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Chapter 1 

Introduction and conclusion 

This report contains an analysis of the scientific documentation of the effect of the drugs 
etidronat (Didronate) and alendronat (Fosamax) in reducing the number of fractures in 
women with osteoporosis. The background for the analysis are data from existing studies 
(Storm et al. (1990), Harris et al. (1993), Liberman et al. (1995) and Black et al. (1996)). 

As criterion for evaluation, we have used a comparison of the relative improvement in 
effect for the two drugs compared to a placebo. On a slightly smaller scale, a cost assessment 
of the drugs was performed; this analysis is, however, based on more assumptions and 
is thus more speculative. The validity of the results must be viewed in light of these 
assumptions. Due to time restrictions we have only looked at improvement in effect over 
a 3 year period. 

From a statistical point of view the analysis stands out from other studies in three 
areas: 

1. The methodological foundation is based on Bayesian statistics. This makes it possible 
to evaluate and take into account the uncertainty that lies within improvement in 
effect in a simpler and more consistent way. 

2. Data from different studies are combined to give a more reliable assessment of the 
drugs. The combination of data is also accomplished with the aid of Bayesian statis­
tics. 

3. A cost analysis of the two drugs has been undertaken - again based on Bayesian 
statistics. 

A complicating factor regarding the studies that are available, is that the prevalence of 
osteoporosis in the populations that have been tested varies to a large degree. It is nonethe­
less possible to combine the studies if it is assumed that the relative improvement in effect 
of the drug is the same for all levels of prevalence. An alternative is to analyse only those 
studies (Harris et al. (1993) and Black et al. (1996)) where the prevalence of osteoporosis 
is similar. We look at both of these possibilities. 
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Another complicating factor involves the differences in specificity among the different 
studies. If one accepts a vertebral fracture as an indication of osteoporosis, one achieves, 
as in the investigation of Black et al. (1996), a higher diagnostic specificity by excluding 
fractures where adequate trauma existed. Correcting for this causes the difference in 
effectiveness between etidronat and alendronat to be somewhat smaller than described 
below. Furthermore, differences in specificity will naturally become apparent such that 
investigations conducted on populations with a high prevalence of osteoporosis tend to 
yield higher relative effect of medicinal intervention compared to populations with lower 
prevalence. Presumably there were few vertebral fractures with adequate trauma, such 
that the effect of overlooking them was small. A reasonable assessment of this has not, 
to-date, been possible with the available data. 

In conclusion, we have clearly documented that both drugs are effective in reducing the 
number of vertebral fractures in women with osteoporosis; alendronat (Fosamax) being the 
better of the two. 

To assess the costs in using these drugs for reducing the number of hip fractures, we 
have assumed that the relative reduction in the intensity of hip fracture is the same as 
the relative reduction in intensity of vertebral fracture. Data from the study of Black 
et al. (1996) give a basis for this assumption with respect to alendronat. Table 2 in that 
study showed a relative risk of 0.45 (CI [0.27, 0.72]) for vertebral fracture, while Table 3 
showed a relative risk of 0.49 (CI [0.23, 0.99]) for hip fracture and a relative risk of 0.52 
(CI [0.31, 0.87]) for wrist fracture. All of these effects are statistically significant at the 
0.05 level. Data from etidronat studies give the impression that the same assumption also 
is true for this drug; however there is a larger degree of uncertainty due to the size of the 
data material. 

With respect to the reduction in the number of hip fractures in women with osteo­
porosis, our cost assessment of the two drugs indicates that alendronat (Fosamax) can be 
priced 40 - 70 % higher than etidronat (Didronate). 

Other types of fractures have not been evaluated. The study of Black et al. (1996) gives 
a basis for assuming that the relative improvement in the reduction of wrist fractures is 
also comparable to the relative improvement in the reduction of the number of vertebral 
fractures. 

Chapter 2 includes an analysis of the two drugs compared to a placebo. A separate 
comparison between the two drugs was also performed. Chapter 3 includes a simple cost 
analysis of the drugs. The methodological and technical details are outlined in Appendix A. 
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Chapter 2 

Evaluation of the improvement 
effect for the two drugs 

• 
Ill 

In the literature two factors are used with respect to the evaluation of the medicinal 
treatment of osteoporosis. The first is the probability for at least one new fracture during 
a three year period (called p) and the other is the mean intensity rate for fractures per year 
(called -X). Criticism has been raised in Windeler & Lange (1995) on the use of (mean) 
intensity rate. It is our belief that this argument is not convincing enough to discard 
analysis based on this parameter. The advantage of such an analysis is that one can also 
say something about the drugs ability to prevent repeated fractures in the same person. 
A further advantage is less uncertainty due to additional data. A disadvantage to the use 
of such data is, however, that stronger model assumptions must be made in order to study 
the mean intensity rate of fractures in relation to studying the probability for at least one 
fracture. Furthermore, the comparison of several studies necessitates the introduction of an 
assumption on a type of "likeness" in the different studies with respect to the parameters 
we intend to investigate (see below). From the standpoint of the data material, these 
assumptions seem more reasonable for the probabilities p than for the intensities ,\. Given 
that there are both advantages and disadvantages in studying these two parameters, we 
intend to look at both. 

The basis for analysis of etidronat are the studies of Storm et al. (1990) and Harris 
et al. (1993), while for alendronat we have the studies of Liberman et al. (1995) and Black 
et al. (1996). Table 2.1 summarises the results that have been produced in these studies. 

We begin by looking at each of the drugs separately. In order to assess the studies 
combined, it is necessary to make at least one of the following two assumptions: 

• The relative improvement in efficiency of the drug is the same for all levels of preva­
lence. 

• The prevalence in the studies under consideration are equal. 

The former is not an unusual assumption to make. Under this assumption it is possible to 
conduct an analysis of all studies combined, yielding more certain results than analyses of 
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X m y n 
Studies p D p D p D p D 

etidronat Storm - - - - 25* 9* 60.0* 54.0* 
Harris 32 28 184 196 71 52 606.6 604.4 

alendronat Liberman 22 17 355 526 40* 22* 1065.0 1578.0 
Black 145 78 965 981 240 86 2880.0 2928.0 

Table 2.1: Data derived from Storm et al. (1990), Harris et al. (1993), Liberman et al. (1995) 
and Black et al. (1996). X is the number of patients with fractures, m is the total number of 
patients, Y is the total number of vertebral fractures, n is the total number of patient years, 
P = placebo, D = drug. A - indicates that data are unavailable, * indicates that data cannot 
be found directly, but are calculated from the data available in the articles. 

individual studies. An initial analysis of the data gives the impression that this is not an 
unreasonable assumption to make. 

The latter assumption will be incorrect if we look at all the studies. However, in the 
studies of Harris et al. (1993) and Black et al. (1996) this assumption does not seem 
unreasonable, and a direct comparison of etidronat and alendronat based on these studies 
alone is possible. 

2.1 Parameters of assessment 

Assume that we are assessing one study. Define 

and 

PI =the probability of at least one fracture in the course of 3 years 

when placebo is used; 

p2 =the probability of at least one fracture in the course of 3 years 

when the study drug is used. 

AI =the intensity of vertebral fracture per year when placebo is used; 

.A2 =the intensity of vertebral fracture per year when the study drug is used. 

Table 2.2 shows estimates for the p's and .A's based on estimation methods from classical 
statistics. Of special interest is the fact that it appears that both the p's and .A's for the 
control (placebo) groups vary between the different studies. Notice also that the estimates 
of p for these groups in the studies of Harris et al. (1993) and Black et al. (1996) are similar 
as mentioned above. 

We will study both the absolute and the relative (percent) improvement of p2 compared 
to PI and .A2 compared to AI· We define 
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Estimate for p Estimate for ..\ 
Studies Placebo Drug Placebo Drug 

etidronat Storm - - 0.417 0.167 
Harris 0.165 0.143 0.117 0.086 

alendronat Liberman 0.062 0.032 0.038 0.014 
Black 0.150 0.080 0.083 0.029 

Table 2.2: Estimates of the probability of at least one vertebral fracture in the course of three 
years and of annual intensity of vertebral fracture. 

as parameters for absolute improvement, while 

are parameters for relative improvement. Based on the data in Table 2.1, we can calcu­
late estimates of these parameters. These are shown in Table 2.3. These results give an 
impression of the improvement attributable to the drug. However, the estimates give no 
impression of the degree of uncertainty. 

Estimate for () a <P (3 
Studies 

etidronat Storm - - 0.25 0.60 
Harris 0.02 0.13 0.03 0.26 

alendronat Liberman 0.03 0.48 0.02 0.63 
Black 0.07 0.47 0.05 0.65 

Table 2.3: Estimates of improvement and relative improvement of the probability of at least one 
vertebral fracture in the course of 3 years, and of annual intensity of vertebral fracture. 

2.2 Analyses of individual studies 

With the model assumptions of Appendix A as a starting point, it is possible to calculate 
the posterior probability distribution for the improvement in effect of the p's (the prob­
ability of at least one fracture in the course of three years) and the ..\'s (the intensity of 
vertebral fracture per year). These distributions describe the uncertainty connected to 
the parameters true values based on data from the actual studies. The knowledge of the 
parameters true values before the data is considered non-informative. Figure 2.1 shows 
the posterior distributions for () (the absolute improvement in p) for the different studies 
(Storm et al. (1990) is not included here due to lacking data). Table 2.4 summarises these 
distributions. In this, and later tables, quantities as defined by Pr(e > aiD) are given. 
Pr(() > aiD) refers to the "probability that () is larger than a based on data D". D will 
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Pr(e >aiD) 
Drug Studies a= 0.00 0.02 0.04 0.06 0.08 0.10 
etidronat Harris 0.79 0.61 0.40 0.21 0.09 0.03 
alendronat Liberman 0.98 0.75 0.26 0.03 0.00 0.00 

Black 1.00 1.00 0.98 0.77 0.26 0.02 

Table 2.4: Summary of the posterior distributions fore (absolute improvement of probability for 
at least one fracture in the course of three years) based on the different studies. The distributions 
are given in Figure 2.1. D refers to data from the actual studies. 

Pr(a >aiD) 
Drug Studies a= 0.00 0.15 0.30 0.45 0.60 0.75 
etidronat Harris 0.79 0.55 0.24 0.04 0.00 0.00 
alendronat Liberman 0.98 0.94 0.82 0.56 0.19 0.01 

Black 1.00 1.00 0.98 0.60 0.02 0.00 

Table 2.5: Summary of the posterior distributions for a (relative improvement in probability for 
at least one fracture in the course of three years) for the different studies. The distributions are 
given in Figure 2.2. D refers to data from the actual studies. 

in this case be the data that are available from the actual study, while there will be data 
from additional studies once they are combined. All the studies give some indication of 
improvement. Notice also that even though the posterior distribution fore in the study of 
Harris et al. (1993) is centered on the same improvement value as the study of Liberman 
et al. (1995), there is much more uncertainty associated with the former. 

A similar analysis for a, the relative improvement in probability for at least one verte­
bral fracture in the course of three years, yields the posterior distributions in Figure 2.2. 
A summary of these posterior distributions is given in Table 2.5. Uncertainty in the study 
of Harris et al. (1993) is still present. At the same time note that the distributions of 
the relative improvement are centered on about the same value for the two alendronat 
studies, which again strengthens the possible assumption that the relative improvements 
are constant for different populations. 

Turning our attention to intensities, we will first examine ¢>, the absolute improvement. 
Figure 2.3 illustrates posterior distributions for the four studies, while Table 2.6 summarises 
these distributions. The study of Storm et al. (1990) gives an indication of much larger 
absolute improvement than the other studies. This study has, however, a considerable 
amount of uncertainty attached to it due to the low number of patients. 

The relative improvement in intensity, {3, is summarised in Figure 2.4 and Table 2.7. 
Once again we see that the assumption of constancy among relative improvement seems 
reasonable for the two alendronat studies. For the two etidronat studies the posterior 
distributions for the relative improvement are centered on slightly different values. Uncer-
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Pr(¢ >aiD) 
Drug Studies a= 0.00 0.02 0.04 0.06 0.08 0.10 
etidronat Storm 0.99 0.99 0.98 0.97 0.96 0.94 

Harris 0.96 0.73 0.31 0.06 0.00 0.00 
alendronat Liberman 1.00 0.70 0.01 0.00 0.00 0.00 

Black 1.00 1.00 0.98 0.17 0.00 0.00 

Table 2.6: Summary of the posterior distributions for cp (absolute improvement in intensity of 
vertebral fracture per year) for the different studies. The posterior distributions are shown in 
Figure 2.3. D refers to the data from the actual studies. 

Pr(;3 >aiD) 
Drug Studies a= 0.0 0.2 0.4 0.6 0.8 1.0 
etidronat Storm 0.99 0.97 0.87 0.52 0.05 0.00 

Harris 0.96 0.68 0.14 0.00 0.00 0.00 
alendronat Liberman 1.00 1.00 0.97 0.62 0.01 0.00 

Black 1.00 1.00 1.00 0.85 0.00 0.00 

Table 2.7: Summary of the posterior distributions for {3 (relative improvement in intensity of 
vertebral fracture per year) for the different studies. The posterior distributions are shown in 
Figure 2.4. D refers to the data from the actual studies. 

tainty in these studies is, however, large1 even though the probability that the improvement 
based on the study of Storm et al. (1990) is greater than the improvement based on the 
study of Harris et al. (1993) is 0.93. 

It is possible to conclude, based on a combined analysis of Tables 2.4-2.7, that there is 
evidence of a clear effect of both drugs in the reduction of the number of vertebral fractures 
in women with osteoporosis, however, alendronat is the better of the two. 

2.3 Combined analysis of studies with the same drug 

A direct comparison of investigations is difficult since the prevalences of osteoporosis are 
not the same in the populations selected in these different studies. The analyses in the 
previous section gave some indication that it would be reasonable to assume that the 
relative improvement based on the use of the drugs is not dependent on prevalence. In this 
section, the analysis will therefore be based on combining data from Storm et al. (1990) 
and Harris et al. (1993) and combining data from Liberman et al. (1995) and Black et al. 

1 Note that the uncertainty in /3 is approximately the same for the two etidronat studies, even though 
the Harris et al. (1993) study is considerably larger. This is a result of the fact that the intensity for the 
control group in this study is much smaller than in Storm et al. (1990). When this intensity is incorporated 
into the denominator in the definition of /3, the smaller value results in increased uncertainty. 
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Pr(a >aiD) 
Studies a= 0.00 0.02 0.04 0.06 0.08 0.10 
Liberman 0.98 0.94 0.82 0.56 0.19 0.01 
Black 1.00 1.00 0.98 0.60 0.02 0.00 
Combined 1.00 1.00 1.00 0.68 0.00 0.00 

Table 2.8: Summary of the posterior distributions for a (relative improvement in the probability 
for at least one fracture in the course of three years) based on the two alendronat studies taken 
separately and combined. The posterior distributions are shown in Figure 2.5. D refers to the 
data from the actual stud(y)ies. 

(1996). The methodology is outlined in Appendix A.2. 
There is currently only one study available based on the drug etidronat with respect 

to the relative improvement of the probability for at least one fracture in the course of 
three years, a. An analysis of a combination of studies of a is therefore of interest only for 
alendronat. Figure 2.5 shows the posterior distributions for a based on the two available 
studies of alendronat, with a corresponding summary of data in Table 2.8. Both the dis­
tributions based on analyses of the studies taken separately and combined are shown. The 
posterior distributions for the two studies taken separately were centered on approximately 
the same value. Notice that the combination of studies causes a considerable reduction in 
the degree of uncertainty (in that the posterior distribution is more centered). 

The same type of analysis can be performed for the relative improvement in intensity, 
{3. Now it is also possible to combine the studies for the drug etidronat. For the etidronat 
studies the posterior distributions are shown in Figure 2.6, while the summaries for the 
posterior distributions are given in Table 2.9. In the case presented here, the central points 
in the distributions from the two studies taken separately are quite different, yet there is 
considerable overlap between the posterior distributions thus leaving no basis to conclude 
that the relative improvements are different in the two studies. A combination of the two 
studies nevertheless leads to a new central point as a mean of the original central points. 
In addition uncertainty is reduced. 

For the alendronat studies the same distributions are shown in Figure 2.7, and sum­
maries of the distributions are given in Table 2.10. Notice again the considerable improve­
ment in the level of uncertainty. 

Based on a combined analysis of Tables 2.8-2.10, it can be concluded that both drugs 
are effective in reducing the number of vertebral fractures among women with osteoporosis, 
alendronat being the better of the two. 

2.4 Comparing studies of different drugs. 

Here we will compare directly the two drugs based on the analysis in the previous section. If 
we continue to base ourselves on the assumption that the relative improvement of either the 
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Pr(,B >aiD) 
Studies a= 0.0 0.2 0.4 0.6 0.8 1.0 
Storm 0.99 0.97 0.87 0.52 0.05 0.00 
Harris 0.96 0.68 0.14 0.00 0.00 0.00 
Combined 1.00 0.98 0.43 0.00 0.00 0.00 

Table 2.9: Summary of the posterior distribution for (3 (relative improvement in the intensity 
of vertebral fracture per year) based on the two etidronat studies taken separately and com­
bined. The posterior distributions are shown in Figure 2.6. D refers to the data from the actual 
stud(y )ies. 

Pr(,B >aiD) 
Studies a= 0.0 0.2 0.4 0.6 0.8 1.0 
Liberman 1.00 1.00 0.97 0.62 0.01 0.00 
Black 1.00 1.00 1.00 0.85 0.00 0.00 
Combined 1.00 1.00 1.00 0.91 0.00 0.00 

Table 2.10: Summary of the posterior distribution for (3 (relative improvement in the intensity 
of vertebral fracture per year) based on the two alendronat studies taken separately and com­
bined. The posterior distributions are shown in Figure 2. 7. D refers to the data from the actual 
stud(y )ies. 

probability for at least one fracture in the course of three years or the intensity of vertebral 
fracture per year is constant, it is then possible to analyse the differences between the 
two drugs. Two measures of improvement with alendronat compared to etidronat will be 
assessed: 

an index a denotes alendronate, whereas e denotes etidronate. The first is a measure of 
the difference in the relative improvement of the probability for at least one fracture in the 
course of three years, while the second measures the difference in the relative improvement 
of the intensity of vertebral fractures per year. Figure 2.8 illustrates the posterior distri­
butions for these parameters, while a summary of the distributions is given in Table 2.11. 
The studies of Harris et al. (1993), Liberman et al. (1995) and Black et al. (1996) were 
used for the calculation of posterior distribution for ;;;1 . For ;;;2 , the study of Storm et al. 
(1990) was also included. 

An alternative approach is to ignore the assumption that the improvement in effect is 
independent of the prevalence of osteoporosis. In this case it is then necessary to compare 
studies in which the prevalences are approximately equal, as in the case of Harris et al. 
(1993) and Black et al. (1996) . We can assess this assumption by comparing the control 
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Pr(,.,; >aiD) 
Studies a= 0.00 0.15 0.30 0.45 0.60 0.75 
/'\;1 0.96 0.79 0.50 0.23 0.09 0.03 
/'\;2 1.00 0.92 0.31 0.02 0.00 0.00 

Table 2.11: Summary of the posterior distributions for ,.,;1 and ,.,;2 based on all four studies. The 
posterior distributions are shown in Figure 2.8. D refers to the data from the actual studies. 

groups in the two studies. The left plot in Figure 2.9 illustrates the posterior distribution 
of the difference between the probabilities for at least one fracture in the course of three 
years among patients in the control groups of Harris et al. (1993) and Black et al. (1996). 
The mean of 0.027 is not that different from 0, and the data do not give a basis to conclude 
that the two groups are different. The 95% credibility interval is [ -0.030, 0.089]2. 

Correspondingly, it is also possible to compare the intensities. The plot to the right in 
Figure 2.9 illustrates the posterior distribution for the difference between the intensities 
in the control groups of Harris et al. (1993) and Black et al. (1996). In this case the 
data give a clear indication that there is a difference between the two populations (the 
probability that the intensity in the Harris et al. (1993) study is larger than that observed 
in the study of Black et al. (1996) is 0.999; a 95% credibility interval for the difference 
is [0.046, 0.235]). The expectation in the posterior distribution is 0.137. Based on this 
analysis, an assumption that the two population are alike is more questionable. This is 
also indicated in Table 2.2, where the estimates for A in the control groups for the two 
studies are less alike. 

Based on the analyses of the control groups in the studies of Harris et al. (1993) and 
Black et al. (1996), it is possible to make a more direct comparison of the drugs by com­
paring the absolute improvements of the probabilities for at least one fracture in the course 
of three years for the two drugs. Let Ba be the absolute improvement in the alendronat 
study of Black et al. (1996), while Be is the absolute improvement in the etidronat study 
of Harris et al. (1993). Figure 2.10 shows the posterior distribution of Ba-Be based on the 
data from the two studies, while Table 2.12 summarises this distribution. The probability 
that Ba is larger than Be is 0.84, again indicating that use of alendronat results in a larger 
improvement than does use of etidronat; however the uncertainty here is somewhat larger 
than it would be had we based results on a larger number of studies. 

Once again, based on a combined assessment of Tables 2.11 and 2.12 it is possible 
to conclude that alendronat is more effective than etidronat in reducing the number of 
vertebral fractures among women with osteoporosis. 

2It is possible to perform a comparable analysis using classical statistics. The normal approximation 
can be used if the samples from both groups are large. A 95% confidence interval for the difference between 
the two probabilities is (-0.033, 0.081) (the p level for the hypothesis is 0.415), which again indicates that 
there is no essential difference between the two populations. 
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Pr(Oa- Oe >aiD) 
Studies a= 0.00 0.01 0.02 0.03 0.04 0.05 
ea- ee 0.84 0.77 0.69 0.60 0.50 0.40 

Table 2.12: Summary of the posterior distribution for Ba-Be based on the studies of Harris et al. 
(1993) and Black et al. (1996). The posterior distributions are shown in Figure 2.10. D refers to 
the data from the actual studies. 

-C>- 1 C> 

Figure 2.1: Posterior density for () (the absolute improvement of the probability for at least 
one fracture in the course of three years) for the different studies. The solid curve shows the 
distribution based on the study of Harris et al. (1993), the dotted curve shows the distribution 
based on the study of Liberman et al. (1995), while the broken curve shows the distribution 
according to the study of Black et al. (1996). 
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Figure 2.2: Posterior density for a (the relative improvement of the probability for at least 
one fracture in the course of three years) for the different studies. The solid curve shows the 
distribution based on the study of Harris et al. (1993), the dotted curve shows the distribution 
based on the study of Liberman et al. (1995), while the broken curve shows the distribution 
according to the study of Black et al. (1996). 
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Figure 2.3: Posterior density for ¢ (the absolute improvement of intensity of vertebral fracture 
per year) for the different studies. The point-line curve shows the distribution based on the study 
of Storm et al. (1990), the solid curve shows the distribution based on the study of Harris et al. 
(1993), the dotted curve shows the distribution based on the study of Liberman et al. (1995), 
while the broken, narrow curve shows the distribution according to the study of Black et al. 
(1996). 
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Figure 2.4: Posterior density for (3 (the relative improvement of intensity of vertebral fracture 
per year) for the different studies. The point-line curve shows the distribution based on the study 
of Storm et al. (1990), the solid curve shows the distribution based on the study of Harris et al. 
(1993), the dotted curve shows the distribution based on the study of Liberman et al. (1995), 
while the broken, narrow curve shows the distribution according to the study of Black et al. 
(1996). 

------- ------=------
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Figure 2.5: Posterior density for a (the relative improvement of the probability for at least one 
fracture in the course of three years) based on the studies of Liberman et al. ( 1995) (dotted curve) 
and Black et al. (1996) (broken curve) and the two studies combined (solid curve). 
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Figure 2.6: Posterior density for (3 (the relative improvement of the intensity of vertebral fracture 
per year) based on the studies of Storm et al. (1990) (dotted curve) and Harris et al. (1993) (broken 
curve) and the two studies combined (solid curve). 
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Figure 2.7: Posterior density for (3 (the relative improvement in the intensity of vertebral fracture 
per year) based on the studies of Liberman et al. (1995) (dotted curve) and Black et al. (1996) 
(broken curve) and the two studies combined (solid curve). 
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Figure 2.8: Posterior density for K;1 (solid curve) and K;2 (broken curve) based on all four studies. 

-0.10 0.0 0.05 0.10 0.15 -0.02 0.02 0.06 0.10 

Figure 2.9: Posterior density for the difference between the probabilities for at least one fracture 
in the course of three years (left) and the difference between the intensities of vertebral fractures 
per year (right) in the control groups in the studies of Harris et al. (1993) and Black et al. (1996). 
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Figure 2.10: Posterior distributions for Ba-Be based on the studies of Harris et al. (1993) and 
Black et al. (1996) 

16 



Chapter 3 

Analysis of costs 

Table 3.1 shows the expected number of hip fractures over a three year period per 1000 
women between the ages of 65 and 68 years with different levels of bone density. These 
values are derived through the use of the regression model presented in Gardsell et al. 
(1993). The annual intensities can be calculated by dividing these intensities by three. 
We will however calculate the costs for a three year period directly; freeing us from the 
assumption that the fracture intensities are the same (constant) each year. 

A cost analysis of the two drugs will be carried out based on these data. Costs will 
be assessed with respect to the reduction in the number of hip fractures. The two drugs 
will also result in the reduction of other types of fractures (e.g. wrist fractures and verte­
bral fractures), thereby further reducing expenses through the treatment of osteoporosis. 
Expenses associated with these fractures are, however, difficult to estimate and have thus 
been excluded from this analysis. It is important to note also that alendronat will give 
larger improvement in the form of a larger reduction in the number of fractures of different 
types. A comparison of etidronat and alendronat will therefore result in a price estimation 
of alendronat that may be too low. 

The expenses associated with the use of etidronat are set at 3000 NOK for a three year 
period. With respect to the costs of treating a hip fracture, the analyses have been carried 
out for various amounts in the neighborhood of 165,000 NOK (Andersen et al. (1995)). 
Costs for alendronat will be estimated by equating the expenses associated with the use of 
this drug to expenses associated with the use of etidronat. 

The studies we have based our calculations on assess the number of vertebral fractures, 
not the number of hip fractures. In order to proceed with a cost analysis, the following 
assumption must be made: 

The relative improvement in the intensity resulting from the use of a drug is 
the same for hip fractures as for vertebral fractures. 

Black et al. (1996) gives data for the relative improvement of the number of patients with 
at least one hip fracture, and arrives at an estimate of 0.5 (calculated from data in Table 3 
in Black et al. (1996)), which is very close to the estimate for the relative improvement for 
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Bone density, SD -1.0 -1.5 
Fracture per 1000 10.9 13.9 

-2.0 -2.5 -3.0 -3.5 
17.6 22.3 28.1 35.3 

Table 3.1: The expected number of fractures per 1000 patients for different bone densities. The 
bone density values are the number of standard deviations below the mean density of younger 
women. Numbers are for women aged from 65 years, taken over a three year period. 

vertebral fractures, 0.47 (see Table 2.3). This is a number based on probabilities, and not 
on intensities which is of interest in this case; however, it does indicate that the assumption 
is not altogether unreasonable. Black et al. (1996) also includes data for wrist fractures 
of comparable magnitude (the relative improvement in the probability for at least one 
fracture in the course of a three year period is estimated to be 0.47). We will concentrate 
on hip fractures alone. 

Under the assumption above we can use the analyses performed in the previous chapter 
to calculate uncertainty distributions (posterior distributions) for expected expenses. If ). 
is the intensity of hip fractures in the course of three years for patients who do not receive 
any drug, and (3 is the relative improvement in effect in using a drug, then .A(1- (3) will be 
the intensity of hip fractures for patients who receive the drug. The reduction in intensity 
is then ).(3 and the reduction in expenses in connection with fractures over a three year 
period is: 

).(3 x the cost of one fracture. 

To determine the total costs, this reduction must be subtracted from the costs of using the 
drug, such that the total cost, Kn is: 

Kr = Cost of the drug - ).(3 x the cost of one fracture, 

where "the cost of the drug" is the total cost associated with the use of the drug over a 
three year period. 

The analyses in the previous chapter laid the basis for the assumption that the relative 
improvement in effect was approximately the same for the two alendronat studies. The 
same was, however, not true for the etidronat studies. We will, therefore, first concentrate 
on the study of Harris et al. (1993) for etidronat (since this is the largest study), while we 
will use both of the alendronat studies. 

We begin with an estimation of the costs for alendronat. Table 3.2 shows estimates for 
the different costs per fracture. Initially, if one assumes that treatment is only relevant for 
groups with the highest intensity rates, a price 40 - 70 % higher than the price for etidronat 
could be considered reasonable for alendronat, possibly higher still if the costs of fractures 
are large. 

Figure 3.1 shows posterior distributions for expenses for the two drugs for a cost per 
fracture of 165,000 NOK, and a treatment cost of 4,500 NOK for alendronat. An attempt is 
made to fix the price for alendronat such that the posterior distributions for the expenses 
associated with the use of etidronat and alendronat are centered on approximately the 
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Intensity rates 
Cost per fracture 10.9 13.9 17.6 22.3 28.1 35.3 
NOK 100' 3419 3534 3676 3857 4080 4357 
NOK 120' 3502 3641 3811 4028 4296 4628 
NOK 140' 3586 3748 3947 4200 4512 4899 
NOK 160' 3670 3854 4082 4371 4728 5171 
NOK 180' 3754 3961 4217 4543 4944 5442 
NOK 200' 3838 4068 4353 4714 5160 5714 

Table 3.2: Estimated prices for alendronat that give the same expenses as etidronat for different 
levels of intensity. Based on the studies of Harris et al. (1993), Liberman et al. (1995) and Black 
et al. (1996) 

Intensity rates 
Cost per fracture 10.9 13.9 17.6 22.3 28.1 35.3 
NOK 100' 3284 3362 3458 3581 3732 3919 
NOK 120' 3340 3434 3550 3697 3878 4103 
NOK 140' 3397 3507 3642 3813 4025 4287 
NOK 160' 3454 3579 3733 3929 4171 4471 
NOK 180' 3511 3651 3825 4045 4317 4655 
NOK 200' 3568 3724 3917 4162 4464 4839 

Table 3.3: Estimated costs for alendronat that yield the same expenses as for etidronat for 
different levels of intensity. Based on all four studies. 

same value for a bone density of 2.5 standard deviations below the mean (fourth plot in 
the figure), which is the definition of osteoporosis. Note that the uncertainty, particularly 
connected to costs in using etidronat, is large. 

The analyses in the previous chapter gave indications that a combination of the two 
etidronat studies could be doubtful. We will, nonetheless, perform such an analysis. The 
results of this analysis can then be seen as the results for a type of "mean population" 
between the two studies. In this case, the estimated prices for alendronat are given in 
Table 3.3. Note that the prices are estimated lower here, due to a larger improvement in 
the Storm et al. (1990) study than the Harris et al. (1993) study which results in a smaller 
difference between the two drugs. A price approximately 30% higher for alendronat com­
pared to etidronat seems reasonable in this case. Figure 3.2 shows posterior distributions 
for the expenses based on 165,000 NOK for the cost per hip fracture and 4,000 NOK for 
the price of alendronat. Once again, this price is fixed in order to equalise the levels of 
bone density at 2.5 standard deviations under the mean (forth plot in the figure). 
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Figure 3.1: Posterior distributions for expenses associated with the use of etidronat (solid curve) 
and alendronat (broken curve). Top left represents bone density 1.0, top right represents bone 
density 1.5 standard deviations below normal; followed by bone densities of 2.0, 2.5, 3.0 and 3.5 
standard deviations below normal. The costs for alendronat are fixed at 4,500 NOK for a three 
year period. The results are based on the studies of Harris et al. (1993), Liberman et al. (1995) 
and Black et al. (1996). 
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Figure 3.2: Posterior distributions for expenses associated with the use of etidronat (solid curve) 
and alendronat (broken curve). Top left represents bone density 1.0, top right represents bone 
density 1.5 standard deviations below normal; followed by bone densities of 2.0, 2.5, 3.0 and 3.5 
standard deviations below normal. The costs for alendronat are fixed at 4,000 NOK for a three 
year period. The results are based on all four studies. 
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Appendix A 

Model assumptions and 
methodological basis 

In this appendix we will present the mathematical assumptions and methods that are used 
for the calculation of the different posterior distributions. The basis for the construction of 
posterior distributions lies in the use of Bayes formula (or theorem). Let q be the parameter 
of interest, and let D be the available data. If we define 1r0 (q) as the prior distribution of 
q and let f(DJq) be the likelihood for the data if q is the true value of the parameter, then 
the posterior distribution of q (given D) is: 

7r D _ 1ro(q)f(DJq) 
(qJ ) - Jq, 7ro(q')f(DJq')dq'. (A.1) 

In many cases (and in the situation presented in this paper), it will be reasonably simple 
to set up the analytic equation for the numerator in (A.1), while the denominator (which 
is only a proportionality constant that ensures that the posterior distribution has a total 
mass of 1) is often unknown or in practice impossible to calculate. 

It is, however, possible to simulate from the actual posterior distributions. The com­
puter can make a sample { q1, ... , qM} from the posterior distribution. An estimate for the 
density of the posterior probability can thus be constructed by making a density estimate 
based on the samples. In the current paper we have made use of a standard kernel density 
estimate. 

Furthermore, for a comparison of two parameters, q1 and q2 , the use of a simulation 
technique will be very practical. If one is, for example, interested in the absolute difference 
between these two variables, a sample from the posterior distribution of this difference can 
be derived directly by { qi - qi, ... , q!f- qf1} where { ( qi, qi), ... , ( qf1, q!f)} are samples from 
the posterior distribution of (q1 , q2). 

The use of simulation with respect to exact calculations will add an additional uncer­
tainty factor to the results. In practise, this uncertainty factor will be negligible if M is 
reasonably large. We have used an M = 100,000 in our calculations. A sensitivity analysis 
based on a repetition of the calculations many times shows that this is adequate. 
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In the next section we present a short overview of the models that are used and describe 
the resulting posterior distributions. For those cases in which there are no standard results, 
deductions of the posterior distributions are also included. 

A.l Analysis of each stage 

Assume that we are assessing one study. Define 

p1 =the probability of at least one fracture in the course of 3 years 

when placebo is used; 

p2 =the probability of at least one fracture in the course of 3 years 

when the study drug is used. 

Note that we make an assumption that the probabilities are alike for all individuals (in the 
populations under study). This is not necessarily true, since patients will vary dependent 
on age, bone density etc. With the available data this assumption is, however, absolutely 
necessary. In principle this refers to allowing the above probabilities to be a type of "mean 
probability" over the study population. 

We define 

X 1 =the number of patients with at least one fracture in the course of three years 

when placebo is used; 

X2 =the number of patients with at least one fracture in the course of three years 

when the study drug is used. 

Let m1 and m2 be the total number of patients in the placebo and medication groups 
respectively. If we assume that there is independence among patients, then 

xl will be binomially distributed with ml attempts and 

a probability of success of p1; 

x2 will be binomially distributed with m2 attempts and 

a probability of success of p2 • 

The Bayesian approach is based on the construction of probability distributions for p1 and 
p2 . This does not mean that these parameters are to be interpreted as random, but our 
knowledge of the parameters is uncertain and we describe this uncertainty with the help 
of probability distributions. Such probability distributions are called prior distributions. 

In principle it is now possible to build in a great deal of information about p1 and p2 

in the prior distributions. This information will however be subjective. In order to be 
as objective as possible, we will assume that the probability distributions for p1 and p2 
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are uniform (rectangularly distributed) over the interval [0, 1]. This agrees with omitting 
information on the probabilities in the prior distributions. 

When we then consider the observed data D, the prior distributions are updated to 
posterior distributions, denoted by 7r(p1jD) and 7r(p2jD). It is these distributions that are 
the basis for the Bayesian statistical inference. In this case D will be the observations X1 
and X 2. This leads to (see Berger ( 1985))) 

7r(Pl!D) f',J Beta(1 + X1, 1 + m1- X1) 

7r(P2!D) f',J Beta(1 + X2, 1 + m2- X2), 

(A.2) 
(A.3) 

i.e. p1 and p2 have Beta-distributions as posterior distributions, with parameters dependent 
on the data that are observed. 

The analysis of fracture intensity will be similar. Define 

.A1 =the fracture intensity per year when placebo is used; 

.A2 =the fracture intensity when the study drug is used. 

Further define: 

Y1 =total number of fractures in the course of three years 

when placebo is used; 

Y2 =total number of fractures in the course of three years 

when the study drug is used. 

Let n1 and n2 be the total number of patients in the placebo and drug groups respectively. 
We will then assume that: 

Y1 is Poisson distributed with the intensity n1.A1; 

Y2 is Poisson distributed with the intensity n2.A2. 

The assumption of Poisson distribution is somewhat stronger than the assumption of bi­
nomial distribution of the X's, in that we say more about the shape of the probability 
distributions of the Y's. Note that in this case it is not necessary to assume that the inten­
sities are the same for each person. Since the analysis makes use of the sum of vertebral 
fractures, it is enough that this is Poisson distributed with an intensity that is the sum of 
the individual intensities. 

Also in this case, we wish that the analysis is as objective as possible and choose 
therefore an (almost) non-informative prior distribution for the parameters .A1 and .A2. We 
have chosen to begin with a uniform distribution over the interval [0, Amaxl· Amax is the 
upper limit for the intensities .A1 and .A2. We have chosen Amax = 10, but small trials with 
other values gave near identical results. The posterior distributions for the A's are thus: 

7r(.AljD) f',J Gammatr(Yl, n1, Amax) 

7r(.A2jD) f',J Gammatr(Y2, n2, Amax), 

where Gammatr is the truncated Gamma distribution, truncated above Amax· 
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A.2 Combining studies of the same drug. 

By analysing individual studies, we will get several probability distributions each of which 
must be assessed in order to say anything conclusive about the drug overall. It would be 
advantageous therefore to combine studies for analysis (for an analysis of etidronat, the 
studies of Storm et al. (1990) and Harris et al. (1993) could be combined, while a combined 
analysis of alendronat would include the studies of Liberman et al. (1995) and Black et al. 
(1996)). 

A direct combination of the studies is difficult since the prevalences of osteoporosis will 
be different for the populations sampled in the different studies. In order to proceed an 
assumption is necessary. Within a study, define 

i.e. a is a measure of the relative improvement effect (in the form of the number with 
at least one fracture in the course of three years) in relation to the control group for the 
relevant study. The assumption we make is that the relative improvement in effect is not 
dependent on the population that is sampled, but dependent only on the choice of drug. We 
will still choose the non-informative prior distributions used earlier, but will in this case 
build into the model that the relative improvement in effect is the same for the studies 
that are combined. 

A similar combination can be used for the analysis of fracture intensities. Define 

i.e. the relative improvement of fracture intensities. Here we will build in an assumption 
that the (3's are the same for studies of the same drug. 

The next two sections will deal with the calculations of posterior distributions for a 
and (3 respectively. 

A.2.1 Probabilities for at least one fracture in the course of three 
years 

Assume for study i, 

X 1,i =the number of patients with at least one fracture in the course of 

three years in the placebo group; 

m1,i =the total number of patients in the placebo group; 

X2,i =the number of patients with at least one fracture in the course of 

three years in the drug group; 

m2,i =the total number of patients in the drug group. 
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We assume as before that X1,i "'Bin(m1,i,P1,i), while X2,i "'Bin(m2,i,P2,i)· The likelihood 
for the X's is then 

!(X ... X ) = ITS ( m1,i ) PXl.'i (1 - p ·)ml,i-Xl,i ( m2,i ) PX2.'i (1 - p ·)m2,i-X2,i 1,1' ' 2,8 X 1 ~ 1,~ X 2 ~ 2,~ . 1 1,i ' 2,i ' 
~= 

(A.6) 

As before, we will use the uniform (rectangular) distribution over the interval [0, 1] as prior 
distributions for both p1,i and p2,i· We will at the same time assume that the relative 
improvement of the drug is constant in the different studies, i.e. 

i = 1, ... , S; 

where S is the number of studies of the drug in question. In practise we will therefore 
have only S + 1 free parameters, p1,1, ... ,p1,s and a. We are then required to specify the 
simultaneous prior distribution for these parameters. We will assume that this distribution 
is of the form 

s 
1r(a,p1,1, ... ,p1,s) = 1r(a) IT 7r(P1,ila), 

i=1 

i.e., for a given a, the Pl,i's are independent. Furthermore, we maintain that if we look at 
one study only p1,i and p2,i will be independent and both uniformly distributed. This puts 
demands on 1r(a) and 1r(p1,ila). In particular, when (p1,i, a) can be interpreted as a trans­
formation of (p1,i,P2,i), we are required to have (from the normal rules of transformation) 

7r(P1,i, a) = P1,i· 

If we know 1r (a), we can find 1r (P1,i I a) by 

( ·I ) _ 1r(p1,i, a) 
1r P1 ~ a - ( ) . , 7ra 

We will therefore begin by determining what distribution a must have in order that 
p1,i and p2,i are independent and uniformly distributed for each of the studies. The sample 
space of a is [-oo, 1]. To find the prior distribution of a, assume first that k > 0. Then 

Pr(a :S k) = 11 
Pr(a :S kiP1,i)dp1,i 

= 11 
Pr(P2,i 2: (1- k)P1,iiP1,i)dP1,i 

= 11 
[1 - (1 - k )P1,i]dP1,i 

1 
=[1- (1- k)-] 

2 
1 

=2[1 + k] 
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Further , for k :S 0, 

Pr(a :S k) = 11 
Pr(a :S kiP1,i)dP1,i 

= 11 
Pr(p2,i 2: (1 - k )P1,i IP1,i)dP1,i 

11/(1-k) 
= 

0 
[1 - (1 - k )P1,i]dP1,i 

1 1 
=[1- k- (1 - k)2(1- k) 2] 

1 

2(1- k) 

i.e. 

Pr(a<k)=~{1~k k:SO 
- 2 1+k k>O 

and 

1I'(a) = ~ { (1-1a)2 a :S 0 
2 1 a> 0 

We also have 

if a :S 0, 

if a> 0; 

(note that this is only true for p1,i :S min{1, 1/(1- a)}, otherwise it will be 0) and finally 

( ) ....., ~=1 1 ·~ ....., - ' (A 7) { 
(1 - A,)2(S-1)2s n~ p . if A, < o 

1!' a,p1,1, ... ,p1,S = 2s ns . 'f O· . 
i=1 P1,~ 1 a> , 

for maxip1,i :S min{1, 1/(1 - a)}. By putting this together with the likelihood func­
tion (A.6), we have the simultaneous posterior distribution of (p1,1, ... ,p1,s, a) given by 

1I'(a,p1,1, ... ,p1,siD) 
s 

ex IT P~.~,;+l [1 - P1,i]ml,;-xl,i X 

i=1 
s 

rr[(1- a)p1,i]x2,i[1- (1- a)p1,i]m2,i-x2,i X 

i=1 

{ 1
(1- a)2(S-1) if a :S 0 

if a> 0 
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for maXiPl,i:::; min{1, 1/(1- a)} and 0 otherwise. 
The distribution (A.8) is neither simple to calculate nor to simulate. One method that 

can be used for simulating from this distribution is the Sampling/Importance Resampling 
(SIR) algorithm (Rubin (1987), Tanner (1993)). 

This is based on the fact that we know the posterior distributions of the p1,i's for each 
individual study. If we then simulate values from these distributions, we get "reasonably 
good" estimates of the Pl,i 's. We can also find "reasonably good" estimates for a by using 
a mean over the studies. The simulations will, however, not be exact. The SIR algorithm 
is a method for weighting the simulations that have been done and thereafter performing 
new simulations based on these weights. Theoretical considerations grant that this yields 
near exact results if the number of simulations performed is adequate. 

A.2.2 Intensities of fractures 

Let us now move to the intensities 

Y1,i =the number of fractures in the placebo group for study i 

Y2,i =the number of fractures in the drug group for study i 

We assume Y1,i rv Poisson(n1,iAl,i) while Y2,i rv Poisson(n2,iA2,i)· The likelihood for the Y's 
are in this case given by 

S , Yl,i e ( , ) , Y2,i ( , ) ( ) _ II /\l,i xp - Al,i . /\2,i exp - A2,i 
f Y1,1, ... , Y2,S - .I .I 

i=l Yl,~· Y2,~· 
(A.9) 

We will assume that both A1,i and A2,i have a uniform prior distribution on the interval 
[0, AmaxJ, which corresponds to an (almost) non-informative distribution. We will further 
assume that the relative improvement of the drug is constant in the different studies, i.e. 

where S is the number of studies of the drug in question. As for the p's, we will now 
have only S + 1 free parameters that require the specification of a prior distribution. It is 
assumed that this has the form 

s 
1r((3, A1,1, ... , A1,s) = 1r((3) II 7r(Al,ij(3), 

i=l 

which results in a conditional independence among the )..1,i's. If we now choose that Al,i 
and A2 ,i have independent uniform distributions, each over the interval (0, AmaxJ, we must 
in this case have 
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The sample space of f3 is [-oo, 1]. To find the prior distribution for /3, assume first f3 > 0. 
Then 

1
Amax 1 

Pr(/3:::; b) = Pr(/3 :S bl.\1,i)-.\ -d.\1,i 
0 max 

=~ 1>.max Pr(.\z,i ~ (1- b).\1,i,A1,i)d.\1,i 
Amax 0 

=-1-1Amax [1- (1- b).\1,i]d.\1,i 
Amax 0 Amax 

__ 1_[' _ 1- b A~ax] 
- Amax 

Amax Amax 2 
1 

=2[1 + b] 

Further for b :::; 0, 

1.e. 

and 

1
Amax 1 

Pr(/3 :S b) = Pr(/3 :S bi .\1,i) -, -d.\1,i 
0 Amax 

1 1Amax =-, - Pr(.\z,i ~ (1- b).\1,il.\1,i)d.\1,i 
Amax 0 

1 1Amax/(1-b) (1- b).\1,i 
=- [1- ]d.\1i 

Amax 0 Amax ' 

_ 1 [ Amax 1 - b A~ax ] 

- A max 1 - b - Am ax 2 ( 1 - b) 2 

1 

2(1- b) 

Pr(/3 < b) = - 1-b - ' 
1 { 1 b < O· 

- 2 1 + b b > 0, 

7r(/3) = - (1-(3)2 1 { 1 f3 <_ o·, 
2 1 /3 > 0. 

And so we get 
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for .A1,i ~ Amax min{1, 1/(1- ,B)} and 0 otherwise. By putting this together with the like­
lihood function (A.9), we have the simultaneous posterior distribution of (.A1,1, ... , .A1,s, ,B) 
given by 

s s s 
<X exp(- 2::::: n1,i.Al,i - (1 - ,B) L n 2,i.A1,i) (1 - ,B)"'Lf=1 Y2 ,; IJ .Ai~/+Y2 ,;+l x 

i=l 

{ 
(1 - ,8)2(8-1) for ,8 ~ 0 

1 for ,8 > 0 

i=l i=l 

The SIR algorithm can be used for simulating from this distribution also. 
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