.8) but with G-2 replacing u 2 • 

Once more the traditional methods emerge in the limiting case of vague Bayesian 
ignorance, which here corresponds to a-+ 1, {-+ 0, and T-+ oo. 

3.1.D. Simulation. Suppose a simulated realisation Z 8 (.) of a fully specified Gau:Bian 
random function is needed, perhaps conditioned on some observed values. First of all this 
means in practice that Z 8 (x) is to be simulated on some dense finite lattice of points only. 
Hence the problem seems simple, since textbooks on multivariate statistics give answers to 
such questions in terms of simple linear algebra. Such direct methods must involve matrix 
inversion, perhaps via Cholesky decomposition, and work well on good computers if the 
dimension of the problem is less than 3000. But in many spatial problems the grid net 
contains more than 106 points, and in such cases smarter simulation algorithms are called 
for. 

One general approach to conditional simulation of the residual process Zr( x) = 
Z(x) - m(x,{3), with associated residual observations Zr(xi) = Z(xi) - m(xi,f3) for 
i = 1, ... ,n, is by decomposition. Let Zr(x) = Zr(x) + {Zo(x)- Zo(x)}, with Zr(.) 
the simple Kriging predictor based on the observations, Z0 (.) an arbitrary random func­
tion with characteristics identical to Zr(x), and Zo(x) the simple Kriging predictor based 

17 



on Zo(:z:i)-data. From the orthogonality of Zr(.) and Zr(.) it is easy to see that the de­
composition is correct. Using this trick it suffices to simulate a random function with zero 
mean and covariance function K ( x, y) unconditionally. 

The 'turning band' procedure ofMatheron (1973) provides a general tool for simulating 
random functions with a specified covariance structure. Several procedures working in the 

spectral domain are also available, see Ripley (1986, Ch. 4). 
Spatial and spatial-temporal problems often require simulation on extremely large grid 

nets, for which the procedures mentioned above will be too slow, even on very fast machines. 
In Omre, S!Zilna, and Tjelmeland (1992) some very fast procedures for simulating random 
functions are presented and evaluated. The procedures use Markov characteristics valid in 
one dimension and generalise the idea to higher dimensions. The traditional procedures 
for simulation of fractal processes, see Feder (1988), are in the same spirit. The screening 
sequential procedure defined in Omre, S!Zilna, and Tjelmeland (1992) is considerably more 
reliable than the traditional fractal procedures, however, albeit somewhat slower. 

3.1.E. Estimating the covariance function. A point of some importance which has 
attracted renewed interest recently is that of the specification and estimation of the co­
variance function K. In the geostatistics tradition the K function has typically been 
regarded as 'given and fixed' once 'guessed at', which results in underestimation of inter­
polation variance, and, sometimes, suboptimal interpolation. Observe that the definition 
of and the interpretation of K and cr2 in (3.2) are dependent upon the chosen regression 
surface model. If one adds a term to a previous regression trend, then K and cr2 have 
changed meanings, and cr2 will in fact tend to be smaller. 

Consequences of using incorrect covariance functions have recently been studied by 
Watkins and Al-Bouitiahi (1990) and Stein (1990a, b). Various methods for estimating 
parameters in such functions have been proposed, and a couple of these and a new one 
will be mentioned here. 

Let us structure the problem somewhat and assume stationarity and isotropy, say 

cr 2 K(x, y) = cr2 R(llx - Yil), identified by putting R(O) = 1, so that cr2 is the variance 
of Z(x) and R(r) is the correlation between Z(x) and Z(y) whenever the locations are 

distance r apart. A nonparametric procedure which can be used with sufficient data is to 
group together all pairs of points with inter-distance in (r- h, r +h), say, and estimate the 
covariance R( r) based on these. This suggestion amounts to 

i,j i,j 

where the sums are over all n(n -1)/2 pairs, and dij = llxi- xill is the inter-distance 
between locations, but where w( d) is 1 only ford E (r- h, r +h) and 0 outside. Somewhat 
more ambitiously a kernel type weighting of all pairs of data can be proposed. There are 
some difficulties with the direct use of estimators like (3.9), since one wants to ensure 
positive definitess of the covariance function to be used in Kriging. Therefore (3.9) type 
estimators are more often used as a means of deciding on some particular parametrised 

covariance function. Robustness issues are discussed in Omre (1984). 

For parametric models R(r) = Re(r) there is an ongoing dispute over the merits 

of the maximum likelihood estimator. Maximimising the likelihood over f3 gives fie 
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(F'Ki 1 F)-1 F'Ki1 Zdat, and then over u gives 0:~ = Qe/n, where Qe = Qe(!ie) = (Zdat­
F7Je )' Ki1 (Zdat- F!ie). Here Ke is the matrix of Re(dij ). The resulting profile likelihood 
must finally be maximised over 0. This amounts to minimising the rather intricate function 

~ 1 1 1 -logL(f3e,ue,O) = 2nlog(Qe/n) + 2log{det(Ke)} + 2n. (3.10) 

There are first of all numerical problems associated with minimising this difficult and pos­
sibly multimodal function, and secondly it is not clear that using the maximum likelihood 
estimator should be a good choice per se. See the dispute of Mardia and Marshall (1984), 
Warnes and Ripley (1987), Ripley (1988, Chapter 2), and Mardia and Watkins (1989). 
Other estimation methods have also been proposed, see Switzer (1984), Stein (1987), and 
Vecchia (1989). Pseudo-likelihood methods in the manner of Besag (1974) and Jensen and 
M¢ller (1991) can also be used. 

Let us briefly describe yet another method, the maximum quasi-likelihood procedure 
of Hjort (1992). This is really a class of methods, and the simplest among them is the 
following: Consider 

ql({3, u, 0) = IJ g(zi, Zj Jdij,{3, u, 0), (3.11) 
i<j 

where the product is over all N = n( n- 1) /2 pairs of distinct observations, and the g-term 
is the model-given probability density of (Z(xi), Z(xj)) for points lying distance dij apart. 
Maximising this is easily carried out, as indicated below, without numerical problems. Why 
is maximising ql a sensible procedure? Suppose g( z, z'Jr) is the true probability density 
for a pair (Z(x),Z(x')) with inter-distance r. Divide the distance range [O,oo) into small 
intervals, and sort for each interval together those pairs in log ql that have inter-distance 
dij close to the corresponding distance, say r. An ergodic argument shows that 

N-1 logql({3,u,8) · 100 [j J g(z,z'Jr)logg(z,z'Jr,{3,u,O)dzdz'] H(dr), 

in which H(dr) is the distribution of the distance JJx- x'JJ between a randomly drawn pair 
of points. Hence maximising ql aims at finding the parameter values that minimise the 
particular distance function 

~[g(.,.J.),g(.,.J.,(3,u,O)] = 100 ~r[g(.,.Jr),g(.,.Jr,{3,u,O)] dH(r), 

in which the 'inner distance function' between the true density 9r and the modelled density 
g; for (Z(x), Z(x')) is the Kullback-Leibler one, J J grlog{gr/g;}dzdz'. In particular the 
proposed maximum ql method leads to consistent parameter estimates under suitable mild 
regularity conditions, but we avoid here the precise definition of the asymptotic framework. 

Let us see how this works out in the three-parameter model in which Z(x) rv N {{3, u 2 } 

and the covariance is u2 Re(r) for points lying distance r apart. As with the ordinary 
likelihood method the program is to maximise w.r.t. {3, then over u, and finally over 0. 
This leads to the following, where we take the liberty of using the same notation as for the 

ml case above: Let first lie minimise 
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indeed 
ji """" (zi + Zj )/2 j"""" 1 
8 = L- 1 + R8(d· ·) L- 1 + R8(d· ·). 

i<j lJ i<j lJ 

Then let 0:~ = QfJ($8)/N = QfJ/N. The remaining task is to minimise 

-log ql($8, UfJ, 8) = Nlog( QfJ/N) + L t log{1- RfJ(dij ?} + N 
i<j 

w.r.t. 8, compare (3.10). 

(3.12) 

There is a connection to the simple nonparametric correlation function estimator (3.9), 
in that if the particular model which postulates piece-wise constant R(.) is used, then the 
ql-solution can be shown to be close to (3.9), and the related quasi likelihood which only 
uses data pairs with approximate distance r comes even closer. 

The virtues of the ql method are that the numerical maximisation problem is much 
simpler than for the ordinary likelihood method, its relatively wide applicability, that its 
behaviour is better understood, and that it in fact behaves well. It does not claim to be 
optimal, and in the asymptotic framework where the region expands to produce nearly 
independent copies the ml is better. This framework is somewhat inappropriate, however. 

Instead of using all pairs one could take the product over allg(zi, Zn(i) ldi, {3, u, 8) terms, 
where Zn(i) is nearest neighbour to Zi, with interdistance di. Reasoning similar to above 
shows that this estimation procedure aims at minimising a different distance criterion 
from true model to parametric approximand, using the H0 (dr) distribution for nearest 
neighbour distances instead of H( dr) for an arbitrary distance. And there are several 
related alternative methods. The two procedures above care only about data-pairwise 
aspects of the model, and would not necessarily be good enough for prediction purposes, 
for example. One could with some additional efforts use three data points at a time, to fit 
the empirical three-point-sets distribution to the model. A fuller account is given in Hjort 
(1992). 

3.2. Mosaic processes. Here we describe processes that divide the reference space 
into a set of disjoint segments and assign a label to each segment. The Markov Random 
Fields ( mrf's), defined on regular lattices, are enjoying increased popularity, though mixed 
with a widened understanding of the inherent limits and difficulties of the approach. The 
fundamental simulation scheme called the Metropolis algorithm is explained. Some recently 
developed amendments and alternative models, including constrained mrf's and semi-mrf's, 
are then discussed. Finally a couple of non-lattice situations are considered. 

3.2.A. Markov Random Fields. We are concerned with stochastic models for the 
distribution of classes on lattices. One class of such models is the class of mrf's. The 
following is a brief description of mrf's and some of the statistical properties of such 
models. We discuss how to estimate parameters of such models, based on an observed 
'true scene', and describe methods to simulate realisations of mrf's. One needs to be 
able to simulate both unconditionally and data-conditionally from a specified mrf. Global 
constraints that one sometimes needs to be able to impose on simulated scenes include 

preservation of information in some locations and the desire to keep frequencies of some 
or all classes near specified levels. 
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For a given lattice system of sites we first need to introduce the notion of a clique. 
Because of the strong association to image analysis we shall mainly think of the sites as 
picture elements, or pixels. Assume a system of neighbourhoods has been defined. Then 
define a clique Q as a set of pixels all of which are neighbours of each other. Note the 
sociological appropriateness of the term. If 'neighbours' means nearest neighbours, not 
including the diagonal ones, then all cliques are of the type 

{(i,j), (i + 1,j)} = 
* * 

* or {(i,j), (i,j + 1)} = . 
* 

If also diagonal neighbours are included, so that each site has eight neighbours, then there 
are nine types of cliques: 

* * * 
* * * * * 

* * 
* 

* 
* * 

* * 
* 

* 
* * 

* * 
* * 

(3.13) 
The mrf class of probability distributions, or Gibbs processes, are those that satisfy 

N 

p(x) =p(:z:I, ... ,:z:N) = const. exp[Lai(:z:i)+ LVq(xq)], (3.14) 
i=l Q 

where x = ( :z:1, ... , :Z:N) is a long vector of class labels, say among {1, ... , K}, inN sites or 
pixel locations; Vq(xq) = Vq(:z:q,l, ... , :z:Q,m{Q)) is the 'potential' associated with clique 
Q; ai(1), ... , ai(K) are class and position dependent parameters that can be tied to the 
prior probabilities for the various classes; and the sum is over all cliques. One important 
consequence is that 

(kl ) { . . .
1 

} exp{ai(k) + Ai(k,xai)} 
Pi rest = Pr class = k m p1xel 'l. rest = K , 

2:z=l exp{ai(l) + Ai(l,xai)} 
(3.15) 

in which :z:oi is the collection of classes in the neighbouring pixels lying around pixel i. 

In fact Ai(k, :z:oi) = 2:Q:iEQ Vq(xq; Xi = k ). This means in particular that Pi(klrest) 
depends upon only 8i, i.e. 

Pi(klrest) = Pi(klxai)· (3.16) 

This is the Markov property. The probabilities (3.16) are called the local characteristics 
of the mrf. One could call Ai ( k, 8:z:i) the award function for window { i} U 8i around pixel 
i. The model encourages realisations with high awards. 

The remarkable Hammersley-Clifford-Besag theorem identifies processes having the 
Markov property (3.16) with those having the Gibbs property (3.14), under a positivity 
condition, see Besag (1974). When faced with the task of constructing a suitable mrf 
to describe a certain phenomenon it is usually simpler to think 'local Markov' in terms 
of award functions and local characteristics than thinking 'global Gibbs' in terms of the 
potentials. 

The following mrf is among the structurally simplest, but has proved useful in image 
restoration (see 3.4.C below) and in other areas: Use 3 X 3 neighbourhoods, and cliques of 
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size two only in (3.13), use class-dependent but position-independent ai(xi) = a(xi), and 
encourage spatial continuity by putting V(i,j)(xi,x;) = f3I{xi = x;} in (3.14). This spatial 
mosaic model has K + 1 parameters and local characteristics 

(kl ) exp{a(k)+f3Hi(k,xai)} 
Pi rest = K , 

:Ez=1 exp{ a(l) + f3Hi(l, xai)} 
(3.17) 

in which Hi( xi, xai) is the number of Xi's neighbours that agree with it. The award is a 
value in 0, /3,2/3, ... , 8/3. 

The mrf's obviously form a very wide class. Including other cliques carefully chosen 
from larger neighbourhoods and perhaps finer parameterisation than a crude f3 for each 
gives one the possibility of including various types of prior knowledge about local structure 
into the model. In Application 2.3.B described in Section 2 we fitted mrf's with K = 12 
classes that came in four subgroups and 5 X 5-windows with up to 16 different cliques and 
up to 6 different /3-parameters, see Hjort, Holden, and Omre (1989). In Application 2.5.B 
similarly complex mrf's have been used to model handwritten numbers, see Pripp (1990). 

REMARK. It is instructive to compare the 2-D Markov property to the corresponding 
1-D one, i.e. for Markov chains {xn}· The classical definition of Markov-ness in the chain 
case is that the distribution of some Xn given the complete past depends on Xn-1 only. The 
alternative characterisation that the distribution of Xn given both past and future depends 
on the nearest neighbours only lends itself much more naturally to higher dimensions. D 

3.2.B. Parameter estimation from a single scene. Consider for concreteness a mrf with 
local characteristics of the form (3.17), but with a more general award function structure 

Ai( Xi, xai) = f31H~ 1)(xi, xai) + · · · + /3pH~p)(xi, xai) = /3' Hi(Xi, xai), 

for certain parameters /31 , ..• ,/3p and certain simple functions H~3\xi,Xai)· The task is 
to obtain estimates for a(k)'s and f3's (and perhaps further parameters, see 3.4 below), 
from a single realisation x of the assumed mrf process. The a( k) 's are tied to the prior 
probabilities in pixel i, but in a rather involved way, because of interaction with the f3's. 

This is in one way a simply structured exponential model of classical form, say p( x) = 
c(f3) exp(f3'V(x)) (having subsumed a(k )'sin new f3's). The maximum likelihood method is 
seen to be equivalent to solving yU)(x) = f.L(j)(/31 , ..• ,/3p) for j = 1, ... ,p, where f.L(j)(f3) = 
-8 log c(/3) /8/3 is the expected value of vW ( x) under the model. These equations cannot 
be solved directly, due to the formidable normalisation constant c(/3), defined as a sum of 
K N terms. This is the 'partition function' of statistical mechanics, and to give an idea of 
its complexity it suffices to mention that a Nobel Prize was awarded Nils Onsager for just 
providing an approximation. But ml estimates can be computed after all, through the use 
of extensive simulations, see the idea sketched in Kiinsch (1986). Pickard (1987) managed 
the simplest case of two equally likely classes and a single f3 parameter. 

The alternative maximum pseudo-likelihood method is much simpler to implement, 
and has become the method of popular choice. It consists of maximising pl = rr~1 Pi( Xi I 
xai) w.r.t. the parameters of the model. In the case considered 

N K 

log pl = L [a( xi)+ f3'Hi(xi, xai) -log(L exp { a(l) + f3'Hi(l, xai)})], (3.18) 
i=1 Z=1 
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and this function can be maximised numerically w.r.t. the parameters {31 , ... ,{3p and the 
parameters of a(k). To give expressions for partial derivatives, let EiVi(·,xai) denote the 
mean of Vi( Xi, xai) conditional on xai, so that Xi = k with probability Pi(klxai), and let 
VARi Vi ( ·, x Bi) be the accompanying variance matrix. Then 

which shows that logpl is concave and well-behaved as a function of {3. 
A natural first step is to employ parameter-free prior probabilities exp{ a( k)} = 1r( k ), 

for example position-independent ones and taken from some 'prior scene', so that log pl 
needs to be maximised only w .r. t. {31, ... , {3p. The maximisation could if necessary go on in 
an i terational manner. If a( k) is treated as an unknown parameter then 8log pl/ 8a( k) = 0 

leads to the natural equation 7rk(x) = (1/N) :Ef:1 I{xi = k} = (1/N) :Ef:1 Pi(klxai)· In 
Application 2.3.B we have also had occasion to use and fit mrl's with non-linear exponents. 
All in all parameter estimation using maximum pseudo-likelihood requires some reliable 
maximisation algorithms, along with a flexibly structured environment to handle such data 
structures, but is not a major obstacle. 

REMARK. Why does pseudo-likelihood work? And is it clear that ordinary maximum 
likelihood works, if arduously carried through? Again it is instructive to consider the one­
dimensional case of Markov chains. Suppose data {X a.: a = O, •.• , n} are observed from 
some stationary process and are to be fitted to some parametric first-order Markov chain 

model Pr{Xa.+1 = jiXa. = i} = p,a(jli). Let p,a(i) = Pr{Xa. = i} be the accompanying 
marginal distribution, which is the equilibrium distribution. The ml procedure and the pl 
procedure maximise respectively 

n 

a.=1 i,j 

and 
n-1 

pl(/3) = II p,a(xa.lxa.-1,xa.+d = II P,a(jli,k)N(i,j,k) 
a.=1 i,j,k 

in self-explanatory notation. 
To examine the aims of ml and pl let us merely postulate that the true underly­

ing model for the chain is some stationary distribution with Pr{Xa. = i,Xa.+1 = j} = 

p(i,j) = p(i)p(jli) and Pr{Xa. = i,Xa.+1 = j,Xa.+2 = k} = p(i,j,k). By ergodic argu­
ments N(i,j)/n and N(i,j,k)/n tend to p(i,j) and p(i,j,k) in probability. Hence 

.!_logL(/3) ~P )q(f3) = LP(i,j)logp,a(jli) = LP(i) LP(jli)logp,a(jli) 
n . . . . 

t,) ' J 
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and 
1 
-logpl(,B) -+p Apl(,B) = L p(i,j, k) logp13(jli, k) 
n 

i,j,k 

i,k j 

in which p( i, . , k) is the sum of p( i, j, k) over all j. It follows that ml and pl in general aim 
at different 'least false' or 'most appropriate' parameter values. The ml procedure aims 
at and will be consistent for the parameter value ,80 which is least false according to the 
distance measure 

a weighted sum of Kullback-Leibler distances between true and modelled transition prob­
abilities. The pl procedure, on the other hand, aims at and is consistent for the second 
parameter value ,81 that minimises the different distance measure 

another weighted sum of Kullback-Leibler distances, this time between true and mod­
elled local characteristics Pr{Xa = iiXa-1 = i,Xa+1 = k}. One may also study limit 
distributions in this framework. The ml is somewhat better on the model's home turf. 

This discussion is pertinent considering our proclaimed view that models should be 
fitted and 'adapted' but not necessarily trusted. 

3.2. C. Unconditional simulation. The task considered is that of simulating realisations 
of a specified mrf. This amounts to simulating from a discrete probability distribution p(x), 
see (3.14), on an enormous but finite space, the set S of all KN possible combinations of 
classes on the given lattice. In application example 2.3.B mentioned in Section 2 we worked 
with K = 12 classes and for example N = 200 X 100 sites or pixels in the scene, which 
leads to enormous numbers of size 1020 •000 and the like for the number of different scenes. 
Numbers become mind-boggling in 3-D! Ordinary methods can of course not cope with 
this kind of magnitude of the problem. 

The simulation tricks to be used employ Markov chain Monte Carlo methods. Assume 
that a huge transition matrix for a Markov chain with state spaceS has elements m(x, x') 
that satisfy the reversibility criterion 

p(x)m(x, x') = p(x')m(x', x) (3.19) 

for all possible scenes, in which p(x) is the mrf distribution given in (3.14). Then one can 
show that p(.) is the equilibrium distribution for the Markov chain. To sample from p(.), 
therefore, one might choose a convenient transition matrix with elements m(., .) obeying 
(3.19), and then run it until equilibrium seems to have settled in. 

There are several possibilities for choice of m(., .). A convenient class of such can be 
described as follows. Choose first a symmetric transition matrix with elements q(x,x') that 
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are mostly equal to zero. Assume the simulation chain has come to scene x = (x1, ... , XN ). 

Select a potential new scene x' = ( x~, ... , xN) from q(x,. ), and move from x to x' with 
probability min{1,p(x')/p(x)}, otherwise remain at x. This is the Metropolis algorithm, 
or perhaps 'the class of Metropolis algorithms'. One can check that (3.19) holds. The 
basic idea behind this simulation trick seems to be due to Metropolis, see Metropolis, 
Rosenbluth, Rosenbluth, Teller, and Teller (1953), and Hastings (1970) and Ripley (1987, 
Ch. 4) for more statistical accounts. 

It remains to specify q(., .), and again several options are available. One possibility 
is to have q(x, x') positive only if x and x' differ at a single site. If this site is i, and 

x = (x1, ... ,k, ... ,xN) and x' = (xl, ... ,l, ... ,xN), then 

p(x') Pi(llrest) exp{ai(l) + Ai(l,xai)} 
--= - ' p(x) Pi(klrest) exp{ai(k) + Ai(k, xai)} 

see (3.15). One feasible simulation method, for generating a single realisation x, is therefore 
as follows: Start out with some initial scene, for example with class labels simulated 
independently in different pixels, from the prior probabilities 1q(k ). Carry out complete 
iteration cycles until apparent equilibrium, where one iteration cycle means a full scan over 
the scene. And when such a scan visits site i, choose class label l randomly, and let Xi 

change from its current label k to l with probability min{1,pi(llrest)/Pi(klrest)}. 
Among several other convenient methods the so-called Gibbs sampler is perhaps the 

most popular. It consists of running complete iteration cycles until convergence, as above, 
with the following schedule for changing class labels during a full scan. If the current t'th 
generation scene is Xt = (x1 ,t, ... , XN,t), choose a random class lable Xi,t+l = k for site i 
according to the local probabilities Pi(klxt- {i}) = Pi(klrestt)· Only empirical evidence 
can be given for preferring one simulation scheme to another. The 'current folklore', 
in this hectic but still young field of stochastic simulation, seems to favour the Gibbs 
sampler. Some references are Geman and Geman (1984), Gidas (1985), Ripley (1987), and 
Tjelmeland and Holden (1992). 

3.2.D. Constrained simulation. A pleasing facet of the mrf simulation scheme is that 
one can condition on known class values in some locations. Just go on running the Markov 
simulation chain as in the previous subsection, for example the Gibbs sampler, but with 
the class labels fixed at their known values, at all sites where such labels are known. 

In some situations realisations of the mrf are only close to reality if the areas covered 
by each class are somewhat close to prior conceptions. It is therefore important to be able 
to constrain simulated realisations of an mrf to have class proportions equal to or close 
to specified values. This is not an easy problem, and some confusion surrounds the few 
methods that have been proposed in the literature. One possibility is a spin exchange 
method due to Flinn, see Hjort, Holden, and Omre (1989) for a brief review. Another and 
in many ways more promising avenue is to consider a new stochastic model with probability 
distribution 

(3.20) 

in which ~(x1 , ••• ,xN) = 'Lf=1(Nk/N- 1r~? is a measure of discrepancy between the 
class frequencies of the scene x and the specified class frequencies. It is for each given u 
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possible to simulate from Pu(.), by methods similar to those outlined above, even though 
this random field is not any longer a mrf w.r.t. the neighbourhood system. The idea is 
then to let u slowly increase as the Markov simulation chain moves on. The result is that 
the observed class proportions are forced towards the prescribed 7r2's. 

Let us elaborate this point. The local characteristics of the new model are of the form 

( kl ) Pu(xb···,k, ... ,cN) 
Pu Xi = rest = --=-K=-''--------'---

'Ez=l Pu(xl, ... , l, ... , XN) 

exp[ai(k) + Ai(k,xai)- ull(x1, ... ,k, ... ,xN)] 

This expression is generally valid for any given Ll-function of discrepancy between observed 
and ideal characteristics of the scene x = ( x1 , ••• , XN ). With the present Ll-function further 
simplification is possible, see Hjort, Holden, and Omre (1989), and it is not difficult to use 
the Gibbs sampler, as follows. Complete iteration cycles of simulated scenes are run until 
apparent equilibrium, where one cycle is a full scan over the scene. During one such scan, 
suppose the current scene is x = ( x1 , ••• , k0 , ••• , x N ). Then move from k0 to k with 
probability Pu(Xi = klrest). 

REMARK. This approach is useful also for other Ll( x )-measures of discrepancy between 
observed and specified characteristics of the scene. It has been used in various forms 
in projects we have worked on, also for marked point processes (see Sections 3,3 and 
4.3). It was also proposed in a remark by Green (1986) in the context of mrf's for image 
restoration. 0 

3.2.E. Semi-mrf and other mosaic processes. Yes, there are others, and the mrf's have 
perhaps had too much attention during the last few years. Let us here briefly mention 
some other approaches for modelling mosaic type phenomena. 

In some applications the boundaries between class patches are approximately linear, 
and the resulting mosaic image is polygonal. A natural approach is therefore to model 
the boundaries themselves, and perhaps model class labels separately afterwards. Switzer 
(1965) gives a class of Poisson line models, which has been used by Owen (1984) and 
Hjort (1985a) in image reconstruction problems, cf. 3.4.B below. The Switzer process has 
a Markov property along line transects, but is not spatially Markovian; the distribution of 
lines and class labels in the interior of a convex bounded region given what is outside the 
region is not determined by knowledge of lines and class labels on the boundary. A more 
complex process which has this spatial Markov property has been introduced by Arak and 
Surgailis (1989). Clifford and Middleton (1989) outline its use in image reconstruction. 
There is also a differently motivated approach based on coverage processes, covered by 
Hall (1988). Yet another method involves tesellations, Voronoi cells, etcetera, see Ripley 
(1981, Ch. 4). 

Let us finally describe a semi-mrf approach that aims at combining some of the con­
venient features of the mrf methods with some larger-scale modifications. A realisation 
x on a lattice defines 'bodies', maximal connected sets of sites that belong to the same 
class. There are several possibilities for making this intuitive notion mathematically pre­
else; see Holden and Tjelmeland (1990) for one definition that is even valid in 3-D. The 
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idea is that users often know something about the typical sizes and forms and directions of 
bodies, at least for some of the classes. If bodies of sites from class 2 tend to be elliptical, 
for example, one can try to specify distributions of the angle and the axis lengths, and 
then build a model that is locally a mrf but encourages such bodies to take place, using a 
more complicated version of (3.20). One would also want to be able to gear such a model 
towards respecting certain borders on the scene, or towards respecting prior information 
of the type 'bodies from class 3 very rarely touch bodies from class 4'. The challenge 
is to build a sufficiently general and flexible model that can do this and which makes it 

possible to simulate realisations. This rather ambitious scheme is carried out in Holden 
and Tjelmeland (1990) and in Tjelmeland and Holden (1992), using models of the form 

B D 

p(x) = const.po(x) exp{L ''YbWclass(Bb)(Bb,/(Bb))- Lud.dd(x) }, 
b=l d=l 

where p0 (x) is some ordinary mrf, perhaps with 5 x 5 windows, the Bb's are bodies with 
features f(Bb) like size and form, the W's are award functions that encourage bodies to 
meet certaiun specifications, and the .dd's are certain discrepancy functions. This model 
has been used to build a program system that produces simulations of reservoir architecture 

and reservoir properties for oil companies; see the references mentioned. 

3.3. Event processes. Here we briefly review some theory for spatial point pro­
cesses. To solve problems associated with applications described in 2.3.0, 2.3.D, and 2.4.B, 
for example, one typically needs to model both location of points and associated 'marks'. 
This is one of the combinations of processes we treat in 3.4. It will be seen that natural and 
simple models sometimes are easy to construct, but that parameter estimation and model 
verification typically become difficult tasks. Simulation based inference and use becomes 
important. 

3.3.A. Spatial point processes. How can we model the geographical positions of a 
collection of points, or small objects, in a given region? The simplest possibility is a 
Poisson process with constant intensity .A, say, which postulates that the number of points 
falling in disjoint regions are independent and Poisson distributed with parameters equal to 

.A times the areas of the regions. A wider class of models emerges by allowing the intensity 
to vary, perhaps even stochastically. Many important phenomena are not well modelled 
by even such varying-intensity or doubly stochastic Poisson processes, however. A typical 
feature is that the smallest inter-point distances are not as small as they would be under 

Poisson-ness. 
A rich class of models for point patterns is the pairwise interaction processes, with den­

sity (Radon-Nikodym derivative) f( {x1, ... , xn}) = const. IJ~=l g(xi) IIi<j h(llxi- Xj II) 
w.r.t. the Poisson point process (with unit intensity, say). Here g(x) is some nonnegative 
function of geographical position, often taken to be constant; h(r) is some nonnegative 
function of the distance r between points, usually bounded by 1; and the integration con­
stant is unwieldy. One is usually content to study models for fixed number of points n, 

where the pairwise interaction model says 
n 

fn(xb ... ,xn) = const. ITg(xi) IT h(llxi- Xjll). 
i=l i<j 
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There are some measure-theoretic details to work through here; see Lotwick and Silverman 
(1981) and Baddeley and M!2Sller (1989) for good accounts. Typical examples include 

h(r) = { i if r < p, 
if r 2: p, 

which gives the so-called Strauss model, and other simple functions that in some way climb 
from 0 (or from some extra parameter e) to 1 when r runs from 0 to p. The special case 
1 = 0 is possible in the Strauss model, and corresponds to a Poisson process which is never 
allowed to have points closer to each other than p; this is also called a hard core process 
with hard core distance p. 

With these choices for h(.) there is an upper limit after which no interaction occurs, 
and the product above is only over all neighbour pairs, where being neighbours means 
II xi - Xj II < p. This invites Markov connections. Indeed the random collection X = 

{x1, ... ,xn} has a spatial Markov property, see Baddeley and M!2Sller (1989). General 
references for modelling spatial point patterns include Ripley (1977, 1981, 1988, 1989a, 
b) and Stoyan, Kendall, and Mecke (1987). Some geological applications are described in 
Omre (1992). 

3.3.B. How to simulate. An operational definition of 'understanding a model' is that 
one should be able to simulate realisations from it. For the Strauss model with 1 = 0, for 
example, one could conceivably generate points from the Poisson model (which for fixed 
n means simulating from the uniform distribution in the region considered) and only keep 
those realisations that have smallest distance at least p. This can be seriously inefficient, 
and better methods are called for. 

What seems now to be the best way is that of the spatial birth-and-death processes 
introduced for this task by Ripley (1977) and Ripley and Kelly (1977). The scheme is 
(usually) to delete one of the n points at random and then add back another one, with 
probability 

n-1 

I } fn(x1, ••• ,xn) ( ) II (II II) Pr{ add Xn X1, ••• , Xn-1 = f ( ) = g Xn h Xi - Xn 
n-1 X!,··· ,Xn-1 . 

l=l 

assigned to position Xn· The point is that this birth-and-death process has a unique 
equlibrium distribution which is exactly the point process with density f. Note that the 
probability above only depends on the new point and its neighbours, in case of a h-function 
with finite range. The simulation is usually carried out using some appropriate rejection 
sampling scheme. Cleverness in doing this is often essential for the algorithm to work fast 
enough. 

3.3. C. How to read a point pattern. There is a need to summarise the main features of 
a given picture of point locations. One can think of a 'first order' summary picture, where 
the intensity of points per unit area is estimated in some smoothing fashion. This part is 
related to the g( x )-function of 3.3.A. When the intensity can reasonably be assumed to 
be homogeneous over a region one needs a suitable 'second order' summary. The method 
of choice here has become Ripley's K or L functions. The K(t) function is a measure 
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related to the covariance between the number of points falling in two areas, and under 
ideal Poisson conditions K(t) = 1rt2 • This is the motivation for studying L(t) = ..jK(t)j1r 
instead. We refer to Ripley (1981, 1988) and to Stoyan, Kendall, and Mecke (1987) for 
proper definitions and constructions of estimators that in various ways take edge effects 
into account. These summary curves can be used to detect non-Poisson behaviour, to 
suggest other models, and to estimate parameters in such. 

If the 'points' have associated areas, for example, then other summary characteristics 
are needed as well. Ripley (1988, Ch. 6) surveys several such based on morhology and Serra 
calculus. See also 3.4.H below for more general processes that combine point locations with 
'marks'. 

3.3.D. Estimating parameters. Even a simple-looking model like the Strauss model 
with g = 1 is notoriously difficult to estimate from data. Maximum likelihood estimation 
is difficult because of the intractable integration constant, but can be carried out through 
simulation procedures. One Monte Carlo method is described in in Ripley (1988, Ch. 4), 
and the rudiments of a general stochastic approximation method are presented in Moyeed 
and Baddeley (1990), following an idea of Kiinsch. Versions of pseudo-likelihood methods 
are studied in Sarkka (1989) and in Jensen and Msz~ller (1991). Another method via con­
ditioning of Palm probabilites has been developed by Takacs and Fiksel; see Fiksel (1988) 
and Sarkka (1989), who points out connections to pseudo-likelihood again. Nonparamet­
ric estimation of the h( r) function is very difficult to do with reasonable precision, and is 
perhaps only feasible with very large sample sizes. It can nevertheless be carried out, see 
Diggle, Gates, and Stallard (1987), and be used as a data analytic summary. 

3.4. Combinations. In this final subsection a couple of naturally occurring cross­
situations are discussed, in which GauBian random functions, mosaic processes, and event 
processes appear in combination. 

3.4.A. Hidden Markov fields and image restoration. The following situation occurs 
naturally in image analysis applications. There is an underlying true image x with value 
Xi in pixel i, but corrupting noise is present and Yi = Xi + ei is observed instead. More 
generally there could be a vector Yi carrying information about the true Xi, for example 

in the form of YiiXi rv Nd{JL(Xi), ~(xi)}. 
In some situations there is a low number of possible values for Xi, say 1, ... , K, which 

suggests using mosaic models of the type discussed in 3.2 for this 'hidden truth'. Thus 
the land cover classes in a remote sensing application could be modelled as a mrf with 
an appropriate neighbourhood structure. In other situations there is a larger number of 
possible Xi-values, and the x process could be viewed as a discretisation of a continuous 
random function. The noise is typically assumed to be Gau:Bian and independent from pixel 
to pixel given the x labels. In applications we have worked with involving fine-resolution 
multi-channel satellite data the measurements from the same underlying class have indeed 
been quite Gau:Bian, but have exhibited strong autocorrelation. In other situations the 
independent white noise assumption seems to be quite realistic. 

Let us consider the case of a hidden mosaic process x with independent GauBian 

observations yon top of it, say Yil{xi = k} "'f(Yilxi) = Nd{JL(k),~} for definiteness. 
The restoration problem is to estimate the full image x from the observed y. This can 
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be viewed as a spatial classification task. The simplest solution is to carry out ordinary 
discriminant analysis for each pixel, that is, use as Xi the class label k that maximises 
7r(k)f(Yilk), where 1r(1), ... ,1r(K) are the prior probabilities for the K classes. Of course 
the parameters J.L(1 ), ... , J.L(K), ~ must have been estimated from some initial training 
stage. In some applications the class densities have large pairwise interdistances and this 
simple non-contextual method is sufficient. In other applications it is not, and contextual 
methods can offer significant improvements. We discuss two major approaches below, the 
'local modelling' developed by Hjort and Mohn (1984, 1987) and others and the mrf based 
one developed by Geman and Geman (1984), Besag (1986) and others. Other approaches 
are mentioned in 3.4.D. 

3.4.B. An approach based on neighbourhood models. Let us see where basic statistical 
decision theory leads us in the present spatial context. Assume that the loss incurred when 
we assign label Xi to pixel i, whose true label is Xi, is of the type 

{ 
0 if Xi = Xi (correct decision), 

L(xi, xi) = 1 if Xi =/=Xi and Xi E {1, ... , K} (wrong decision), 
t if Xi = D (being in doubt), 

(3.21) 

in which t is a threshold between 0 and 1. Thus the possibility of being in doubt and 
state nothing about Xi is reserved, having in mind, for example, mixed pixels in some 
remote sensing application. Now, if the total measure of consequence is the average of 
the individual loss-contributions, i.e. the misclassification rate plus t times the doubt rate, 
then the optimal rule becomes 

if k maximises Pi{kly}, 
and this maximum exceeds 1- t; 
if Pi{kly} :::; 1- t for each k. 

(3.22) 

Two points to note here are that all the data in principle are conditioned on in the posterior 
probabilities Pi{kly }, and that the rule classifies one pixel at a time. 

In practice one has to limit oneself to a small subset YN( i), containing at least Yi, of all 
the data. If YN(i) is chosen to consist of Yi and its four immediate neighbours, for example, 
then the natural approximation to (3.22) is the rule that maximises 

Pi{kiYN(i)} =canst. 1r(k) i(YN(i)lci = k) 

= canst. 1r(k) L g( a, b, c, dlk) h(YN(i) lk, a, b, c, d). (3.23) 

a,b,c,d 

Here the two basic stochastic elements of the problem enter in a natural and illuminating 
way: g( a, b, c, dl k) is the conditional probability of getting class configurations a, b, c, d 
given class k in the centre pixel, and is tied to the x process. And h(YN(i)lk, a, b, c, d) is 
the density, in dimension 5d, for the five vectors in question, given that the underlying 
classes are k, a, b, c, d. The summation in (3.23) is, in general, over all K 4 configurations. 
The rule based on (3.23) is an approximation to (3.22), but we emphasise that it also 
enjoys a natural optimality property by itself, namely that of achieving lowest expected 
average loss among all rules using the neighbour information YN(i) for the i-th decision. 
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For each specification of global, simultaneous models for the processes x and for y 
given x formulae for g and h above can in principle be derived, after which we have a 
contextual classification algorithm. It is not really necessary for us to derive g and h 
from fully given, simultaneous probability distributions, however; we may if we wish forget 
the full scene and come up with realistic local models for the pixel neighbourhood alone, 
i.e. model g and h above directly. Even if some proposed local g-model should turn out to 
be inconsistent with a full model for x, say, we are allowed to view it merely as a convenient 
approximation to the complex schemes Nature employs when she distributes class labels 
over the scene. 

Another typical feature in these problems is also illustrated in formula (3.23): the 
models we use must not only be realistic and fittable, but also feasible in the sense of not 
needing to much computing time. A satellite scene can contain about a million pixels, and 
a rule that needs to sum K 4 terms for each class before it can decide on a class label for a 
pixel will be useless in most cases. Accordingly we should look for clever approximations 
and/ or for convenient model choices that lead to reduced and simplified expressions. One 
such clever version of the general (3.23) is the following: suppose that Yi-vectors given 
the underlying classes are independent, and let g(a,b,c,dik) = p(aik)p(blk)p(cik)p(dik), 
where the p(aik)'s are neighbour transition probabilities (which must be estimated). (The 
Markov mesh model for classes on a lattice studied by Pickard (1977) has in fact this 
multiplicative property.) Then (3.23) simplifies to 

K 

Pi{kiYN(i)} = const. 7r(k)f(Yiik) Tk(Yil) · · Tk(Yi4), Tk(Y) = L p(mik)f(yim), (3.24) 
m=l 

where the Yij 's stem from the four neighbour pixels. This produces the classification rule 
reached by Hjort and Mohn (1984), Haslett (1985), and others, from somewhat different 
perspectives. 

Hjort and Mohn (1985) obtained a natural generalisation of this rule to the case where 
spatial autocorrelation between Yi 's is allowed for. Specifically, 

(3.25) 

where the U-functions are appropriate generalisations of the T-functions appearing in 
(3.24). They also provide evidence that such autocorrelation is prominently present with 
high resolution satellite data and ought to be taken into account. Hjort and Mohn (1984) 
and Sreb¢ et al. (1985) consider other variations on theme (3.23) as well. 

The reasoning above applies equally well to larger neighbourhoods than the cross, but 
exact expressions based on the appropriate generalisation of (3.23) quickly become long 
and untractable. Again we feel that the statistician should not be afraid of constructing 
pragmatic approximations, even if they should lead him outside the safe ground of exact 
expressions under exact models. For the 3 X 3 pixel box with eight neighbours, for example, 
we may use a formula similar to (3.24), with four more terms entering the product, involving 
transition probabilities for diagonal neighbours, say q( ·lk ), which can be expressed in terms 
of the p( ·I·) 's. This produces a valid classification algorithm with good error rate properties, 
although it, in fact, cannot be deduced from a bona fide global model for the classes. 
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A natural question is how much gain there is in being (more) sophisticated and cpu­
consuming, by including neighbours at all, and by including say eight neighbours instead of 
only four. Hjort {1985a) studies one particular eight-neighbour method of the type (3.23), 
by an appropriate generalisation of a four-neighbour method due to Owen (1984). Exact 
formulae for error rates cannot be obtained, but they can be expressed via probabilities for 
events involving nine or fewer (univariate, even if the Yi 's are multivariate) independent 
normal variates, and can as such be evaluated by computer simulation. (In this way we do 
not have to simulate the scenes or portions of the scene itself.) Some numerical information 
is presented in Hjort and Mohn {1987), and indicates first of all that using context can lead 
to appreciably increased accuracy, and secondly that using larger neighbourhoods usually 
will be worth the extra trouble and cpu-time. This is also supported by experience from 
simulation studies, see for example Hjort, Mohn and Storvik {1987). 

3.4.0. Markov random field approaches. The loss function (3.21) is 'local' in nature, 
and corresponds essentially to viewing pixel-wise error rate as the basic quality measure. 
A radically different suggestion is the 'global' loss measure 

L( ~) = { 0 if every pixel is correctly classified; 
x, x 1 if one or more pixels are misclassified. 

(3.26) 

The optimal rule in this case becomes: find x = (x1 , ..• , XN) to maximise the posterior 
probability 

p(xly) = const. p(x) f(ylx). 

This requires first of all full model specifications for x and y (as opposed to only 'local 
models'). Secondly, it may appear practically impossible to find this maximum a posteriori 
scene, because of the enormous number KN of different possibilities to search through. 
But modern ideas from numerical-probabilistical optimisation made it possible for both 
Geman and Geman {1984) and Besag {1986), in two important papers, to give satisfactory 
solutions, for the broad family of mrf prior distributions studied in 3.2. 

Consider for illustration the simplest type of mrf (3.17), with a single f3 parameter in 
addition to class-parameters a( k ). Assume also that the Yi 's are conditionally independent. 
Then 

p(xly) = const.p(x) f(ylx) 
N 

= const. exp ['2: {a( xi)+ log f(Yilxi)} + !3'2: I{xi = Xj}]. 
i=l i<j 

Accordingly x given data is again a mrf, only with updated a(xi)'s. Geman and Geman 
{1984) discuss a 'statistical cooling' technique from combinatorial optimisation for coming 
at least close to the maximum a posteriori picture, which is the optimal solution w.r.t. loss 
function (3.26). It is computationally demanding and requires several hundred iterative 
scans over the full scene. See Marroquin, Mitter, and Poggio (1987) for considerations 
about massive parallel processors and speed, and for applications of mrf's to computer 
vision. Besag (1986), on the other hand, has proposed a much simpler computational 
scheme that in effect, in a coordinate-ascent way, goes for a local maximum of the posterior 
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distribution. The intuitively plausible idea is to start with an initial estimate x for the 
scene, and then update x to a perhaps better x by finding Xi = k to maximise 

Pi(xi = kly,xs-i) = const. exp[a(k) + ,BHi(k,xai)] f(Yilk), (3.27) 

with notation as in (3.17). Note that this is like ordinary discriminant analysis but with 
neighbour-influenced 'prior' probabilities 1r(k) = const. exp[a(k) + ,BHi(k, xai)]. In this 
way the full scene is swept over, in some order, and we have a new, updated estimate x. 
The process is iterated until convergence; usually 6-10 times suffice. The starting point is 
ordinarily that corresponding to ,8 = 0, i.e. the noncontextual, but the 'iterated conditional 
modes' method could equally well use a contextual classification as its starting point. It 
has been argued that smaller values of ,8 should be used for the first couple of iterations. 

It is our experience from high resolution satellite data that realistic models must allow 
positive spatial correlation for Yi-vectors given the scene. A simple model that serves to 
illustrate the general principle and the wider potential of the mrf approach is the following: 

f(ylx) = const. exp{ -t [ L:(Yi - JL(xi))':E-1 (Yi - JL(xi)) 
i 

-I: lij(Yi- JL(xi))':E- 1(Yj- JL(xj))] }, 
i<j 

in which "Yij = i1 when i and j are immediate (first order) neighbours and zero otherwise. 
This is a Gaufiian mrf, or conditional autoregressive scheme, with corresponding local 
characteristics 

(3.28) 

writing YBi for the average of the four immediate Yi neighbours to Yi and similarly Jlai for 
the average of the four accompanying JL(xj)'s. It is easily seen that x given y again is a 
mrf. An appropriately modified version of the Geman and Geman method is capable of 
coming close to the simultaneous optimisation of p(xly), which is seen to mean maximising 

L [a( xi)- t(Yi- JL(xi))':E-1 (Yi- JL(xi))] 
i 

+ L[,BI{xi = Xj} + i"Y(Yi- JL(xi))':E- 1(Yj- JL(XJ))], 
i<j 

where the second sum is over all pairs of neighbours. The natural generalisation of Besag's 
method to the present spatial correlation model is simpler, and amounts to maximising for 
each i, and for the current estimate x of the rest of the scene, 

(3.29) 

Thus the conditional mode step again acts like discriminant analysis, but this time with 
both neighbour-corrected prior probability and neighbour-corrected class density. 

3.4.D. Other approaches to classification. Let us briefly touch upon some other spatial 
classification techniques. Underlying the previous methods are the loss functions ( 3.21) and 
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(3.26). A simple intermediate loss function that is less crude than (3.21) but nevertheless 
has a 'contextual element' is L =number of misclassified 2 x 2 blocks of pixels. The optimal 
rule becomes one of simultaneously classifying four pixels, by maximising the posterior 
probability given data over the K 4 possible outcomes. Hjort (1987) has worked out simple 
rules of this type based on a geometric probability model for classes, under which only 
6K2 - 5K of the possible configurations have positive probability. This geometrical model 
used the Switzer process for Poisson lines mentioned in 3.2.F. 

Relaxation procedures is a term used for algorithms that iteratively adjust posterior 
probabilities based on estimated or known spatial relationships among the class labels. 
Some of these use wider and wider neighbourhoods as the iterations go on. They are per­
haps best understood in terms of connections to mrf models, and to analysis of incomplete 
data, see Kay and Titterington (1986) and Fiskum (1986), and Section 4.2 below. 

Other references of interest include Switzer and Green (1984) and Switzer and In­
gebritsen (1987) on min/max autocorrelation factors that aim to separate noise from sig­
nal; Conradsen and Nielsen (1987), studying the benefits of using texture-type features 
derived from neighbourhoods; Green and Titterington (1987) who study recursive proce­
dures under an interesting time-sequence of image models; Esbensen and Geladi (1989) 
where soft bi-linear modelling is used, Greig, Porteus, and Seheult (1989) who demon­
strate the maximum a posteriori image algorithm exactly for the two class case; Owen 
(1989), where the smoothing parameters of Besag type methods are studied; and Taxt and 
B¢lviken (1991), where new restoration algorithms are motivated through an analogy with 
quantum physics. 

3.4.E. Predicting a continuous variable. In several remote sensing applications one is 
as interested in estimating a 'ground parameter' as in classifying pixels into ground classes. 
Imagine that Zi is such a variable of interest, associated with ground surface element no. i. 
In a water quality application of MSS- and LANDSAT-satellite data we have worked on 
there are in fact several Zi's of interest: the amount of plankton in sea element no. i, along 
with turbidity, water transparency, and other measures of water quality. In an application 
to forestry surveillance the total 'tree mass volume' for each 20mx20m element on the 
ground was of interest. With luck these zi's are correlated with the remotely sensed Yi­

vectors, and predictions based on these can be made. Examples of this sort abound in the 
remote sensing literature, and make it clear that many important surveillance tasks now 
can be carried out with the help of remote sensing, ideally combined with ground truth 
masurements from land stations. 

Let us for convenience still use Yi to denote the vector of pertinent observations at 
pixel no. i, for example spectral data, possibly transformed, and possibly supplemented 
with other available covariates thought to be useful for the prediction of Zi· (In the water 
quality application, the components of Yi are two chromaticity indices supplemented with 
topographic information.) Let us also keep Zi one-dimensional (extensions are straightfor­
ward). A useful mathematical assumption, used as a vehicle for producing good prediction 
procedures, is 

34 



Thus Zi in pixel i is viewed as a realisation of a random variable. The natural predictor, 
if we know that the pixel in question is of ground type k, is 

(3.30) 

and the conditional variance u(k)2 = T~- w~~-1wk can be used to construct prediction 
intervals for Zi· Without knowledge of the pixel's class one might weight these with the 
posterior probabilities Pi{kiyi} to form a (non-contextual) predictor. 

There are several ways to incorporate spatial context in the method. One strategy 
that uses a spatial model for a continuous residual function is explained and illustrated 
in H!ZSst, Omre, and Sreb!ZS (1989). Let us now examine some other contextual alternatives 
that use spatial models for the underlying classes. 

3.4.F. Predictors constructed from neighbourhood models. Hjort and Mohn (1987) 
derived prediction rules with variance measures for this framework. Assume that zi's 
given y and x are independent, with Zii(Yi, Xi) rv f(ziiYi, Xi), a normal with mean Zi(xi) 
and variance u(xi) 2 • The predictors take the form 

K 

Zi = E{ziiYN(i)} = L Pi{kiYN(i)} Zi(k ). 
k=l 

One readily shows that Zi given data YN(i)' i.e. the information from pixel i and its neigh­
bours, is distributed as a mixture of the densities f(zi IYi, Xi) with Pi{kiYN(i)} as weights. 
Accordingly 

K 

Var{ziiYN(i)} = L Pi{kiYN(i)} {u(k? + (zi(k)- zi?}, 
k=l 

which is of use when confidence intervals are called for. Observe that if a contextual 
classification is carried out using the 'local modelling' method then the extra computational 
burden needed to compute predictors and standard deviations is mild. 

3.4.G. Markov random field methods. Assume that xis a mrf with distribution (3.14), 
that y given x is a Gaufiian mrf with local characteristics (3.28), and that zi's are con­
ditionally independent as above. Then one can show that (y,z) has a simultaneous mrf 
distribution given x, and that ( x, y, z) is a simultaneous mrf. The most important fact is 
that the unobserved processes (x,z) given the data y, the Bayesian posterior distribution, 
is yet another mrf, with local characteristics 

cf. (3.17) and (3.28). This generalises the result (3.29). 
Besag's method of taking iterative conditional modes can be generalised to the present 

state of affairs, with both x and z to be estimated from the image data y. This is done in 

Hjort and Mohn (1987, Section 4). The best method depends on the specific loss function 
used. When the loss function is I {x =f. x} plus average squared prediction error then the 
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Bayes solution is as follows: First use the usual Besag method (in this case, as explained 
around (3.29)) to arrive at the scene estimate x. Then compute 

Zi = E{zilY,Xs-i,Zs-i} 

2:f"=1 exp [a(k) + ,BHi(k, XBi)] f(yiJk,xs-i, Ys-i) zi(k) 

2:f"=1 exp[a(k) + ,8Hi(k,x8i)] f(YiJk,xs-i,Ys-i) 

Note that the autocorrelation parameter'"'( enters via f(Yi Jx, Ys-i)· 
In this case Zi emerged as an explicit function of the finally classified scene x. This is 

because we assumed (3.33) to hold. In models where zi's must be taken interdependent, 
given scene andy-data, a simultaneous, iterational updating of x and z may be called for. 
An example is given in Hjort and Mohn (1987, Section 4). 

3.4.H. Marked point processes. Suppose there is a mark or set of attributes Zi associ­
ated with each point Xi of a spatial point process. An example with a 4-dimensional mark 
for each point is described in 4.3 below. If the marks live in a mark space Z then the 
process with outcomes (xi, Zi) is just a spatial point process in some appropriate X x Z, 
so the most important parts of the theory presented in 3.3 carry over to marked point 
processes. In particular, simulation of realisations can be carried out using a spatial birth 
and death process. The hardest and most vital task is often simply that of building a good 
model, with distance functions and pairwise interaction functions, that produces realistic 
outcomes. A general reference with theory and examples is Stoyan, Kendall, and Mecke 
(1987). 

3.4.I. Estimation problems. There are challenging estimation problems associated 
with several of the models described. Hjort (1985b) and Hjort and Mohn (1987) develop 
estimation methods for many of the image models mentioned in 3.4.B. In particular they 
describe methods that utilise unclassified vectors via estimation of mixture distributions. 
Besag (1986) proposes an iteration scheme to simultaneously restore an image and estimate 
the parameters of the mrf model used for x, used in 3.4.C, assuming the Yi 's to be con­
ditionally independent. This scheme is somewhat biased and inconsistent, as pointed out 

along with a remedy in Hjort and Mohn (1987). Lakshmanan and Derin (1989) describe 
a simulated annealing method that stops at regular intervals to estimate the mrf param­
eters. Veijanen (1990) gives another method for imperfectly observed mrf's and proves 
consistency. Georgsen and Omre (1992) considers estimation in a model that combines 

fibre processes with a Gau:Bian random function. 

4. Some worked-through examples of applications 

4.1. Depth conversion of seismic data (Omre and Halvorsen (1989)]. The petrole­

um reservoirs in the North Sea are located at a depth of approximately 3000 m and have an 
areal extent of typically 3.0 X 5.0 km2 • In the reservoir the hydrocarbons tend to migrate 
upwards in the structures until they are trapped under a syncline of non-permeable geologic 

layers, usually shale rich horizons. The mapping of these horizons is important both for 
exploration purposes and for prediction of hydrocarbon volume in situ. 
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Fortunately these non-permeable horizons tend to have properties very different from 
the porous reservoir, and can be identified from seismic data. Seismic data can be col­
lected in an unexpensive way from ships, and vast amounts with good areal coverage is 
usually available. The seismic reflection signal has geographical reference horizontally and 
reflection time reference vertically. After seismic cleaning, which is a discipline in itself, a 
relatively reliable seismic reflection time surface {t(x):x ED} is obtained, see Figure 4.1. 
The challenge is to convert this into a map of depths to the horizon {z(x ): x E D}. This 
could of course be done by simply multiplying reflection time and signal velocity. The fact 
that the signal velocity varies considerably, both vertically and laterally, complicates this. 

Two other sources of information are available for the depth conversion. The first 
is the knowledge of the geophysicists. The areal extent of some of these horizons is of­
ten huge and it also covers other reservoirs. Hence experience from other areas of the 
North Sea is relevant. In addition the physical understanding of packing of reservoir rock 
provides some constraints on the vertical velocity profile. Secondly, exact depth obser­
vations z(x!), ... ,z(xn) are available in certain well positions, see Figure 4.1. The fact 
that the four first wells are the most shallow ones indicates preferential drilling and non­
representative positioning of the observations in the design space. Note, however, that the 
seismic reflections have a support of 100 X 100m2 of the horizon while the support of well 
observations is 0.2 X 0.2 m 2 • Hence the former must be considered as weakly smoothed. 

The stochastic model used for merging the various pieces of information in this study 
is of the form 

Z(x) = V(x)t(x) + c:(x) 

= {Bl + B2t(x) + B3 Xl- Xl,min } t(x) + c:(x), 
Xl,ma.x - Xl,min 

( 4.1) 

where c:( x) is a continuous residual surface, compensating for the smoothing in the seismic 
signal, with correlation structure u2 K(x- y). In other words, the signal velocity increases 
with depth according to the increase in reflection time and there exists a lateral trend 
in the East-West or x 1-direction. Geophysical knowledge is included through carefully 
assessed prior distributions on B 1 , B2 , B3 • The model is accordingly within the Bayesian 
Kriging framework as discussed in Section 3.1.D. 

The example is from a study of a huge offshore gas field in the North Sea. A set 
of parameters, intended to be as realistic as possible, were defined in cooperation with 
geophysicists in a Norwegian oil company. The sensitivity to the influence of the prior 
knowledge was evaluated. The changes in the predictions over time, i.e. as a function of 
the available wells, was also studied. The study is based on 

u = 200.0m; 

K(.L\x)= -22800 2 2800 1 _L..l.X_ , { 1 3 a:z: + 1 ( a:z: )3 "f o < A < 2800 

0 if .L\x 2: 2800; 

(
B 1 ) (6.0 -10-1

) (3.0 -10-3 

B = B 2 rv N 3 { 2.0-10-4 ,r2 0 
B 3 7.0 -10-2 0 
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The scale parameter Twas varied in order to evaluate the sensitivity to the choice of prior 
distribution. In Table 4.1 and Figure 4.2 the results from the sensitivity of choice ofT are 
summarised. The evaluation is based on the three first wells only. 

For T equal to zero the coefficients B are fully specified and the underlying trend 
surface can be subtracted. This corresponds to what is termed simple Kriging in geostatis­
tical terminology. The observations z(xi), ... ,z(xn) will in this case have influence on the 
residuals { c( x ): x E D} only. This makes the observations create cone-like surfaces in their 
immediate neighbourhood. The case of T going to infinity corresponds to there being no 
available prior knowledge about the coefficients, and the resulting method coincides with 
what is called universal Kriging. In this case the observations z( x1 ), ... , z( Xn) will be the 
only source of information for both B1, B2, B3 and the residuals. This may give unreliable 
results based on the first few wells since they a priori are known to be preferentially located 
in shallow areas. The intermediate cases with finite T constitute trade-off cases between 
user experience and the available observations, as discussed in Section 3.1. Note that in the 
posterior distribution the off-diagonal terms in the covariance matrix for B are non-zero, 
since all the parameters draw on the information in the three wells. 

The development of the predictions over time can be evaluated by adding one well 
at a time. In Table 4.2 and Figure 4.3 results from this study are summarised. The 
prior distribution is based on T = 1. Note that the model in this application is used for 
interpolation. When assessing the hydrocarbon volume in situ with associated uncertainty 
measures one would use the model as basis for stochastic simulation. 

The regression surface contains three unknown parameters, so a solution in the tra­
ditional setting requires at least three wells. In the Bayesian setting a solution exists 
regardless of the number of observations. The Bayesian model provides a prior guess on 
the surface, along with uncertainty measures, and the initial estimate is updated when 
new observations are made available. From an operational point of view in petroleum 
exploration this is meaningful, and it provides the opportunity to evaluate the information 
content in each datum. Note also that the posterior variances of the parameters decline 
monotonically with increasing number of wells, as they should. 

We view the use of the Bayesian machine here as appropriate and non-controversial, 
in spite of the somewhat subjective and surely non-perfect determination of the prior 
distribution. The geophysical knowledge is substantial and is of a form which naturally 
can be quantified through the parameters of the model as defined above. A lot of expert 
effort and experience has gone into the determination of the prior parameters. The setting 
of these was not an entirely Bayesian affair but had more of the empirical Bayes flavour, 
in that also other available indirect data sources were used, partly in informal ways via 
plots etc. 

Reliable estimators for the spatial correlation function K(.) and the standard de­
viation parameter u are not simple to obtain with so few data points available. Often 
experience from evaluation of other reservoirs with many more wells must be exploited. 
This suggests using the extended Bayesian apparatus of the type described in 3.1.C, with 
an inverse gamma prior distribution for u 2 and a 'hyper prior' distribution for r 2 , and 
perhaps with a prior for the covariance matrix of B. In Abrahamsen, Omre, and Lia 
(1991) and Abrahamsen (1992) the model is extended to solve a multi-layer seismic depth 
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inversion problem, providing solutions for observations from non-vertical wells. 

4.2. Identification of heart dysfunction [Taxt, Lundervold, and Angelsen {1990)]. 
The objective of the study is to evaluate the left ventricular volume of the heart and the 
cardiac output fraction based on data from time-repeated two-dimensional echocardiogra­

phy, so-called ultrasound techniques. This will allow significant improvements of present 
diagnostic capabilities for heart dysfunction. The methodological challenge is to combine 
prior knowledge with pattern recognition techniques to identify moving boundaries of spe­
cific structures in time-varying images with low local contrast and a large noise component. 

Time-varying ultrasound images are extensively used as a routine diagnostic tool in 
the examination of the cardiac function. The images are collected at 25-35 Hz which is 
appropriate for evaluating the heart activity with contraction cycles down to 0.3 seconds. 
Each image is collected in polar coordinates (r, 0), with the origin at the probe of the 
ultrasound equipment. The reflections u are assigned integer-values in the range from 
0 to 255. In the study 20 consecutive images were available, covering more than two 

complete cardiac cycles. The data are accordingly of the form Ut(ri, Oj) E {0, ... , 255} for 
i = 1, ... , 512, j = 1, ... , 128, t = 1, ... , 20. Since the reference system is not orthogonal 
an inverse polar transformation was used to get Ut(xi,Yj) instead. The time reference was 
treated as a third dimension in the problem, hence defining a 3-D image. To reduce the 
computational load the grey level resolution was reduced to 32. Thus data are of the form 

Vijk = uk(Xi,Yj) E {0, ... ,31} fori= 1, ... ,Ni, j = 1, ... ,Nj, k = 1, ... ,20. {4.3) 

In Figure 4.4 a cross section of the 3-D image at constant k is displayed. 
Two noise reduction algorithms have been used in this study. A relaxation procedure of 

the type mentioned in Section 3.4 is the basis for the first one. The relaxation procedure is 
adapted to the noise reduction problem as follows: use as (one-dimensional) feature vector 
the grey level itself; use as the set of possible classification classes simply the possible 

grey levels c E {0, ... ,31}; and use class-conditional feature vector density fc rv N{c,o-2 } 

combined with transition probabilities p(dlc) = 311 {1- p(clc)} ford=/= c. 
To describe how the relaxation simulation scheme works, let Cfjk denote temporary 

classification for pixel ( i,j, k) at iteration no. l, let Vijk be a neighbourhood of ( i,j, k ), and 

let Vi}k be the neighbours plus all their neighbours again. Then 

Pr{ Cfjk1 = ciC:nno for ( m, n, o) E Vijk} 

=canst. exp{ -(c- Cfjk? /2o-2 } 

X L [p(cic)Pr{C:nno = cl·} + 311 {1- p(clc)}[1- Pr{c:nno = ci·}J]. 
(m,n,o)EVijk 

{4.4) 
The initiation of the procedure is done by determining Pr{C?jk = cl·} from a non­
contextual Gau:Bian model assuming 1f'c = 1/32, and using of course c~jk = Vijk in all posi­
tions as the initial image. The parameter values used in the actual study were p( cic) = 0.90 
and o- = 7.41. The former was subjectively assigned while the latter was estimated from a 

training set of data. The neighbourhood ViJk used is of size 3 X 3 X 3. 
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The relaxation was carried out in five iterations, after which each pixel was assigned 
the most probable grey level according to the estimated posterior probabilities. The re­
sulting noise reduced image for a particular time-index is displayed in Figure 4.5. This 
image is much smoother than the original one in the sense that noise seems to be removed. 

Note that the edges seem to be partially smoothed away as well, however. 
Besag's method of iterated conditional modes, as presented in Section 3.4, provides 

the basis for the other noise reduction algorithm. Corresponding adaptations as for the 
relaxation procedure were made. The archetypical Besag model contains class-parameters 
a1, ... , a32 and a single (3 for neighbourhood interaction. The ac 's were taken class inde­
pendent in the study reported on here. The resulting Besag iteration equation becomes 

Pr{Cfji/ = ciC:nno for (m,n,o) E Vijk} = const. exp{-(c- Cijk) 2 /2u2 +f3Hl(c, Vijk)}, 
(4.5) 

where H 1(c, Vijk) is the number of pixels in the three-dimensional neighbourhood whose 
class labels agree with c at iteration l. The initiation was done as for the relaxation 
procedure, and the value (3 = 0.5 was found to be satisfactory. Iterated conditional modes 
were found with ten iterations. The resulting noise reduced image for one index in time is 
displayed in Figure 4.5. It can be seen that some of the noise has been smoothed and that 
the edges are resonably well reproduced. 

The binarisation was performed by a locally adaptive thresholding algorithm. The 
results from applying this to the original and the noise reduced images in Figures 4.5 
are reported in Figure 4.6. Taxt, Lundervall, and Angelsen (1990) judge the relaxation 
approach to be superior with respect to quality in the binary image. Based on these 
binary images additional cleaning by removing binary objects with small temporal extent 
is performed. The boundary can be determined from this cleaned image, see Storvik (1992). 

This multi-stage 'one task at a time' approach to problem solving seems to be rep­
resentative for many current applications in applied image analysis. It is not necessarily 
the best approach, however. An alternative approach to the problem would be to address 
the volume estimation directly from the initial images. Robust estimators may be able 
to reduce the influence of the noise. In a stepwise procedure the danger of filtering out 
important information concerning the main objective of the study is severe, hence bias can 
be introduced and efficiency reduced. The 'directly to the heart' approach looks attractive 
in that respect. The fact that it is the dynamic characteristics of the heart which are of 
interest calls for models for which smoothing along the time dimension is not too severe. 
A separate treatment of the time dimension seems necessary. See Storvik (1992). 

4.3. Simulation of fault zones [Omre and Sszslna (1990)]. Petroleum reservoirs in 
the North Sea are characterised by numerous fractures and faults. This is expected to 
have considerable impact on the production potential. Not merely the presence of faults 
but also the characteristics of the fault zone will have influence. The fault could slip along 

one continuous plane, or it may consist of a swarm of minor fractures. The exact flow 
mechanism across faults is not well understood at present. In this application a stochastic 
model for the break pattern is established. One fault zone will be considered and several 
realisations are generated. Each realisation is later taken as input to a fluid flow simulator 

in order to evaluate the impact of the break pattern on production. 
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The large faults, i.e. with offset above 20m, can be observed on the seismic maps. 
They are characterised by centre line, vertical offset and lateral extension, see Figure 4. 7. 
The smaller fractures constituting the break pattern in the fault zone are below seismic 
resolution, however. It is these smaller fractures which will be modelled in this study. 
The stochastic model is based on general structural geological knowledge. The realisations 
generated from the model have to be constrained by the centre line, vertical offset and 
lateral extension actually observed. 

The stochastic model is based on the theory of marked point processes as outlined 
in Sections 3.3 and 3.4.H. Each fracture is defined as a marked point m = (x, ¢>,w, p, 8), 
see Figure 4.8, in which xis the two-dimensional geographical reference point, a stochastic 
variable defined in the fault zone; ¢> is the orientation of fracture, constrained to be parallel 
to the centre line of the fault zone, w is the stochastic width of fracture, p is the stochastic 
offset of fracture, and (} is the constant dip angle, as specified by user. The models applied 
in the present study specify that the joint probability for n fractures m 1, ... , mn is of the 
general form 

n 

fn(m1, ... ,mn) = const. exp{- Lb(mi)- Lc(mi,m;)} exp{-u~(mll···,mn)}. 
i=1 i<j 

(4.6) 
Here b(m) takes care of the dependence structure for attributes in each marked point, 
c( mi, m;) models the pairwise interaction between marked points, and ~( m 1, ... , mn) 
is finally a measure of deviation between the realisation ( m1, ... , mn) and some desired 
property, with accompanying strength parameter u. Note the similarity to a technique 
mentioned in 3.2.D. If exact or approximate constraints of the simulated marked points 
are needed then such are built into the deviance measure. 

The model actually employed in our study used 

(4.7) 

in which b1 ( x) is a function defining the fracture frequency in the fault zone dependent 
upon the distance from x to the centre line of the fault; b2(wlx) is another function defined 
in the fault zone where the width can be a function of the distance from x to the centre 
line of the fault; and b3 (plw) is a function relating the width of the fracture to the offset, 
taken as (p- J.LW 2 )2 /2(w 27])2 for certain parameters J.L and 7]. Note that steeper slopes in 
some areas of the fault zone can be realised by either higher frequencies of fractures or 
larger expected width of each fracture which in turn is correlated with offset. The trade-off 
between these two effects is governed by a parameter a. Furthermore c(xi, x;) was taken 

as c0 (xi - xi) where 

( A ) _ { k(¢)/l~xl 2 
co ~x - 1 /x~ 

for 0 ::; l~x I ::; x 0 k( ¢> )112 , 

for l~xl2: xok(¢>) 112 , 

with ( l~x I, k( ¢>)) being the polar coordinates for ~x, and k( ¢>) representing the anisotropy 
factor being elliptical with major axis horizontally. Finally the ~( m1, ... , mn) measure of 
deviance used, to be scaled with u afterwards, is 

~( m1, ... , mn) = l~l [ I (total offset at u) - (realised offset at u by { m1, ... , mn}) I du, 
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with L being the centre line of fault and ILl its length. 

In the study the actual model was explored by simulation in order to see if it was 
suited for generating realistic realisations of break patterns in faults. In this summary the 
sensi ti vi ty to b1 ( x) and b2 ( w I x) as well as to c0 (Xi - xi) will be reported. In Figure 4. 9 the 
fracture locations and widths are generated from a Poisson process, with strength parame­
ter u = O, and only (w,p)-interaction is present. In the figure the upper display is a bird's 
view and the locations of the fractures are exposed. Note their 'random' appearance. The 
middle display corresponds to facing the fault and the respective offsets can be observed. 
Note that the total offset in the fault is not reproduced since no global constraints are 
imposed. The lower display shows the average slope profile for the fault in solid line and 
three profiles at arbitrary locations in dotted lines. Note that the slope is linear over the 
fault as specified by the Poisson process. In Figures 4.10 and 4.11 the interaction function 
c0 (.) is used, the strength parameter u is assigned a relatively large value, and the effect 
of having steeper slope in the middle of the fault area is added. Note that in both figures 
the fractures tend to repulse each other and that the total offset is almost reproduced. In 
Figure 4.10 the steepness is realised by having larger width and offset in the centre, while 
in Figure 4.11 it is realised by having higher frequency of fractures in the centre. It is also 
possible to use a trade-off between the two. 

The geologists have approved the results, and the study has since proceeded towards 
evaluation of fluid flow across the fault zone. Futher methodologial work will aim at 
understanding the interaction between the parameters when enforcing global constraints. 
Parameter estimation from observations of fractures in wells and from comparable outcrop 
data will also be studied. 

4.4. Spatial prediction of air pollution from space-time observations [Hszsst, 
Omre, and Switzer (1991)]. The awareness of the possible consequences of changes in the 
environment has contributed to increasing interest in pollution monitoring. Control of 
international agreements on reduction of emissions to air will require careful air pollution 
monitoring, supplemented with a thorough statistical evaluation. Air pollution will nor­
mally be modelled as a spatial-temporal phenomenon, and the available data take the form 
of time series in a number of fixed locations. Challenging problems like spatial interpolation 
and evaluation of temporal trends in arbitrary locations remain mostly unstudied. 

In the study reported on here the problem of spatial interpolation at a given time 
point is addressed. The air pollution data used are collected by the European Monitoring 
Evaluation Program (EMEP). The variable considered is sulphur concentration in units of 
micrograms per cubic meter, J.L9 / m 3 • The data are presently collected in more than one 
hundred locations all over Europe, but in this study data from the six years 1980-1985 are 
used, in the form of monthly averages of sulphur concentrations in 42 fixed locations. The 
locations provide a good areal coverage over Central Europe, see Figure 4.12. The time 
series are log-transformed and are denoted {y(xi, t;): i:::; 42,j:::; 72}, with x and t denoting 
geographical position and time respectively. The time series for two particular locations are 
presented in Figure 4.13, exposing sizeable spatial differences as well as seasonal variations. 

The statistical objective we focus on is to estimate the surface y(x, t), for x in the 
domain 'D, for a given t among T, the 72 time points used. A natural model for this 
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purpose IS 

Y(x,t) = m(t) + M(x) + V(x,t), :z: E 'D, t E T, (4.8) 

where m(t) is centred temporal drift, containing seasonal variations but independent of 
location, M( :z:) is the spatial drift independent of time, and V( x, t) is the centred space­
time residual. We choose to represent the latter as V(x, t) = S(x, t)U(x, t), where S(x, t) 
is residual standard deviation and U(x, t) is the normalised residual. The temporal drift is 
represented deterministically since its variation is considered to contribute only marginally 
to the uncertainty of the final interpolator. If the aim of the study had been temporal 
forecasting it would have been necessary to model the m(t) function stochastically as well. 

The model is defined up to second order and employs the following parameters: Spatial 
drift is based on an ordinary Kriging model, with 

EM(x) = J.LM, Var{M(x)- M(x')} = 2")'M(x- x'). 

The residual standard deviation is similarly based on an ordinary Kriging model, with 

ES(x, t) = J.Ls, Var{S(x, t)- S(x', t)} = 2u~{1- ps(x- x')}. 

Finally the normalised residual is modelled with a location dependent correlation function, 
discussed in Switzer (1989), having 

EU(x, t) = O, Var{U(x, t)- U(x', t)} = 2{1- pu(x, x')}. 

The model differs from what is traditionally being used in that the standard deviation 
is spatially varying and that the spatial correlation function in the residuals is location 
dependent. The variables and parameters ofthe model can be estimated from the y(xi, tj)­
data. See H!ZSst, Omre, and Switzer (1991) for development of some reasonable but not 
necessarily optimal estimators. It is difficult to establish exact properties of these, but 
they are based on a fair amount of data and should be sufficiently reliable. 

The spatial interpolator for an arbitrary location x 0 , at the time point t under con­
sideration, is 

Y*(x 0 , t) = m(t) + M*(xo) + S*(x0 , t)U*(x0 , t). (4.9) 

Here m(.) is the estimate of temporal drift based on a simple smoother on the available 
data, M*(.) and S*(.) are ordinary Kriging predictors, and U*(., .) is determined by the 
procedure for spatial interpolation discussed in Switzer (1989) and H!ZSst, Omre, and Switzer 
(1991). See also the independent work of Sampson and Guttorp (1992). A model with a 
location specific correlation function is used. The interpolator Y* is not optimal in the 
mean squared error sense since the three components M, S, U are predicted independently. 
The exact optimal solution cannot be expressed simply since it requires solving a fourth 
order Ininimisation problem. The interpolator (4.9) happens to be optimal in the case of 
independence between M, S, U, and can be shown to be close to the optimal one whenever 
the components are not too highly correlated. Scatter plots have indeed indicated near 
independence for the situation at hand. 
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It is worth noting that the prediction variance of ( 4.9) can be calculated explicitly for 
the case of independent M, S, U, and can be expressed as 

Var{Y(xo,t)- Y*(xo,t)} = Var{M(xo)- M*(xo)} 

+ Var{S(xo, t)- S*(xo, t)} Var U*(xo, t) 

+ Var{U(x0 , t)- U*(xo, t)} (u~ + JL~). 

The interpolator (4.9) and its prediction variance have the 'exactness property', in the 
sense that observations are correctly predicted with prediction variance zero at the data 
locations. In general, one will obtain weights associated with the observations which are 
location specific and not only dependent on the configuration of data locations. This makes 
the interpolator different from the simple and ordinary Kriging interpolator methods. In 
the end the predicted sulphur concentration is obtained by the inverse log-transform. 

The illustration shows the interpolated sulphur concentration over Europe for January 
1984. The prediction is presented on a grid of size 375 X 450 over Europe. Figure 4.14 
presents a contour map of the predicted sulphur concentration along with the pointwise 0.2 
and 0.8 percentiles in the predictions. Alternative maps of presentation can be imagined 
and should be used whenever particular effects are to be studied or exposed. 

Comparison with results obtained by use of traditional Kriging techniques for interpo­
lation, as described in 3.1.B, show deviations both in the predictions and in the prediction 
variances. Traditional Kriging gives predictions in the range of about ±10% of what ( 4.9) 
produces. The fact that the approach used here is more flexible and adapts better to 
the available data, without overfitting, seems to indicate its superiority. Further work on 
evaluation of temporal trends in the average of sulphur concentration and other air quality 
variables over given regions is being pursued. 

5. Closing remarks 

There is an increasing interest in spatial and spatial-temporal methodology. Inexpen­
sive, fast-processing computers provide the technological basis for most spatial statistical 
analysis. Vast amounts of automatically collected data have made new applications ac­
cessible for spatial evaluation. The experiences with and expectations for spatial and 
spatial-temporal statistics can tentatively be summarised as follows. 

There is a wide variety of challenging applications. User groups are normally positive 
since they are often poorly trained in handling spatial data and realise that their evaluation 
is insufficient. The possibility of including user experience through 'prior guesses' is highly 
appreciated. Numerical results can often be supplemented with graphical displays, and this 
simplifies verification and interaction with the users. The main experience is however that 
every problem is unique. This is true even more so than in traditional statistics because of 
the modelling possibilities and the large variety of sampling designs. 

One of the things to note on the methodological side is that many natural models 
do not admit analytical 'closed form expression' solutions. The mathematical complexity 
increases considerably for higher dimensions in the reference space. The untractability of 
Markov properties of Gau:Bian random functions is but one example. Efforts should be 
made to obtain further analytical results, although a complete 'analytical understanding' 
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seems out of reach. To compensate for this stochastic simulation has been used exten­
sively. It has in many cases proved successful, and valuable insight into the models has 
been reached. For surprisingly many models, however, simulation techniques have proved 
to be unreliable or too time-consuming. The disappointingly slow convergence of the 
Metropolis algorithm and Gibbs sampler for simulation of Markov random fields are ex­
amples of this. Further research on new models formulations with associated reliable and 
efficient simulation algorithms are certainly needed. The availability of vector and parallel 
processing computers should be taken to advantage. 

Criteria for selection between different models are not developed and research along 
such lines should be initiated. For several of the most often used models there is a lack of 
reliable estimators for the model parameters. Constructing such estimators is a difficult 
task, since the parameters are often interrelated and the sampling designs vary consider­
ably. Model adaptation procedures should be cross-validated and bootstrapping should be 

further developed for spatial models. As can be seen, despite recent and healthy progress 
in the field, there seem to be more questions than answers concerning spatial and spatial­
temporal statistics so far. 

Space/time statistics will provide challenges for both theoretical and applied statisti­
cians for the years to come. 
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T 
B1 B2 B3 V(x 0 ) 

------- -----

0.0 0.6000 0.0002 0.0700 1.015 

r: 
0 0 

0 0 

0 0 

0.01 0.5991 0.00019 0.0699 1.003 

[ 0.296. 10-· -0.236 . 10-10 -0.2t7 . 10-'] 
-0.236 . 10-10 0.855 . 10-12 -0.133 . 10-11 

-0.217 . 10-9 -0.133. 10-11 0.500 ·10-7 
----

0.1 0.5943 0.00017 0.0691 0.944 

[ 0.211. to-• -0.141. 10-7 -0.t37 . 10-'] 
-0.141 . 10-7 0.129. 10-10 -0.773 . 10-9 

-0.137 . 10-6 -0.773. 10-9 0.488. 10-5 

1.0 0.5865 0.00017 0.0501 0.938 

[ o.24t . to-• -0.130 . 10-5 -0.309. to-•] 
-0.130. 10-5 0.711 ·10-9 -o.111. 10-7 

-0.309 . 10-4 -0.111. 10-7 0.152 ·10-3 

. 
10.0 0.5460 0.0002 0.0423 0.938 

[ o.t78 . to- 1 -0.958 . 10-5 -0.285. 10-'] 
-0.958 . 10-5 0.518. 10-8 0.113 ·10-6 

-0.285 . 10-3 0.113. 10-6 0.223 ·10-3 

00 0.5428 0.0002 0.0422 0.938 

[ o.t9o. to- 1 -0.102. 10-4 -0.309 . 10-3 

-o.1o2. 1o-4 0.553. 10-8 0.127 ·10-6 

-0.309. 10-3 0.127 ·10-6 0.223. 10-3 

TABLE 4.1. Posterior distribution of parameters, and the velocity at a location 
on the centreofthemap, with t(z) = 1900, usingspecification (4.2). The table 
gives the posterior means and the posterior covariance matrix. 



Numqer ot 
wells Bt B2 Ba V(xo) 

1 0.5942 0.00017 0.0699 0.944 l 0.274. 10-2 -0.155 . 10-5 
-0.572. 10-'j 

-0.155 . 10-5 0.895. 10-9 -0.337. 10-7 

-0.572 . 10-5 -0.337 . 10-7 0.500 ·10-3 

3 0.5865 0.00017 0.0501 0.938 l 0.241 . 10-2 -0.130. 10-5 
-0.309 ·10-·j 

-0.130 . 10-5 0.711. 10-9 -0.111 ·10-7 

-0.309 . 10-4 -0.111. 10-7 0.152. 10-3 

5 0.5581 0.00018 0.0532 0.936 . l 0.131 . 10-2 -0.701. 10-6 
0.679. 10-·j 

-0.701 . 10-6 0.385 ·10-9 0.679 ·10-7 

0.679 ·10-4 -0.645 . 10-7 0.143. 10-3 

8 0.5654 . 0.00018 0.0663 0.940 l 0.127 . 10-2 -0.674. 10-6 
0.362. 10-·j 

-0.674. 1o-6 0.364 ·10-9 -0.427. 10-7 

0.362 ·10-4 -0.427 . 10-7 0.102. 10-3 

TABLE 4.2. Posterior distribution of parameters, and the velocity at a location 
on the centre of the map, with t(x) = 1900, when varying the number of wells 
used in the conditioning. The table gives the posterior means and the posterior 
covariance matrix. 
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FIGURES 4.4-4.5. (a) Typical cross section (128 X 432) of the 3D-image at 
constant k, represented as an image in polar coordinates (abscissa is length, 
ordinate is angle). The broad band in the left ventricular lumen is noise. (b) is 
a magnified part of (a). (c) is the same detail as in (b), but after application of 
the Besag noise reduction method. (d) is again the same detail as in (b), but 
after application of the relaxation noise reduction method. 
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FIGURE 4.6. Three images of a given section of the heart. (a): binarisation 
of original image; (b): binarisation of image after relaxation noise reduction 
method; (c): binarisation of image after Besag noise reduction method. 
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FIGURE 4. 7. The large fault zones. Left, seismic map; right, parametrisation 
of fault zone. 
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FIGURE 4.8. Parameterisation of a fracture. 
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is realised by varying offset and width. 
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FIGURE 4.12. Locations where sulphur coincentration is measured by the Eu­
ropean Monitoring Evaluation Programme. 
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FIGURE 4.14. Contour map of the predicted sulphur concentration, along with 
the pointwise 0.2 and 0.8 percentiles in the predictions. 
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