
Fast, Parallel Tools for
Genome-wide Analysis of
Genomic Divergence

Tuva Kristine Thoresen
Master’s Thesis August 2015

Fast, Parallel Tools for Genome-wide Analysis of
Genomic Divergence

Tuva Kristine Thoresen

17th August 2015

ii

Abstract

Comparative genomics is useful for finding the evolutionary relationships between
different organisms. Regions of parallel evolution can be identified, and we can
gain a better understanding of evolution and the development of different spe-
cies. Tools for comparative genomics have previously been developed by Veder-
hus (2013). The tools, however, had some shortcomings, such as the usability
and the long runtime of the tools. The aim of this thesis was to improve the
tools for comparative genomics.

We have implemented two different methods for locating diverting regions
in the genome of two populations, a Fisher’s Exact Test (FET) and a Cluster
Separation Score (CSS). For CSS, three different methods for calculating multi-
dimensional scaling (MDS) were implemented. The tools were implemented as
web tools on the Genomic HyperBrowser, using Python, Cython and C, and
the code was parallelized with Pthreads. We have simplified the file format and
given the user more choices in parameters, and created a tool for converting
VCF files to our file format.

The changes in file format and the VCF convert tool have made the tool more
usable for a broader range of applications, and by calculating the complete two-
tailed FET and implementing three different methods for calculating MDS, we
have achieved a more accurate result. We found that we were able to gain a
large speedup of our tools, giving a dramatic decrease in run time. This should
make it possible to run several analyses with different parameters in a short
amount of time. The tools were able to reproduce the results found in previous
studies, and produce good results on two additional data sets. The CSS was the
most accurate method, achieving good results over a broad range of data sets,
while the FET had more noise and is weaker on data sets with little genomic
divergence.

The increased speed and user friendliness of the tools make it feasible to
run these analyses on a larger scale than has previously been done. These tools
should be able to meet the increased need for analysing large scale data sets in
comparative genomics.

iii

iv ABSTRACT

Acknowledgements

This study was carried out at the Biomedicial Informatics (BMI) research group
at the Department of Informatics at the University of Oslo.

First, I would like to thank my main supervisor Professor Torbjørn Rognes
for thorough reading of my thesis, help with the methods and parallel program,
and a lot of patience and advice. I would also like to thank my supervisor Geir
Kjetil Sandve for help with methods and information about the Genomic Hyper-
Browser. Further, I would like to thank Sveinung Gundersen and Abdulrahman
Azab from the BMI group, for their invaluable help with the HyperBrowser
system, for merging in the newest version, installing tools and helping with
correcting errors. I would also like to thank Bastiaan Star, at the Centre for
Ecological and Evolutionary Synthesis at the Department of Biosciences at the
University of Oslo, for his help with the Atlantic cod data and the VCF file
format.

On a more personal note, I would like to thank my fellow students at the
TekNat master, especially Ingrid Grønlie Guren, for help and tips, and all the
girls at Verdande and my fellow group teachers, for making my time at IFI
memorable. I would also like to thank my mother and father, for help and ideas
and thorough reading of my thesis. Finally, I wish to thank my boyfriend Edvin,
for his support and patience, and for taking more than his share of household
duties.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 1
1.3 Overview of thesis . 2

2 Background 3
2.1 Essential biological concepts . 3
2.2 The genomic basis of adaptive evolution in threespine sticklebacks 4
2.3 A long term evolution experiment with Drosophila 5
2.4 The Genomic HyperBrowser . 6

2.4.1 HyperBrowser jobs and tracks 6
2.4.2 Statistics . 7

2.5 A Tool for Genome-wide Analysis 7
2.5.1 Tool implementation in HyperBrowser 8
2.5.2 Issues with the current tool 9

2.6 Performance metrics . 9
2.6.1 Runtime . 9
2.6.2 Overhead . 9
2.6.3 Speedup and efficiency . 10

3 Methods 11
3.1 Cluster Separation Score (CSS) 11

3.1.1 Multi-Dimensional Scaling (MDS) 12
3.1.2 Classical MDS . 13
3.1.3 Iterative MDS . 14
3.1.4 Statistical significance . 16

3.2 Fisher’s Exact Test (FET) . 17
3.2.1 Fisher’s Exact Test algorithm 18

3.3 Parallel programming systems . 20
3.3.1 Message Passing Interface (MPI) 20

vii

viii CONTENTS

3.3.2 Pthreads . 22
3.3.3 OpenMP . 24
3.3.4 MapReduce . 24

3.4 Parallel design models . 25
3.4.1 The boss/worker model 25
3.4.2 The peer model . 25
3.4.3 The pipeline model . 25

3.5 Mapping of tasks in parallel systems 26
3.5.1 Overhead . 26
3.5.2 Tasks and work division 26

4 Implementation 27
4.1 Implementation choices . 27

4.1.1 Main structure of the tools 27
4.1.2 Methods . 28
4.1.3 Languages and frameworks 28
4.1.4 Parallelization . 29

4.2 Data structure . 30
4.2.1 File format . 31
4.2.2 A tool for converting VCF to GTrack 32
4.2.3 Sliding windows . 32

4.3 Fisher’s Exact Test . 33
4.3.1 The web tool . 33
4.3.2 The statistic . 33

4.4 Cluster Separation Score . 35
4.4.1 Distance metrics . 37
4.4.2 MDS methods . 38
4.4.3 CSS . 39
4.4.4 Estimating significance . 40

4.5 Parallel implementation . 41
4.5.1 Pthreads implementation 41

4.6 Pseudo-random number generators (PRNGs) 43
4.6.1 A thread safe pseudo-random number generator 43
4.6.2 Uniform distribution of pseudo-random numbers 44

4.7 Integrating C code with Cython 44
4.7.1 Problems with integrating C code in a large scale Python

system . 45
4.8 Optimizing C code . 46

4.8.1 Allocations . 47
4.8.2 Library methods . 47
4.8.3 Pseudo-random number generators 47
4.8.4 For-loops . 47
4.8.5 Data types . 47
4.8.6 Functions . 48

4.9 Changes made to the HyperBrowser code 48

CONTENTS ix

5 Results 49
5.1 User interface . 49

5.1.1 Fisher Exact Test SNP Tool 50
5.1.2 Filter Fisher Scores . 50
5.1.3 Cluster Separation Score 50
5.1.4 Significant CSS Regions 51
5.1.5 Convert Stickleback SNPs to GTrack 51
5.1.6 Convert VCF To GTrack Tool 51

5.2 Speedup of serial C code vs Python code 51
5.2.1 Cluster Separation Score 52
5.2.2 Fisher’s Exact Test . 54

5.3 Memory usage . 55
5.3.1 Cluster Separation Score 56
5.3.2 Fisher’s Exact Test . 57

5.4 Parallel C code . 57
5.4.1 Variable number and size of tasks 58
5.4.2 Variable number of threads 60

5.5 Synthetic data set . 65
5.5.1 Cluster Separation Score 65
5.5.2 Fisher’s Exact Test . 71

5.6 Three-spined stickleback data . 77
5.6.1 Cluster Separation Score 77
5.6.2 Fisher’s Exact Test . 81

5.7 Drosophila data . 86
5.7.1 Cluster Separation Score 86

5.8 Atlantic cod data . 88
5.8.1 The two marine populations 89
5.8.2 The marine and coastal 2011 populations 91

6 Discussion and Conclusion 95
6.1 Discussion of the usability of the tools 95
6.2 Discussion of speedup and code integration 96
6.3 Discussion of the results from analyses 97

6.3.1 Synthetic data . 97
6.3.2 Three-spined stickleback data 98
6.3.3 Drosophila data . 98
6.3.4 Atlantic cod data . 99
6.3.5 Possible weaknesses in analyses 100

6.4 Weakness in implementation . 101
6.5 Conclusion . 101

7 Future Work 103

Appendices 105

x CONTENTS

Appendix A Example runs 107
A.1 An example run with three-spined stickleback data 107

A.1.1 Converting the three-spined stickleback data file 107
A.1.2 The Fisher’s Exact Test Tool 110
A.1.3 The Cluster Separation Score Tool 111

A.2 VCF Convert example run . 114

Appendix B Analyses on the Genomic HyperBrowser 115

Appendix C Detailed results 117
C.1 Detailed results of parallel program 117
C.2 Detailed three-spined stickleback results 120

C.2.1 Cluster Separation Scorer 120
C.3 Detailed Drosophila results . 132
C.4 Detailed Atlantic cod results . 136

C.4.1 The two marine populations 136
C.4.2 The marine and coastal 2011 populations 136

Appendix D Source code 143

References 145

List of Figures

5.1 Variable task size: CSS . 59
5.2 Variable task size: FET . 60
5.3 Variable number of threads: CSS 61
5.4 Scaled speedup: CSS . 62
5.5 Variable number of threads, ts 25: CSS 62
5.6 Scaled speedup, ts 25: CSS . 63
5.7 Variable number of threads: FET 64
5.8 Scaled speedup: FET . 64
5.9 Synthetic data: CSS with noise 0 67
5.10 Synthetic data: CSS with noise 0.5 68
5.11 Synthetic data: CSS with noise 0.8 69
5.12 Synthetic data: CSS with noise 0.9 70
5.13 Synthetic data: FET with noise 0 72
5.14 Synthetic data: FET with noise 0.5 73
5.15 Synthetic data: FET with noise 0.8 74
5.16 Synthetic data: FET with noise 0.9 75
5.17 Synthetic data: FET with noise 1 76
5.18 Stickleback chrIV EDA gene: CSS 78
5.19 Stickleback chrIV: CSS significant regions 79
5.20 Stickleback chrIV EDA gene: CSS significant regions 79
5.21 Stickleback chrXIX: CSS significant regions 80
5.22 Stickleback chrXIX detailed results: CSS 80
5.23 Stickleback chrIV: Filtered FET regions with Burke et al. limit . 82
5.24 Stickleback chrIV EDA gene: FET 83
5.25 Stickleback chrIV: Filtered FET regions 83
5.26 Stickleback chrIV EDA gene: Filtered FET regions 84
5.27 Stickleback chrXIX: Filtered FET regions 84
5.28 Stickleback chrXIX detailed results: FET 85
5.29 Drosophila chrX: CSS CMDS + SMACOF 87
5.30 Drosophila chrX: top scoring regions 88
5.31 Atlantic cod, marine populations: CSS CMDS 89
5.32 Atlantic cod, marine populations: LG01 for FET and CSS 90
5.33 Atlantic cod, marine populations: CSS - filtered regions in LG01 90
5.34 Atlantic cod, the 2011 populations: CSS CMDS 91

xi

xii LIST OF FIGURES

5.35 Atlantic cod, the 2011 populations: CSS SMACOF 92
5.36 Atlantic cod, the 2011 population: CSS - filtered regions in LG01 92
5.37 Atlantic cod, the 2011 populations: FET 93
5.38 Atlantic cod, the 2011 population: Filtered FET regions 94

A.1 The sticklebrowser . 108
A.2 Converting to GTrack file . 109
A.3 Fisher Exact Test SNP Tool . 110
A.4 Filter Fisher Scores . 112
A.5 Significant CSS Regions . 112
A.6 Cluster Separation Score . 113
A.7 Convert VCF To GTrack Tool . 114

C.1 Stickleback chrI: CSS significant regions 120
C.2 Stickleback chrII: CSS significant regions 121
C.3 Stickleback chrIII: CSS significant regions 122
C.3 Stickleback chrIV: CSS significant regions 123
C.4 Stickleback chrVI: CSS significant regions 124
C.5 Stickleback chrVII: CSS significant regions 124
C.6 Stickleback chrVIII: CSS significant regions 125
C.7 Stickleback chrIX: CSS significant regions 127
C.8 Stickleback chrX: CSS significant regions 127
C.9 Stickleback chrXI: CSS significant regions 128
C.10 Stickleback chrXII: CSS significant regions 129
C.11 Stickleback chrXVI: CSS significant regions 129
C.12 Stickleback chrXVIII: CSS significant regions 130
C.13 Stickleback chrXX: CSS significant regions 131
C.14 Stickleback chrUn: CSS significant regions 131
C.15 Drosophila: CSS CMDS . 132
C.16 Drosophila: CSS SMACOF . 134
C.17 Atlantic cod, marine populations: CSS CMDS 137
C.18 Atlantic cod, the 2011 populations: CSS - filtered regions in LG02138
C.19 Atlantic cod, the 2011 populations: CSS - filtered regions in LG07139
C.20 Atlantic cod, the 2011 populations: FET 139
C.21 Atlantic cod, the 2011 population: Filtered FET regions 141

List of Tables

5.1 Python vs. C: CSS CMDS . 53
5.2 Python vs. C: CSS SMACOF . 54
5.3 Python vs. C: FET . 55
5.4 Memory use, serial program: CSS 57
5.5 Memory use, parallel program: CSS 57
5.6 Memory use, serial program: FET 58
5.7 Memory use, parallel program: FET 58

C.1 Variable task size: CSS . 117
C.2 Variable task size: FET . 117
C.3 Variable number of threads: CSS 118
C.4 Scaled speedup: CSS . 118
C.5 Variable number of threads, ts 25: CSS 118
C.6 Scaled speedup, ts 25: CSS . 119
C.7 Variable number of threads: FET 119
C.8 Scaled speedup: FET . 119

xiii

xiv

Abbrevations

∆ Dissimilarity matrix, used for multi-dimensional scaling

σr Raw stress

L10FET Negative base-ten logarithm of the Fisher’s exact test score

BMI Biomedicial Informatics research group at the Department of In-
formatics at the University of Oslo

chr chromosome

CMDS Classical multi-dimensional scaling

CPU Central processing unit

CSS Cluster separation score

DNA Deoxyribonucleic acid

EDA Ectodysplasin

FDR False discovery rate

FET Fisher’s exact test

kb kilo base (pairs)

MDS Multi-dimensional scaling

mRNA Messenger RNA

PRNG Pseudo-random number generator

RAM Random-access memory

RNA Ribonucleic acid

SMACOF Scaling by majorizing a complicated function

SNP Single-nucleotide polymorphism

SOM/HMM A self-organized map-based iterative Hidden Markov Model

VCF Variant call format

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Comparative genomics is useful for finding the evolutionary relationships between
different organisms. We can identify regions of parallel evolution, and gain a
better understanding of evolution and the development of different species.

One way to identify the regions of parallel evolution is to compare the genome
(genes) of individuals in two different populations. The goal is to find regions
on the genome that are similar in all individuals in one population, but different
in individuals of another population. These regions may possibly be linked to
phenotypic traits in the two populations.

We have looked at two studies, one comparing marine-freshwater divergence
in three-spined sticklebacks (Jones et al., 2012) and another comparing evolved
Drosophila populations against their control population (Burke et al., 2010).
Torkil Vederhus wrote a master thesis where he implemented tools for identifying
divergent regions in the genome, and he compared his results with the results
in the two articles (Vederhus, 2013). The tools were implemented in Python
using the Genomic HyperBrowser framework. The tools, however, had some
shortcomings, such as long computation time and usability of the tools, e.g.
that the tool had to be run for each chromosome separately.

1.2 Research questions

The aim of this project is to make efficient tools that rapidly identify those
regions in a genome of which the inter population variation show a significant
correlation with their phenotypic traits. This is going to be done by improving
the tools made by Vederhus (2013).

We are going to look at the following research questions:

• How much is it possible to speed up the computation by using different
algorithms, programming languages and/or parallelization?

1

2 CHAPTER 1. INTRODUCTION

• How easy is it to integrate (parallel) C code into a large scale Python
system?

• Is it possible to reproduce the results found by Vederhus, Jones et al. and
Burke et al., and achieve good results on other data sets as well?

• How can a better user experience for the tools be made?

1.3 Overview of thesis
In chapter 2 a general background to this thesis is given, with a short introduc-
tion to the necessary biology, summaries of the stickleback study (Jones et al.,
2012), the Drosophila study (Burke et al., 2010) and the thesis of Vederhus
(2013), together with a short description of the Genomic HyperBrowser system.
In chapter 3 the relevant methods used by Vederhus, Jones et al. and Burke et
al. are described together with different methods and issues for parallelization.
In chapter 4 the implementation of the tools are described, and in chapter 5 the
results are presented; the new user interface, the speedup of the calculations and
the results from the analyses. Chapter 6 contains the discussion of the results
and the conclusion, while chapter 7 discusses possible applications for future
work. Additional results from the analyses, together with an example run of
the tools and a link to the source code, are included in the Appendices.

Chapter 2

Background

2.1 Essential biological concepts

The phenotype of an individual is its physical characteristics or traits, such as
height or hair color (Klug, Cummings & Spencer, 2007). Our traits are carried
from parents to child by genes. A mutation is any inheritable change and is a
source of genetic variation. The alternative forms of a gene are called alleles.
Different alleles can give different phenotypic traits (Klug et al., 2007).

The DNA carries genetic information. The DNA is a double helix, and
each strand of the helix contains nucleotides. There are four different types of
nucleotides, adenine (A), cytosine (C), guanine (G) and thymine (T). A and T
and C and G are complimentary nucleotides. This means that the two strands
of the double helix are complimentary.

Each gene is a recipe for a protein, and the protein has an important role
in contributing to the phenotype. Different alleles can result in proteins that
are slightly different and therefore result in different phenotypes. The process
that creates proteins from genes is called the central dogma in genetics (Crick,
1970). The flow of information goes like this 1:

DNA transcription−−−−−−−−−→ RNA translation−−−−−−−→ protein

The two main processes are:

1. Transcription: A part of the nucleotide sequence in one of the strands of
DNA is transcribed to a complimentary strand of RNA, called messenger
RNA (mRNA).

2. Translation: The information stored in the mRNA is used to produce
a protein. A protein is made up of amino acids. The nucleotides in the
mRNA form sequences of codons. Each codon consists of three nucleotides,

1Crick (1958) stated that “Once ’information’ has passed into protein it cannot get out
again” (p. 153), so this is a simplified description of the central dogma.

3

4 CHAPTER 2. BACKGROUND

and codes for an amino acid. The RNA codes for 20 different amino acids
(Alberts et al., 2014a).
Each codon has a corresponding transfer RNA (tRNA) which contains an
amino acid. In this way the amino acids are linked in a long chain that
creates a protein. There are 43 = 64 different codons, so some codons
code for the same amino acid. There are also codons that represents the
start and the end of the gene (and therefore the protein).

Single-Nucleotide Polymorphism (SNP)

In this thesis we are going to look at a special type of variation in a gene, a
single-nucleotide polymorphism (SNP). This is the most common type of genetic
variation and is a single base change in a DNA sequence. For the base change
to be considered as a SNP it must occur in a significant part of the population,
for instance more than 1%. An example of a SNP is a position in the genome
where some individuals in the population have a G-C nucleotide pair, while the
rest has an A-T nucleotide pair (Alberts et al., 2014b).

These variations can occur in all parts of the genome, both coding (parts that
codes for a protein) and non-coding regions (regions with less known function,
probably regulatory function). In the human genome, most of the SNPs occur
in non-coding regions, and only a few occur in coding regions (Alberts et al.,
2014b). A SNP in a coding region changes the codon in this part of the DNA.
There are more codons than amino acids, so some changes in the codon can make
it code for the same amino acid, therefore having no visible effect. SNPs like
this are called synonymous SNPs. Some SNPs, called non-synonymous SNPs,
make the codon code for different amino acids. This leads to different proteins,
which again can lead to phenotypic changes.

In this thesis we are going to make tools that identifies SNPs that differs
between two populations. We are going to locate the relevant regions in the
genome, and find SNPs that correlates with the different phenotypic traits in
the two populations.

2.2 The genomic basis of adaptive evolution in
threespine sticklebacks

The three-spined stickleback is a fish found in the Northern Hemisphere. The
fish mostly lived in marine areas, but after the last ice age, when the ice drew
back, it has evolved to live in freshwater streams and lakes. The fish adopted
to freshwater and evolved changes in body shape, skeletal armour and many
other phenotypic traits. Similar phenotypic traits have evolved in similar en-
vironments. This gives an indication that these traits have evolved by natural
selection (Jones et al., 2012). The genetic basis for individual traits are already
discovered, for instance the genes underlying the skeletal armour.

Jones et al. first obtained a reference genome for the three-spined stickleback.
The reference genome was assembled from a female freshwater stickleback from

2.3. A LONG TERM EVOLUTION EXPERIMENT WITH DROSOPHILA 5

Bear Paw Lake, Alaska. They sequenced 20 additional individuals, from both
freshwater and marine populations. These individuals were selected by looking
at several individuals from different geographic locations. On these individuals
Jones et al. used morphometric analysis to select individuals with typical marine
and freshwater morphology (form and structure of the fish). Data from all the
fish were pooled to identify SNPs. Jones et al. only used positions where at
least four reads (four individuals) supported a variant allele. The goal was to
find regions in the genome where freshwater fish were similar to each other, but
different from marine fish. Jones et al. wanted to find variants in the genome
that give evidence for repeated evolution across the two populations. One such
loci has already been identified, variants of the ectodysplasin (EDA) locus which
controls repeated armour evolution in freshwater populations (Colosimo et al.,
2005), and they wanted to confirm that they could find that as well.

Jones et al. used two different methods:

• A self-organized map-based iterative Hidden Markov Model (SOM/HMM)
to find the 20 most common patterns of genetic relationships between the
21 individuals.

• A genetic distance-based approach, where they built 21×21 pairwise nuc-
leotide divergence matrices for windows over the genome. A window size
of 2500 base pairs and a step size of 500 base pairs were used. The di-
vergence between the populations was calculated with a cluster separation
score (CSS) that quantifies the average distance between marine and fresh-
water clusters.

Both methods found the EDA locus that was connected with armour evolu-
tion in the top-scoring divergent regions. Other regions in the genome associated
with marine-freshwater divergence were also found.

Jones et al. wanted to estimate the relative contributions of coding and
regulatory changes in the genome. To do this they looked at 64 divergent
regions, found with the use of both methods, and found that 41% mapped to
non-coding regions (probably regulatory) of the genome, 17% to coding regions
and 45% to both coding and non-coding regions.

The results suggest that parallel evolution of marine and freshwater stickle-
back occurs by dynamic reassembly of many islands of divergence, distributed
across many chromosomes.

2.3 Genome-wide analysis of a long term evolu-
tion experiment with Drosophila

The common fruit fly (Drosophila melanogaster) has been used widely for biolo-
gical research and is a common example of a model organism. A model organism
is a non-human organism that is studied extensively, to understand biological
phenomena. The knowledge is then transferred to other organisms.

6 CHAPTER 2. BACKGROUND

Burke et al. re-sequenced populations of Drosophila that had been selected
for accelerated development for 600 generations in a laboratory (Burke et al.,
2010). The population developed 20% faster from egg to adult than the con-
trol population. They replicated this experiment for five separate populations
and obtained sequences from three genomic DNA libraries: A pooled sample
of the five replicated accelerated populations (ACO), a pooled sample of their
control populaton (CO) and a single ACO replicate population (ACO1). The
goal was to identify SNPs that significantly differed between the ACO and CO
populations. They aligned the reads to the reference genome of Drosophila,
and only considered the regions with two different alleles. Burke et al. calcu-
lated a Fisher’s exact test score for each SNP and ended up with 662 potential
candidates for encoding differences between ACO and CO.

Burke et al. also did a genome-wide sliding window analysis, with widows of
size 100-kb (kilo bases) and a step size of 2 kb. This was done to identify regions
with divergence in allele frequencies between the ACO and CO populations and
the ACO and ACO1 populations. Significant divergence between the ACO and
CO populations was found, but wery little evidence of divergence between the
ACO and the single ACO1 population was found.

2.4 The Genomic HyperBrowser

The Genomic HyperBrowser is an open-source and open-ended system for com-
parative genomic analysis. It can do inferential investigations; two annotations
or tracks are compared to find a deviation from a null-model behaviour (Sandve
et al., 2010). It is written in Python, and has a step-wise web based user in-
terface. The HyperBrowser is tightly integrated with the Galaxy framework
(Goecks, Nekrutenko and Taylor, 2010; Blankenberg et al., 2001; Giardine et
al., 2005), and the standard Galaxy tools are available for use (Sandve et al.,
2013). The HyperBrowser also has a framework for unit and integration tests.

The genomic data are represented as mathematical objects, and the biolo-
gical investigations are performed as statistical analyses.

2.4.1 HyperBrowser jobs and tracks

In HyperBrowser the genome is stored as tracks and each track is split into bins.
The length of the bin can be decided by the user, and is a given number of base
pairs (bp) or a whole chromosome. The HyperBrowser analysis is divided in
two phases: a local analysis, that works on each bin separately, and a global
analysis (Sandve et al., 2010).

A run is started from the Galaxy web interface (https://hyperbrowser.uio.
no), where the user selects the data set to work on, the size of the bins and
the relevant analysis (Lillesæther, 2011). The job starts in GalaxyInterface,
where a StatJob object is created from the specifications given by the user. In
StatJob, Track and Statistic objects are created.

https://hyperbrowser.uio.no
https://hyperbrowser.uio.no

2.5. A TOOL FOR GENOME-WIDE ANALYSIS 7

The computations start in StatJob.run. There are two phases of the ana-
lysis; the local analysis in the method _doLocalAnalysis, and the global ana-
lysis in the method _doGlobalAnalysis. For us, the local analysis is the most
interesting, since it is here our part of the calculations occur.

2.4.2 Statistics

Statistic is a HyperBrowser module that defines a statistical operation on tracks.
The name of a module has the form <description> + Stat (Lillesæther,
2011). Each statistic has two possible classes, of the type Splittable and
Unsplittable. The unsplittable class is the actual implementation class, where
the statistical analysis is implemented. The splittable version of the statistic
can be used to divide the problem into smaller problems. The splittable class
creates children that are unsplittable versions of the same statistic, and collects
the results from these children.

The HyperBrowser code for local analysis looks like this:

def _doLocalAnalysis(self, results, stats):
for region in self._userBinSource:

res, stat = self._getSingleResult(region)
results[region] = res
...

return stats

def _getSingleResult(self, region):
stat = self._statClass(region, self._track, self._track2, \
*self._args, **self._kwArgs)
try:

res = stat.getResult()
...
return res, stat

For each bin in the genome a track object and a statistic of the right type
are created, corresponding to our choice of analysis. The results are computed
with a call to the method stat.getResult(). This method eventually calls the
_compute method in the right statistic subclass.

2.5 A Tool for Genome-wide Analysis of Genomic
Divergence

Vederhus (2013) implemented several tools for identifying divergent regions in
the genome across two populations. The tools were implemented in Python,
within the Genomic HyperBrowser framework. Vederhus looked at the two

8 CHAPTER 2. BACKGROUND

studies from the previous sections, the study of marine-freshwater divergence
in three-spined sticklebacks (Jones et al., 2012) and the study of Drosophila
populations from long term evolution experiments (Burke et al., 2010). Veder-
hus chose two of the methods used in the articles for identifying regions of
genomic divergence across populations, The cluster separation score (CSS) and
Fisher’s exact test (FET). Both methods used sliding windows in the compu-
tations. In his thesis, a data structure for a sliding window over the genome,
together with two statistics, one for each method, was implemented in the Ge-
nomic HyperBrowser. Vederhus also created several graphical user interfaces
in HyperBrowser, two for each method, and one for converting the data to the
correct file format.

To represent the SNP data Vederhus made his own specific file format. He
used a custom version of the "value point" GTrack file format (Gundersen et al.,
2011), where he used the following fields (Vederhus, 2013):

• Sequence id (or chromosome)

• Start (base pair address)

• Value of SNP

• Individual id

Vederhus had to convert the data files from both the stickleback study and
the Drosophila study to get his chosen format.

He ran both tools on the stickleback data and the Drosophila data, and
compared his results with the results found by Jones et al. and Burke et al.
Vederhus identified many of the same regions in the genome.

2.5.1 Tool implementation in HyperBrowser

Vederhus (2013) made several tools for his analyses, the most important being
the CSS tool and the FET tool. The tools were run for each chromosome
separately, needing two files per chromosome, one for each population group.
As mentioned in section 2.4, the HyperBrowser divides the genome into bins,
and Vederhus created one bin per chromosome. The methods for analysing
genomic divergence were implemented in HyperBrowser using two statistics;
CategoryClusterSeparationStat implemented the CSS method, while the
FisherExactScoreStat implemented the FET method. In each statistic, a
sliding window was created for the chromosome. The statistic looped through
the windows (slided through the chromosome), and for each window, the CSS
or FET score was calculated, and then the window was moved a given number
of base pairs. The output of the tool was written to a file, and the results could
be filtered to find relevant regions with other tools made by Vederhus.

2.6. PERFORMANCE METRICS 9

2.5.2 Issues with the current tool

The main issues with Vederhus’ implementation were the time it took for the
tool to analyse the chromosome and the usability of his tools. At the time of
Vederhus’ writing, the HyperBrowser loaded all data into memory during pre-
processing. The data file for the stickleback analysis was too big, requiring more
than 50 GB of data loaded into the virtual memory (Vederhus, 2013). Therefore,
Vederhus had to divide the SNP data into chromosomes, and run the analysis
on each chromosome separately. This led to much manual work.

The implementation was done in Python, and even though NumPy was used
to speed up the computation, the execution time was too slow. For the largest
stickleback chromosome, chromosome I, the cluster separation score (CSS) tool
took 45 hours to run (Vederhus, 2013). The implementation therefore has to be
speeded up, with better algorithms and/or parallelization. The lack of compu-
tational speed was another reason for dividing the data files. With one file per
chromosome, Vederhus could manually parallelize the analyses, and thus speed
up the calculation.

Vederhus tested his tool with biology students, and found several issues with
the user friendliness of his tools. Some of the issues lay in the help page of the
HyperBrowser, which had too complex examples. Vederhus suggested naming
the tools better and creating a simple FAQ for the tool on the tools’ web site.
The file format was not user-friendly for the biologists. It was cumbersome
to divide the data files into chromosomes, and according to Vederhus, the file
formats used in bioinformatics lack standardization, which makes the job of
finding a good file format difficult.

2.6 Performance metrics

Here follows a short description of different performance metrics for parallel
programs (Grama, Gupta, Karypis & Kumar, 2003):

2.6.1 Runtime

The serial runtime of a problem, TS , is the total amount of time taken by the
problem; the time elapsed between the beginning and the end of the program.
The parallel runtime of a problem, TP , is the total amount of time taken from the
beginning of the parallel program, until the last thread (or process) is finished
(Grama et al., 2003).

2.6.2 Overhead

The total time used by all the processes in a parallel system is

p ∗ TP
where p is the number of processes.

10 CHAPTER 2. BACKGROUND

If TS is the serial runtime of the fastest known serial algorithm of the prob-
lem, then the total parallel overhead is given by:

TO = p ∗ TP − TS

2.6.3 Speedup and efficiency
The speedup is given by

SP =
TS
TP

Linear speedup is given when SP = p, and is, theoretically, the best speedup
one can achieve. Then TP = TS

p .
The efficiency of the program is given by

E =
SP

p

In an ideal parallel system, speedup is equal to p and the efficiency is equal
to 1, but in practice, the efficiency is between 0 and 1.

Chapter 3

Methods

In this section, the two methods used to analyse genomic divergence in Veder-
hus (2013), together with the relevant algorithms, are described. Parallel pro-
gramming concepts that may be used to speed up these calculations are also
presented.

3.1 Cluster Separation Score (CSS)
Jones et al. (2012) divided the genome into windows of size 2500 bp, with a step
size of 500 bp. For each window, they built a 21 × 21 dissimilarity (distance)
matrix, ∆. Each δij represented a pairwise nucleotide divergence (π) between
two fish. Jones et al. used all positions in the genome that passed the 4-read
criteria (a validated position). If the δij had less than 100 validated positions,
the comparisons were discarded. These positions were instead filled with the
average value of the distance matrix. For a given window, if more than 105 of
210 comparisons were discarded, the entire window was excluded from analysis
(Jones et al., 2012).

For each pairwise nucleotide divergence matrix ∆, Multi-dimensional scaling
(MDS) was performed to extract the two major axis of genetic divergence. The
goal was to find two separate clusters, one for marine and one for freshwater
fish. To measure the strength of the divergence between the two clusters in the
two-dimensional MDS space, Jones et al. used a cluster separation score (CSS)
between the marine and the freshwater population. The CSS measure is given
by (Jones et al., 2012):

CSS =

∑m
i=1

∑n
j=1 si,j

mn
− (m+ n)(

∑m−1
i=1 si,i+1

m2(m− 1)
+

∑n−1
j=1 sj,j+1

n2(n− 1)
)

where m and n are the size of the marine and freshwater population, i and j
are individuals from the respective populations and s is the Euclidean distance
between a pair of fish in the first two axes of the MDS space. The first term

11

12 CHAPTER 3. METHODS

corresponds to the average between-group distance, the second to the within-
marine group distance, and the third to the within-freshwater group distance
(Jones et al., 2012). A large CSS score indicates strong and parallel divergence
between the two groups, while a score near 0 indicates no parallel divergence
between the groups. A negative score is possible if the two groups are more
similar to each other that they are to individuals within their own group (Jones
et al., 2012).

To measure the significance of the CSS, the p-value was calculated. The
relevant regions were filtered with a p cutoff threshold based on a false discovery
rate (FDR) of 0.02 or 0.05 (Jones et al., 2012).

There are two main problems with this approach:

• Calculating MDS is relatively expensive. Classical MDS has a complex-
ity of O(N3) (Marsland, 2009), and involves matrix multiplication and
computation of eigenvectors and eigenvalues.

• Calculating the p-value is also expensive. According to Vederhus (2013),
this is the most resource-intensitive calculation of all. To calculate the
p-value all the CSS values for all the different divisions of the set have to
be calculated. This is not feasible. The amount of possible divisions are
defined as:

n!

r!(n− r)!

where n is the total amount of individuals and r is the size of one group
(Vederhus, 2013). Vederhus tried to solve this problem by using a Monte
Carlo method to estimate the p-value.

The CSS method consists of three steps (Vederhus, 2013). First, one has to
measure the distance of each individual and store it in the dissimilarity matrix
∆. This is done by using a suitable distance metric. Then, the distance data are
scaled to two dimensions, using multi-dimensional scaling. The two dimensional
data are then scored by a cluster separation score.

3.1.1 Multi-Dimensional Scaling (MDS)
The goal of multi-dimensional scaling is to represent similarity or dissimilarity
in the data as distances between points in a lower dimensional space (Borg &
Groenen, 2005), usually two or three dimensions. It can for instance be used
to better visualize the data, or to find structures in the data set. There are
two main types of models, metric and non-metric MDS. In metric MDS the
actual distances/ratio between the distances are used, but in non-metric MDS
only the rank order of the points are taken into consideration. Vederhus (2013)
found better results with metric MDS (less noise and stronger signals in known
areas of genomic divergence (Vederhus, 2013)), thus non-metric MDS will not
be considered here.

3.1. CLUSTER SEPARATION SCORE (CSS) 13

Two different methods for multi-dimensional scaling are classical MDS and
iterative MDS. Classical MDS gives an easy algebraic solution and is easy to
implement. Classical MDS assumes that the distances between points are Eu-
clidean and generates a best-possible solution based on a minimizing criterion
named Strain. Unfortunately, it does not work well on all data sets, and has
a complexity of O(N3) (Marsland, 2009). A more optimal solution would be
to use an iterative algorithm. The currently best of these are the SMACOF
algorithm, where a criterion named Stress (Borg, Groenen & Mair, 2013) is
minimized. Iterative MDS is more flexible than classical MDS, but iterative
methods are not guaranteed to find the global optimum, since they often get
stuck in local optima (Borg et al., 2013).

Vederhus used the Python function sklearn.manifold.MDS to calculate
MDS, which uses the SMACOF algorithm. Jones et al. (2012) did not de-
scribe which method they used. We have tried to contact them, but so far we
have not received any response.

In the following two sections, three different methods for multi-dimensional
scaling are described; classical MDS, iterative MDS and a combination of the
two.

3.1.2 Classical MDS
Classical multi-dimensional scaling (CMDS), also known as Torgerson scaling,
works well when the dissimilarity data are Euclidean distances, or when you can
assume that the data are Euclidean distances (Borg et al., 2013).

The goal of MDS is to extract the two major axis of genetic divergence in the
data. The data are represented by a dissimilarity matrix ∆. For the stickleback
data, this is a matrix of count differences. The number of dimensions to scale
down to is given by m. The algorithm consists of the following steps:

1. Square the dissimilarity matrix. This is simply ∆2.

2. Convert the dissimilarity matrix to scalar products. This is done through
double centering of ∆2. The centering matrix Z is given by:

Z = I− 1

n
11T

where I is the identity matrix and 1 is a column vector with n ones. n is
the dimension of the dissimilarity matrix. The matrix of scalar products
is then given by

B∆ = −1

2
Z∆2Z

3. Get the eigen decomposition of the matrix B∆:

BD = QΛQ−1

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html

14 CHAPTER 3. METHODS

Λ is a diagonal matrix with the eigenvalues on the diagonal, and the
columns of Q is the corresponding eigenvectors.

4. To scale down to m dimensions, the first m eigenvalues greater than 0 and
the corresponding eigenvectors are used. This is stored in Λ+ and Q+.
The solution X is then given by

X = Q+Λ
1/2
+

3.1.3 Iterative MDS

The SMACOF algorithm (Scaling by MAjorizing a COmplicated Function), is
currently the best algorithm for iterative MDS (Borg et al., 2013). The goal
of MDS is to find a lower-dimensional configuration of points representing the
objects such that the distance between any two points matches their dissimilarity
as close as possible. With the SMACOF algorithm this is done by miminzing a
Stress function for all possible MDS representations X (Borg & Groenen, 2005).

The dissimilarity of two objects i and j is given by δij and indiciates how
dissimilar the two objects are. A large δij indicates that i and j are very
dissimilar, while a small value indicates similarity.

The Euclidean distance between two points inX is given by (Borg & Groenen,
2005):

dij = [

m∑
a=1

(xia − xja)2]1/2

Raw Stress, σr, first defined by Kruskal (1964) gives a measure of the total
error of the MDS representation X. It is given by (Borg & Groenen, 2005):

σr(X) =
∑
i<j

wij(dij(X)− δij)2

Since both the Euclidean distances and dissimilarities are symmetric, it is
enough to look at half of the values. In some applications, the dissimilarity δij
is not defined for all i, j. Therefore the weight wij is introduced. It is 1 for all
defined values of δij , and 0 for undefined values (Borg & Groenen, 2005). In
this application, all the dissimilarity values are defined, so wij = 1.

To find the best possible representation X, σr(X) is minimized over X. The
minimization is done by a method called iterative majorization, based on the
work of De Leeuw (1977). This method generates monotonically nonincreasing
function values. If the function is bounded below, one will end up in the local
minimum (Borg & Groenen, 2005). Unfortunately, there is nothing that indic-
ates how fast the method will converge to a minimum. Therefore, an algorithm
based on iterative majorization is not necessarily very fast (Borg & Groenen,
2005), perhaps not faster than classical MDS.

3.1. CLUSTER SEPARATION SCORE (CSS) 15

Scaling by MAjorizing a COmplicated Function (SMACOF)

In the following we assume that wij = 1 for all i, j. The SMACOF algorithm
consists of the following steps (Borg & Groenen, 2005):

1. Set Z = X0, where X0 is a (non)random start value. k = 0 and ε is a
small positive constant, for instance ε = 1e−6.

2. Compute the Stress of the start configuration:

σ0
r = σr(X0)

Set σ−1
r = σ0

r .

3. While k = 0 or (σk−1
r − σk

r > ε and k ≤ maximum iterations) do

4. Increase k with one.

5. Compute the Guttman Transform Xk:

Xu =
1

n
B(Z)Z

where the elements of B(Z) are given by

bij =

−
wijδij
dij(Z)

, for i 6= j and dij(Z) 6= 0

0, for i 6= j and dij(Z) = 0

and

bii = −
n∑

j=1,j 6=i

bij

6. Compute σk
r = σr(Xk).

7. Set Z = Xk.

The SMACOF algorithm has several nice properties. It can be showed that
Xk converges linearly to a stationary point (De Leeuw, 1988). It handles zero
distances well, and if there are no zero distances, the Guttman Transform is a
steepest descent step with a fixed step size (Borg & Groenen, 2005).

A common problem with iterative methods like SMACOF is that they tend
to only reach local optima. The start point controls the search area of the
algorithm, and therefore which optimum that is reached. A possible way to
increase the chance of reaching a global optimum is to run the algorithm with
several different random start points. This is the solution chosen here.

16 CHAPTER 3. METHODS

Combining SMACOF with CMDS

Another possible way to avoid local optima is to use a better starting config-
uration. A possible solution is to use the result from the classical MDS as the
starting point of the algorithm (Borg et al., 2013).

3.1.4 Statistical significance
To measure the significance of the results, we have to calculate the p-value.
When a statistical analysis is performed, we have to define a null hypothesis, and
an alternative hypothesis. The goal is to be able to discard the null hypothesis.
The p-value is the probability of getting the observed results, or something more
extreme, given that the null hypothesis is true. If this probability is low enough,
the results are statistically significant, and one can discard the null hypothesis.
Often,

p < 0.05

is considered significant, while a p-value greater or equal to 0.05 is not sig-
nificant.

Monte Carlo Tests

Jones et al. (2012) calculated the statistical significance by calculating the CSS
for each possible grouping of individuals. As Vederhus (2013) pointed out, this
is not feasible. Instead, Vederhus used a Monte Carlo test to estimate the
significance. The following description of Monte Carlo tests are taken from
Phipson and Smyth (2010).

In Monte Carlo tests, independent data sets (permutations of the original
data set) are created under the null hypothesis by simulation using pseudo-
random numbers. If the observed test statistic is given as tobs and the simulated
test statistic is tsim, the ideal p-value is given by:

p∞ = P (tsim ≥ tobs)
The creation of an infinite number of simulated data sets is not possible,

therefore n data sets are generated. Phipson and Smyth (2010) showed that the
exact Monte Carlo value is given by:

p =
r + 1

n+ 1

where r is the number of simulated test statistics tsim ≥ tobs.
When the sampling is done with replacement, as is the case in this applic-

ation, each permutation of the data set is generated independently, making it
possible for the permutations to repeat themselves. In this case, the exact p-
value is slightly less than (r+1)/(n+1), since the original data and test statistic
tobs could be included at least once in the permutations. Therefore, as showed
by Phipson and Smyth (2010), the Monte Carlo test tend to over-estimate the

3.2. FISHER’S EXACT TEST (FET) 17

p-value, creating too conservative values. When n increases, the exact p-value
converges to (r + 1)/(n+ 1), therefore it is important to use a large n.

3.2 Fisher’s Exact Test (FET)
Fisher’s exact test (FET) is a statistical significance test. It is used on two
nominal (categorical) variables, X and Y (McDonald, 2014). In this application,
X could be the type of fish (saltwater or freshwater), and Y could be the major
or minor allele (Vederhus, 2013). FET measures the significance of the observed
data. The FET is calculated on a 2×2 table of numbers, with a null hypothesis
that the relative proportion of a variable in the table is independent of the other,
for instance that the number of major alleles is independent of the type of fish.

An example table:

Freshwater Saltwater
Major a b R1 = a+ b
Minor c d R2 = c+ d

C1 = a+ c C2 = b+ d N = a+ b+ c+ d

The conditional probability of getting this particular matrix is given by the
hypergeometric distribution (Feldman & Klinger, 1963):

Pcutoff =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

N ! a! b! c! d!

To find the p-value, the conditional probability for all matrices is calculated,
where the sums of the rows and columns (R1, R2, C1, C2) are consistent. For
a 2 × 2 table the p-value can be found by taking the sum of all the matrices
with p ≤ Pcutoff. If p < 0.05, the result is statistically significant, and we can
conclude that there is a connection between alleles and fish type.

Burke et al. (2010) calculated the FET for each SNP position in the genome,
and took the negative base-ten logarithm of the p-value (L10FET). They used
windows of size 100 kb with a step size of 2 kb, and calculated a L10FET5%Q
score for each window: the 95th percentile of the scores in the window. The
standard deviation of 100 bootstrap replicate samples of L10FET5%Q was also
calculated. Burke et al. (2010) selected the top scoring regions with the following
formula:

median(L10FET5%Q) + qnorm(0.999)× quantile(σ, probs = 0.75)

where σ is the list of standard devations over all windows, the median is
taken over the L10FET5%Q scores for all windows and qnorm(0.999) is the 99.9th
percentile of the standard normal distribution. The problem with the FET is
that it is expensive to calculate the hypergeometric distribution for large values,
since the computation of the factorial is time consuming (Zar, 1987).

Vederhus did not compute the complete FET, only the value Pcutoff. The
standard deviation calculation was not complete, either; Vederhus calculated

18 CHAPTER 3. METHODS

the standard deviation for all the scores in the window, instead of the standard
deviation of 100 bootstrap replicate samples of L10FET5%Q.

3.2.1 Fisher’s Exact Test algorithm

The Fisher’s exact test (FET) is calculated from a 2× 2 contingency table:

a b R1 = a+ b
c d R2 = c+ d

C1 = a+ c C2 = b+ d n

where n = a+ b+ c+ d.
The probability of observing the values by chance, given that rows are inde-

pendent from columns, is:

Pcutoff =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

N ! a! b! c! d!

which can be written as

P =

(
a+b
a

)(
c+d
c

)(
n

a+c

)
where (

n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. Calculation of the factorial is time consuming, but
we can efficiently calculate the binomial coefficient by the formula (Zar, 1987):(

n

k

)
=
n(n− 1)(n− 2) . . . (n− k + 1)

k(k − 1)(k − 2) . . . 1

remembering that
(
n
n

)
=
(
n
0

)
= 1 and that

(
n
k

)
=
(

n
n−k
)
.

To get the complete two-tailed FET score, the probabilities of each more
extreme table have to be calculated and added together. A short cut for cal-
culating the two-tailed FET was proposed by Feldman and Klinger (1963) and
explained more detailed by Zar (1987). This is described in the following para-
graph.

A short cut calculation for FET Given a s× 2 table of frequencies:

a0 b0 a0 + b0
c0 d0 c0 + d0

a0 + c0 b0 + d0 N

where a0 ≤ b0, c0, d0. The two tailed probability is calculated by calculating
the FET for the two tails, and adding the probailities together.

3.2. FISHER’S EXACT TEST (FET) 19

To calculate the one-tailed Fisher’s exact test, probabilities for all a0 + 1
tables where the value in their principal diagonal is a0, a0 − 1, ..., 0 have to be
calculated (Feldman & Klinger, 1963). Given that ai = a0 − i, we only have to
calculate the score of the original table with the general formula for Pcutoff:

P0 =

(
a0+b0
a0

)(
c0+d0

c0

)(
N

a0+c0

)
the probabilities for the rest of the tables can be calculated by

Pi+1 =
aidi

bi+1ci+1
Pi

where

ai+1 = ai − 1, di+1 = di − 1

bi+1 = bi + 1, ci+1 = ci + 1

The summation of all these probabilities

P =

a0∑
i=0

Pi

is the one-tailed probability for the test (Zar, 1987).
To calculate the two-tailed probability, the probability of the other tail has

to be calculated. This is done with the following steps; First, find the most
extreme table computed in the first tail. This is the last table we computed,
with ai = 0. Then, find the smallest margin total of this table, m1, together
with the smallest marginal total of the opposite margin, m2. The frequency
associated with these two marginal totals is called f , and the value in this table
cell is changed to m1 − f . The rest of the values in the table are updated
accordingly, to make sure the row and column totals stay the same.

The table is rotated, so that a0 is the smallest frequency, and b0, d0 and c0
follow in clockwise order. This table is the most extreme table in the second
tail. The probability of this table, Q0, is calculated by the binomial formula:

Q0 =

(
a0+b0
a0

)(
c0+d0

c0

)(
N

a0+c0

)
If Q0 > P0, the probability of the original table, the calculation is stopped

and the two-tailed probability is equal to the one-tailed probability:

Ptwo-tailed = P

If that is not the case, the probability of the next table is computed by the
formula (Zar, 1987):

Qi+1 =
bici

ai+1di+1
Qi

20 CHAPTER 3. METHODS

where

ai+1 = ai + 1, di+1 = di + 1

bi+1 = bi − 1, ci+1 = ci − 1

The calculation of new probabilities continues until the new probability,
Qi+1, is larger than the probability of the original table, P0.

We sum all the probabilities together,

Q =
∑

Qi

and add the result to the one-tailed probability P to get the total two-tailed
Fisher’s exact test:

Ptwo-tailed = P +Q

There are some additional short cuts that can be made. If the row or column
totals are equal (R1 = R2 or C1 = C2), the two-tailed score is simply the double
of the one-tailed score: Ptwo-tailed = 2P (Zar, 1987).

3.3 Parallel programming systems
In this thesis parallelization is going to be used to increase the speed of the
calculations. The following sections includes descriptions of possible ways to do
this.

Parallel computing is the use of a parallel computer to speed up the compu-
tation of a single problem. There are two main types of parallel computers. A
multicomputer is a parallel computer made out of many processors, each with
its own memory. They communicate by sending messages to each other. A
centralized multiprocessor is a more integrated system, where each CPU share
a global memory space (Quinn, 2003). In the following sections these two types
of parallelization will be described, to see how they can be used in this thesis.

3.3.1 Message Passing Interface (MPI)

The message-passing programming model is characterized by a partitioned ad-
dress space (Grama et al., 2003). The hardware is (logically) divided into several
processes, each with its own local memory. The processes can communicate by
communication links. An interaction between two processes requires cooper-
ation from both processes - the process providing the data (sending) and the
process accessing the data (receiving). All the data must be partitioned, and
this together with the need for communication give increased complexity to the
parallel program.

The most popular message-passing library is MPI, the message-passing inter-
face. This describes a standard library for message-passing that is implemented
in several programming languages, including C.

3.3. PARALLEL PROGRAMMING SYSTEMS 21

Task/channel model

The message-passing paradigm can be represented by the task/channel model.
In the task/channel model a parallel program is represented as a collection of
tasks (processes) that can interact with each other through channels (commu-
nication links). A task is a program with a local memory. The memory contains
the instructions of the program and its private data. A task can communicate
with other tasks through I/O ports, it can send data through the output port
and receive data through the input port. A channel connects the output port of
one task with the input port of another, and provides communication between
tasks (Quinn, 2003).

In the message-passing paradigm the address space is divided, so the data
and the tasks need to be divided between the different processes. This requires
some planning, to utilize the parallelization in the best possible way, and to
minimize overhead. Overhead is caused by to two things that doesn’t exist in a
sequential algorithm: communication between processes and idle time spent by
a process (Grama et al., 2003).

Ian Foster has described a methodology for designing parallel algorithms for
the task/channel model. It consists of four steps: Partitioning, communication,
agglomeration and mapping (Quinn, 2003).

Partitioning In this stage the computations are divided in individual tasks.
The goal is to get as many individual tasks as possible, and we need to split both
the computation and the data into small pieces. There are two main strategies
here, domain decomposition and functional decomposition. In domain decom-
position the data are first divided into pieces, and then, this data partitioning
is used to find a partitioning of the computations (Grama et al., 2003). This is
often used for matrix-decomposition (for instance matrix multiplication). With
functional decomposition the computations are divided before the data. This
often leads to concurrency through pipelining.

Communication When the tasks are partitioned, the necessary communica-
tion between them needs to be determined. Local communication is confined to
a few processes communicating with each other, but with global communication
many processes are involved in the communication. The communication is a
part of the overhead of the parallel program, and needs to be minimized.

Agglomeration In this step several tasks are grouped together into larger
tasks. This is done with several goals in mind:

• To minimize communication overhead. This can be done by increasing
the locality of the communication, or reducing the number of messages
being sent. It is better to send larger and fewer messages, because each
communication has a startup cost, the message latency.

22 CHAPTER 3. METHODS

• To maintain scalability of the problem.

• To reduce engineering costs.

Mapping Finally, the tasks can be mapped onto the different processors. The
goals are to maximize processor utilization (by balancing the load evenly) and
minimize communication overhead. These are often conflicting goals. There are
several common mapping strategies, each suitable to be used on a certain type
of problem.

3.3.2 Pthreads

Pthreads is a standardized model for writing concurrent programs with threads
in a shared-memory environment. The underlying hardware of a shared-memory
environment consists of many processors, each with access to the same shared
memory. Pthreads is an easy, portable way to specify concurrent applications,
and is built on the UNIX C programming interface (Nichols, Buttlar & Farrell,
1996). The P stands for POSIX, Portable Operating System Interface.

Why use threads? Because threads are cheaper to create and use than pro-
cesses. Since threads share a global memory environment, little or no commu-
nication is needed. Thus, the creation of threads, communication and synchron-
ization of shared data creates less overhead with threads than with processes.
Pthreads is a standard for concurrent programming, which differs from parallell
programming, where the tasks are run at the same time, in true parallel. With
Pthreads the tasks that can be run concurrently are defined; whetether they are
run concurrently or parallel depends on the operating system and hardware the
threads are run on.

A threaded program starts in a single thread, called the main thread. This
thread (and all other threads) can create new threads, with a call to the method
pthreads_create:

pthread_t thread;

pthread_create(&thread,
&thread_attribute_object,
(void *) method_to_be_executed,
(void *) &thread_argument);

This method takes four arguments:

• A pointer that identifies the newly created thread, of type pthread_t.

• A thread attribute object. This specifies different characteristics for the
thread. NULL here gives the default setup.

• A pointer to the method to be executed by the thread. This method
is where the thread starts its execution, and the thread exits when the

3.3. PARALLEL PROGRAMMING SYSTEMS 23

method is finished (much like how the main method functions for the
main thread).

• A pointer to a parameter sent to the method. Threads can only start in
methods that have only one parameter, therefore this parameter is often
a struct with the necessary information.

All the threads created (with a small exception of the main thread) are
equal, and there are no special relationships between threads. Since the threads
operate in a shared-memory environment, one must be able to synchronize their
execution. This can be done with pthread_join. This method can be called
by any thread, but it is often called by the main thread, waiting for the other
threads to finish so it can do some cleanup.

In a shared-memory environment the threads can have shared variables that
they need to read and write to. To make the variable thread safe, and avoid con-
current updates, mutex variables are used. Mutex stands for mutually exclusive,
and let threads mutually exlude one another from certain variables.

Before a thread writes to a shared variable, the mutex lock is aquired. Then,
the shared variable is written, before the thread releases the lock. Other threads
trying to aquire the lock, must wait until the lock is released. There are no direct
lock on the shared variable itself, so it is up to the programmer to make sure
that all writes to a shared variable is controlled by a mutex. An example of this
(Nichols et al., 1996):

pthread_mutex_t var_mutex = // ..
int shared_var = 0; // global shared variable

void method(...) {
pthread_mutex_lock(&var_mutex);
// code for writing to shared_var
pthread_mutex_unlock(&var_mutex);

}

A thread can terminate when

• The executed method is finished and terminates

• The thread calls pthread_exit

• Another thread calls the method pthreads_cancel on this thread

By monitoring the different exit values from each thread, one can see if a
thread exited normally or not. This is important for proper error handling.

24 CHAPTER 3. METHODS

3.3.3 OpenMP

The OpenMP interface is used in a shared-memory environment. OpenMP is
used with compiler directives, and works great for fork/join parallelism: At
the beginning of the execution, a single thread execute code sequentially. This
thread is called the master thread. When the program needs parallelization, the
master thread forks (creates or awakens) new threads. The new threads and the
master thread works concurrently throughout the parallel section. Afterwards,
the threads are joined (killed or suspended), and only the single master thread
continues executing the code.

In the message-passing model the number of processes are often static during
the execution of the program, but with the shared-memory model the number
of active threads varies dynamically. One of the advantages over MPI is that
OpenMP supports incremental parallelism. Each block of code can easily be
parallelized, independently of the rest of the code. This makes it easy to gradu-
ally parallelize the program, which makes OpenMP ideal for agile development
methods, such as Scrum (Sommerville, 2011). With MPI the entire problem
has to be parallelized at once - and this takes a lot of planning. The four steps
in Foster’s methodology are good examples of that.

Shared memory enviroments creates other challenges than with the message-
passage paradigm, such as race conditions and non-deterministic behavior.

Combining MPI and OpenMP/Pthreads

Many multicomputers are actually collections of centralized multiprocessors
(Quinn, 2003). In these cases it can be a good idea to combine MPI with
OpenMP or Pthreads. Each multiprocessor can have its own MPI process, while
the program inside the multiprocessor can be run using threads and a shared-
memory model. This can often give faster programs than pure MPI-programs,
because there is lower communication overhead.

3.3.4 MapReduce

The programming model

MapReduce, introduced by Dean and Ghemawat (2008), is a programming
model that simplifies the processing of large data sets. In processing of large
data sets, the computations have to be distributed over several machines. Par-
allelization, distribution of data, machine failures and much more have to be
taken into account, which can make the code extremely complicated. MapRe-
duce solves this by abstracting away the complex distribution of data, and offers
automatic parallelization and execution of programs on large machine clusters
(Dean & Ghemawat, 2008).

The user specifies two functions, map and reduce. Map takes a key/value
pair as input and generates a set of intermediate key/value pairs. The reduce
function takes an intermediate key and a list of corresponding values, and merges
the values to a smaller set, typically of size one or zero. The MapReduce library

3.4. PARALLEL DESIGN MODELS 25

takes care of the collection of intermediate key/value pairs produced by the map
function. It groups the values corresponding to the same key into a set, which
it then passes on to the reduce function. A typical example of the map/reduce
functions is shown below (Dean & Ghemawat, 2008):

map (k1, v1) -> list(k2, v2)
reduce (k2, list(v2)) -> list(v2)

The advantages of MapReduce is that it is easy to use. Programmers without
any experience of parallel or distributed computing can use it without any prob-
lems. Several common problems can be written in the map/reduce format,
which makes it useful for a broad range of applications. The disadvantage with
MapReduce is that it is only usable for problems that can be (easily) written
as maps and reduces.

3.4 Parallel design models

3.4.1 The boss/worker model

In the boss/worker model, one thread acts as the boss; it continually takes in
inputs, and delegates tasks to worker threads. This can be done in two ways.
The boss can either create new threads dynamically with each incoming task, or
create all threads when the program starts. This is called a thread pool. When
a new task comes in, the boss notifies the workers (put the task on the queue),
and the workers pick available tasks from the queue. This saves some overhead
with thread creation during execution. This model works well for servers. To
minimize overhead, it is important to minimize the communication between the
boss and the workers, and between two and two workers (Nichols et al., 1996).

3.4.2 The peer model

In the peer model, all threads work concurrently on the tasks without a specific
leader (Nichols et al., 1996). One thread, the ’main’ thread, creates the other
threads, and works together with them on the tasks, or waits until the other
threads are finished. The input is often static, and each thread is responsible
for its own input, for instance a part of an array. The peer model is suitable for
applications with fixed/well defined input.

3.4.3 The pipeline model

The pipeline model works for typical assembly types of applications, with a
stream of inputs, a series of sub-operations (or filters), where each stage can
handle a different unit of input at a time (Nichols et al., 1996). In this model
the overall throughput of tasks are limited to the stage that takes the longest
time, so it is important to try to balance the amount of work in each stage.

26 CHAPTER 3. METHODS

3.5 Mapping of tasks in parallel systems

3.5.1 Overhead
The goal of a good mapping of tasks is to minimize the overhead of a program.
There are two main sources of overhead (Grama et al., 2003):

• Interaction between threads, such as communication and synchronisation.

• Idle time spent by a thread, by waiting for another thread to finish (due
to synchronization), or by some threads finishing long before others.

The communication time and idle time spent by a thread need to be minim-
ized, but these goals are often conflicting. A minimum amount of communication
is achieved when one thread do all the computations, but this is bad load balan-
cing, leaving many threads idle. A good mapping must be able to compromize
between these two issues, to balance the load and minimize the overhead due
to communication at the same time.

3.5.2 Tasks and work division
There are two main ways of mapping the tasks on to different processes:

• Static mapping

• Dynamic mapping

With static mapping, an equal amount of tasks are given to each process.
This works well when each task is equally big, but for tasks of unequal compu-
tational size, a dynamic mapping is better. With dynamic mapping, the tasks
are divided during the execution of the program.

Chapter 4

Implementation

4.1 Implementation choices
Vederhus (2013) wrote several HyperBrowser tools:

• Fisher Exact Test SNP Tool

• Filter Fisher Scores

• Cluster Separation Score

• Significant CSS Regions

• Convert Stickleback Snps to Gtrack

and two statistics, one for each method, FET and CSS:

• CategoryClusterSeparationStat

• FisherExactScoreStat

We have made small changes to all of these tools, but the largest modifica-
tions were done to the the Fisher Exact SNP Tool, the Cluster Separation
Score and the corresponding statistics. The main computations were moved
from Python to C, and the C code is parallelized in a shared memory environ-
ment.

A new tool was created, to convert VCF files (Danecek et al., 2011) to the
custom GTrack file format used by our tools.

4.1.1 Main structure of the tools

The tool can now be run on a genome-wide basis. The input is two files per
genome, one for each population group. Each HyperBrowser bin is the size
of a chromosome, which means that the analysis for each chromosome is run

27

28 CHAPTER 4. IMPLEMENTATION

serially, one chromosome after the other. For each chromosome, a statistic is
created. This statistic collects the necessary data before it calls the parallel C
code, which is called from Python with the help of Cython. The parallel code
was written with Pthreads. A serial version of the tool was also created, to be
able to study how much speedup can be achieved in C compared to Python.

4.1.2 Methods

The method for calculating CSS presented by Jones et al. (2012) was imple-
mented, together with all three methods described in section 3.1 for calculating
MDS. This enabled us to study the differences between the three methods, both
in speed and statistical power. We kept the distance metrics described by Veder-
hus (2013), where, for non-frequency data, only the positions with major and
minor allele are counted. Positions where both reads are observed are discarded.
This will give a more conservative statistic, with less noise in the results (Veder-
hus, 2013). A Monte Carlo test was used for estimating p-values, to get a faster
calculation. For the Fisher’s Exact Test, the fast algorithm described in section
3.2 was used, together with the formula of the limit used by Burke et al. (2010).

4.1.3 Languages and frameworks

The Genomic HyperBrowser

Vederhus’ tools were written using the Genomic HyperBrowser (Vederhus, 2013),
and the tools presented in this thesis extends and improves his tools. Therefore
it was natural to write the tools in the same framework.

Python

The different tools presented here were written in Python. Python is a high-
level programming language with simple, clean language and great flexibility.
Python has dynamic typing and is an interpreted (not compiled) language, and
it has an extensive standard library that is free to use. This makes it ideal for
situations where fast development is important (Langtangen, 2009). In addition,
the Genomic HyperBrowser framework is written in Python (Sandve et al.,
2010), and Vederhus wrote his tool in Python (Vederhus, 2013).

A weakness with Python compared to compiled languages like C and C++ is
that it is not very fast, but Python is a perfect "glue language", making it easy
to move computational expensive operations to other programming languages,
for instance C (Langtangen, 2009).

In this thesis, the user interface and the HyperBrowser specific parts of the
tools were written in Python, while the computationally expensive parts was
moved to C. The HyperBrowser statistic will only gather the necessary data
before calling the C code that calculates the FET and CSS analyses.

4.1. IMPLEMENTATION CHOICES 29

C

As mentioned above, the computational expensive parts was written in C. C is a
general-purpose programming language, central in the UNIX system. The UNIX
system and many of the programs on it is written in C (Kernighan & Ritchie,
1988). C is a typed language, with several fundamental types: characters,
integers and floating point numbers of several sizes. Since C is a more basic
langauge, C deals with characters, numbers and addresses, and there is no way
to deal directly with composite objects like lists and strings.

Unlike Python, C is a compiled language and the code has to be compiled
to machine code before it can be run. Compiled languages generally run faster
than interpreted languages, since the interpreted code has to be converted to
machine instructions at runtime. C is a relatively low level language, and gives
longer development time than Python and is somewhat more difficult to use.
The big advantage with C is that it gives faster code. A lot of runtime can
be saved by developing efficiently, by optimizing parts of the code, and using
profiling and compiler optimizations.

In the implementation of the C code, we have used the following methods
and tools:

• General code optimizations (see section 4.8)

• Compiler optimizations

• Profiling with gprof (Graham, Kessler & Mckusick, 1982)

• Leak checking with Valgrind (Seward & Nethercote, 2005)

Cython

Cython is a language based on Python, with some additional syntax for allow-
ing type declaration (Behnel, Bradshaw & Seljebotn, 2009). Cython code has
familiar syntax for Python developers, and is able to call external C libraries.
The Cython code is translated into optimized C/C++ code, but keeps the in-
terface of the original Python source code, making it possible to call a Cython
program as a standard Python module. The Cython code in itself gives a signi-
ficant speedup compared to regular Python, but it is its ability to call external
C libraries that is its main strength for this application.

In this application, we used Cython to create a link between Python and C,
making it possible for the HyperBrowser statistic to call the (parallel) C code.

4.1.4 Parallelization
In the previous sections several possibilities for parallelizing programs were dis-
cussed. The critical parts of the code, written in C, were parallelized. The
Genomic HyperBrowser runs on an Abel node called Insilico. Abel is the com-
puter cluster at the University of Oslo, theoretically capable of 258 TFLOPS/s
peak performance. All regular compute nodes on the cluster have 16 physical

30 CHAPTER 4. IMPLEMENTATION

CPU cores, with minumim 64 GB RAM. Insilico is a special Abel node, used
by the BMI for the Genomic HyperBrowser (and possibly other applications).
It has 64 physical cores, four CPUs with 16 cores each. Each CPU is an AMD
Opteron(TM) Processor 6276.

To be able to run the tools on Insilico, a parallel programming system created
for shared-memory environments must be used. The choice fell on Pthreads,
since it gives more control than OpenMP over the execution of each thread.
With Pthreads, one has full control of the creation and termination of threads,
and it is relatively easy to create threads, distribute tasks and data, and ter-
minate threads after execution.

The tasks given to each thread were not of equal compuational size. There-
fore we used the peer model, with a dynamic mapping of tasks. Each thread
picks a new task, from a task pool, until there are no tasks left. This is futher
described in section 4.5.

4.2 Data structure
The C program needs the following data:

void compute(double *avals, double *bvals, int *apos, int *bpos,
int regstart, int regend, int wsize, int wstep,
int alen, int blen, double *scores, double *stddev);

To make the code as fast as possible it is important that the Python part of
the code do as little as possible. Therefore we tried to keep the data structures
as they are.

• avals and bvals: Double arrays with the SNP values for population A and
B. The values are ordered by position and then individual. The values for
non-frequency data are 3 (major allele), −3 (minor allele), 0 and −10000
(no data).

• apos and bpos: The different positions in the genome are stored in these
arrays, ordered by position and then individual:

{262, 262, 262, ..., 300, 300, 300, ...}

The elements in the two arrays avals and apos correspond, so that
avals[0] corresponds to the value of an individual at position apos[0].

• regstart: The start position of the region.

• regend: The end of the region, i.e. the last position in the genome

• wsize: The size of a window, default 2500.

• wstep: The step size, default 500.

4.2. DATA STRUCTURE 31

• alen and blen: The length of the respective arrays for population A and
B.

• scores and stddev / p: The double arrays where the scores (and standard
deviation or p-value) for each window are stored. The index in the array
corresponds to the start position of the window, divided by the step size.

The Cluster Separation Score has some additional arguments, to control
the Monte Carlo test and choice of MDS algorithm:

• treshold: Minimum number of significance runs, default 10.

• runs: Maximum number of significance runs, default 200000.

• drosophila: The choice of distance metric: count differences or average
of frequency.

• mds: The choice of MDS algorithm; Classical MDS (CMDS), SMACOF
or a combination of the two.

In addition, the Fisher Exact SNP Tool needs the percentile score to
select in each window:

• perc: The percentile of the L10FET score selected for each window, default
0.95.

4.2.1 File format
The file format is the same that Vederhus (2013) used, with one important
exception. The value type for data with several individuals, like the stickleback
data, was changed from categorical to numeric:

##gtrack version: 1.0
##track type: valued points
##value type: number
###seqid start value genomeid
####genome=gasAcu1
chrV 262 3 12
...

With this change, the SNP values are stored as Python floats (float64).
These floats can then be sent directly to the C module, without any numerical
conversion, and this saved us some runtime.

The SNP values for data with several individuals are

• 3: Major allele

• -3: Minor allele

• 0: Both allele observed in reads

32 CHAPTER 4. IMPLEMENTATION

• -10000: No data

while the SNP values for pooled populations (like the Drosophila data) are
the frequency of the minor allele. This is unchanged from Vederhus’ thesis
(Vederhus, 2013).

4.2.2 A tool for converting VCF to GTrack

A tool for converting a VCF file containing SNPs to a GTrack file was created.
This tool was implemented as a pure Python tool in the Genomic HyperBrowser.
Some assumptions were made of the VCF file:

• The individuals are listed in the header.

• Diploid calls are made.

• There are only two alleles per SNP, one reference allele and one alternate
allele.

4.2.3 Sliding windows

Each of the following methods were implemented by sliding windows. The
different scores are calculated for one window at a time, and slided a given
step size along the genome before the next computation. The goal is to find the
windows with the largest genomic divergence. The window size and step size are
decided by the user. The data are stored in contiguous one dimensional arrays,
and since we only have the SNP positions, there are "holes" in the genome.
To find the array elements corresponding to a given window, we need to search
through the position array, and find the correct start (left) and stop (right)
indices in the array.

This method is based on the SlidingWindow data structure made by Veder-
hus (2013). To avoid searching from the beginning of the array each time, the
indices left and right contains the previous left and right indices before
the loops:

/* find the new array index position
of left and right idx-pointer */
while (left < length && positions[left] < start) {

left++;
}

while(right < length && positions[right] <= stop) {
right++;

}

4.3. FISHER’S EXACT TEST 33

4.3 Fisher’s Exact Test
The Fisher Exact Test SNP Tool is available as a web tool in the compar-
ative branch of the Genomic HyperBrowser. The code for this web tool can be
found in quick.webtools.restricted.FisherExactTestSNPTool. The main
features of this web tool is the same as Vederhus used for his thesis (Vederhus,
2013), but we have made some small changes, detailed in section 5.1. The real
changes were made in the statistic, which is described in section 4.3.2. We have
included a short description of the web tool, for better understanding of how
the tool works.

4.3.1 The web tool
The user selects the different parameters of the analysis: genome build, files from
history, window and step size, percentile score in window and output format
(tabular or html). The chosen files are then pre-processed by the HyperBrowser
system, by the following calls:

tn1 = ExternalTrackManager.getPreProcessedTrackFrom\
GalaxyTN(genome, track1);

tn2 = ExternalTrackManager.getPreProcessedTrackFrom\
GalaxyTN(genome, track2);

where track1 and track2 are the files chosen by the user. The pre-processing
is only performed the first time the analyses are run on new input files, and is
very slow. For large data sets, this can take several hours. The computations
start in the runManual method in GalaxyInterface. Here, the analysis is run,
one chromosome at a time:

result = GalaxyInterface.runManual([track1, track2], \
analysisDef, reg, bins, genome, galaxyFn=galaxyFn);

The output from this function is written, for each window, to a file. This
file is the output from the tool.

4.3.2 The statistic
When runManual is called, a chain of events starts, more detailed explained in
section 2.4, which ends with the creation of the relevant Statistic. The stat-
istic created for the FET tool is FisherExactScoreStat in quick.statistic.
Here, the relevant data are fetched, and the Cython method fisher_exact_tester
in quick.statistic.fisher_cython is called:

fisher_exact_tester(avals, bvals, apos, bpos, regstart, regend,\
wSize, wStep, alen, blen, perc, scores, stddev);

This is a Cython wrapper method, that converts the data to the necessary
format, and calls the C program:

34 CHAPTER 4. IMPLEMENTATION

def fisher_exact_tester(np.ndarray[np.float64_t, ndim=1] avals, \
..., np.ndarray[np.float64_t,ndim=1] stddev):

compute(<double*> avals.data, ..., <double*> stddev.data);

Futher description of the Cython code is given in section 4.7.
In the C part of the program, the different windows are slided through. For

each window, the negative log10 FET score (L10FET) is computed for each SNP
position. Then, a L10FET(1−x)%Q score is computed for each window, which is
the x% percentile of the scores in the window, with x given by the user. The
standard deviation of the scores in the window is also returned:

/* For each SNP position, count frequencies and
calculate the negative log 10 fet score */
for (i = npos; i--;) {

fetcount(f, avals, bvals, i, asize, bsize);
fetscore = fet(f, tmp);
fetscores[i] = -1.0*log10(fetscore);

}

/* calculate the percentile */
results[0] = percentile(fetscores, npos, perc);

/* calculate the std.dev. */
results[1] = calc_std(fetscores, samples,

stdsamples, nsamples, npos, perc, state);

There are four important functions here: fetcount, fet, percentile and
calc_std.

fetcount counts the number of occurences of the minor and major allele in
the two populations. For the stickleback data, it creates the contingency table:

Freshwater Saltwater
Major a b R1 = a+ b
Minor c d R2 = c+ d

C1 = a+ c C2 = b+ d N = a+ b+ c+ d

fet computes the two-tailed Fisher’s Exact Test from the contingency table.
It uses the formula proposed and explained by Feldman and Klinger (1963)
and Zar (1987). The most important function here is fet_p that computes the
p-value for the table, with the binomial formula described in section 3.2:

nom = binomial(ab, a) * binomial(cd, c);
denom = binomial(n, ac);
return nom/denom;

4.4. CLUSTER SEPARATION SCORE 35

percentile This method sorts the scores, and computes the x% percentile:

qsort(fetscores, n, sizeof(double), compare_doubles);
idx = (n-1)*percentile; // indices from 0 to n-1
delta = (n-1)*percentile - idx;
return (1-delta)*fetscores[idx] + delta*fetscores[idx+1];

calc_std This method computes the standard devaition of n bootstrap replic-
ate samples of the L10FET(1−x)%Q score. This is done by selecting npos samples
from the scores in the window by bootstrap sampling, and calculating the x%
percentile of this selection. Finally, the standard deviation of these n scores is
calculated and returned:

for (i = 0; i < nsamples; i++) {
bootstrap_sample(fetscores, samples, npos, npos, state);
stdsamples[i] = percentile(samples, npos, perc);

}
return std(stdsamples, nsamples);

The bootstrap samples are selected randomly using the the C library func-
tion nrand48; a fast, thread safe random number generator. A more detailed
description is given in section 4.6. The bootstrap_sample function is given
below:

for (i = n; i--;) {
idx = random_int_nrand48(npos, state);
samples[i] = fetscores[idx];

}

The results are stored in two large double arrays, scores and stddev, and
returned to the statistic. From the statistic, the results are returned back to
the web tool, where they are written to the output file.

To filter the scores, the user needs to use Vederhus’ tool
FilterFisherScores in quick.webtools.restricted. See (Vederhus, 2013)
and section 5.1.2 for more information about this tool.

4.4 Cluster Separation Score
This tool works in the same way as the Fisher’s Exact Test tool. The different
tools and statistics can be found at

• The web tool: quick.webtools.restricted.ClusterSeparationScore

• The statistic: quick.statistic.CategoryClusterSeparationStat

• The Cython module: quick.statistic.css_cython with the function
cluster_separation_scorer.

36 CHAPTER 4. IMPLEMENTATION

The Cython wrapper function cluster_separation_scorer takes three ad-
ditional inputs compared to the FET module, all integer values. Two of them,
threshold and runs, control the Monte Carlo test, while the third, drosophila,
takes on the values 0 and 1 and decides which distance metric that should be
used:

cluster_separation_scorer(avals, bvals, ..., threshold,
runs, drosophila, scores, p);

The core of the CSS method, computed for each window, is the two functions
cluster_separation_scorer and significance_treshold. The first function
computes the Cluster Separation Score, while the other estimates the p-value
with a Monte Carlo test.

The cluster separation scorer consist of three main steps:

• Compute the dissimilarity matrix ∆, using a suitable distance metric.

/* 1: Pairwise compare all individuals with
a distance measure */
if (drosophila) {

compare_freq(avals, bvals, npos, dissimilarity);
} else {

compare_all(avals, bvals, asize, bsize, npos,
dissimilarity);

}

• Scale the data down to two dimensions using a MDS method, for instance
classical MDS:

/* 2: Use mds to scale down to two dimensions */
if (mds == 0) {

/* Classical MDS */
cmds(dissimilarity, X, dims, m, B, Z, tmp, L, Q);

}

• Compute the CSS, using the formula given by Jones et al. (2012). The
distances are calculated once per window:

/* 3: Calculate the cluster separation score
precalc. the distance */
calc_dist(X, distance, m);
return css(distance, atracks, btracks, asize, bsize);

4.4. CLUSTER SEPARATION SCORE 37

4.4.1 Distance metrics
Vederhus developed two distance metrics (Vederhus, 2013), count differences and
average of differences. For the stickleback data he used count differences, which
is the number of positions in the window where the set of values is [3,−3]. The
generation of the dissimilarity matrix consists of three loops, two for comparisons
whitin each group and one for comparisons between the two groups. The code
for comparing the individuals in group A with itself is seen below:

/* for comparing avals with it self */
for (i = asize; i--;) {

for (j = i; j--;) {
count = 0;
for (k = npos; k--;) {

if (avals[k*asize + i]*avals[k*asize + j] == -9) {
count++;

}
}
dissimilarity[i][j] = count;
dissimilarity[j][i] = count;

}
}

Since the dissimilarity matrix is symmetric, only half of the matrix needs to
be calculated. The diagonal is not computed, since the dissimilarity between to
equal objects is 0.

For pooled data, like the Drosophila data, we have the population frequency
of the minor allele for each SNP position.

avals = [0.75, 0.33, 0.22, 0.3, ...]

Vederhus (2013) therefore used the average of the absolute values of allele
differences as a distance metric. Since the frequency data only give one value per
population, the dissimilarity matrix is a 2× 2 matrix. The method for creating
the dissimilarity matrix therefore becomes quite short and fast:

for (i = npos; i--;) {
avg += dabs(avals[i] - bvals[i]);

}
avg /= npos;

dissimilarity[0][1] = avg;
dissimilarity[1][0] = avg;

Here, the method dabs is used, which gives the absolute value as a double.
Jones et al. (2012) filled the empty elements of the matrix (δij = 0) with the

average value of the matrix before the MDS. They also discarded windows with

38 CHAPTER 4. IMPLEMENTATION

too few comparisons. We have chosen to do something similar; when over half
of the dissimilarity matrix is equal to 0, the window is discarded. The code for
this can be found in fill_averages.

4.4.2 MDS methods
Classical MDS

The method cmds implements the classical MDS and uses several methods from
the GNU software library (Galassi et al., 2009). The library is used for matrix
multiplication:

gsl_matrix_view a = gsl_matrix_view_array(A[0], m, n);
gsl_matrix_view b = gsl_matrix_view_array(B[0], n, p);
gsl_matrix_view c = gsl_matrix_view_array(C[0], m, p);

/* Compute C = A B */
gsl_blas_dgemm (CblasNoTrans, CblasNoTrans,

1.0, &a.matrix, &b.matrix,
0.0, &c.matrix);

}

and for computing the eigenvalue decomposition B∆ = QΛQT .

SMACOF

The main loop of the SMACOF algorithm for calculating MDS is shown below:

while (k == 0 ||
((sigma_prev - sigma) > epsilon && k <= max_iters)) {
sigma_prev = sigma;

// Step 4: increase k with 1
k++;

// Step 5: Compute the Guttman transform X^k
guttman_transform(X, B, Z, D, dissimilarity, m, dims);

// Step 6: sigma_r^k =sigma_r(X^k)
calc_dist(X,D,m);
sigma = stress(dissimilarity, D, m);

// Step 7: Set Z = X^k
copy_matrix(Z, X, m);

}

As we can see, the SMACOF method runs until convergence of the solution,
when (σprev−σ) < ε, or when the number of iterations have reached max_iters

4.4. CLUSTER SEPARATION SCORE 39

iterations. To increase the chance of a global optimum, the algorithm is run
with several different random start points, and the best solution is selected. The
default method is run with 4 different random start points, and the maximum
number of iterations is 300 and ε = 10−6.

Combination of SMACOF and CMDS

In the combination algorithm, the solution X from the CMDS function is used
as the start point to the SMACOF algorithm:

cmds(dissimilarity, X, dims, m, B, Z, tmp, L, Q);
smacof(dissimilarity, m, dims, X, Q, B, Z, max_iters, epsilon);

4.4.3 CSS
To calculate the CSS the Euclidean distances between all individuals are re-
quired. This is calculated once per window:

for (i = m; i--;) {
for (j = i; j--;) {

ans = sqrt((A[i][0] - A[j][0])*(A[i][0] - A[j][0]) +
(A[i][1] - A[j][1])*(A[i][1] - A[j][1]));
distance[i][j] = ans;
distance[j][i] = ans;

}
}

The distance matrix is symmetric, therefore only half of the matrix is calcu-
lated. The function sqrt from the C math library is used. The CSS is calculated
directly from the formula described in section 3.1. A part of the css method is
shown below, the calculation of the distance between the two populations:

//average between-group distance
bet_dist = 0;
for (i = asize; i--;) {

for (j = bsize; j--;) {
bet_dist += distance[atracks[i]][btracks[j]];

}
}
bet_dist = bet_dist/(asize*bsize);

The two integer arrays atracks and btracks contain the individual IDs for
the two populations. The IDs in population A run from 0 to asize − 1, while
the IDs in population B run from asize to asize + bsize. With the help of
these two arrays, the correct indices in the Euclidean distance matrix can be
obtained, even when the population groups are mixed up. This is necessary for
estimating the significance.

40 CHAPTER 4. IMPLEMENTATION

4.4.4 Estimating significance

The significance of the CSS is estimated with a Monte Carlo test, just as in
(Vederhus, 2013). The main loop of the function significance_threshold is
given below:

while (hits < treshold && nscores < runs) {
random_shuffle(tracks, ntracks, state);
atracks = &(tracks[0]);
btracks = &(tracks[asize]);

newscore = css(distance, atracks, btracks, asize, bsize);
if (newscore >= score) {

hits++;
}
nscores++;

}

The parameters threshold controls the minimum number of hits we need
and runs controls the maximum number of iterations.

All individuals are represented by their individual IDs, and the integer array
tracks contains all the IDs for the individuals in both populations. By shuffling
the elements of this array, a new division of the individuals into two groups is
obtained. The array is shuffled by a Fisher-Yates shuffle (Durstenfeld, 1964),
(Knuth, 1997):

for (i = n-1; i > 0; i--) {
r = random_int_nrand48(i+1, state);
swap(&elms[i], &elms[r]);

}

In the Fisher-Yates shuffle, a pseduo-random number generator is called as
many times as the number of individuals. At worst, this shuffle method is called
several hundred thousand times per window. We therefore needed a fast random
number generator. For this, we used the C library pseduo-random generator
nrand48, see section 4.6. Both the random_int_nrand48 and the swap function
are inline functions, for increased speed.

The p-value is estimated as p = (r + 1)/(n+ 1):

p = (hits+1)*1.0/(nscores+1);

For the p-value to be good enough, n has to be a large number and r has to
be at least 10 (North, Curtis & Sham, 2002). Therefore the default values for
the minimum amount of hits needed and the number of iterations are 10 and
200 000, respectively.

4.5. PARALLEL IMPLEMENTATION 41

4.5 Parallel implementation
The calulations were parallelized for increased speed. The smallest possible
task is a single window, and since each window is independent, there are no
communications between threads during computation. All windows are of equal
length, but the computational size of each window is not equal, since there are
an unknown amount of SNPs in each window. In addition to this, the calculation
time for the CSS tool varies a lot between windows, due to the Monte Carlo test
for estimating p-value, and the variable runtime of the SMACOF algorithm for
MDS.

Dividing the chromosome into n tasks of equal size will not work well for this
application, since the windows are not equally expensive. Therefore we kept the
task size constaint across all chromosomes, with each task having x windows.
Some windows will be more expensive than others, and become bottlenecks for
the parallel program. By keeping the tasks as small as possible, we hoped to
minimize these bottlenecks, by dividing the heavy computations between several
threads. Too small tasks, on the other hand, will give unnecessary overhead in
the program. Therefore we had to find a balance between task size and overhead.
The runtimes for several different task sizes can be found in section 5.4.1.

We chose to use the peer model to map the tasks to the different threads,
with a dynamic mapping of tasks. One thread, the main thread, starts all the
other threads, and then waits for them to finish. The other threads select new
tasks from a common thread pool until there are no more tasks. They are then
joined and terminated by the main thread. In this way we hoped to minimize
the bottleneck of the computationally expensive tasks.

4.5.1 Pthreads implementation
The parallel code was implemented with Pthreads. The ’main’ thread creates
the other threads, and sends them the necessary data with the help of the struct
thread_data, here shown for the CSS tool:

struct thread_data{
int thread_id;
int num_windows;
...
double *scores;
double *p;

};

A lot of data is needed to start our program. The threads are started with
the following code:

if ((rtn = pthread_create(&threads[i], NULL, (void*)mycompute,
(void*)&thread_data_array[i]))) {

printf("Error: pthread_create %d, %s\n", i, strerror(rtn));
exit(-1);

42 CHAPTER 4. IMPLEMENTATION

}

The computation for each thread starts in the method mycompute. The
threads have one global shared variable, the variable task_id, which contains
the number of the next available task. To avoid race conditions, this variable is
protected by a global mutex variable

pthread_mutex_t mutexTASK_ID;

When a thread needs to access the variable task_id, it first has to aquire
the lock of the mutex variable mutexTASK_ID. When this lock is aquired, all
the other threads must wait in line for the lock to be freed, and the thread can
safely select a new task by modifying the variable task_id. When the thread
is done with the variable, the mutex lock is released, giving the other threads
access. This is done by the following code:

pthread_mutex_lock (&mutexTASK_ID);
my_task_id = task_id;
task_id++;
pthread_mutex_unlock(&mutexTASK_ID);

The necessary data for the new task are fetched by a call to the method
get_positions, which gives the corresponding array positions of the task. tid
contains the task id:

/* start value */
l = (tid*TASK_SIZE)*wstep;
*start = l;

/* end value */
r = ((tid+1)*TASK_SIZE)*wstep + (wsize - wstep);
*stop = r;

The result for a given window is written to the two result arrays with the
correct index. All threads allocate their own data needed for the calculations,
such as the matrices needed for MDS, but they share the same input and result
arrays. Since they work at different positions, linked to a given task id, there
are no race conditions.

When there are no more available tasks, the threads exit, and are joined by
the waiting main thread:

for (i = 0; i < NUM_THREADS; i++) {
if ((rtn = pthread_join(threads[i], NULL))) {

printf("Error: pthread_join %d, %s\n", i, strerror(rtn));
exit(-1);

}
}

4.6. PSEUDO-RANDOM NUMBER GENERATORS (PRNGS) 43

Several pseudo-random number generators (PRNGs) are used in the pro-
grams. To avoid problems, each thread has its own stream of random numbers.
This is achieved by letting each thread have its own seed, that is sent to the
PRNG. This is explained in detail in section 4.6.

4.6 Pseudo-random number generators (PRNGs)

The tools presented here need a fast, reliable pseudo-random number generator.
The CSS uses a Monte Carlo test to estimate significance, and the FET uses
bootstrap sampling to generate the standard deviation in the window. For both
these applications we needed a fast generator. Both tools uses Pthreads for par-
allelization, so the PRNG needs to be thread safe, without being a bottleneck.

4.6.1 A thread safe pseudo-random number generator

A computer will not produce true random numbers, but it can produce numbers
that have statistical properties of randomness (Knuth, 1997). The functions that
generates these numbers are called pseudo-random number generators (PRNGs).

A PRNG is a kind of finite state machine. It is defined by three properties:

1. An initial state, s0.

2. A transition function sk+1 = S(sk) that transfers the machine from one
state to another.

3. An output function, V (sk) that computes a random number from the
current state.

The transition function and the initial state defines the sequence of pseudo-
random numbers. Using the same initial state (or seed) produces the same
sequence of numbers.

The random() function in the C library works in this way; the initial state is
set by sending a seed to the function srandom(). Each time random() is called
it reads the current state, creates a random number, and updates the old state.

When working with threads, shared states create problems. If the shared
state is not protected, problems like race conditions can occur, where one thread
reads the state while another thread is modifying it. To avoid race conditions,
the state can be protected, by making sure state read and writes are only per-
formed by one thread at a time. This can be achieved by giving each thread
mutually exclusive access to the shared state. Then the PRNG will become a
bottleneck, and the resulting program can end up almost sequential. In our
first version of the parallel program, random() was used to generate pseudo-
random numbers with several threads, and the run time of the program more
than doubled compared to the serial version. This is clearly not good enough.

A better solution, that ensures a thread safe PRNG without creating addi-
tional overhead, is to let each thread have its own state and stream of numbers.

44 CHAPTER 4. IMPLEMENTATION

Race conditions will then be avoided, and a thread safe PRNG is gained without
unnecessary overhead. The standard C library function nrand48() was a good
solution to our problem; it is a thread safe PRNG that lets each thread have
its own state. The transition function used is the linear congruential formula
(Knuth, 1997):

Xn+1 = (aXn + c) mod m, n ≥ 0

For nrand48(), m = 248 and this creates a sequence of 48-bit integers, Xi.
This formula is fast and efficient, and the sequence should be large enough for
our purpose.

4.6.2 Uniform distribution of pseudo-random numbers

The following code will not give a perfectly uniform distribution of the random
numbers between 0 and n− 1:

nrand48() % n

It is possible to get an uniform distribution by modifying the code a little,
by fetching a new random number if the generated number is too high. We used
the following function for the PRNG, adapted from the VSEARCH function
shuffle.random_int (Rognes, Mahé & xflouris, 2015):

long random_max = RAND_MAX;
long limit = random_max - (random_max + 1) % n;
long r = nrand48(state);
while (r > limit)

r = nrand48(state);
return r % n;

This function will give uniformly distributed pseudo-random numbers without
costing to much runtime.

4.7 Integrating C code with Cython

We used Cython to link the C program with the Python code. The Cython
program is stored in a .pyx file. In this file, the methods used from the parallel
C program must be defined. Each C header file must be included, and header
files without methods we call directly can be defined as follows:

cdef extern from "cFisher.h":
pass

while the methods we are going to call directly must be specified:

4.7. INTEGRATING C CODE WITH CYTHON 45

cdef extern from "threadfisher.h":
void threadcompute(double *avals, ..., int regstart, ...)
pass

Notice that one needs to use types for the variables, just as in C. cdef defines
a C-function that is only callable from Cython. To be able to call the method
from a Python program, a wrapper method must be written:

def fisher_exact_tester(np.ndarray[np.float64_t, ndim=1] avals, \
..., int regstart, ...):

threadcompute(<double*> avals.data, ..., regstart, ...)

The numpy array parameter must be specified as:

np.ndarray[np.type, ndim=1] arrayname

and before the array is sent to the C method, it must be cast to the right
type:

<type*> arrayname.data

The single variables, such as the integer variable regname, can be sent as
they are.

Cython programs must be compiled. The compilation is done in two steps:
First the .pyx file is compiled to a .c file by Cython. Then, the .c file, together
with the necessary C code files are compiled and linked to a .so file by a regular
C compiler. This can easily be done in one step, with the use of a distutils
setup.py (Behnel et al., 2009), or with a customized bash script.

To use the Cython program from a regular Python program, the correspond-
ing .so file is needed. Then, the program can be imported like a regular Python
module:

from fisher_cython_parallel import fisher_exact_tester;

and called like any other Python function:

fisher_exact_tester(avals, bvals, apos, bpos, regstart, \
regend, wsize, wstep, alen, blen, perc, scores, stddev);

4.7.1 Problems with integrating C code in a large scale
Python system

Cython is a tool that makes it easy to call C code from Python code. However,
integrating C code can be a difficult issue on a large, complex system, and we
ran into several issues trying to integrate the C code with the HyperBrowser
system.

Python comes with different representations of Unicode characters. The
standard is ucs2, which corresponds to UTF-16, a 16-bit encoding of characters.

46 CHAPTER 4. IMPLEMENTATION

The HyperBrowser uses this version. Most Linux distributions, on the other
hand, ships Python with ucs4, which corresponds to UTF-32. Therefore we had
to compile the Cython code on Insilico.

The standard/automatic way of compiling the Cython code, with distutils
(Behnel et al., 2009), did not work on Insilico, since it uses the Inter C compiler
(icc) instead of the GNU C compiler (gcc). The solution to this problem was to
manually compile and link the Cython code. This was done using a bash script,
fisher_parallel_setup.sh:

cython -a fisher_cython_parallel.pyx

icc -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -xAVX\
-mavx -fPIC -I/cluster/software/VERSIONS/python2-2.7.3/inc\
lude/python2.7 -c fisher_cython_parallel.c -o \
build/fisher_cython_parallel.o
...

icc -pthread -shared -O3 -xAVX -mavx build/fisher_cython_parallel.o\
build/cFisher.o build/comparative.o build/threadfisher.o \
-L/cluster/software/VERSIONS/python2-2.7.3/lib -lm -lpython2.7 \
-o /hyperbrowser/src/hb_core_comparative/quick/\
statistic/fisher_cython_parallel.so

In this script the Cython code, stored in fisher_cython_parallel.pyx, is
compiled, together with the C source code. The resulting *.o files are stored
in the directory build. After the compilation is done, all the files are linked
into the module fisher_cython_parallel.so. This is the module the method
fisher_exact_tester is later imported from. Notice that the files are linked
with the C math library (-lm) and the Pthread library (-pthread).

With this script the Cython and C code can be compiled:

bash -x fisher_parallel_setup.sh

and later called from the HyperBrowser tool, as shown above.
From this, several important lessons was learned, for instance that it is

important to compile the code where it is going to be used, and that it is
important to ask for help early in the process.

The CSS Cython code was compiled and linked in a similar manner.

4.8 Optimizing C code
To further speed up the (serial) C code, code optimizations are important. They
can improve the run time of a program, but a lot of optimization can also be
done by the compiler with compiler options, like the flag -O3. It is important,
however, not to optimize too much or too soon; this can break otherwise func-
tioning code, and make the code completely unreadable. Optimizing non-critical
parts of the code are a waste of time, as noted by Knuth (1974):

4.8. OPTIMIZING C CODE 47

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up our

opportunities in that critical 3%.” (p. 268)

With both manual and compiler optimization, and the use of profiling tools
such as Valgrind (Seward & Nethercote, 2005) and gprof (Graham et al., 1982),
we were able to speed up the (serial) C program.

4.8.1 Allocations
It is important to avoid unnecessary allocations and frees. The MDS methods
need a lot of helper matrices. These matrices are allocated once per thread and
are sent to the relevant method. In this way, a lot of unnecessary allocations
and frees are avoided. By moving the allocations outside the loop, and only
doing one allocation per chromosome, we saved a lot of runtime, at the cost of
slightly more complicated code, and more data sent to each method, as can be
seen in the code examples in section 4.3 and 4.4.

4.8.2 Library methods
It is often wise to use library methods. We saved some runtime by using GNU
software library (Galassi et al., 2009) methods for matrix multiplication and the
calculation of eigenvalues and -vectors, instead of writing our own methods.

4.8.3 Pseudo-random number generators
As discussed in section 4.6 we needed a fast and reliable PRNG for our program.
Both the CSS and FET need to generate many random numbers per window.
At worst, the CSS needs several hundred thousand random numbers. In these
situations it is important to use a fast generator. As discussed in section 4.6, it
is important that the PRNG is thead safe without creating overhead, so each
thread should have its own stream of numbers. It is important that the seed is
only generated once per thread.

4.8.4 For-loops
For short loops, it can be useful to write out the code instead, so called loop-
unrooling. This makes the code longer and and a bit harder to read, but speeds
up the program. It is also important to avoid too many function calls inside
loops.

4.8.5 Data types
In C, integer arithmetic is faster. Therefore the use of char, short and double
should be avoided, and int should be used instead, if possible. Unfortunately,
in this application most of the data are stored as floats in the HyperBrowser
system. The cost of converting the data in Python is much larger than the

48 CHAPTER 4. IMPLEMENTATION

additional (small) cost of double arithmetic in C, so most of our data are stored
as doubles.

4.8.6 Functions
Some inline functions are used in critical parts of the code. We have also tried
to avoid uncessesary function calls in loops. This makes the code a bit longer,
but avoid the unnecessary overhead of calling a small function many times.

4.9 Changes made to the HyperBrowser code
The comparative genomics tools presented in this thesis reside on a separate
branch of the HyperBrowser: https://hyperbrowser.uio.no/comparative

Vederhus’ tool (Vederhus, 2013) was written on the then current version of
the HyperBrowser, now outdated. This version did not handle pre-processing
of large data files. Near the end of this thesis, we therefore merged in the new
version of the HyperBrowser, to be able to work with new code and pre-process
the large stickleback data. To make this work with our existing code, we did
two important changes:

The code in the CSS tool requires that the elements are sorted in correct
order, by position first, and then genomeid. We therefore changed the sorting
algorithm used by the pre-processing method to merge sort, which is guaran-
teed to leave the order of the genomeid as it was. This change is done in
gold.origdata.OutputFile in the method sort():

sortOrder = self._contents.argsort(kind=’mergesort’)

The method _removeBlindPassengersFromNumpyArray in
gold.track.TrackView removes elements that does not belong in the array (so
called stowaways) for data given in intervals. This method is not needed by
these tools, since the data are given as points and not intervals, and it uses up
a lot of the run time. Therefore, we have added some small changes to this
method to be able to skip this calculation for point data:

#Can not be blind passengers if length of elements is always 1..
if (not self.trackFormat.isInterval()) or \
(self.genomeAnchor.start==0):

return numpyArray

These two changes have to be dealt with if the comparative branch is going
to be merged into the standard branch of the Genomic HyperBrowser.

https://hyperbrowser.uio.no/comparative

Chapter 5

Results

In this thesis we present new and improved versions of the tools made by Veder-
hus (2013). The tools are improved in important aspects: the code for calculat-
ing the statistical analyses are changed to improve the run time, and the user
interface is greatly improved. The changes in the tools, together with the results
from the analyses on several different data sets, are presented in the following
sections.

5.1 User interface
Below is a list of the complete HyperBrowser tools for comparative genomics:

• Fisher Exact Test SNP Tool

• Filter Fisher Scores

• Cluster Separation Score

• Significant CSS Regions

• Convert Stickleback Snps to Gtrack

• Convert VCF To Gtrack Tool

All tools are available on the comparative branch of the Genomic Hyper-
Browser: https://hyperbrowser.uio.no/comparative, under a header named ’Com-
parative Genomics’. An example run of the new tools can be found in Appendix
A.1, and descriptions of the original tools can be found in Vederhus (2013).
There are also short descriptions at the bottom of each tool web page, some
written by Vederhus and some written by us, together with a link to an ex-
ample history where the tool is used.

As written more detailed in section 4.1, we have made large changes to the
statistics of the Fisher Exact Test SNP Tool and the Cluster Separation
Score. In this section the changes of the user interface are presented.

49

https://hyperbrowser.uio.no/comparative

50 CHAPTER 5. RESULTS

The largest change in the user interface is that the tools can now be run for
the entire genome, instead of each chromosome separately, saving a lot of manual
work. The tools need two GTrack files per genome, one for each population.
This was achieved by merging the codebase with the new stable HyperBrowser
code. With this new code, the tools are able to pre-process large data files, thus
being able to run for the entire genome at once.

For each tool, the ’html’ option is changed to ’customhtml’, so the user can
get intelligible results by clicking on the eye.

5.1.1 Fisher Exact Test SNP Tool
The FET tool calculates a FET score and a corresponding standard deviation
for each window in the genome. The results for each window are written to
an output file. As mentioned above, this tool can now be run for the whole
genome at once. We have made some changes to the user interface by letting
the user select what percentile L10FET score should represent the window. This
is selected in the field ’Percentile of L10FET scores in a window’, that can be
seen in figure A.3 in Appendix A.1.2. The default value here is 0.95, which is
the value used by Burke et al. (2010). We have also added a description of the
tool on the tool web site, to make it easier to use, together with links to example
runs.

5.1.2 Filter Fisher Scores
This tool filters out the relevant regions returned from the FET tool. We have
changed this tool slightly, by:

• Changing the order of the user interface, with genome build at the top

• Changing the file selection to history file selection instead of check boxes.
Since the results from the FET tool are stored in one file (instead of one
file per chromosome), we no longer need to select several files at once

• Changing the header of the output GTrack file to ’sorted elements: false’
instead of ’true’

• Letting the user set the percentile of the standard deviation over all win-
dows. This value is used to filter out windows, by generating an appropri-
ate limit. The default value is 75 (corresponding to the 75th percentile),
which is the value used by Burke et al. (2010)

The web user interface can be seen in figure A.4 in Appendix A.1.2

5.1.3 Cluster Separation Score
The CSS tool calculates a cluster separation score and a corresponding p-value
for each window in the genome. The results for each window are written to an
output file. As for the FET tool, this tool can now be run for the entire genome

5.2. SPEEDUP OF SERIAL C CODE VS PYTHON CODE 51

at once. We have not made any additional changes to the user interface of this
tool.

5.1.4 Significant CSS Regions
This tool filters out relevant regions found by the CSS tool. The user has
the choice of two filtering methods: to filter by the p-values with a given false
discovery rate (FDR), or to filter the top x CSS regions. Normally, we would
expect the user to filter by p-values, but in some cases it could be useful to
filter by the top scoring CSS regions. CSS and p-value are generally highly
correlated, but exceptions can occur (Jones et al., 2012). For frequency data
like the Drosophila data set, we are not able to calculate any p-values, and we
must therefore filter by the top scoring regions.

As for the Filter Fisher Scores tool, we have moved the different fields around,
to make the user interface similar to the CSS tool, with the genome build at the
top, and made the file selection simpler, with history files selection instead of
check boxes. The filtered windows are combined to larger regions, but there was
an error in the code that did this. According to Vederhus, the same method was
used for combining filtered windows into larger regions for both filtering tools.
Therefore, Vederhus’ code for the Filter Fisher Scores tool was used here.

The web user interface of this tool can be found in figure A.5 in Appendix
A.1.

5.1.5 Convert Stickleback SNPs to GTrack
Since we have made a small change to the original file format, see section 4.2.1,
this tool was updated accordingly, by changing the header file. The user inter-
face is unchanged, and can be seen in figure A.2 in Appendix A.1.

5.1.6 Convert VCF To GTrack Tool
This tool is brand new and converts VCF files to our custom GTrack format.
This tool has to be run once per population. It needs a VCF file with SNPs and a
list of the individuals in the population. We have made some assumptions about
the VCF file, these can be found in section 4.2.2. The list of individuals can be
given as a text file, with one individual on each line, or as a comma separated
list in a text box. The user interface is shown in figure A.7 in Appendix A.2,
together with an example run of the tool.

5.2 Speedup of serial C code vs Python code
In this section, the runtime of the old Python program, the tool made by Veder-
hus (2013) is compared with the new serial C code. The code is run on the
stickleback data (Jones et al., 2012), the data set used by Vederhus that took
the longest time to run. All analyses are run with the default parameters, the
same parameters Vederhus ran his analyses with:

52 CHAPTER 5. RESULTS

• window size = 2 500

• step size = 500

• treshold = 10

• runs = 200 000

The serial C code is run for the whole genome, while the Python code is
run for each chromosome separately. Both analyses are run on the Genomic
HyperBrowser. Since the HyperBrowser is a multi-user system, the runtime
may vary with the total load of the system. The runtime for the Python code
is taken from Vederhus’ old histories. These can be found at (Vederhus, 2013):

• Cluster Separation Score:

https://hyperbrowser.uio.no/comparative/u/torkilve/p/stickleback-css

• Fisher’s Exact Test:

https://hyperbrowser.uio.no/comparative/u/torkilve/p/stickleback-fet

Since the C code is run for the whole chromosome at once, while the Python
code is run for one chromosome at a time, there can be some additional start up
costs for each run that is not included in the runtime for the C program. But,
the C code saves a lot of manual work, allowing the user to do one run instead
of one per chromosome, so the comparison should be fair.

All the runtimes are given in seconds, and are rounded up to one decimal
with standard rounding rules. Speedup is given by

Told
Tnew

5.2.1 Cluster Separation Score
In the following, the serial runtime of CSS with two different MDS methods,
CMDS and SMACOF, are presented. Vederhus used the SMACOF method for
calculating MDS. Vederhus did not supply data for chromosome IV, but we have
chosen to present the results from all chromosomes for our C program. This
means that the total runtime of the C program will include one chromosome
more than the total runtime for the Python program, which will make the
speedup different for the the average and total runtime.

CMDS method

The C program gains a speedup of about 774× on average compared to the
Python program. The total speedup is somewhat lower, since we do not have
chromosome IV from Vederhus’ run. The use of a faster algorithm (CMDS)
and a different programming language (C) give a large speedup. The speedup
varies a lot for the different chromosomes, from 108.2× to 1450.5×. This could

https://hyperbrowser.uio.no/comparative/u/torkilve/p/stickleback-css
https://hyperbrowser.uio.no/comparative/u/torkilve/p/stickleback-fet

5.2. SPEEDUP OF SERIAL C CODE VS PYTHON CODE 53

be because the CMDS method, if the different amount of SNPs per window is
disregarded, does about the same amount of work per window (matrix multiplic-
ation, finding eigenvectors and -values), while the SMACOF algorithm varies a
lot between windows, running until convergence of the solution.

Chromosome Python C (CMDS) Speedup
ChrI 163619.6 112.8 1450.5
ChrII 13372.5 15.0 891.5
ChrIII 5592.1 9.1 613.0
ChrIV – 113.3 –
ChrV 5085.6 8.9 571.4
ChrVI 5505.5 9.3 592.0
ChrVII 30122.1 34.8 865.6
ChrVIII 19178.5 20.1 954.2
ChrIX 14115.4 18.7 754.8
ChrX 6432.9 10.0 643.3
ChrXI 48788.0 59.8 815.9
ChrXII 12775.5 18.1 108.2
ChrXIII 7456.3 11.2 665.7
ChrXIV 5665.3 9.6 590.1
ChrXV 5748.3 9.3 618.1
ChrXVI 7918.9 12.5 633.5
ChrXVII 4931.8 8.0 616.5
ChrXVIII 8651.5 11.5 752.3
ChrXIX 40922.5 39.2 1043.9
ChrXX 19251.0 26.5 726.5
ChrXXI 20510.2 44.6 459.9
ChrUn 24835.0 26.3 944.3
Overhead/startup costs – 3.0 –
Total runtime 466679.5 631.6 739
Average 22222.8 28.7 774

Table 5.1: Python versus C for the serial cluster separation score (CSS) pro-
gram with classical MDS. The analysis is run with the default parameters. The
runtime is given in seconds.

SMACOF method

Vederhus used the SMACOF algorithm for calculating MDS, and both the C
and Python program are run with the same parameters:

• Number of start points: 4

• Maximum number of iterations: 300

• Epsilon: 1e− 6.

54 CHAPTER 5. RESULTS

In table 5.2 we see that we get an average speedup of 81×. The speedup
between the different chromosomes still varies a lot, but not as much as for the
CMDS.

Chromosome Python C (SMACOF) Speedup
ChrI 163619.6 460.9 355
ChrII 13372.5 306.5 43.6
ChrIII 5592.1 214.9 26
ChrIV – 503.9 –
ChrV 5085.6 158.1 32.2
ChrVI 5505.5 228.5 24.1
ChrVII 30122.1 378.0 79.7
ChrVIII 19178.5 262.5 73.1
ChrIX 14115.4 280.9 50.3
ChrX 6432.9 214.9 29.9
ChrXI 48788.0 251.4 194.1
ChrXII 12775.5 233.7 54.7
ChrXIII 7456.3 258.8 28.8
ChrXIV 5665.3 195.7 28.9
ChrXV 5748.3 207.7 27.7
ChrXVI 7918.9 240.4 32.9
ChrXVII 4931.8 190.2 25.9
ChrXVIII 8651.5 211.2 41.0
ChrXIX 40922.5 284.8 143.7
ChrXX 19251.0 269.8 71.4
ChrXXI 20510.2 179.5 114.3
ChrUn 24835.0 490.8 50.6
Overhead/startup cost – 2.4 –
Total runtime 466679.5 6025.3 78
Average 22222.8 273.9 81

Table 5.2: Python versus C for the serial cluster separation score (CSS) program
with the SMACOF method for calculating MDS. The analysis is run with the
default parameters. The runtime is given in seconds.

5.2.2 Fisher’s Exact Test

The C program is run with the default parameters for the FET tool. As men-
tioned in section 3.2, Vederhus did not calculate the full two-tailed FET, and
did not calculate the complete standard devation used by Burke et al., therefore
the C program does a lot more work than the Python program.

In table 5.3 we can see that the total and average speedup is 21×, which
gives us a considerable speedup compared to the Python program, even though
the C program does more work. The speedup for the different chromosomes

5.3. MEMORY USAGE 55

varies between 19.9 and 23.8.

Chromosome Python C Speedup
ChrI 470.1 22.1 21.3
ChrII 374.7 17.0 22.0
ChrIII 247.8 11.4 21.7
ChrIV 570.3 28.6 19.9
ChrV 188.3 8.7 21.6
ChrVI 248.6 11.0 22.6
ChrVII 493.6 24.4 20.2
ChrVIII 314.0 15.1 20.8
ChrIX 344.8 16.0 21.6
ChrX 249.2 11.4 21.9
ChrXI 278.7 13.4 20.8
ChrXII 291.6 13.6 21.4
ChrXIII 312.0 14.5 21.5
ChrXIV 221.6 10.0 22.2
ChrXV 230.9 10.1 22.9
ChrXVI 286.0 13.2 21.7
ChrXVII 226.7 10.0 22.7
ChrXVIII 241.3 10.9 22.1
ChrXIX 296.3 13.3 22.3
ChrXX 331.4 15.7 21.1
ChrXXI 211.2 10.4 20.3
ChrUn 762.6 32.0 23.8
Overhead/startup cost – 2.7 –
Total runtime 7191.7 335.5 21.4
Average 326.9 15.3 21.4

Table 5.3: Python vs. C for the serial Fisher’s exact test (FET) program. The
analysis is run with the default parameters. The runtime is given in seconds.

5.3 Memory usage
The memory is measured with the linux commands /usr/bin/time and top.
The memory measured is the maximum resident set size of the process during
its lifetime. The results from /usr/bin/time are compared to the output of
top to make sure the memory reported is correct. All memory are given in
MB, and the memory use is averaged over 4 runs. The memory is measured for
the C program, for both the serial and the parallel program, for three different
chromosomes of the stickleback data. The parallel program uses 64 threads and
a task size of 100.

The total memory used per chromosome for the serial program depends on
three factors:

56 CHAPTER 5. RESULTS

• The population size, m

• The number of SNPs in the chromosome, n

• The number of windows in the chromosome, w

The largest data structures are the input and result arrays sent to the
method:

• Two double arrays avals and bvals: 8nm bytes

• Two integer arrays apos and bpos: 4nm bytes

• Two double result arrays scores and p / stddev: 16w bytes

These arrays take up most of the memory, and are the same for both the
CSS and FET. Each method allocates some additional data structures, but the
main amount of memory used for both serial programs should be (in bytes):

8nm+ 4nm+ 16w = 4(3nm+ 4w) = O(nm+ w)

m is typically small compared to n and w. The 16w factor is the result
arrays returned from the method. In the HyperBrowser tool, these are saved
for each chromosome, so the memory requirements might increase with 16w for
each chromosome, depending on how the system stores the results.

5.3.1 Cluster Separation Score
For the CSS we have some additional data structures, constant for all chromo-
somes, and the most expensive of those are the m×m two-dimensional arrays
used for the MDS methods. We need 5 matrices, and each of these take addi-
tional 8m2 bytes. In addition to this, we allocate some m×2 matrices and some
m matrices, and some relatively small arrays, included as the constant C. The
total amount of memory used by the CSS tool (in bytes) is therefore:

4(3nm+ 4w + 10m2 + 14m) + C

For chromosome XXI, m = 21, n = 176 230 and w = 23 434, so we should
use about 44.8 MB.

For the parallel program, the threads share the input data, but each thread
allocates the data structures needed for the computation. Therefore we would
expect an increase in memory use for the parallel program, corresponding to
the number of threads.

As can be seen in tables 5.4 and 5.5 the parallel program uses somewhat more
memory than the serial program. Both the serial and the parallel program use
about 60 % of the memory used by the relevant data files. The memory versus
file size factor is bigger for the smallest chromosome, chromosome V. This is
especially visible for the parallel program. This is due to the fact that the
memory requirements for the calculations are the same for all chromosomes,

5.4. PARALLEL C CODE 57

and only the size of the input data varies; therefore the smallest chromosome
will allocate more memory relative to the size of the input files. There are more
variations in the amount of memory used by the parallel program than by the
serial program.

Chromosome Averaged memory use File 1 File 2 Mem/file size
chrV 40.0 31.3 30.4 0.65
chrXXI 45.0 39.5 38.2 0.58
chrUn 147.4 128.3 123.6 0.59

Table 5.4: Memory use, serial program: Cluster separation score with classical
MDS for chromosomes V, XXI and Un. All analyses are run with the default
parameters. The memory use is given in MB.

Chromosome Averaged memory use File 1 File 2 Mem/file size
chrV 44.1 31.3 30.4 0.71
chrXXI 48.0 39.5 38.2 0.61
chrUn 149.6 128.3 123.6 0.59

Table 5.5: Memory use, parallel program: Cluster separation score with classical
MDS for chromosomes V, XXI and Un. All analyses are run with the default
parameters. The memory use is given in MB.

5.3.2 Fisher’s Exact Test

For the FET the number of SNPs in each window, x, is an additional factor.
At worst, x is as big as the window size, and for large windows, this could be a
considerable factor. The memory use for the serial program is therefore:

4(3nm+ 4w + 4x) + C

For chromosome XXI, with a window size of 2.5 kb, we should use about
44.8 MB of memory. As for the CSS, the memory use is expected to increase
for the parallel program.

The results given in tables 5.6 and 5.7 are similar to the results found by
the CSS: The parallel program requires somewhat more memory that the serial
program, and the memory use versus file size factor is about the same, around
0.6.

5.4 Parallel C code

In the following, the results for the parallel programs are shown. The analyses
are run on the stickleback data set, since it is the largest and most time con-

58 CHAPTER 5. RESULTS

Chromosome Averaged memory use File 1 File 2 Mem/file size
chrV 39.8 31.3 30.4 0.65
chrXXI 44.6 39.5 38.2 0.57
chrUn 147.1 128.3 123.6 0.58

Table 5.6: Memory use, serial program: Fisher’s exact test for chromosomes V,
XXI and Un. All analyses are run with the default parameters. The memory
use is given in MB.

Chromosome Averaged memory use File 1 File 2 Mem/file size
chrV 41.5 31.3 30.4 0.67
chrXXI 46.6 39.5 38.2 0.60
chrUn 149.4 128.3 123.6 0.59

Table 5.7: Memory use, parallel program: Fisher’s exact test for chromosomes
V, XXI and U. All analyses are run with the default parameters. The memory
use is given in MB.

suming data set we have 1. We show how well the parallel program scales, with
different amount of threads and different task sizes. All the analyses are run
with the default parameters, given in section 5.2. The CSS is run with the
classical MDS method.

The code is run at the Genomic HyperBrowser, using the web user interface.
The HyperBrowser system runs on Insilico, an Abel node with 64 physical cores,
further described in section 4.1.4. Since the analyses were run from the web tool,
we do not have any control over the number of other jobs run on the system
at the same time. The data presented are from a single run that should be
representative for the performance of the system. When there are many jobs
running on the HyperBrowser system, each analysis could take longer time.

5.4.1 Variable number and size of tasks

In the following, the number of threads is kept constant, while the task size is
varied. The number of threads, p, is 64, and the task size is given in

{10, 50, 100, 500, 1000, 5000, 10000}

Cluster Separation Score

In figure 5.1, we see the runtimes for the CSS tool with a variable task size.
We get the best results for a task size of 50, and for all larger task sizes, the
runtime increases dramatically, suggesting that large tasks give bottlenecks for
expensive regions in the chromosome.

1The Atlantic cod data set, se section 5.8, is more time consuming, but this data set was
included late in the process.

5.4. PARALLEL C CODE 59

Fisher’s Exact Test

For the FET, we get the best results for a task size of 500, as can be seen in
figure 5.2. This graph behaves differently than the CSS, which could be due to
the fact that the windows in the FET are almost equally expensive to calculate.

101 102 103 104

Task size

50

100

150

200

250

300

350

400

R
un

ti
m

e
(i

n
se

co
nd

s)

Figure 5.1: Cluster separation score (CSS) with a variable size of
tasks. The number of threads is 64, and the task size is given in
{10, 50, 100, 500, 1000, 5000, 10000}. The horisonal axis is plottet as a log10 scale.

60 CHAPTER 5. RESULTS

101 102 103 104

Task size

20

40

60

80

100

R
un

ti
m

e
(i

n
se

co
nd

s)

Figure 5.2: Fisher’s exact test (FET) with a variable size of tasks. The number
of threads is 64, and the task size is given in {10, 50, 100, 500, 1000, 5000, 10000}.
The horisontal axis is plotted as a log10 scale.

5.4.2 Variable number of threads

In the following, the task size is kept constant, while the number of threads
varies. Both the runtime and the scaled speedup are shown. The parallel
program is implemented with a ’pool’ of tasks, where each thread picks available
tasks themselves. With the use of only one thread, this is going to be ineffective,
and create a lot of overhead. To get a better picture of the speedup of the
program, the scaled speedup is therefore shown. More information about the
parallel implementation can be found in section 4.5.

The task size is 100 and the number of threads is given in

{1, 2, 4, 8, 16, 32, 64, 128}

Cluster Separation Score

As we can see in figure 5.3, the runtime for one thread is large compared to
the serial version of the program, found in table 5.1. The shortest runtime
is given for 128 threads, but there is not much difference between 16 to 128
threads, which indicates that the parallel program does not scale well. As we
can see in figure 5.4, the scaled speedup is almost linear for the first number
of threads, but it evens out for about 8 to 16 threads. We do not get much

5.4. PARALLEL C CODE 61

speedup for 64 threads compared to 32 threads, which can be due to two things:
overhead in the parallel program, and the fact that with a task size of 100,
some regions are going to be bottlenecks. For some windows, the calculation
of p-value takes a long time. If we are unlucky, some regions in the genome
have several costly windows after each other. For instance, for one region of 100
windows in chromosome I, the calculation takes 14 seconds. With a task size of
100, it is impossible to lower the calculation time for this region.

To see if the size of the tasks was part of the problem, a task size of 25 was
tried. In figure 5.5 we can see that for one thread, the runtime is much higher
now, which is not surprising. The runtime for 64 threads is the lowest yet, with
only 65.5 seconds for the entire chromosome. This indicates that at least a part
of the problems in the previous run was the task size, even though overhead in
the parallel program probably still plays a part.

The scaled speedup is given in figure 5.6. Here we can see that this version
of the program scales better up to 64 threads, but worse for 128 threads. As
hoped, we get higher scaled speedup when the task size is smaller.

1 2 4 8 16 32 64 128
Number of threads

0

100

200

300

400

500

600

700

800

R
un

ti
m

e
(i

n
se

co
nd

s)

Figure 5.3: Cluster separation score (CSS) with a variable number of threads,
given in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The horisontal axis is
plotted as a log2 scale.

62 CHAPTER 5. RESULTS

1 2 4 8 16 32 64 128
Number of threads

1

2

4

8

16

32

64

128

Sc
al

ed
sp

ee
du

p

Speedup
Ideal speedup

Figure 5.4: Scaled speedup (scaled for 1 thread) for cluster separation score
(CSS) with a variable number of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}.
The task size is 100. The horisontal axis is plotted as a log2 scale.

1 2 4 8 16 32 64 128
Number of threads

0

200

400

600

800

1000

1200

R
un

ti
m

e
(i

n
se

co
nd

s)

Figure 5.5: Cluster separation score (CSS) with a variable number of threads,
given in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 25. The horisontal axis is
plotted as a log2 scale.

5.4. PARALLEL C CODE 63

1 2 4 8 16 32 64 128
Number of threads

1

2

4

8

16

32

64

128
Sc

al
ed

sp
ee

du
p

Speedup
Ideal speedup

Figure 5.6: Scaled speedup (scaled for 1 thread) for cluster separation score
(CSS) with a variable number of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}.
The task size is 25. The horisontal axis is plotted as a log2 scale.

Fisher’s Exact Test

As we can see in figure 5.7 the shortest runtime for the FET tool is given for 64
threads. The FET scales better than the CSS, as shown in figure 5.8, and we
get the best scaled speedup for p = 64. The speedup is close to linear for up to
8 threads, and starts to even out at 16 threads. For 128 threads, the speedup
is worse than for 64 threads.

The parallel FET and CSS was implemented in the same way, suggesting
that the task size was important for the results found for the CSS tool. Still,
the speedup evens out for larger number of threads, suggesting that there are
some overhead in the creation of threads and the fetching of tasks.

64 CHAPTER 5. RESULTS

1 2 4 8 16 32 64 128
Number of threads

0

50

100

150

200

250

300

350

400

450

R
un

ti
m

e
(i

n
se

co
nd

s)

Figure 5.7: Fisher’s exact test (FET) with a variable number of threads, given
in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The horisontal axis is plotted
as a log2 scale.

1 2 4 8 16 32 64 128
Number of threads

1

2

4

8

16

32

64

128

Sc
al

ed
sp

ee
du

p

Speedup
Ideal speedup

Figure 5.8: Scaled speedup (scaled for 1 thread) for Fisher’s exact test (FET)
with a variable number of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}. The task
size is 100. The horisontal axis is plotted as a log2 scale.

5.5. SYNTHETIC DATA SET 65

5.5 Synthetic data set
To test how well our methods work, we have created a synthetic data set with
four interesting regions of different size. The goal was to see if our methods
could identify these regions with various levels of noise in the data set. The
data were created from the stickleback chromosome V. All the individuals (11
for population A and 10 for population B) and positions in the original data
set are kept, but the SNP values are different. The SNP positions outside the
four regions of interest are filled with random values in {3,−3, 0,−10 000}. The
regions of interest are filled with one SNP value, 3 (major allele) for population
A and −3 (minor allele) for population B. We have four regions we want to
identify, at different positions in the chrosomome:

• 1: [100 000, 200 000], with a size of 100-kb

• 2: [1 ∗ 106, 1.2 ∗ 106], with a size of 200-kb

• 3: [2.7 ∗ 106, 2.75 ∗ 106], with a size of 50-kb

• 4: [3.5 ∗ 106, 3.525 ∗ 106], with a size of 25-kb

The file has 1 713 085
11 = 155 735 positions, distributed over the interval [0, 12 249 273].

Noise in the data set was added by random mutations of all the values in the
chromosome, with a given probability. A mutation was done by drawing a new
random number from the set {3,−3, 0,−10 000}. We have tried probabilities in
{0, 0.2, 0.5, 0.8, 0.9, 0.95, 1} and have selected some of those results for present-
ation. When the probability for mutation is 1 we expect a totally random data
set.

5.5.1 Cluster Separation Score
All the versions of the CSS tool, with three different MDS methods, find the
relevant regions for noise probabilities up to 0.8.

The analyses were done using the default values for the parameters, see
secion 5.2, and the results were filtered with a false discovery rate of 0.05.

Classical MDS

Figures 5.9 to 5.12 shows the results from the Classical MDS. The method finds
the correct regions for noise probabilities up to 0.8, but does not handle noise
probabilities over 0.9. For noise = 0 (figure 5.9) the CMDS finds all relevant
regions, without any false positives, which is only expected. For noise = 0.5
(figure 5.10) the method finds the relevant regions, but with some false positives
due to noise. For noise = 0.8 (figure 5.11) we capture less false positives, but
our regions are noisy and not of equal height (score value). For noise = 0.9
(figure 5.12) the method falls apart, unable to find any relevant regions. For all
our noise levels in [0, 0.8], the relevant regions have a − log10(p)-value of about
5, while for noise = 0.9, we barely get a − log10(p)-value above 4.

66 CHAPTER 5. RESULTS

The CSS gives weaker signals for higher levels of noise. Notice that the CSS
peaks in an additional region, where the − log10 p-value does not peak. If we
had filtered for the x top scoring CSS regions instead of p-value, this noise would
have been included in the results.

SMACOF

The SMACOF algorithm finds the relevant regions for noise probabilites from 0
to 0.8, as we can see in figures 5.9 to 5.11. The results are similar to the results
found by the CMDS, but SMACOF has slightly higher values for the CSS scores
for the relevant regions, especially for higher levels of noise. For noise = 0.5
(figure 5.10), it has slightly less prominent false positives than CMDS, with a
lower − log10(p)-value.

When the probability of noise is 0.9 (figure 5.12) and bigger, SMACOF finds
no relevant regions. The results from the SMACOF algorithm is not much better
than for the CMDS, with a huge increase in the runtime. As we can see, the
CSS values in the noisy region is much higher for SMACOF than for CMDS.

SMACOF + CMDS

The combination algorithm (SMACOF + CMDS) finds the relevant regions for
noise probabilities from 0 to 0.8, as we can see in figures 5.9 to 5.11, but finds
nothing for probabilities from 0.9 (figure 5.12) and up. The combination method
performs quite similar to the two other methods, but finds fewer false positives.
The false positives it finds are less prominent than the false positives found by
the two other methods, making it possible that a stricter limit might remove
some of them completely. This method also gives a peak in the CSS values in
the noisy region.

5.5. SYNTHETIC DATA SET 67

0

5

10

15

20

25

30
CMDS

0

5

10

15

20

25

30
SMACOF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0

5

10

15

20

25

30
SMACOF+CMDS

Figure 5.9: Cluster separation score (CSS) on the synthetic data, for noise = 0.
The upper figure is the classical MDS, the middle is the SMACOF method and
the bottom is the combination method for calculating MDS. The red lines are
the − log10(p) value, the blue are the CSS score, and the horisonal line is the
− log10(FDR p)-value, the p-value limit for the relevant regions.

68 CHAPTER 5. RESULTS

0

5

10

15

20

25 CMDS

0

5

10

15

20

25 SMACOF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0

5

10

15

20

25 SMACOF+CMDS

Figure 5.10: Cluster separation score (CSS) on the synthetic data, for noise =
0.5. The upper figure is the classical MDS, the middle is the SMACOF method
and the bottom is the combination method for calculating MDS. The red lines
are the − log10(p) value, the blue are the CSS score, and the horisonal line is
the − log10(FDR p)-value, the p-value limit for the relevant regions.

5.5. SYNTHETIC DATA SET 69

0
2
4
6
8

10
12
14

CMDS

0
2
4
6
8

10
12
14

SMACOF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0
2
4
6
8

10
12
14

SMACOF+CMDS

Figure 5.11: Cluster separation score (CSS) on the synthetic data, for noise =
0.8. The upper figure is the classical MDS, the middle is the SMACOF method
and the bottom is the combination method for calculating MDS. The red lines
are the − log10(p) value, the blue are the CSS score, and the horisonal line is
the − log10(FDR p)-value, the p-value limit for the relevant regions.

70 CHAPTER 5. RESULTS

0

5

10

15

20

25

30
CMDS

0

5

10

15

20

25

30
SMACOF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0

5

10

15

20

25

30
SMACOF+CMDS

Figure 5.12: Cluster separation score (CSS) on the synthetic data, for noise =
0.9. The upper figure is the classical MDS, the middle is the SMACOF method
and the bottom is the combination method for calculating MDS. The red lines
are the − log10(p) value and the blue are the CSS score. No relevant regions
were returned, thus the lack of a p-value limit.

5.5. SYNTHETIC DATA SET 71

5.5.2 Fisher’s Exact Test
In figures 5.13 to 5.17 the results for the 2.5 kb and the 100 kb FET are shown.
The solid horisontal line is the limit used by Burke et al., described in section
3.2, while the dotted line is the strict limit used for the stickleback data, further
described in section 5.6.2. As we can see in the figures, the FET with 2.5 kb
windows gives a lot of noise in the data set. The limit used by Burke et al. does
not work well on these values; for noise = 0 (figure 5.13) it captures a lot of
false positives. That should not be possible. We find the relevant regions for
noise ∈ [0, 0.8] (figures 5.13 to 5.15), as for the CSS methods, but with a lot
more false positives. Notice that at the position of the false region found by the
CSS methods, the 2.5 kb FET gives a small peak.

For the 100 kb windows we get less noise, and the limit by Burke et al. works
well. We get no false positives, which is better than for the CSS methods, and
for the noise probability of 0.9 we find the relevant regions, as can be seen in
figure 5.16.

For the stickleback data, the limit used by Burke et al. was too loose, and
we got too many relevant regions. We therefore used a stricter limit with a 10−9

percentile, detailed in section 5.6.2. This limit is shown in figures 5.13 to 5.17,
as the dotted line. This limit works well on the the 2.5 kb windows for noise up
to 0.5, but for noise levels of 0.8 and up, it can not find any relevant regions.
For the 100 kb windows, the strict limit works great for noise = 0.5, but it finds
no regions when there is zero noise. This is clearly not a good limit for this data
set, which indicates that the limits for the FET method must be customized for
the data set, giving additional work for the user.

72 CHAPTER 5. RESULTS

0

2

4

6

8

10

FET 2.5kb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0

2

4

6

8

10

FET 100kb

Figure 5.13: Fisher’s exact test (FET) on the synthetic data, for noise = 0. The
upper figure is FET with 2.5 kb windows, the bottom the 100 kb FET. There
are shown two different limits. The solid line is the limit created by Burke et al.
(2010), the dotted line is the limit used for the stickleback data, see section
5.6.2.

5.5. SYNTHETIC DATA SET 73

0

1

2

3

4

5

6

FET 2.5kb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0

1

2

3

4

5

6

FET 100kb

Figure 5.14: Fisher’s exact test (FET) on the synthetic data, for noise = 0.5.
The upper figure is FET with 2.5 kb windows, the bottom the 100 kb FET.
There are shown two different limits. The solid line is the limit created by
Burke et al. (2010), the dotted line is the limit used for the stickleback data,
see section 5.6.2.

74 CHAPTER 5. RESULTS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FET 2.5kb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FET 100kb

Figure 5.15: Fisher’s exact test (FET) on the synthetic data, for noise = 0.8.
The upper figure is FET with 2.5 kb windows, the bottom the 100 kb FET.
There are shown two different limits. The solid line is the limit created by
Burke et al. (2010), the dotted line is the limit used for the stickleback data,
see section 5.6.2.

5.5. SYNTHETIC DATA SET 75

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FET 2.5kb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FET 100kb

Figure 5.16: Fisher’s exact test (FET) on the synthetic data, for noise = 0.9.
The upper figure is FET with 2.5 kb windows, the bottom the 100 kb FET.
There are shown two different limit. The solid line is the limit created by Burke
et al. (2010), the dotted line is the limit used for the stickleback data, see section
5.6.2.

76 CHAPTER 5. RESULTS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FET 2.5kb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Genome position ×106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FET 100kb

Figure 5.17: Fisher’s exact test (FET) on the synthetic data, for noise = 1. The
upper figure is FET with 2.5 kb windows, the bottom the 100 kb FET. There
are shown two different limit. The solid line is the limit created by Burke et al.
(2010), the dotted line is the limit used for the stickleback data, see section
5.6.2.

5.6. THREE-SPINED STICKLEBACK DATA 77

5.6 Three-spined stickleback data
The three-spined stickleback (Gasterosteus aculeatus) data set was obtained
from theKingsley Lab Stickleback Genome Browser (http://sticklebrowser.stanford.
edu/). This is the data set sequenced and analysed by (Jones et al., 2012). The
data set was sequenced by the Broad Institute, and the initial Genome Browser
Annotations was made by Angie Hinrichs, Hiram Clawson, Kayla Smith and
Donna Karolchik.

Our results are compared to the regions found by Vederhus (2013) and Jones
et al. The results from Jones et al. are the intersection of their CSS method,
filtered with a FDR of 0.02, and their SOM/HMM method, tree A (Jones et al.,
2012). They found 55 relevant genes for marine-freshwater divergence.

5.6.1 Cluster Separation Score
The results shown were filtered with a false discovery rate (FDR) of 0.05, and
are compared to the regions found by Jones et al., and the CSS results found
by Vederhus, also filtered with a FDR of 0.05.

As we can see in figure 5.18, all three methods for calculating MDS find the
EDA gene. In figure 5.19 the filtered regions for chromosome VI are shown.
All three methods find the same regions as Jones et al., but with more noise
in the results. This is not surprising, since the regions found by Jones et al.
are filtered with a FDR of 0.02, and then intersected with the results found
by another method, the SOM/HMM method, which would make them more
conservative. Details are given in figure 5.20, with more detailed regions in
figure C.3 in the Appendix.

Results from chromosome XIX are shown in figure 5.21. All three methods
find the same regions as Jones et al., but the CMDS finds one additional (small)
region, probably noise. As can be seen in the detailed results in figure 5.22, in
the relevant regions the results from CMDS matches the results found by Jones
et al. best. It is interesting to see that the combination method (SMACOF +
CMDS) is a middle ground between the results found by the classical MDS and
the SMACOF method. Results for other stickleback chromosomes can be found
in Appendix C.2.1, where we can see that the CSS finds the same regions as
Jones et al., with some additional regions or noise.

http://sticklebrowser.stanford.edu/
http://sticklebrowser.stanford.edu/

78 CHAPTER 5. RESULTS

1.24 1.25 1.26 1.27 1.28 1.29 1.30
Genome position ×107

0

5

10

15

20

Sc
or

es
,-

lo
g1

0(
p)

CSS score
-log10(p)
-log10(FDR p)

(a) CMDS

1.24 1.25 1.26 1.27 1.28 1.29 1.30
Genome position ×107

0

5

10

15

Sc
or

es
,-

lo
g1

0(
p)

CSS score
-log10(p)
-log10(FDR p)

(b) SMACOF

1.24 1.25 1.26 1.27 1.28 1.29 1.30
Genome position ×107

0

5

10

15

Sc
or

es
,-

lo
g1

0(
p)

CSS score
-log10(p)
-log10(FDR p)

(c) SMACOF + CMDS

Figure 5.18: Results for the EDA gene in stickleback chrIV. The results shown
are the cluster separation score (CSS) for all three MDS methods. The blue
lines are the CSS values, the red the − log10 p-values and the horisonal line is
the FDR 0.05 limit for the p-values.

5.6. THREE-SPINED STICKLEBACK DATA 79

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure 5.19: Significant regions in stickleback chrIV. The results shown are the
strictest results from Jones et al., the FDR 0.05 results from Vederhus and our
cluster separation score (CSS) results for all three MDS methods filtered with
a FDR of 0.05.

1.270 1.275 1.280 1.285 1.290 1.295 1.300
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure 5.20: Detailed results for the EDA gene. The results shown are the
strictest results from Jones et al., the FDR 0.05 results from Vederhus and our
cluster separation score (CSS) results for all three MDS methods filtered with
a FDR of 0.05.

80 CHAPTER 5. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure 5.21: Significant regions in stickleback chrXIX. The results shown are
the strictest results from Jones et al., the FDR 0.05 results from Vederhus and
our cluster separation score (CSS) results for all three MDS methods filtered
with a FDR of 0.05.

2400000 2450000 2500000 2550000 2600000 2650000 2700000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a) Genome position [2 400 000, 2 700 000]

Figure 5.22: Detailed results for stickleback chrXIX. The results shown are the
strictest results from Jones et al., the FDR 0.05 results from Vederhus and our
cluster separation score (CSS) results for all three MDS methods filtered with
a FDR of 0.05.

5.6. THREE-SPINED STICKLEBACK DATA 81

1.465 1.470 1.475 1.480 1.485 1.490 1.495
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [1.465, 1.495]× 107

Figure 5.22: Detailed results for stickleback chrXIX. The results shown are the
strictest results from Jones et al., the FDR 0.05 results from Vederhus and our
cluster separation score (CSS) results for all three MDS methods filtered with
a FDR of 0.05.

5.6.2 Fisher’s Exact Test
The results shown are results from FET with two different window sizes, 2.5 kb
and 100 kb. Vederhus’ results are his 2.5 kb FET results.

The limit developed by Burke et al., given in section 3.2, does not work well
on the stickleback data. It gives each window in the genome a probability of
0.1% to be filtered as relevant, and for the large stickleback data set, this gives
too many relevant regions. This can be seen for chromosome IV in figure 5.23.
As we can see, both FET methods cover almost the entire chromosome, with
the 2.5 kb FET covering some additional small regions. This is clearly not good
enough.

To filter fewer regions, we therefore used a different limit, developed with the
help of (Vederhus, 2013) and some trial and error. For the 100 kb windows, we
used the 10−9 percentile of the normal distribution and the 99.9th percentile of
the standard deviations over all windows. This gives the following strict limit:

median(L10FET5%Q) + qnorm(0.99999999999)× quantile(σ, probs = 0.999)

For the 2.5kb limit, we used the 10−9 percentile of the normal distrbution,
and the 90th percentile for the standard deviations over all windows.

82 CHAPTER 5. RESULTS

Using the strict limit, the FET finds the EDA gene in chromosome IV, as
can be seen in figures 5.24 and 5.26. The results for chromosome IV can be
seen in figure 5.25, where we can see that both the 2.5 kb and the 100 kb FET
find larger regions than Jones et al. with somewhat more noise. The FET finds
more regions in the genome than the CSS, which could be due to more noise in
the results. The two relevant regions in chromosome XIX are also found, as can
be seen in figure 5.27.

The 100 kb FET uses larger window sizes than Jones et al. and Vederhus,
and will therefore give larger regions than the other methods. The 100 FET
tends to nearly miss the relevant regions found by Jones et al., by stretching
out ahead of the region, and stopping to early. This is clearly visible in figures
5.24 and 5.28, where the 100 kb FET is ahead of the 2.5 kb FET.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Genome position ×107

FET 100kb

FET 2.5kb

Vederhus

Jones

Figure 5.23: Filtered Fisher’s exact test (FET) regions in stickleback chrIV. The
results shown are the strictest results from Jones et al., the 2.5kb FET from
Vederhus, and our FET for different window sizes, filtered with the limit given
by Burke et al.

5.6. THREE-SPINED STICKLEBACK DATA 83

1.25 1.26 1.27 1.28 1.29 1.30 1.31
Genome position ×107

0

1

2

3

4

Sc
or

es

FET 2.5kb
FET 100kb
limit 2.5kb
limit 100kb

Figure 5.24: Fisher’s exact test (FET) results for the EDA gene in stickleback
chrIV. The results shown are the FET with windows of size 2.5 kb and 100
kb. The noisy graph is the 2.5 kb FET, the thin line the 100 kb FET. The
two horisonal lines are the strict filtering limits given in section 5.6.2 for both
methods. Regions above the limit are kept.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

FET 100kb

FET 2.5kb

Vederhus

Jones

Figure 5.25: Filtered Fisher’s exact test (FET) regions in stickleback chrIV. The
results shown are the strictest results from Jones et al., the 2.5kb FET from
Vederhus, and our FET for different window sizes, filtered with the strict limits
given in section 5.6.2.

84 CHAPTER 5. RESULTS

1.25 1.26 1.27 1.28 1.29 1.30
Genome position ×107

FET 100kb

FET 2.5kb

Vederhus

Jones

Figure 5.26: Detailed Fisher’s exact test (FET) results for the EDA gene. The
results shown are the strictest results from Jones et al., the 2.5kb FET from
Vederhus, and our FET for different window sizes, filtered with the strict limits
given in section 5.6.2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

FET 100kb

FET 2.5kb

Vederhus

Jones

Figure 5.27: Filtered Fisher’s exact test (FET) regions in stickleback chrXIX.
The results shown are the strictest results from Jones et al., the 2.5kb FET from
Vederhus, and our FET for different window sizes, filtered with the strict limits
given in section 5.6.2.

5.6. THREE-SPINED STICKLEBACK DATA 85

2300000 2350000 2400000 2450000 2500000 2550000 2600000
Genome position

FET 100kb

FET 2.5kb

Vederhus

Jones

(a) Genome position [2 300 000, 2 600 000]

1.465 1.470 1.475 1.480 1.485 1.490
Genome position ×107

FET 100kb

FET 2.5kb

Vederhus

Jones

(b) Genome position [1.46, 1.49]× 107

Figure 5.28: Detailed Fisher’s exact test (FET) results for stickleback chrXIX.
The results shown are the strictest results from Jones et al., the 2.5kb FET from
Vederhus, and our FET for different window sizes, filtered with the strict limit
given in section 5.6.2.

86 CHAPTER 5. RESULTS

5.7 Drosophila data
The Drosophila melanogaster data set was sequenced and analysed by (Burke
et al., 2010), and the relevant data and results was obtained by contacting
the authors. The results from our tools are compared to the results found by
Vederhus (2013) and the Fisher’s exact test scores from Burke et al.

5.7.1 Cluster Separation Score
For the Drosophila data we only have frequency data for each population, and
we can therefore only use the CSS tool, since it is not possible to create the
contigency table needed by Fisher’s exact test.

In figure 5.29 we see the unfiltered results for the CSS for two MDS methods,
together with the results from Vederhus and Burke et al., for windows of size
100 kb. The results from Vederhus and our CSS results are multiplied by a
factor of 10, to better show the similarity with the resuts from Burke et al. As
we can see in figure 5.29a, the results from the CMDS fits the results from both
Vederhus and Burke. Not surprisingly, it fits Vederhus’ results better than those
from Burke et al. For the SMACOF algorithm, the result is very similar. As we
can see in figure 5.29b, the scores fit the results from Burke et al. better than
the classical MDS.

Since we only have frequency values for each population, we can not generate
a p-value, and will not get a proper measure of the significance of our results. We
therefore need to filter the results by selecting the x top scoring CSS windows.
The top 592 regions (about 1% of the scores) found for chromosome X compared
with the results from Vederhus can be seen in figure 5.30. The results for all
three MDS functions is quite similar, which shows that they peak at the same
positions in the chromosome.

5.7. DROSOPHILA DATA 87

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

6

7
Sc

or
es

Burke et al.
Vederhus
CMDS

(a) Classical MDS

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

6

7

Sc
or

es

Burke et al.
Vederhus
SMACOF

(b) SMACOF

Figure 5.29: Cluster separation score (CSS) results for Drosophila chrX. The
red is the Fisher’s exact test scores from Burke et al., the green is the CSS
values from Vederhus and our the blue is our CSS results, for both the CMDS
and SMACOF method. Our CSS results and the results from Vederhus are
multiplied with a factor of 10, to better show the similarity with the results
from Burke et al.

88 CHAPTER 5. RESULTS

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Figure 5.30: The top scoring cluster separation score (CSS) regions in Drosophila
chrX. The results shown are the top scoring regions from Vederhus’ CSS tool
and our top scoring CSS regions for all three MDS methods.

5.8 Atlantic cod data

To test the tools on another data set, the Atlantic cod (Gadus morhua) data set
was obtained from Bastiaan Star at the Centre for Ecological and Evolutionary
Synthesis, at the University of Oslo. The data contains three populations of
cod, one historic marine population from 1907, and two populations from 2011,
one marine and one coastal. The data set contains 23 chromosomes and 76
individuals, and the data set has a mean individual genomic coverage of 7×.
The data set contains over 400 000 SNPs. Divergent regions was found using
the Fst statistic, and Star et al. (unpublished results) found 3 divergent regions
between the 2011 coastal and marine populations, in chromosomes LG01, LG02
and LG07. The same regions were found between the historic population and
the 2011 coastal population. For the two marine populations, there was little
divergence between the regions; region 2 and 3 showed no sign of divergence, but
in region 1, there was a significant difference (Star et al., unpublished results).

Two analyses were run: to compare the two marine populations, from 1907
and 2011, and to compare the coastal and marine populations from 2011. The
analyses were run with a window size of 100 kb and a step size of 2 kb, since
smaller window sizes were too sparse.

5.8. ATLANTIC COD DATA 89

LG07

LG05

LG04

LG03

LG02

LG01

Figure 5.31: Atlantic cod, marine populations, chromosomes LG01 - LG05 and
LG07: The results shown are the cluster separation score (CSS) with classical
MDS with a window size of 100 kb and a step size of 2 kb. There is little
divergence in the data set, thus some windows are dicarded by the CSS. This
may account for some of the straight lines in the graph. The vertical axis is in
[0, 30], and the horisontal axis stretches through the entire chromosome.

5.8.1 The two marine populations
Cluster Separation Score

The CSS peaks in a region in LG01, similar to the region found by Star et al., as
can be seen in figure 5.31. The other chromosomes show little or no divergence
between the two populations, with only a few peaks in some chromosomes, the
strongest in LG03 and LG17 (see Appendix C.4), probably noise.

For this data the − log10 p-values do not peak with the CSS, as can be seen
in the bottom of figure 5.32, and a filtering based on a FDR p-value of 0.05
will not identify the region. When filtering the top 500 CSS regions instead, all
three MDS methods find the relevant region. This can be seen in figure 5.33.

90 CHAPTER 5. RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

0.0

0.5

1.0

1.5

2.0

Sc
re

s

FET

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

0

5

10

15

20

25

30

Sc
or

es

CSS CMDS

Figure 5.32: Atlantic cod, marine populations: Chromosome LG01. The top
figure shows the results of a 100 kb Fisher’s exact test (FET) and the bottom
shows the results of the cluster separation score (CSS), run with 100 kb windows.
The blue is the CSS values, the red the − log10 p-values.

SMACOF+
CMDS

SMACOF

CMDS
FDR 0.05 p-val

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

SMACOF+
CMDS

SMACOF

CMDS
top 500 regions

Figure 5.33: Atlantic cod, marine populations: filtered cluster separation score
(CSS) regions in chromosome LG01. The top figure shows the regions filtered
by a FDR p-value of 0.05, while the bottom shows the top 500 regions filtered
by CSS score.

5.8. ATLANTIC COD DATA 91

Fisher’s Exact Test

The FET is not able to locate the region. The L10FET score is small in the
relevant region (smaller than the surrounding regions), except for one peak
around position 1.5× 107, as can be seen in figure 5.32. On this data the FET
score behaves somewhat similar to the CSS p-value. Notice that the CSS has
some gaps in the data, which comes from the discarded windows, while the FET
will not discard any windows, and therefore has more noise in the results.

5.8.2 The marine and coastal 2011 populations

Cluster Separation Score

As we can see in figure 5.34, the CSS CMDS finds three regions of divergence, in
LG01, LG02 and LG07 in what appears to be the same regions that Star et al.
found, with the same length (Star et al., unpublished results). All three regions
have large peaks, stretching up to 180 in LG07. The SMACOF algorithm finds
less prominent peaks in the relevant regions (the largest peak is about 40), and
does not find the complete region for LG07. This can be seen in figure 5.35

On this data set with more divergence, both filtering methods for CSS, the
FDR p-value and the top x windows, find the relevant regions. Since there are
more peaks in this data set, and fewer discarded windows, we have to select
a large number of top scoring regions. This is shown for LG01 in figure 5.36,
LG02 and LG07 is given in Appendix C.4.

LG07

LG05

LG04

LG03

LG02

LG01

Figure 5.34: Atlantic cod, the 2011 populations, chromosomes LG01 - LG05
and LG07: The results showsn are the cluster separation score (CSS) with the
classical MDS method with a window size of 100 kb and a step size of 2 kb. The
vertical axis is in [0, 180].

92 CHAPTER 5. RESULTS

LG07

LG05

LG04

LG03

LG02

LG01

Figure 5.35: Atlantic cod, the 2011 populations, chromosomes LG01 - LG05
and LG07: The results shown are the cluster separation score (CSS) with the
SMACOF method with a window size of 100 kb and a step size of 2 kb. The
vertical axis is in [0, 50].

SMACOF+
CMDS

SMACOF

CMDS
FDR 0.05 p-val

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

SMACOF+
CMDS

SMACOF

CMDS
top 10000 regions

Figure 5.36: Atlantic cod, the 2011 populations: filtered cluster separation score
(CSS) regions in chromosome LG01. The top figure shows the regions filtered by
a FDR p-value of 0.05, while the bottom shows the top 10 000 regions filtered by
CSS score. We see the results for the classical MDS, SMACOF and combination
method (SMACOF+CMDS) for calculating MDS.

5.8. ATLANTIC COD DATA 93

Fisher’s Exact Test

For this data set the FET finds the three relevant regions. This can be seen
in figure 5.37. When filtering out the relevant regions, the limit developed by
Burke et al. (2010) returned too many regions in almost all chromosomes, so a
stricter limit was used:

median(L10FET5%Q) + qnorm(0.999999)× quantile(σ, probs = 0.99)

Chromosomes LG01 and LG09 is shown in figure 5.38, where we can see
that the limit by Burke et al. gives too many relevant regions in LG09, while
our limit only gives one small region here, probably noise. Both limits find the
region in LG01. Chromosomes LG02 and LG07 can be found in the Appendix,
figure C.21.

LG07

LG05

LG04

LG03

LG02

LG01

Figure 5.37: Atlantic cod, the 2011 populations, chromosomes LG01 - LG05
and LG07: Fisher’s exact test (FET) with a window size of 100 kb and a step
size of 2 kb. The vertical axis is in [0, 10].

94 CHAPTER 5. RESULTS

FET

FET
Burke

limit

LG01

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

FET

FET
Burke

limit

LG09

Figure 5.38: Atlantic cod, the 2011 populations: filtered Fisher’s exact test
(FET) regions in chromosomes LG01 and LG09 for a 100 kb FET. The results
from the Burke et al. limit and the strict limit given in section 5.8.2 are shown.
The top figure shows LG01 and the bottom figure shows LG09.

Chapter 6

Discussion and Conclusion

In this section the tools and results presented are discussed. The new tools
have several important improvements compared to the tools made by Vederhus
(2013). The most important improvements are the changes in the user inter-
face, the increased speed of the analyses and the quality of the results. These
improvements, together with possible weaknesses of the tools, are discussed in
the following sections.

6.1 Discussion of the usability of the tools

The most important improvement of the user interface is the change of file
format. Vederhus’ old tool had to be run for each chromosome separately,
creating much manual work for the user. The tool presented in this thesis
can be run for the entire genome at once, giving a large improvement in the
user experience. Together with the decreased run time of the tool, discussed in
section 6.2, it is now feasible to run several analyses with different parameters
in a short amount of time.

There are also some other changes to the user interface. The user has a
larger choice of parameters, being able to vary the calculations more. Each tool
is also described, with a short description or user guide at the bottom of each
page. Example runs are also provided, hopefully making it easier for the users
to run calculations on their own.

Even though the file format is improved, we still use the same GTrack format
presented by Vederhus (2013), with two files per genome, one for each popula-
tion. File formats are often problematic in bioinformatics, with many different
’standards’. To partially solve this problem, a tool for converting VCF files with
SNP data to the GTrack format was created. Tools to covert other file formats
to the custom GTrack is a recommended job for future applications.

We have not performed extensive user tests for the tool.

95

96 CHAPTER 6. DISCUSSION AND CONCLUSION

6.2 Discussion of speedup and code integration

We have achieved a large reduction of the run time of the program. Both the
serial and parallel versions of the tool have a significant speedup over the tool
made by Vederhus, with the serial version of the CSS tool alone achieving a
speedup of 80−700×, depending on the MDS method used. For the stickleback
data, Vederhus’ CSS tool took 45 hours to run for chromosome I (Vederhus,
2013), while the new CSS tool can run for 80 - 180 seconds on the entire genome,
depending on the MDS method used. The decreased runtime should make it
viable for users to run several different analyses in a short amount of time.

In section 5.2 we showed that the serial C programs gained a significant
speedup compared to the original Python programs made by Vederhus. This
can be seen in tables 5.1 to 5.3. It is not easy to quanitfy the exact speedup of
the C program versus the Python program, since the C code does more work,
and/or uses different algorithms. The CSS SMACOF method, which should do
the same amount of work as the Python program, achieves a speedup of 81×,
on average, which shows that C is clearly a better choice than Python when it
comes to speed.

The memory use of the program is acceptable, and is dependent on the size of
the input files. It has been possible to run the C program on a normal portable
computer.

The parallel program gives a considerable speedup to the serial program,
making it easy to run several analyses within reasonable amount of time. Veder-
hus’ CSS tool took 129 hours in total to run on the entire stickleback data, with
a lot of manual work in between, while the new tool can be run in a couple of
minutes, at worst. This makes it viable to run several analyses, with different
choices of algorithms and parameters, to get good results faster.

The speedup results presented in section 5.2 and 5.4 were run on the Insilico
node at the Abel computer cluster. Ideally, the analyses should be run alone on
the system, with all 64 cores available for use, but since the analyses are run on
the Genomic HyperBrowser from a web user interface, we do not have control
of how many other jobs was run at the same time. Therefore, the maximum
capacity of the system might not have been utilized.

The scaled speedup is nearly linear for up to 8 threads, but for 16 threads
and up, the speedup evens out. As we can see in figure 5.8, the largest speedup
is achieved for the FET method, where the tasks are of roughly equal size. Here
the speedup evens out at 32 threads. This could be due to overhead of thread
creation and inefficiencies in the parallel implementation. For the CSS with a
task size of 100 windows, as seen in figure 5.4, the speedup is not as good as
for the FET, which indicates that some of the tasks could be bottlenecks for
the parallel program. For the CSS, a smaller task size gives better speedup, as
we can see in the scaled speedup for a task size of 25, given in figure 5.6. The
fetching of tasks are controlled by a single global variable that only one thread
can access at a time. This means that smaller tasks can give increased overhead,
so we must be careful and not let the task size be too small.

The integration of the C code in Python, with the use of Cython, requires

6.3. DISCUSSION OF THE RESULTS FROM ANALYSES 97

a considerable knowledge of the Python version and system hardware on the
platform to use, but it is a relatively easy way to integrate the code. The
Cython code is small and easy to write, and it is only the compilation phase
that requires extra work. The strength of Python as a glue language is shown,
and the combination of C and Python works well together. With Cython, it is
easy to use different C libraries, with parallel programming being no exception.

A weakness in the runtime of the program is the time it takes to pre-process
new data files the first time they are used for an analysis. With a large data set,
like the stickleback data set, this takes several hours. This is a feature of the
HyperBrowser system outside the scope of this thesis, but in future applications,
it should be handled in some way.

6.3 Discussion of the results from analyses

In the following, the results from the analyses are discussed. The methods used
are improved in some important ways. The FET method is implemented cor-
rectly; Vederhus did not calculate complete two-tailed FET, and the standard
deviation was not calculated correctly. This correction should increase the qual-
ity of the results. The CSS method is implemented with three different versions
of MDS: classical MDS, SMACOF and a combination of the two methods, which
makes it possible to study the differences between the different methods. The
user can select which method to use, and thus select the method that suits the
data set best. The methods often give noise (false positives) in different parts of
the genome. Therefore, it could be useful to intersect the results from the three
methods, to minimize the overall noise in the results. In the following section,
the results found on the synthetic data, stickleback data, Drosophila data and
the atlantic cod data are discussed.

6.3.1 Synthetic data

All the methods were able to find the relevant regions in the synthetic data set.
The CSS methods and the 2.5 kb FET could find the relevant regions for noise
probabilities up to 0.8, as shown in figures 5.9 to 5.17, with some false positives
in the data set. The 100 kb FET with the limit found by Burke et al. (2010)
was able to find the regions for noise up to 0.9, as shown in figures 5.13 to 5.16,
without any false positives. The results on this artificial data sets show that
both the CSS and the FET can find relevant regions in the genome for high
levels of noise. For the FET methods, two limits are shown, the limit used by
Burke et al. and the limit used by us to filter the stickleback data. As we can see
in figures 5.13 to 5.17, the stickleback limit does not work well on the synthetic
data, especially on the 100kb FET. This is discussed further in section 6.3.2.

98 CHAPTER 6. DISCUSSION AND CONCLUSION

6.3.2 Three-spined stickleback data
On the three-spined stickleback data, the CSS method works best. The three
different MDS methods give similar results, and are able to reproduce the results
found by Jones et al. (2012) and Vederhus (2013) quite well. Multi-dimensional
scaling is used to scale the data down to two dimensions, while keeping the
distance relation between the points. The CSS then quantifies this distance
between the points. Therefore it is natural that the different MDS methods do
not give too different results, since they all try to preserve the distance between
the same points. There are some differences between the three methods. All
three find the relevant regions, but they find noise (false positives) in different
parts of the chromosome, and the regions found have different length, as can be
seen in figures 5.20 and 5.22. Since the different methods give noise in different
areas of the genome, an intersection of the results could be used to get the best
possible results.

The FET is the weakest method on this data set. The FET locates the
regions found by Jones et al., for instance the EDA gene, as shown in figures
5.24 and 5.26, but the limit developed by Burke et al. does not work well on
the stickleback data, returning too many regions. We needed to use a stricter
limit, and ended up with a limit based on the 10−9 percentile of the normal
distribution, as described in section 5.6.2. This limit was found with the help of
(Vederhus, 2013) and some additional trial and error, making it difficult for the
user to find a good enough limit without extensive study of the FET windows,
for instance by plotting the results for each chromosome. The limit used for the
FET should probably take into account the size of the genome, or the density
of SNPs in the genome. A limit that will give each window a probability of
0.1% to be included in the top scoring regions, will naturally not work well for
a large genome, with 22 chromosomes, each with tens of millions of base pairs.
We will simply get too many relevant regions. In addition to this, the 100 kb
FET tends to almost miss the relevant regions, with long stretches before the
region, but not much after, as can be seen in figure 5.28.

Anthony D. Long, the senior author of the Burke et al. paper, has in personal
correspondance said the following (Long, pers. comm.):

I am not so convinced the L10FET statistic we developed is the best way to go
these days . . . the field has progressed significantly in the last 5 years . . .

no-one knew what they were doing in 2010.

This, together with our results, could indicate that the FET is not the best
method available, and that the limit should be further developed.

6.3.3 Drosophila data
We are able to reproduce the results from Burke et al. (2010) well, see figure
5.29 and Appendix C.3. The peaks of the CSS matches the peaks produced by
Vederhus and Burke et al. A problem with the result is the lack of p-values,
since we only have frequency data, and no information about each individual.

6.3. DISCUSSION OF THE RESULTS FROM ANALYSES 99

The results are therefore filtered by selecting the x top scoring regions. A better
limit could be developed here.

There are some possible problems with the data set. In a recent simula-
tion study, Baldwin-Brown, Long and Thornton simulated different “evolve-and-
resequence” (E&R) experiments with a different number of design parameters
(Baldwin-Brown et al., 2014). They found that the parameters used by cur-
rent studies did not achieve a high power of selection, and therefore suggested
that E&R experiments should use larger population sizes, more generations of
selection and many more independent replicates than are done by current ex-
periments (Baldwin-Brown et al., 2014). Burke, Liti and Long empirically val-
idated this idea in a Saccharomyces cerevisiae study (Burke et al., 2014), where
they demonstrated that maximizing two of these parameters was necessary for
identifying canditate regions in the genome. Burke et al. (2014) found a small
number of highly localized regions in the genome, but when the data set was
downsampled, with fewer replicate populations and fewer generations, a weaker
signal involving a larger part of the genome was found (Burke et al., 2014). This
indicates that the degree of replication in the experiment determines what can
be learned from the data set (Burke et al., 2014).

6.3.4 Atlantic cod data

For the coastal and marine 2011 populations both the FET and CSS tool are
able to reproduce the results found by Star et al. (unpublished results), as shown
in figures 5.34 and 5.37. The limit used by the FET filtering method needed
some work, as can be seen in figure 5.38. The CMDS method for calculating
MDS worked better than the SMACOF method, with more prominent peaks.
SMACOF did not find the complete region in LG07, see figure 5.35.

For the marine data set, a data set with little divergence, the FET is not
able to reproduce the significant region, and gives a lot of noise in the results.
The CSS is highly correlated with the Fst used by Star et al. (Jones et al.,
2012), thus the CSS peaks in the relevant region, see figure 5.31, but the p-value
does not follow the CSS, and the FDR p-value limit are not able to filter out
the region.

Both the FET and the calculation of p-value used for CSS are conservative,
see further discussion in section 6.3.5, which means that the tools might generate
too large p-values. Thus, in data sets with little divergence, we might miss
regions with small difference between the populations, and discard otherwise
interesting regions. For the FET, improvements to the method can only be
made in future work, but the conservativeness of the CSS p-value can be handled
by the user in two ways: by studying the CSS values (and filtering on the top
scoring CSS regions), or by increasing the number of runs for the Monte Carlo
test. These subjects are further discussed in section 6.3.5.

The CSS discards sparse windows with too little divergence, as is discussed
in section 6.3.5. For large populations with little diversity, like the two marine
populations, this will lead to many discarded windows. We had to run the
analyses for windows of size 100 kb, since smaller windows discarded too many

100 CHAPTER 6. DISCUSSION AND CONCLUSION

regions. The number of discarded regions can also be a problem for the p-value,
as we can see in figure 5.32, where there are large gaps in the data set in the
relevant region.

6.3.5 Possible weaknesses in analyses

Aside from the artificial data set, we do not have any definitive gold standard to
measure our results by. The reproduction of the results from Jones et al. (2012),
Burke et al. (2010) and Star et al. (unpublished results) is not enough to make
a definitive conclusion, and additional data sets should be tested to evalute the
performance of the methods.

There could be several sources of error: in the source code, in the parallel
implementation, and in the methods themselves. Although extensive testing of
each method is performed, there could be errors not found in the implementation
of the methods, and race conditions not found in the parallel code. The parallel
code is tested with several simple tests, to make sure it gives the same results
as the serial program.

The task of this thesis was to improve the run time and user interface of the
methods already implemented by Vederhus (2013). The oldest method used was
presented by Burke et al. in 2010, and five years is a long time in comparative
genomics. Therefore, there could be better methods for idenitifying regions
of parallel divergence than using the CSS and FET methods, for instance the
Nadaraya–Watson kernel regression estimate (used by R function ksmooth),
recommended by Anthony D. Long, the senior author of the Drosophila paper
(Long, pers. comm.). The implementation of other methods are outside the
scope of this thesis, but could be done in future work.

There are several possible error sources for the CSS methods. For MDS the
choice of distance metric is important, and the distance metrics used in this
thesis may not be optimal. The CMDS works best with Euclidean distances,
and even though it finds a best-possible solution, it minimizes Strain and not
the Stress criterion used by the SMACOF method. The SMACOF method is
only guaranteed to find a local optimum (Borg & Groenen, 2005), which means
that we might not always get the best-possible soution. The choice of start point
is important, since the starting point controls the search area of the algorithm.
Two start point variants are presented in this thesis; to run the method with
several random start points, as is done for the regular SMACOF method, or to
select the result of the CMDS as a start point, as is done for the combination
method.

The Monte Carlo test p-value, (r + 1)/(n + 1), tends to overestimate the
exact p-value, especially when permutations are sampled with replacement, as
they are in this application. Phipson and Smyth (2010) showed that the over-
estimation of the 0.05 p-value is 2% when n = 1000, and that small n gives a
very conservative p-value. When n increases, the exact p-value converges to the
estimated p-value (Phipson & Smyth, 2010). Therefore, it is necessary to run
the Monte Carlo tests with many samples. To further shorten the runtime of
the method, we stop the calculation when r reaches a given number. Thus, the

6.4. WEAKNESS IN IMPLEMENTATION 101

resulting p-value might be based on a lower sample size than n. The user can
change the parameters of the Monte Carlo test as they like, and for data sets
with little divergence, it is recommended to select large parameters, at the cost
of increased runtime.

The CSS discards windows with too little divergence, based on the sparsity
of the ∆ matrix. If more than half of the values are less than 0.0001 (0), the
window is discarded. For large populations with little diversity, this can lead to
many discarded windows. The method for discarding windows was developed
and tested on the stickleback data, a data set with a population size of 21 and
relatively much diversity (Jones et al., 2012), and could therefore have some
weaknesses for data sets with larger populations. The windows are discarded
for a more conservative result (Jones et al., 2012), but our tool is perhaps already
too conservative for data with low divergence.

For both the CSS and FET we only count the number of major and minor
alleles. The positions where both alleles are observed (the ’0’ value in our
GTrack file) are skipped, to get a more conservative result. Vederhus (2013)
tried to run his analyses by counting the ’0’ values, but that led to much noise
in the data set. This could, howewer, contribute to the overall conservativeness
of our results.

The statistical power of FET has generated heated debate in statistical lit-
erature, the main criticism being that the test is too conservative (i.e. that it
generates too large p-values), which can increase the resources needed for clin-
ical trials (Crans & Shuster, 2008). Crans and Shuster found that the FET
was too conservative even for sample sizes up to 125 per group, and proposed
adjustments to the FET which would increase the statistical power, by making
it less conservative. The sample sizes of the stickleback data are 10 and 11 per
group, which means that the results found could be too conservative, and that
greater population sizes are needed for better results.

6.4 Weakness in implementation

A weakness in the implementation is that some changes had to be made to the
current HyperBrowser system to make these tools work. We have e.g. changed
the sorting algorithm used in the pre-processing of input files. The CSS tool
assumes that the files are ordered by position and then individual, in the same
order throughout the data. With a different sorting algorithm that does not
preserve the correct order of the elements, for instance quick sort, the CSS test
will not give correct results. This should be handled before the code is merged
into the standard HyperBrowser code.

6.5 Conclusion

In this study we improved the existing tools for comparative genomics, by im-
proving the file format and user interface, and achieved a large speedup of the

102 CHAPTER 6. DISCUSSION AND CONCLUSION

tools. The tools are now much more practical to use and the user should be
able to run several analyses with different parameters in a short time. A tool
for converting VCF files to the GTrack format is also developed, to make the
tools usable for a broader range of applications. We have decreased the runtime
of the tools dramatically, which should make the tools possible to use in future
studies, with the possibility of larger data sets.

Our tools are able to reproduce the results found by previous studies. The
CSS gives accurate results on a broad range of data sets. The three different
MDS methods often give similar results, but with noise in different parts of
the genome. On some data sets, the CMDS gives the strongest signal, while
on other data sets the intersection of the tree MDS methods will give the best
result.

The FET works well on several data sets, but is weaker than the CSS. The
limit used to filter the FET scores does not work well on all data sets, and needs
a lot of trial and error by the user. This limit therefore needs to be developed
further. For data sets with overall low divergence the FET value and CSS
p-value might be too conservative, rejecting regions with small, but possibly
important, divergence. The p-value calculation can be improved by the user,
by selecting larger parameters for the Monte Carlo test, at the cost of increased
runtime.

The increased speed, usability and accuracy of the tools make it feasible to
run these analyses on a larger scale than has previously been done. These tools
should therefore be able to meet the increased need for analysing large scale
data sets in comparative genomics.

Chapter 7

Future Work

We have showed that we were able to improve the user interface of the tools,
and have achieved a large speedup of the tools. We are also able to reproduce
the results found by previous work, but there are still some improvements that
could be made to the tools in future work.

To further increase the runtime of the tools, the calculations could be por-
ted to Abel, the computer cluster at the University of Oslo. The current par-
allelization is done on Insilico, using threads, with parallelization inside each
chromosome. It should therefore be relatively easy to port the calculations on
to Abel. This could achieve a larger speedup of the calculations. The different
methods used could also be implemented using faster algorithms. There are
for instance other dimensionality reduction algorithms that could be tried, for
instance Split-and-Combine MDS (Tzeng, Lu & Li, 2008), Isomap (Tenenbaum,
de Silva & Langford, 2000) or Local Linear Embedding (Roweis & Saul, 2000).

The methods used in these tools are perhaps no longer the ’state of the art’
in bioinformatics, and the tools should be extended with several new methods,
for instance with the Nadaraya–Watson kernel regression estimate (used by R
function ksmooth), recommended by Anthony D. Long, the senior author of the
Drosophila paper (Long, pers. comm.). The calculation of limit in the FET
tool should also be developed further. Vederhus (2013) suggested that a limit
based on FDR could be useful.

For data sets with little genomic divergence, the FET and the CSS p-value
calulated might be too conservative. The FET could be made less conservative
by the suggestions made by Crans and Shuster (2008). Phipson and Smyth
(2010) have several suggestions for a different calculation of the Monte Carlo
test p-value, such as calculating the p-value without replacement, or calculating
the exact p-value, which could be implemented in future works.

There are some improvements that could be made for the usability of the
tools. One recommended feature would be to automatically run analyses with
several different window sizes set by the user. The file format used is a custiom
GTrack file, and even though we have created a tool for converting VCF files to
the custom GTrack format, tools for converting other file formats to our custom

103

104 CHAPTER 7. FUTURE WORK

GTrack format could be developed.
The output from the tools must now be analysed and plotted by the user,

and this requires knowledge of a good plotting tool or some programming skills.
A future improvement could be to let the tools generate graphs and barplots
from the results, for each chromosome or for chromosomes selected by the user.

The order of the input data to the CSS tool is important. Therefore we have
changed a part of the HyperBrowser code, as described in section 4.9. This
must be handled if the comparative branch is going to be merged in to the
regular HyperBrowser branch. Either, a choice of sorting algorithm could be
implemented, so that the different tools could choose which sorting algorithm
to use, or the CSS tool must be modified to handle input data with random
order of individuals.

Appendices

105

Appendix A

Example runs

Both example runs presented in this chapter can be found at
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/example-runs.

A.1 An example run with three-spined stickle-
back data

A.1.1 Converting the three-spined stickleback data file
The data files from (Jones et al., 2012) are available on the Sticklebrowser,
http://sticklebrowser.stanford.edu/. The relevant data files can be obtained
from the Table Browser (Karolchik et al., 2004). Go to http://sticklebrowser.
stanford.edu/cgi-bin/hgTables and download the ’Visual Genotype’ track for
the entire genome. This file is big, so it should be downladed as a gzip file. The
relevant choices for the Table Browser can be found in figure A.1. On the Table
Browser, the results from (Jones et al., 2012) can also be found.

The data must be loaded into the Genomic HyperBrowser with the ’Upload
File’ tool. If the file is big, it can be wise to load it as a compressed file, e.g. a
.zip file. The upload will be faster, and the HyperBrowser unpacks the data. It
is important not to refresh the browser while uploading a file, this can spoil the
upload.

The data must be converted to the correct GTrack format. This is done with
the comparative genomics tool Convert Stickleback Snps to Gtrack. This
can be seen in figure A.2. The conversion needs to be done twice, once for each
population group. If the files are big, as in this case, this tool will take some
time to run. This tool is one of Vederhus’ old tools. We have only made a small
change to the header of the GTrack file.

When the conversion is finished, the FET and/or the CSS tool can be run
on the data.

107

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/example-runs
http://sticklebrowser.stanford.edu/
http://sticklebrowser.stanford.edu/cgi-bin/hgTables
http://sticklebrowser.stanford.edu/cgi-bin/hgTables

108 APPENDIX A. EXAMPLE RUNS

Figure A.1: The Table Browser (http://sticklebrowser.stanford.edu/cgi-bin/
hgTables). Here the files and results from Jones et al. (2012) can be found.
Pictured are the relevant choices for downloading the stickleback SNP data
from Jones et al.

http://sticklebrowser.stanford.edu/cgi-bin/hgTables
http://sticklebrowser.stanford.edu/cgi-bin/hgTables

A.1. AN EXAMPLE RUN WITH THREE-SPINED STICKLEBACK DATA109

Figure A.2: The Convert Stickleback Snps to Gtrack tool web user interface
https://hyperbrowser.uio.no/comparative. This tools converts the SNP file from
Jones et al. (2012) to the GTrack file format.

https://hyperbrowser.uio.no/comparative

110 APPENDIX A. EXAMPLE RUNS

A.1.2 The Fisher’s Exact Test Tool

Figure A.3: Fisher Exact Test SNP Tool web user interface, https://
hyperbrowser.uio.no/comparative. This tool calculates a FET score and a
standard deviation for each window in the genome. The user can select the
window and step size, and the percentile FET score to represents the window.
The default values are 2.5 kb, 0.5 kb and 0.95, respectively.

To run the Fisher’s exact test, choose the Fisher Exact Test SNP Tool
under comparative genomics. There are several choices. The user interface can
be seen in figure A.3.

• First, the correct genome build must be selected. For the stickleback data,
this is ’Stickleback Feb. 2006’.

• The next step is to select the SNP data for the two groups. This is the
two converted GTrack files from history.

• The sliding window size and step must be selected. The default here is
2500 and 500.

• The percentile of the FET scores for each window must be selected. The
default is 0.95, which corresponds to the 95th percentile of the scores in
each window.

https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative

A.1. AN EXAMPLE RUN WITH THREE-SPINED STICKLEBACK DATA111

• There are two different output formats. ’tabular’ gives an output file
with the results (needed for further analysis), while ’html’ is good for
debugging/running.

Press ’Execute’, and the analysis is started. First time one of the tools is run
on a new file, the file is pre-processed. This is part of the standard HyperBrowser
code and is run for each analysis. If the file is big, this takes a long time, e.g. for
the stickleback data this can take several hours. The file is only pre-processed
the first time it is run. Next time the data set is used it will run as normal. The
output from the FET tool (for the ’tabular’ output format) is a text file with all
the results, ordered by chromosome and the start position of the window. The
file looks like this:

#seqid start score stddev
chrI 0 0.716003343635 0.249703127287
chrI 500 0.689210167047 0.195583453385
chrI 1000 0.689210167047 0.208238581515

To filter out the relevant regions, use the Filter Fisher Scores tool, also
under comparative genomics. The input to this tool is the resulting file from
the FET tool. The web user interface of the tool can be seen in figure A.4. Here
the relevant FET file and genome build must be selected, and the user have the
choice of some additional parameters. The output file is a GTrack file with the
relevant regions in the genome.

A.1.3 The Cluster Separation Score Tool
To run the CSS analysis, the Cluster Separation Score tool must be selected.
The user interface can be seen in figure A.6. Many of the choices here are similar
too the FET tool, with some exceptions:

• A comparison metric must be selected. For the stickleback data, select
’Count individual SNP-differences in window’. For frequency data, select
’Compute average of difference ...’

• The parameters for the Monte Carlo test must be selected, the ’Minimun
significance score runs’ and ’Maximal significance scores’. The first con-
trols the minumim amount of ’hits’ needed, the other controls the max-
imum number of runs. Larger values gives more accurate results, at the
cost of increased runtime.

To filter the results found by the CSS the tool Significant CSS Regions
is used. The user interface of this tool is shown in figure A.5. The user has
two filtering options: To filter the p-value by a FDR rate, or to select the x top
scoring CSS regions. The FDR filtering scheme is recommended, but it can only
be used on data with information of each individual, as for this stickleback data
set, and not pooled populations, like the Drosophila data (Burke et al., 2010).

112 APPENDIX A. EXAMPLE RUNS

Figure A.4: Filter Fisher Scores web user interface https://hyperbrowser.uio.
no/comparative. This tool filters the windows found by the FET SNP Tool,
to return the most prominent regions. The user selects the parameters of the
filtering.

Figure A.5: Significant CSS Regions web user interface https://hyperbrowser.
uio.no/comparative. With this tool, the windows found with the CSS tool can
be filtered with two different methods: by a FDR p-value limit, or select the
top x CSS regions. The filtering method is selected by the user.

https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative

A.1. AN EXAMPLE RUN WITH THREE-SPINED STICKLEBACK DATA113

Figure A.6: Cluster Separation Score web user interface https://hyperbrowser.
uio.no/comparative. This tool calculates a cluster separation score and the
corresponding p-value for each window in the genome. The user selects the
window and step sizes. The tool estimates the significance by a Monte Carlo
test. Parameters for this analyses must also be selected.

https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative

114 APPENDIX A. EXAMPLE RUNS

A.2 VCF Convert example run
This tool converts a VCF file with SNP data to our custom GTrack format. We
made some assumptions about this file, these can be found in section 4.2.2. The
VCF file can be converted to several GTrack files, one file per population. In
this example run, which uses the atlantic cod data described in section 5.8 we
have three different populations. The tool has to be run three times, one for
each population.

The first step is to upload the VCF file and (optional) the population files
to the current HyperBrowser history. This can be done with the ’Upload File’
tool. In the tool user interface, the genome build and the correct VCF file has
to be selected. The user has the choice of how to specify the population, either
by a population text file, with one individual per line, or as a comma separated
list in a text box. The user interface can be seen in figure A.7. When the files
are converted, the CSS and FET tools can be run, as described in Appendix
A.1.

Figure A.7: Convert VCF To GTrack Tool web user interface https://
hyperbrowser.uio.no/comparative. This tools takes a VCF file with SNP data
and a file of individuals in the population and converts it to a GTrack file. The
tool has to be run once for each population.

By following the link given at the start of this section, an example run with
the Atlantic cod data, for the marine and coastal 2011 popluations can be found.

https://hyperbrowser.uio.no/comparative
https://hyperbrowser.uio.no/comparative

Appendix B

Analyses on the Genomic
HyperBrowser

The runs for the different analyses can be found at the following Galaxy pages:

• Serial/parallel runtime:

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/threadtest

• FET three-spined stickleback:

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/fishers-exact-test

• CSS three-spined stickleback:

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-
scorer-stickleback

• CSS Drosophila:

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-
scorer-drosophila

• Atlantic cod:

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/atlantic-cod

For Vederhus’ old runs see Vederhus (2013). The results from the Drosophila
paper (Burke et al., 2010) are included in the Drosophila run, and can also be
obtained by contacting the authors. The results and data for the stickleback
paper (Jones et al., 2012) can be found at the Sticklebrowser, see section 5.6
and A.1.1.

115

https://hyperbrowser.uio.no/comparative/u/tuvakt/p/threadtest
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/fishers-exact-test
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-scorer-stickleback
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-scorer-stickleback
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-scorer-drosophila
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/cluster-separation-scorer-drosophila
https://hyperbrowser.uio.no/comparative/u/tuvakt/p/atlantic-cod

116 APPENDIX B. ANALYSES ON THE GENOMIC HYPERBROWSER

Appendix C

Detailed results

C.1 Detailed results of parallel program
The following tables show the runtimes for the parallel program, with a variable
task size and number of threads.

Size of tasks Total runtime
10 88.9
50 71.6
100 89.3
500 166.5
1000 216.7
5000 306.7
10000 354.8

Table C.1: CSS with a variable task size. The number of threads is 64, and the
task size is given in {10, 50, 100, 500, 1000, 5000, 10000}. The runtime is given
in seconds.

Size of tasks Total runtime
10 103.6
50 29.4
100 18.7
500 14.3
1000 17.2
5000 53.7
10000 93.6

Table C.2: FET with a variable task size. The number of threads is 64, and the
task size is given in {10, 50, 100, 500, 1000, 5000, 10000}. The runtime is given
in seconds.

117

118 APPENDIX C. DETAILED RESULTS

Number of threads Total runtime
1 734.4
2 374.8
4 194.5
8 119.2
16 96.9
32 89.4
64 88.2
128 87.2

Table C.3: CSS with a variable number of threads, given in
{1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The runtime is given in
seconds

.
Number of threads Speedup
1 1.0
2 1.96
4 3.78
8 6.16
16 7.58
32 8.21
64 8.33
128 8.42

Table C.4: Scaled speedup (scaled for 1 thread) for CSS with a variable number
of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The runtime
is given in seconds.

Number of threads Total runtime
1 1070.2
2 576.8
4 275.4
8 149.5
16 94.1
32 78.1
64 65.5
128 75.5

Table C.5: CSS with a variable number of threads, given in
{1, 2, 4, 8, 16, 32, 64, 128}. The task size is 25. The runtime is given in
seconds.

C.1. DETAILED RESULTS OF PARALLEL PROGRAM 119

Number of threads Scaled speedup
1 1.0
2 1.86
4 3.89
8 7.16
16 11.37
32 13.7
64 16.34
128 14.17

Table C.6: Scaled speedup (scaled for 1 thread) for CSS with a variable number
of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 25. The runtime
is given in seconds.

Number of threads Total runtime
1 442.2
2 224.3
4 114.5
8 60.3
16 35.6
32 24.2
64 19.4
128 19.9

Table C.7: FET with a variable number of threads, given in
{1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The runtime is given in
seconds.

Number of threads Speedup
1 1.0
2 1.97
4 3.86
8 7.33
16 12.42
32 18.27
64 22.79
128 22.22

Table C.8: Scaled speedup (scaled for 1 thread) for FET with a variable number
of threads, given in {1, 2, 4, 8, 16, 32, 64, 128}. The task size is 100. The runtime
is given in seconds.

120 APPENDIX C. DETAILED RESULTS

C.2 Detailed three-spined stickleback results
The filtered results for all stickleback chromosomes are included here. Chromo-
somes without any results and results already included in section 5.6 are not
included here.

C.2.1 Cluster Separation Scorer

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

Figure C.1: Significant regions in stickleback chrI. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 121

2.15 2.16 2.17 2.18 2.19
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [2.15, 2.195]× 107

Figure C.1: Significant regions in stickleback chrI. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.5 1.0 1.5 2.0
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

Figure C.2: Significant regions in stickleback chrII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

122 APPENDIX C. DETAILED RESULTS

300000 350000 400000 450000 500000 550000 600000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [300 000, 600 000]

Figure C.2: Significant regions in stickleback chrII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.3: Significant regions in stickleback chrIII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 123

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a) Whole chromosome

1.380 1.385 1.390 1.395 1.400 1.405 1.410
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [1.38, 1.41]× 107

1.490 1.495 1.500 1.505 1.510 1.515 1.520
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(c) Genome position [1.49, 1.52]× 107

1.970 1.975 1.980 1.985 1.990 1.995 2.000
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(d) Genome position [1.97, 2.0]× 107

2.150 2.155 2.160 2.165 2.170 2.175 2.180
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(e) Genome position [2.15, 2.18]× 107

2.380 2.385 2.390 2.395 2.400 2.405 2.410
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(f) Genome position [2.38, 2.41]× 107

Figure C.4: Significant regions in stickleback chrIV. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

124 APPENDIX C. DETAILED RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.5: Significant regions in stickleback chrVI. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

Figure C.6: Significant regions in stickleback chrVII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 125

1.790 1.795 1.800 1.805 1.810 1.815 1.820
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [1.79, 1.82]× 107

Figure C.6: Significant regions in stickleback chrVII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.5 1.0 1.5
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

Figure C.7: Significant regions in stickleback chrVIII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

126 APPENDIX C. DETAILED RESULTS

8100000 8150000 8200000 8250000 8300000 8350000 8400000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [8 100 000, 8 400 000]

9600000 9650000 9700000 9750000 9800000 9850000 9900000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(c) Genome position [9 600 000, 9 900 000]

Figure C.7: Significant regions in stickleback chrVIII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 127

0.0 0.5 1.0 1.5 2.0
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.8: Significant regions in stickleback chrIX. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.9: Significant regions in stickleback chrX. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

128 APPENDIX C. DETAILED RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

5450000 5500000 5550000 5600000 5650000 5700000 5750000 5800000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [5 450 000, 5 800 000]

Figure C.10: Significant regions in stickleback chrXI. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 129

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.11: Significant regions in stickleback chrXII. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.12: Significant regions in stickleback chrXVI. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

130 APPENDIX C. DETAILED RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(a)

750000 800000 850000 900000 950000 1000000 1050000
Genome position

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

(b) Genome position [750 000, 1 050 000]

Figure C.13: Significant regions in stickleback chrXVIII. The strictest results
from Jones et al., the FDR 0.05 results from Vederhus and our CSS results from
all three MDS methods with FDR 0.05 are shown.

C.2. DETAILED THREE-SPINED STICKLEBACK RESULTS 131

0.0 0.5 1.0 1.5 2.0
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.14: Significant regions in stickleback chrXX. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

0 1 2 3 4 5 6
Genome position ×107

SMACOF+
CMDS

SMACOF

CMDS

Vederhus

Jones

Figure C.15: Significant regions in stickleback chrUn. The strictest results from
Jones et al., the FDR 0.05 results from Vederhus and our CSS results from all
three MDS methods with FDR 0.05 are shown.

132 APPENDIX C. DETAILED RESULTS

C.3 Detailed Drosophila results
All chromosomes, except chromosome X previously shown in section 5.7, are
shown here for completeness, for the classical MDS and SMACOF method.

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

−1

0

1

2

3

4

5

6

7

Sc
or

es

Burke et al.
Vederhus
CMDS

(a) chr2L

Figure C.16: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the classical MDS method are shown. The window and step size for all
three analyses are 100kb and 2 kb, respectively.

C.3. DETAILED DROSOPHILA RESULTS 133

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

6

Sc
or

es

Burke et al.
Vederhus
CMDS

(b) chr2R

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

Sc
or

es

Burke et al.
Vederhus
CMDS

(c) chr3L

Figure C.16: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the classical MDS method are shown. The window and step size for all
three analyses are 100kb and 2 kb, respectively.

134 APPENDIX C. DETAILED RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

0

1

2

3

4

5

6

7

Sc
or

es

Burke et al.
Vederhus
CMDS

(d) chr3R

Figure C.16: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the classical MDS method are shown. The window and step size for all
three analyses are 100kb and 2 kb, respectively.

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

−1

0

1

2

3

4

5

6

7

Sc
or

es

Burke et al.
Vederhus
SMACOF

(a) chr2L

Figure C.17: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the SMACOF method for calculating MDS are shown. The window and
step size for all three analyses are 100kb and 2 kb, respectively.

C.3. DETAILED DROSOPHILA RESULTS 135

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

6
Sc

or
es

Burke et al.
Vederhus
SMACOF

(b) chr2R

0.0 0.5 1.0 1.5 2.0 2.5
Genome position ×107

0

1

2

3

4

5

Sc
or

es

Burke et al.
Vederhus
SMACOF

(c) chr3L

Figure C.17: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the SMACOF method for calculating MDS are shown. The window and
step size for all three analyses are 100kb and 2 kb, respectively.

136 APPENDIX C. DETAILED RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Genome position ×107

0

1

2

3

4

5

6

7

Sc
or

es

Burke et al.
Vederhus
SMACOF

(d) chr3R

Figure C.17: The Drosophila results. The Fisher’s exact test results from Burke
et al., the cluster separation score from Vederhus and our cluster separation score
with the SMACOF method for calculating MDS are shown. The window and
step size for all three analyses are 100kb and 2 kb, respectively. As we can see,
our results fit the results from Burke et al. well.

C.4 Detailed Atlantic cod results

C.4.1 The two marine populations
CSS with CMDS results for LG06 and LG08 to LG23 is shown here, for the
two marine populations (figure C.17). LG01 to LG05 and LG07 is shown in the
result chapter.

C.4.2 The marine and coastal 2011 populations
Filtered regions for the 2011 populations for the CSS can be found in figures
C.18 and C.19. The remaining results from the FET can be found in figure
C.20.

C.4. DETAILED ATLANTIC COD RESULTS 137

LG12

LG11

LG10

LG09

LG08

LG06

(a) LG06 and LG08 - LG12

LG18

LG17

LG16

LG15

LG14

LG13

(b) LG13 - LG18

Figure C.18: Atlantic cod, marine populations: The results shown are the cluster
separation score (CSS) with classical MDS with a window size of 100 kb and a
step size of 2 kb. The vertical axis is in [0, 30], and the horisontal axis stretches
through the entire chromosome.

138 APPENDIX C. DETAILED RESULTS

LG23

LG22

LG21

LG20

LG19

(c) LG19 - LG23

Figure C.18: Atlantic cod, marine populations: Cluster separation score (CSS)
with classical MDS with a window size of 100 kbp and a step size of 2 kbp. The
vertical axis is in [0, 30].

SMACOF+
CMDS

SMACOF

CMDS
FDR 0.05 p-val

0.0 0.5 1.0 1.5 2.0 2.5
×107

SMACOF+
CMDS

SMACOF

CMDS
top 10000 regions

Figure C.19: Atlantic cod, the 2011 populations: filtered cluster separation score
(CSS) regions in chromosome LG02. The top figure shows the regions filtered by
a FDR p-value of 0.05, while the bottom shows the top 10 000 regions filtered by
CSS score. We see the results for the classical MDS, SMACOF and combination
method (SMACOF+CMDS) for calculating MDS.

C.4. DETAILED ATLANTIC COD RESULTS 139

SMACOF+
CMDS

SMACOF

CMDS
FDR 0.05 p-val

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

SMACOF+
CMDS

SMACOF

CMDS
top 10000 regions

Figure C.20: Atlantic cod, the 2011 populations: filtered cluster separation score
(CSS) regions in chromosome LG07. The top figure shows the regions filtered by
a FDR p-value of 0.05, while the bottom shows the top 10 000 regions filtered by
CSS score. We see the results for the classical MDS, SMACOF and combination
method (SMACOF+CMDS) for calculating MDS.

LG12

LG11

LG10

LG09

LG08

LG06

(a) LG06 and LG08 - LG12

Figure C.21: Atlantic cod, the 2011 populations: Fisher’s exact test (FET) with
a window size of 100 kb and a step size of 2 kb. The vertical axis is in [0, 10].

140 APPENDIX C. DETAILED RESULTS

LG18

LG17

LG16

LG15

LG14

LG13

(b) LG13 - LG18

LG23

LG22

LG21

LG20

LG19

(c) LG19 - LG23

Figure C.21: Atlantic cod, the 2011 populations: Fisher’s exact test (FET) with
a window size of 100 kb and a step size of 2 kb. The vertical axis is in [0, 10].

C.4. DETAILED ATLANTIC COD RESULTS 141

FET

FET
Burke

limit

LG02

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×107

FET

FET
Burke

limit

LG07

Figure C.22: Atlantic cod, the 2011 populations: filtered Fisher’s exact test
(FET) regions in chromosomes LG02 and LG07 for a 100 kb FET. The results
from the Burke et al. limit and the strict limit given in section 5.8.2 are shown.
The top figure shows LG02 and the bottom figure shows LG07.

142 APPENDIX C. DETAILED RESULTS

Appendix D

Source code

The source code can be found at:
http://tuvakt.github.io/Fast-Parallel-Tools-for-Genome-wide-Analysis-of-
Genomic-Divergence

143

http://tuvakt.github.io/Fast-Parallel-Tools-for-Genome-wide-Analysis-of-Genomic-Divergence
http://tuvakt.github.io/Fast-Parallel-Tools-for-Genome-wide-Analysis-of-Genomic-Divergence

144 APPENDIX D. SOURCE CODE

References

Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., . . . Walter, P.
(2014a). Fron DNA to Protein: How Cells Read the Genome. In Essential
Cell Biology (4th, Chap. 7, pp. 223–260). New York: Garland Science.

Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., . . . Walter,
P. (2014b). How Genes and Genomes Evolve. In Essential Cell Biology
(4th, Chap. 9, pp. 289–324). New York: Garland Science.

Baldwin-Brown, J. G., Long, A. D. & Thornton, K. R. (2014). The Power to De-
tect Quantitative Trait Loci Using Resequenced, Experimentally Evolved
Populations of Diploid, Sexual Organisms. Molecular Biology and Evolu-
tion, 31 (4), 1040–1055. doi:10.1093/molbev/msu048

Behnel, S., Bradshaw, R. & Seljebotn, D. (2009). Cython tutorial. In G. Varoquaux,
S. van der Walt & J. Millman (Eds.), Proceedings of the 8th Python in
Science Conference (pp. 4–14). Pasadena, CA USA. Retrieved from http:
//conference.scipy.org/proceedings/SciPy2009/paper_1

Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan,
M., . . . Taylor, J. (2001). Galaxy: A Web-Based Genome Analysis Tool for
Experimentalists. In Current Protocols in Molecular Biology. John Wiley
& Sons, Inc. doi:10.1002/0471142727.mb1910s89

Borg, I. & Groenen, P. J. F. (2005). A Majorization Algorithm for Solving
MDS. In Modern Multidimensional Scaling (pp. 169–197). Springer Series
in Statistics. New York: Springer. doi:10.1007/0-387-28981-X_8

Borg, I., Groenen, P. J. F. & Mair, P. (2013). MDS Algorithms. In Applied
Multidimensional Scaling (pp. 81–86). SpringerBriefs in Statistics. Berlin,
Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-31848-1_8

Burke, M. K., Dunham, J. P., Shahrestani, P., Thornton, K. R., Rose, M. R. &
Long, A. D. (2010). Genome-wide analysis of a long-term evolution exper-
iment with Drosophilia. Nature, 467, 587–590. doi:10.1038/nature09352

Burke, M. K., Liti, G. & Long, A. D. (2014). Standing Genetic Variation Drives
Repeatable Experimental Evolution in Outcrossing Populations of Sac-
charomyces cerevisiae. Molecular Biology and Evolution, 31 (12), 3228–
3239. doi:10.1093/molbev/msu256

Colosimo, P. F., Hosemann, K. E., Balabhadra, S., Villarreal, G., Dickson, M.,
Grimwood, J., . . . Kingsley, D. M. (2005). Widespread Parallel Evolution
in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles. Science,
307 (5717), 1928–1933. doi:10.1126/science.1107239

145

http://dx.doi.org/10.1093/molbev/msu048
http://conference.scipy.org/proceedings/SciPy2009/paper_1
http://conference.scipy.org/proceedings/SciPy2009/paper_1
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1007/0-387-28981-X_8
http://dx.doi.org/10.1007/978-3-642-31848-1_8
http://dx.doi.org/10.1038/nature09352
http://dx.doi.org/10.1093/molbev/msu256
http://dx.doi.org/10.1126/science.1107239

146 REFERENCES

Crans, G. G. & Shuster, J. J. (2008). How conservative is Fisher’s exact test?
A quantitative evaluation of the two-sample comparative binomial trial.
Statistics in Medicine, 27 (18), 3598–3611. doi:10.1002/sim.3221

Crick, F. (1958). On Protein Synthesis. The Symposia of the Society for Ex-
perimental Biology, 12, 138–163. Retrieved August 9, 2015, from http :
//profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/SCBBZY

Crick, F. (1970). Central Dogma of Molecular Biology. Nature, 227, 561–563.
doi:doi:10.1038/227561a0

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,
. . . Group, 1. G. P. A. (2011). The variant call format and VCFtools.
Bioinformatics, 27, 2156–2158. doi:10.1093/bioinformatics/btr330

De Leeuw, J. (1977). Applications of convex analysis to multidimensional scal-
ing. In J. Barra, F. Brodeau, G. R. Romier & B. van Cutsem (Eds.), Recent
developments in statistics (pp. 133–146). Amsterdam: North Holland Pub-
lishing Company. Retrieved August 9, 2015, from https://escholarship.
org/uc/item/7wg0k7xq

De Leeuw, J. (1988). Convergence of the majorization method for multidi-
mensional scaling. Journal of Classification, 5 (2), 163–180. doi:10.1007/
BF01897162

Dean, J. & Ghemawat, S. (2008). Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51 (1), 107–113. doi:10.1145/1327452.1327492

Durstenfeld, R. (1964). Algorithm 235: Random Permutation. Commun. ACM,
7 (7), 420–. doi:10.1145/364520.364540

Feldman, S. E. & Klinger, E. (1963). Short cut calculation of the Fisher-Yates
“exact test”. Psychometrika, 28 (3), 289–291. doi:10.1007/BF02289576

Galassi, M. et al. (2009). GNU Scientific Library Reference Manual. 3rd. Re-
trieved from http://www.gnu.org/software/gsl/

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P.,
. . . Nekrutenko, A. (2005). Galaxy: A platform for interactive large-scale
genome analysis. Genome Research, 15 (10), 1451–1455. doi:10.1101/gr.
4086505

Goecks, J., Nekrutenko, A. & Taylor, J. (2010). Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computa-
tional research in the life sciences. Genome Biology, 11 (8). doi:10.1186/gb-
2010-11-8-r86

Graham, S. L., Kessler, P. B. & Mckusick, M. K. (1982). Gprof: A Call Graph
Execution Profiler. SIGPLAN Not. 17 (6), 120–126. doi:10.1145/872726.
806987

Grama, A., Gupta, A., Karypis, G. & Kumar, V. (2003). Introduction to parallel
computing (2nd). Harlow: Pearson Education Limited.

Gundersen, S., Kalaš, M., Abul, O., Frigessi, A., Hovig, E. & Sandve, G. K.
(2011). Identifying elemental genomic track types and representing them
uniformly. BMC Bioinformatics, 12 (1), 1–17. doi:10.1186/1471-2105-12-
494

http://dx.doi.org/10.1002/sim.3221
http://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/SCBBZY
http://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/SCBBZY
http://dx.doi.org/doi:10.1038/227561a0
http://dx.doi.org/10.1093/bioinformatics/btr330
https://escholarship.org/uc/item/7wg0k7xq
https://escholarship.org/uc/item/7wg0k7xq
http://dx.doi.org/10.1007/BF01897162
http://dx.doi.org/10.1007/BF01897162
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/364520.364540
http://dx.doi.org/10.1007/BF02289576
http://www.gnu.org/software/gsl/
http://dx.doi.org/10.1101/gr.4086505
http://dx.doi.org/10.1101/gr.4086505
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1145/872726.806987
http://dx.doi.org/10.1145/872726.806987
http://dx.doi.org/10.1186/1471-2105-12-494
http://dx.doi.org/10.1186/1471-2105-12-494

REFERENCES 147

Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson,
J., . . . Kingsley, D. M. (2012). The genomic basis of adaptive evolution in
threespine sticklebacks. Nature, 484, 55–61. doi:10.1038/nature10944

Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W.,
Haussler, D. & Kent, W. J. (2004). The UCSC Table Browser data re-
trieval tool.Nucleic Acids Research, 32 (suppl 1), D493–D496. doi:10.1093/
nar/gkh103

Kernighan, B. W. & Ritchie, D. M. (1988). The C programming language (2nd).
Englewood Cliffs, N.J: Prentice Hall.

Klug, W. S., Cummings, M. R. & Spencer, C. (2007). Introduction to Genetics.
In Essentials of Genetics (Chap. 1, pp. 1–16). San Fransisco: Pearson/-
Prentice Hall.

Knuth, D. E. (1974). Structured Programming with Go to Statements. ACM
Comput. Surv. 6 (4), 261–301. doi:10.1145/356635.356640

Knuth, D. E. (1997). The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms (3rd). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29 (2), 115–129. doi:10.1007/BF02289694

Langtangen, H. P. (2009). Python Scripting for Computational Science (3rd).
Berlin: Springer.

Lillesæther, J. L. (2011). Retroactively Parallelizing a Large Python System
(Master’s thesis, University of Oslo). Retrieved from http://urn.nb.no/
URN:NBN:no-28918

Marsland, S. (2009). Dimensionality Reduction. In Machine learning: an al-
gorithmic perspective (1st, Chap. 10, pp. 221–246). Boca Raton, Fla: Chap-
man & Hall/CRC.

McDonald, J. H. (2014).Handbook of biological statistics (3rd). Baltimore, Mary-
land: Sparky House Publishing.

Nichols, B., Buttlar, D. & Farrell, J. P. (1996). Pthreads programming (1st).
Bonn: O’Reilly & Associtates, Inc.

North, B. V., Curtis, D. & Sham, P. C. (2002). A Note on the Calculation of
Empirical P Values from Monte Carlo Procedures. American Journal of
Human Genetics, 71, 439–441. doi:10.1086/341527

Phipson, B. & Smyth, G. K. (2010). Permutation P-values should never be
zero: calculating exact P-values when permutations are randomly drawn.
Statistical Applications in Genetics and Molecular Biology, 9 (1). doi:10.
2202/1544-6115.1585

Quinn, M. J. (2003). Parallel programming in C with MPI and OpenMP. New
York: McGraw-Hill Education Group.

Rognes, T., Mahé, F. & xflouris. (2015). Vsearch: VSEARCH version 1.0.16.
doi:10.5281/zenodo.15524

Roweis, S. T. & Saul, L. K. (2000). Nonlinear Dimensionality Reduction by
Locally Linear Embedding. Science, 290 (5500), 2323–2326. doi:10.1126/
science.290.5500.2323

http://dx.doi.org/10.1038/nature10944
http://dx.doi.org/10.1093/nar/gkh103
http://dx.doi.org/10.1093/nar/gkh103
http://dx.doi.org/10.1145/356635.356640
http://dx.doi.org/10.1007/BF02289694
http://urn.nb.no/URN:NBN:no-28918
http://urn.nb.no/URN:NBN:no-28918
http://dx.doi.org/10.1086/341527
http://dx.doi.org/10.2202/1544-6115.1585
http://dx.doi.org/10.2202/1544-6115.1585
http://dx.doi.org/10.5281/zenodo.15524
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2323

148 REFERENCES

Sandve, G. K., Gundersen, S., Johansen, M., Glad, I. K., Gunathasan, K.,
Holden, L., . . . Hovig, E. (2013). The Genomic HyperBrowser: an ana-
lysis web server for genome-scale data. Nucleic Acids Research, 41 (W1),
W133–W141. doi:10.1093/nar/gkt342

Sandve, G. K., Gundersen, S., Rydbeck, H., Glad, I. K., Holden, L., Holden, M.,
. . . Hovig, E. (2010). The Genomic HyperBrowser: inferential genomics at
the sequence level. Genome Biology, 11 (12), R121. doi:10.1186/gb-2010-
11-12-r121

Seward, J. & Nethercote, N. (2005). Using Valgrind to Detect Undefined Value
Errors with Bit-precision. In Proceedings of the annual conference on usenix
annual technical conference (pp. 2–2). ATEC ’05. Anaheim, CA: USENIX
Association. Retrieved from http://dl.acm.org/citation.cfm?id=1247360.
1247362

Sommerville, I. (2011). Agile software development. In Software engineering
(9th, pp. 56–81). Boston, Mass: Pearson.

Tenenbaum, J. B., de Silva, V. & Langford, J. C. (2000). A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290 (5500),
2319–2323. doi:10.1126/science.290.5500.2319

Tzeng, J., Lu, H. H.-S. & Li, W.-H. (2008). Multidimensional scaling for large
genomic data sets. BMC Bioinformatics, 9, 179. doi:doi:10.1186/1471-
2105-9-179

Vederhus, T. (2013). Tools for Genome-wide Analysis of Genomic Divergence
(Master’s thesis, University of Oslo). Retrieved from http://urn.nb.no/
URN:NBN:no-39032

Zar, J. H. (1987). A fast and efficient algorithm for the Fisher exact test. Beha-
vior Research Methods, Instruments & Computers, 19 (4), 413–414. doi:10.
3758/BF03202590

http://dx.doi.org/10.1093/nar/gkt342
http://dx.doi.org/10.1186/gb-2010-11-12-r121
http://dx.doi.org/10.1186/gb-2010-11-12-r121
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/doi:10.1186/1471-2105-9-179
http://dx.doi.org/doi:10.1186/1471-2105-9-179
http://urn.nb.no/URN:NBN:no-39032
http://urn.nb.no/URN:NBN:no-39032
http://dx.doi.org/10.3758/BF03202590
http://dx.doi.org/10.3758/BF03202590

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research questions
	Overview of thesis

	Background
	Essential biological concepts
	The genomic basis of adaptive evolution in threespine sticklebacks
	A long term evolution experiment with Drosophila
	The Genomic HyperBrowser
	HyperBrowser jobs and tracks
	Statistics

	A Tool for Genome-wide Analysis
	Tool implementation in HyperBrowser
	Issues with the current tool

	Performance metrics
	Runtime
	Overhead
	Speedup and efficiency

	Methods
	Cluster Separation Score (CSS)
	Multi-Dimensional Scaling (MDS)
	Classical MDS
	Iterative MDS
	Statistical significance

	Fisher's Exact Test (FET)
	Fisher's Exact Test algorithm

	Parallel programming systems
	Message Passing Interface (MPI)
	Pthreads
	OpenMP
	MapReduce

	Parallel design models
	The boss/worker model
	The peer model
	The pipeline model

	Mapping of tasks in parallel systems
	Overhead
	Tasks and work division

	Implementation
	Implementation choices
	Main structure of the tools
	Methods
	Languages and frameworks
	Parallelization

	Data structure
	File format
	A tool for converting VCF to GTrack
	Sliding windows

	Fisher's Exact Test
	The web tool
	The statistic

	Cluster Separation Score
	Distance metrics
	MDS methods
	CSS
	Estimating significance

	Parallel implementation
	Pthreads implementation

	Pseudo-random number generators (PRNGs)
	A thread safe pseudo-random number generator
	Uniform distribution of pseudo-random numbers

	Integrating C code with Cython
	Problems with integrating C code in a large scale Python system

	Optimizing C code
	Allocations
	Library methods
	Pseudo-random number generators
	For-loops
	Data types
	Functions

	Changes made to the HyperBrowser code

	Results
	User interface
	Fisher Exact Test SNP Tool
	Filter Fisher Scores
	Cluster Separation Score
	Significant CSS Regions
	Convert Stickleback SNPs to GTrack
	Convert VCF To GTrack Tool

	Speedup of serial C code vs Python code
	Cluster Separation Score
	Fisher's Exact Test

	Memory usage
	Cluster Separation Score
	Fisher's Exact Test

	Parallel C code
	Variable number and size of tasks
	Variable number of threads

	Synthetic data set
	Cluster Separation Score
	Fisher's Exact Test

	Three-spined stickleback data
	Cluster Separation Score
	Fisher's Exact Test

	Drosophila data
	Cluster Separation Score

	Atlantic cod data
	The two marine populations
	The marine and coastal 2011 populations

	Discussion and Conclusion
	Discussion of the usability of the tools
	Discussion of speedup and code integration
	Discussion of the results from analyses
	Synthetic data
	Three-spined stickleback data
	Drosophila data
	Atlantic cod data
	Possible weaknesses in analyses

	Weakness in implementation
	Conclusion

	Future Work
	Appendices
	Appendix Example runs
	An example run with three-spined stickleback data
	Converting the three-spined stickleback data file
	The Fisher's Exact Test Tool
	The Cluster Separation Score Tool

	VCF Convert example run

	Appendix Analyses on the Genomic HyperBrowser
	Appendix Detailed results
	Detailed results of parallel program
	Detailed three-spined stickleback results
	Cluster Separation Scorer

	Detailed Drosophila results
	Detailed Atlantic cod results
	The two marine populations
	The marine and coastal 2011 populations

	Appendix Source code
	References

