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ABSTRACT. In this paper combining the opinions of k experts about the reliabilities 
of n components of a binary system is considered. This problem has been treated in the 
single component case by Huseby (1986, 1988) considering respectively the socalled ret
rospective and predictive approaches. For the t-wo component case both approaches are 
treated in Natvig (1992), whereas the predictive approach is considered in G!semyr & 
Natvig (1991) for an arbitrary nand for an arbitrary overlapping of the observation sets 
from the different experts. The component lifetimes are assumed to have a multivariate 
exponential distribution of the Marshall-Olkin type. The present paper parallels the latter 
one considering the retrospective approach and also allowing for noisy assessments of the 
experts. We now arrive at the joint prior distribution of the reliabilities of the compo
nents. When this is MTP2 (Multivariate Totally Positive of Order 2), it is shown that the 
machinary of Natvig & Eide (1987) can be applied to arrive at the posterior distribution 
of system reliability, based on data both on the component and system level. Hence a 
key question to be answered in the present paper is the following. When does the joint 
prior distribution of the reliabilities based on expert opinions in fact possess the MT P2 
property? 

Key words: Multivariate exponential distribution, common cause failures, combined judge
ment, noisy assessments. 

1. Introduction 

Consider, for a fixed point of time, t, a binary system like a nuclear power plant of n binary 
components. Let (i = 1, · · ·, n): 

Let furthermore: 

X· = { 1 if the ith component functions 
' 0 otherwise, 

X= (X1, • • • 1 Xn), 

¢(X)= { 1 if the ~stem functions 
0 otherwiSe. 

E(X,lPi) = p, = the reliability of the ith component, 

E(¢(X)Ih) = h = the reliability of the system. 

If we assume that xlJ ... l Xn are independent given E = <PI, ... I Pn), we write: 

h = E(¢(X)IE) = h(E). 
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Natvig & Eide {1987) assumed that the joint prior distribution of the reliabilities, before 
running any experiments on the component level, 1r{£), can be written as: 

" 7r{E) =II ?r,(A), (1.1) 
l=l 

where ?r,(p.) is the prior marginal distribution of p., i.e., it was assumed that the compo
nents have independent prior reliabilities. 1r,{A) describes the initial uncertainty in p,, by 
for instance allocating most of the probability mass close to 1 indicating a very reliable 
component. 

In this paper we assume that k experts will provide the information about the reliabilities 
of the components. Our work in this area generalizes papers by Huseby {1986, 1988) 
on the single component case. Since the experts often share data, he argues that their 
assessments will typically be dependent and that this difficulty cannot be handled without 
making judgements concerning the underlying sources of information and to what extent 
these are available to each of the experts. In the former paper the information available 
to the experts is modeled as a set of observations Yi, · · · , Ym. These observations are then 
reconstructed as far as possible from the information provided by the experts and used 
as a basis for the combined judgement of a decision maker {DM) on the underlying joint 
distribution of the parameters in the model. This is called the retrospective approach. In 
the latter paper, the uncertain quantity is modeled as a future observation, Y, from the 
same distribution as the }i's. This is called the predictive approach. 

For the case n = 2 both approaches are treated in Natvig {1992), whereas the predictive 
approach is considered in GAsemyr & Natvig (1991) for an arbitrary n and an arbitrary 
overlapping of the observation sets from the different experts. The component lifetimes 
are assumed to have a multivariate exponential distribution of the Marshall-Olkin type. 
The present paper parallels the latter one considering the retrospective approach and also 
allowing for noisy assessments of the experts. From the assessments of the experts we 
arrive at the joint prior distribution, 1r(E), of the reliabilities. 

Let us now first consider the case of independent components given p. Suppose that we 
run experiments on the component level and get the data D = (D11 .-:: ·, Dn) where D, is 
the data from the experiment on the ith component. Let 1r(D!p) be the corresponding 
likelihood function. Hence the posterior distribution of the reliabilities, 1r{piD), is given 
by: -

1r(Dip)1r(E) 
1r(EID) = J 1r(121£)1r{E)d£. (1.2) 

The corresponding distribution of system reliability 1r{h{E)ID} can in principle be arrived 
at by using the transformation formula for joint probability distributions. The prior de
pendencies between P1, · · · , Pn are not creating too much extra trouble here. By now using 
expert opinion on the system level, in the spirit of Huseby (1986), 1r{h(p)!D} may be 
updated to the prior distribution of system reliability 1r0 {h{p)ID}. If we now finally run 
a.n experiment on the system level and get the data D, we end up with the posterior 
distribution of system reliability 1r{h(E)ID, D}. 
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Let us next consider the case of associated components given E· This is the challenging 
case modeling the nonnegative dependence between component states in real life systems. 
Due to this general assumption of dependence there is no way of establishing an exact 
expression for 7r(hiQ). It is not even possible to arrive at exact expressions for its first r 
moments. The best one can do is to arrive at bounds on these moments. From {1.2) the 
marginal posterior distribution of p., 7r{Pil.l2), is given by: 

{1.3) 

where h,E) = (p1, .. · ,Pt-11 ·,p.+I, .. · ,pn)· This leads to the moments up till order r(i = 
1 .. · n· ;· = 1 .. · r) · I I I I I ' 

(1.4) 

by for instance applying an approximation technique suggested by Laplace, which has been 
pointed out to be quite good by Tierney k Kadane (1986). 

From (1.4) by applying results ofNatvig k Eide (1987) and of a very recent paper Lindqvist 
{1991) we arrive at bounds on: 

E(hjiD) ;· = 1 .. · r - , ' , , (1.5) 

of 1r(hll2). 

However, the best bounds in these papers are based on the assumption that p1,· • • ,pn 
are independent given D. Sufficient conditions for this are that the components have 
independent prior reliabilities, which is unrealistic when the opinions of experts are used, 
and that D 1, · · ·, Dn are independent given p, which is reasonable if for instance different 
laboratories are used for different components. From (1.5) one may adjust a proper 1r(hll2.), 
which may be further updated to 7ro(hiD) and 1r(hiD, D) as in the case of independent 
components. 

The rather good lower bounds of Theorem 2. 7 of Natvig & Eide (1987) and some good up
per bounds of Lindqvist {1991) are valid also under the weaker assumption that p1,· • • ,pn 
are associated given D. According to Theorem 4.2 of Karlin & Rinott {1980) the MT P2 

(Multivariate Totally Positive of Order 2) property is stronger than the property of asso
ciation. From {1.2) and Proposition 3.3 of the latter paper (Property 2 of the Appendix) 
a sufficient condition for this weaker assumption to be true is that 1r(Dip) and 1r(p) both 
are MTP2. - -

Recall that a random vector ( Zt, · · · , Zn) is MT P2 if and only if its density, f (.~), is MT P2, 
i.e., if: 

f (z. v y) f (z. 1\ 1[) ~ f (z.) f (1[) ' 

where for z. = (x1, · · · ,Xn),Jl = (Yl! · · · ,yn) 

z. V 1l = (max(x1, Yt), · · ·, max(xn, Yn)) 
z_l\ 1l = (min(x1, Yl), · · ·, min(xn, Yn)). 
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For the time being we have no idea of how the MT P2 property can be converted into as
sumptions on observable random quantities·. In the case where D 11 • • • 1 Dn are independent 
given 2 1 we have: 

n 

1rU2IE) = l11r(D,IIJi), (1.6) 
i=l 

and it follows from the latter proposition that 1r(QIE) is MT P2• Hence a key question to 
be answered in the present paper is the following. When does 1r{p) established by using 
expert opinions in fact possess the MT P2 property? -

The paper is organized in the following way. In Sections 2 and 3 we consider the case 
of a single common shock destroying all components. In the former section it is assumed 
that the ~menta of the experts are without noise whereas the latter section includes 
noise. Discouraged by the technicalities faced in this section an alternative approach is 
presented in Section 4 that includes noisy assessments of the experts and which may be 
more easily generalized to cases with othex shock structures. The main difference is that the 
observations on which the experts' assessments are based, now are modeled as independent 
life times for each component as -well as times to occurence of common shocks. Some further 
indications of generalizations are given in Section 5. Results needed to establish the MT P2 

property are concentrated in the Appendix. 

2. The single common shock case without noisy assessments 

The component lifetimes are assumed to have a multivariate exponential distribution of 
the Marshall-Olkin type with as a start a single common shock destroying all components. 
The time until failure of the ith component due to an individual shock is denoted by 
Vi, i = 1, · · · 1 n whereas Vn+I is the time until the common shock occurs. The variables~ 
are independent given the parameters 81, i = 1, · · ·, n + 1 and exponentially distributed. 
Here 8, is the failure rate corresponding to~. Then the lifetime, z,, of the ith component 
satisfies (i = 1, · · · 1 n): 

Z, =min{~, Vn+l}· 

We now suppose that the background information of the experts, corresponding to their 
observation sets, is as in the main approach of G8.semyr & Natvig (1991) in terms of m 
independent sets of survival times beyond specific time points for all components; i.e., 

Now define: 

n 

nczil > Zil), l = 1, ... , m. 
i=l 

vil = .zu, i = 1, · · · , n; l = 1, · · · , m 

V(n+l)l = 1max<.< Zil 1 l = 1, ··· 1 m _,_n 
The information (2.1) is clearly equivalent to: 

n+l 

ncvil > Vll),l = 11 • • • ,m, 
i=l 
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where the Vw's are independent and exponentially distributed with failure rates, 9,, i = 
1···n+1·l=1 .. ·m I I I I I ' 

The OM assesses that the jth expert has access to information on the Zw's in (2.1) or 
equivalently on the Vw's in (2.3) for l with indices in the set Ai, having ki elements, 
j = 1, .. · , k. We have: 

lc 

U Ai = {1, .. · ,m}. 
j=l 

We assume that the prior distributions of 9,, i = 1, · · ·, n + 1 both for the OM and the jth 
expert are independent gamma distributions with shape and scale parameters respectively 
equal to (a., b,) for the DM and (aj,, bi,) for the jth expert, j = 11 • • • 1 k; i = 11 • • ·, n + 1. 

Introduce: 
tii = 2:vw,j = 1, .. ·,k;i = 1, .. · 1 n+ 1 

kA; 
m 

t, = L vil, i = 1, .. · , n + 1. 
l=l 

(2.4) 

Here tii is the total survival of components from the ith shock, corresponding to the 
information from the jth expert. t, is similarly the total survival corresponding to the whole 
set of information. By Bayes' theorem the posterior distributions of 9,, i = 1,· · ·, n + 1 
both for the OM and the jth expert are independent gamma distributions with shape and 
scale parameters respectively equal to (a., b; + t.) for the DM and (aJi 1 bi, + ti,) for the jth 
expert, j = 1, · · · , k; i = 1, · · · , n + 1. 

The ti,'s are arrived at in (3.8) of Gasemyr & Natvig (1991) by asking the experts about 
the marginal and joint survival probabilities, beyond a certain time point U 1 for the com
ponents. The t, 1s are estimated from the til's as in Section 5 of the latter paper. 

Now the reliability of the ith component at timet is given by: 

Pi= exp[-(8, + 9n+l)t], i = 11 • • ·, n. 

In order to find the joint distribution of E_, introduce: 

Hence: 

¢, = 9, + 9n+1 1 i = 1, .. ·, n 

¢n+ 1 = Bn+l· 
(2.5) 

¢>1 = -lnp;jt, i = 1, · · · 1 n. (2.6) 

Since the transformation (2.5) is linear with constant Jacobian, the joint distribution of 
the ¢1 1S is given by the density: 

n 

C1 fi(¢i- ¢n+l)a.-l exp(-(b, + t,)(¢1- ¢n+l)) 
i=l {2.7) 

X ¢~C1 exp[-{bn+t + tn+l)¢n+l)· 

5 



This density is clearly MT P2 by Properties 2 and 5 of the Appendix. Integrating with 
respect to cPn+l gives an MT P2 density for ¢1, • • • , ¢n by Properties 1 and 4 of the Appendix 
since the area of integration is adjusted for by multiplying (2. 7) by the indicator function: 

l(cPn+t < m,in ¢,) 
1:50a:50n 

Since the transformations in (2.6) are all decreasing in the p,'s and since the corresponding 
J acobi&n matrix is diagonal, we can finally conclude by Properties 2 and 3 that the joint 
distribution of p given t,, i = 1, · · ·, n + 1 is MT P2• By substituting (2.6) a.nd cPn+t = 
-lnPn+tft in (2-:-7) its density is given by: 

1 n 

C2 1 np~"'+tt)/t-lclnCPn+t!Pt))Go-1 
lllaXJii •=1 
lS'S• 

• 
("-+.1 Ha+l-L( .. +C.}]/t-1 

X Pn+ 1 isl (ln Pn+l) ~&o.+-t-1 dPn+l· 

(2.8) 

As in Gasemyr & Natvig (1991) an alternative approach is possible in the case where 
ki,j = 1, · · ·, k are known. We then replace the background information (2.3) by: 

n+1 n (V., = u.,), l = 1, · · ·, m. (2.9) 
i=1 

Hence we now have data on the times to shocks instead of survival times of the components. 
The deductions above are still valid by replacing the shape parameters eli and ai' in the 
posterior distributions of 8, by eli+ mandai'+ ki respectively fori= 1, · · ·, n + 1. 

One advantage of this approach is that the modified version of (2.8) may be updated when 
getting real data. When these data represent survivals of components, or more generally are 
given both for individual shocks and the common shock, this is straightforward. Introduce 
(i=1,···,n+1): 

1i = total time on test relative to the ith shock 

~ = number of shocks of type i. 
(2.10) 

The updated joint distribution of E given t,, i = 1, · · ·, n + 1 for the alternative approach 
is then given by (2.8) with eli and b, replaced by respectively eli + ~ + m and b, + n, i = 
1,· .. ,n+l. 

However, the main advantage of the alternativ approach is that the proper joint distribution 
of p can be arrived at in a fully Bayesian fashion parallel to the deductions in Huseby (1988) 
and Gasemyr & Natvig (1991) avoiding the estimation of the t;'s from the tt/s. 

We now have the following updated joint probability density function of 8,, i = 1, · · · , n+ 1: 

g[81, • • ·, 8n+dt.ii, j = 1, .. ·, k; i = 1, · · ·, n + 1 n (Ii, ~), i = 1, · · ·, n + 1} 
= C3p[tji,j = 1, · · ·, k; i = 1, · · ·, n + 1181, · · ·, Bn+1] 

n+l b~(f!'i-1 

X p[Ji, ~), i = 1, ... , n + 1181, ... , 8n+1] n ~(' ·) exp( -b,O,), 
1=1 a. 
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having applied the conditional independence of { t;1, i = 1, · · · , k; i = 1, · · · , n + 1} and 
{(T., d.), i = 1, · · ·, n + 1} given 811 • • ·, Bn+l· The first contribution above is given by (7.5) 
in G8semyr & Natvig (1991) and we end up with: 

g[8t, · · · ,Bn+tlt;·ili = 1, · · ·, k; i = 1, · · ·, n + 1 n (T.,dt), i = 1, · · ·, n + 1] 

n+l "t~ q-k-1 
= C& TI {8f'+c4+m-1exp(-(b. + n)e,) f exp(-e,t,)[j ... f II <s;:-1> 

I= l G(') B(r-A-1)' 1=1 

f 

X n (/,s(SH1 • • • 1 S(q-k-1}' 1 tli, • · · 1 t1n 1 t,))n,-ldsli · · · ds(q-k-t)S}dt,}. 
r-t-lc 

(2.11) 

Here we have introduced a disjoint partition B1 , having n1 elements, g = 1, · · · 1 q of the 
set {11 • • ·, m} and subsets C; 1i = 1, · · ·, k of the set {1, · · ·, q} such that we have the 
representation: 

A;= U B11 i = 1,···,k. 
I«JJ 

Furthermore: 
s · = ~ V•• g = 1 · · · q· i = 1 · · · n + 1 I' L...J M! I I I I I • 

kB, 

Then from (2.4), which is still valid for the alternative approach, we have: 

t;, = L sg~,j = 1, · · ·, k; i = 1, · · · 1 n + 1 
fECi 

q 

t. = L Sg~ 1 i = 1, · · · 1 n + 1. 
g=l 

(2.12) 

We then transform (sH1 • • ·, sti) into (sH, · · ·, S(q-k-t)i, tH, · · ·, t~n, t,). From (2.12) we estab
lish (i = 1, · · ·, n + 1, g = q- k, · · ·, q): 

where the /,s's are linear functions. (2.11) is arrived at by noting that the s,s's, g = 
1, · · ·, q, i = 1, · · ·, n + 1 are independent given 81, · • ·, Bn+l and gamma distributed with 
shape and scale parameters respectively equal to n9 and 8,. S(q-k-t}S is an area ofintegration 
and ll(i) and b(s) integration botmds determined by (2.12). 

The proper joint distribution of p is now arrived at completely parallel to the deduction 
of (2.8). The crucial question is whether this is MT P2 as well. We are not able to prove 
this since by applying (2.5) we end up with a factor exp(-¢1t1) in the integrand in (2.11). 
This is easily seen not to be MT P2 in ¢1 and t1, which is necessary to apply Property 2 of 
the Appendix. 
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3. The single common shock case with noisy assessments of the experts 

We return to the main approach of Section 2. However, now the experts' assessments are 
noisy, so instead of observing Zu, i = 1, · · · ,n; lEA;,j = 1, · · ·, k they observe: 

The distributions of (W;lh · · · , W;n~), lEA;, j = 1, · · · , k a.re assumed to be independent each 
with a multivariate exponential distribution of the Marshall-Olkin type with parameters 
811 · · ·, 8n+l as is the case for (Zu, · · ·, Znl), l = 1, · · ·, m. 

When we say that the data are "observed" by the experts, a.s stated in Huseby (1986), we 
have in mind an intuitive process including a. lot of subjective judgements and interpre
tations. Hence it may very well happen that the experts "observe" the data. differently. 
Indeed when modeling experts' opinions it is difficult to say what is observation and what 
is interpretation. Introduce: 

k = (Zu,·· ·~Znl) 
Z. = (Z11· · · ,Z,.) 

l= 1 ... m I I I 

Z(,-+l)l = ~ Zu 1 l = 1, · · · , m 
lS•S" 

T.· · = "" z,, 3. = 1 · · · k· i = 1 · · · n + 1 Jl .£..JMI I II I I 

kAJ 

X.; = (Tj1 1 • • • 1 T;(n+l)) 1 j = 1, · · · 1 k 
W;(n+l)l = m~ W Jil , lEA;, j = 11 • • • , k 

lS1Sn 

W;1 =L:W;u ,j=1,···,k;i=1,· .. ,n+1 
k.A.J 

W;=(W;1,··· 1 W;(n+l)) ,j=1 1 ••• 1 k 
}£ = (1£1, .. ·~~). 

(3.1) 

We assume that the DM assesses that the noisy assessments W;,j = 1, · · ·, k from the 
different experts are independent given the "exact" ones Z and (h, · · · 1 On+l with probability 
density functions on the form: 

n 

g;(wjl.~; 81, .. ·, On+l) = g;(w;li;) = IJg;,(w;,lt;,) 
i=l (3.2) 

X 9;(n+l)(W;(n+l)IW;l,''', Wjnj t;l!'' ', t;(n+l))· 

Here 9;;(w;-dt;;) could be chosen with expectation t;,, i = 1, · · ·, n and 9;(n+l)(W;(n+l)lw;l, 

· · ·, W;ni t;l! · · ·, t;(n+l)) with expectation ~ w;; + t;(n+l) - m~ tp,j = 1, · · ·, k. This 
l<1<n l<1<n 

would make the noisy total survival of the components cent ref close to the corresponding 
"exact" ones. Actually, as noted in GAsemyr & Natvig (1991) there are uncertainties in 
the calculation of the t;;'s and (3.2) is a way of modeling these uncertainties. 

The posterior probability density function of 01, • • ·, On+l given the noisy assessments w 
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from the experts is now arrived at in a fully Bayesian fashion: 

h(91, · · · ,9n+1llU) 

f " n+l b~B':'-1 
= C5 II Uj(.Yljl1:i 91! ... '9n+1)/~l9h ... '9n+l) II r(' ·) exp( -~9i)d.l 

z J=1 i-1 lli (3.3) 
k m 

= C6 f II UJ(WJI1j) IJ /C~4I01," · 1 9n+1)tr.'-1 exp( -~9i)d.l. 
z J=1 1=1 

Here /(~1911 • • ·, 9n+l) is the complicated probability density function of the multivariate 
exponential distribution of the Marshall-Olkin type. From (3.3) one can as in the previous 
section derive the corresponding posterior joint distribution of p given the noisy assess
ments. This seems far from being MTP2• If the deductions in tlrls section had been based 
on the alternative approach from the previous one rather than the main approach, the 
joint distribution of 2 given the noisy assessments would have been simpler, but still not 
MTP2. 

4. A new alternative approach to cover noisy assessments of the experts 

Discouraged by the technicalities we ran into in the previous section, we now discuss a 
new alternative approach to cover noisy assessments of the experts. This approach may be 
more easily generalized to cases with other shock structures than the one treated earlier 
in the present paper. The main difference is that the observations on which the experts' 
assessments are based, now are modeled as independent life times for each component as 
well as times to occurence of common shocks. Hence we have no longer a multivariate 
exponential distribution of the Marshall-Olkin type. The background information (2.9) is 
now replaced by: 

n+l n (Zil = Zil) , l = 1, · · ·, m. (4.1) 
i=1 

Here Zil is the "exact" time to failure of the ith component, i = 1, · · ·, n, and Z(n+l)l the 
"exact" time until the common shock occurs in the lth observation set, l = 1, · · ·, m. The 
variables zil are assumed to be independent given the parameters cPl, ... ' cPn+ 1 defined by 
(2. 5) and exponentially distributed with failure rates cPa, i = 1, · · · , n + 1; l = 1, · · · , m. The 
independence of the Zil's may seem unrealistic. However, the imaginary data are just an 
abstraction used to model the background information of the experts and do not have to 
be easily interpreted as real data. 

The prior distributions of cPi, i = 1, · · · , n+ 1 both for the DM and the jth expert are for con
venience independent gamma distributions with shape and scale parameters respectively 
equal to (at, bi) for the DM and (aji, bj,) for the jth expert, j = 1, .. ·, k; i = 1, .. ·, n + 1. 
Introduce: 

tj, = L Zil , j = 1, · · · , k; i = 1, · · · , n + 1 
ItA; 
m 

t; = L zu , i = 1, · · · , n + 1. 
l=l 
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The t; 's are arrived at exactly as the t;1 's, and the t; 's are estimated from the tj, 's exactly 
as the t; 's are estimated from the t;, 's. 

We now assume that the overall assessments of the experts, w,•, of t;, i = 1, · · · , n + 1 
are noisy. The variables Wt are assumed to be independent with expectation t; given 
t;; ~~ i = 1, · · · , n + 1 with conditional distributions given by: 

h;(w;lt~, · · ·, t~+li ¢h · · ·, ¢n+l) = ht(w;lt;), i = 1, · · ·, n + 1. 

The posterior probability density function of ¢11 · · · , ¢n+l given the noisy assessments 
wi, · · · , w!+l of the experts is now given by: 

h(<l>t, · · ·, ¢n+dw;, · · ·, w:+l) 
tt+l 00 

= C7 II j ht(w;lt:)t;<m-l)¢~- 1 exp(-(b; + t;)¢,)dt;. 
i=l 0 

(4.2) 

This density is MT P2 by Property 2 of the Appendix since & single random variable is . 
obviously MT P2. Hence it follows as in Section 2 that the joint distribution of E given 
w;,i = 1, .. ·,n+ 1 is MTP2. 

5. Some generalizations 

As already stated the new alternative approach of Section 4 may be generalized to other 
shod structures. Suppose there are p possible common shocks. Introduce (i = 1, · · ·, n): 

E, = the set of common shocks that destroys the ith component. 

Assume that the rth common shock occurs with failure rate Bn+r, r = 1, · · · , p, and define: 

if>, = 8, + L Bn+r ' i = 1, ... 'n 
rEB. 

, i = n + 1, · · · , n + p. 
(5.1) 

Concerning the background information the "exact" times to failure of the ith component, 
i = 1, · · · , n and until the rth common shock occurs, r = 1, · · · , p are assumed to be 
independent given the parameters ¢1, · · · , ¢n+P and exponentially distributed with failure 
rates if>,, i = 1, · · ·, n + p. This leads to a slightly modified version of ( 4.2) with n + 1 
replaced by n + p. t;, i = 1, · · ·, n +pare estimated as in GB.semyr & Natvig (1991). 

The methods of Sections 2 and 3 may easily be adjusted to situations with nonoverlapping 
common shocks. Less trivially they can also be adjusted to situations with a hierarchical 
shock structure. As an illustration suppose there are two common shocks with failure rates 
Bn+l and 8n+2· Define (r = 1, 2): 

Dr = the set of components destroyed by the rth common shock, 

and suppose D2 C D 1. Define: 

Fo = {1, · · ·, n}- Dt, Ft = Dt- D2, F2 = D2, 
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and the following parameters: 

4J, = 8, , itFo U { n + 1} 

4J, = 8, + 8n+l , ieF1 U {n + 2} 

4Ji = 8, + Bn+l + 8n+2 1 ifF2. 

The modified version of {2. 7) is: 

es IT 4J't'-l exp[-(bs + ~)4J,J 
W'ou{n+l} 

X IT {4Ji- 4Jn+t)~-l exp[-{bs+ ~){4Ji- 4Jn+t)] 
W'1u{n+2} 

X IT {¢1- ¢n+2)~-l exp[-{~ + t,)(4Ji- 4Jn+2)]. 
W'2 

(5.2) 

{5.3) 

This is an MT P2 density by the same argument as for {2. 7) leading to a joint distribution 
of E given~, i = 1, · · ·, n + 2 being MTP2 as for {2.8). 

Appendix: MT P2 - Some properties 
Jl 

Property 1 Let / be an MT P2 function on TI X. Then: 
i=l 

n-1 
is MTP2 on TI ~. 

i=l 

4J(Xt 1 • • • , Xn-t) = / /{Xt, · · · 1 Xn)dxt 
x1 

This is a special case of Proposition 3.2 of Karlin & Rinott (1980). 

Property 2 Let f and g be MTP2 functions. Then fg is MTP2. 

This is just Proposition 3.3 of the latter paper, which was referred to in Section 1. 

" Property 3 H /(*.),*..e TI ~is MTP2, and 4J11 .. • ,4J" are all nondecreasing (or all nonin-
i=t 

creasing) functions on X1, • • • , ~, respectively, then the function: 

1/J(z) = /(fbt(Xt), · • ·, ¢n(Xn)) 

" is MTP2 on TI ~. 
i=l 

This is Proposition 3.6 of Karlin & Rinott (1980). 

Property 4 The indicator function /(x1 < :m,in x1) is MT P2• 
2:9~n 

Proof. Suppose x, ~ y1, i = 1,· · ·, n. For any subset A of {2, · · ·, n} we must show that: 

l(Yt < m,in y,)I(xt < m,in x,) 
2~'~" 2~'~" 

~ l(Yt < ~Tj!?4Jx,,yj})I(xt < ~~ut{x,,yj}). 

11 



If min x, is obtained for an itA, then: 
2~i~n 

l(Yt < .X~Jx,,y;}) = I(yt < 2~i~nx,). 

Since this factor is exceeded by both factors on the left hand side of the inequality, this 
case is done. If on the other hand minx, is obtained for an itAc, then: 

2~i~n 

I(x1 < ~~{x,,y;}) = I(xt < 2~'~"x,). 

Hence the inequality is now straightforward and the proof is completed. 

Property 5 Let g be a positive and continuous function of one variable and define 
f(xt, x2) = g(x2- Xt)· Then f is MT P2 if and only if log(g) is concave. 

Proof. f is MT P2 if and only if for x, ~ y,, i = 1, 2: 

9(112 - Yt)g(x2 - Xt) ~ g(y2 ~ X1)g(x2 -yt)· 

Since clearly: 

this is equivalent to: 
g(c)g(tl) ~ g(a)g(b) 

for a ~ c ~ b, a ~ d < b and a + b = c + d. Now take the logarithm on both sides and note 
that the claims on a, b, c, d are equivalent to 

c = .Xa + (1 - .X)b, d = (1 - .X) a+ .Xb 

for some A in [0, 1]. Setting A = 1/2 it follows that logg is midpoint concave (c = d = 
(a+ b)/2) and hence concave since g is continuous. H on the other hand logg is concave 
we have: 

logg(a) + logg(b) = [.Xlogg(a) + (1- .X) logg(b)] 

+ [(1- .X) logg(a) +.X logg(b)] ~ logg(c) + logg(d), 

and the proof is completed. 
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