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Abstract 

Consider a binary, monotone system of n independent components having abso
lutely continuous lifetime distributions. In Meilijson {1994) lifemonitoring of some 
components and conditional lifemonitoring of some others is considered. In the 
present paper the corresponding complete likelihood functions for the parameter 
vector, fl., of the general lifetime distributions of the components are arrived at, also 
covering the situation where the socalled autopsy data are not observed due to cen
soring. A marked point process framework is applied inspired by Arjas {1989). The 
construction of appropriate inspection strategies linked to the conditional lifemoni
toring is considered in detail. Furthermore, preventive system maintenance is con
sidered where components are replaced according to a specific strategy. Based on the 
likelihood functions a fully Bayesian approach to estimation of fl. is possible. For the 
case of exponentially distributed component lifetimes it is shown that the weighted 
sum of products of generalized gamma distributions, as introduced in Gasemyr & 
Natvig {1998), is the natural conjugate prior for fl.. 

Key words: marked point process, likelihood function, censoring, autopsy data, inspec
tion function, component replacement, Bayesian estimation, weighted sum of products of 
generalized gamma distributions. 

1. Introduction 

Consider a binary, monotone system (E, ¢), where E = {1, ... , n} is the set of compo
nents and ¢> is the structure function describing the state of the system in terms of the 
binary states of the components. The system may be a technological one, or a human 
being. We assume the components to be independent with absolutely continuous lifetime 
distributions. Denote the lifetime of the system by T and the lifetime of the ith com
ponent by 1';., with distribution function Fi(t), survival function Fi(t) = 1 - .Fi(t), p.d.f. 
fi(t) and failure rate -\i(t) = fi(t)/ Fi(t), i E E. Introduce F(t) = (F1 (t), ... , F n(t)). 
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The state of the ith component at timet is denoted Xi(t) and we have Xi(t) = I(Ti > t), 
i E E. Let X(t) = (X1(t), ... , Xn(t)). We then have ¢(X(t)) = I(T > t). The reliability 
function, h(F(t)), of the system is given by h(F(t)) = E¢(X(t)) = P(T > t). A path set, 
P, for the system is a set of components which ensures the functioning of the system if all 
components in P are functioning. Hence, ¢(lp, Qpc) = 1. The set P is called a minimal 
path set if no proper subset of P is a path set. 

Furthermore, let 

D =the set of failed components =·{i E El7i ::S T}. 

A is a fatal set if and only if P(D =A) > 0. Introduce 

A= {fatal sets}= {A C EIP(D =A)> 0} ={All ... , Am}. 

Assume as a start that the system is observed until it fails. At this instant, the set of 
failed components, D, and the failure time of the system, T, are noted. The failure times 
of the components are not known. (T, D) are the socalled autopsy data of the system. 
Meilijson (1981), Nowik (1990), Antoine et al. (1993) and GMemyr (1998) disc~ the 
corresponding identifiability problem; i.e. whether the distributions of 7i, i E E can be 
determined from the distribution of the autopsy data (T, D). 

Following these papers let 

C A = the critical set corresponding to the fatal set A 

= {i E AIP(Ti =TID= A)> 0} = {i E AlAe U {i} is a path set}. 

This set consists of those components of the fatal set A which may have failed when the 
system failed at T and thus may have caused the failure of the system. The distribution 
of the autopsy data (T, D) is given by 

GA(t) = P(T ::S t, D =A) 

with density function 
d 

9A(t) = dt GA(t). 

The latter can be considered as a likelihood function on the spaceR+ x {1, 2, ... , m} with 
respect to the measure 

J.l = Lebesgue measure x counting measure. 

The following result, essentially given in Meilijson (1981), is straightforward 

9A(t) = L >.i(t) II Ft(t) II Ft(t). (1.1) 
iECA lEA-{i} lEAcu{i} 

In Gasemyr & Natvig (1998) (1.1) is generalized to the case where components are de
pendent through the possible occurrence of independent common shocks, i.e. shocks that 
destroy several components at once. 
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In the present paper (1.1) is generalized in another direction. Assuming a model where 
autopsy data is known to be enough for identifiability, Meilijson {1994) goes beyond the 
identifiability question and into maximum likelihood estimation of the parameters of the 
component lifetime distributions based on empirical autopsy data from a sample of several 
systems. A corresponding Bayesian approach is indicated in Gasemyr & Natvig {1998) for 
the mentioned shock model. Meilijson (1994) and Gasemyr {1998) also considers lifemon
itoring of some components and conditionallifemonitoring of some others. In Section 2 of 
the present paper a complete likelihood function for the parameter vector, fl., of the general 
lifetime distributions of the components is arrived at in the case where some components 
are lifemonitored, also covering the situation where autopsy data are not observed due 
to censoring. A marked point process framework is applied inspired by Arjas (1989). In 
Section 3 the corresponding likelihood function for the case where in addition some other 
components are conditionally lifemonitored, is given. These likelihood functions are gen
eralizations of (1.1). The construction of appropriate inspection strategies linked to the 
conditional lifemonitoring is considered in detail at the end of Section 3. 

In Section 4 we consider preventive system maintenance where components are re
placed according to a specific strategy. Based on the likelihood functions a fully Bayesian 
approach to estimation of fl. is possible. For the case of exponentially distributed com
ponent lifetimes it is shown in Section 5 that the sum of products of generalized gamma 
distributions, as introduced in Gasemyr & Natvig (1998), is the natural conjugate prior 
for fl.. This section is concluded by considering a specific example. 

2. Lifemonitored components 

To know the autopsy data (T, D) means to know T and to know which component lifetimes 
are at most T and which are above T. The order of failure of the components and the 
failure times are indeed unknown. In actual practice, often some of the components are 
lifemonitored until system failure. Let 

M = the set of lifemonitored components 

= { 1 · · · p} C E 1 < p < n. ' ' ' - -

This means that for i E M and 7i :::; T, 7i is known. In this section a complete likelihood 
function for this case is arrived at for general lifetime distributions of the components, 
also covering the situation where the autopsy data are not observed due to censoring. 

Let Z0 = 0 and 
(z;, ... , z;) = 

the order statistics of the lifetimes of the lifemonitored components. 

zk = z; "T, 
Zp+t = T 
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Z b k = 1, · · · , p + 1 are the points of time where either a component or system failure (or 
both) is observed. The number, K, of different such time points until system failure is at 
most p + 1. We obviously have 

K = max{k E {1, 2, .. . }!Zk =/= Zk-d· 

Suppose V > 0 is a censoring time, either fixed in advance or being a random variable, 
being independent of Ti, i = 1, ... , n, and not depending on our parameter vector fl. The 
number, L, of different time points until system failure or censoring is given by 

L = max{k::; K!Zk < V}. 

Introduce fork= 1, · · · ,p+ 1(p) 

Ik(I;) = i if the ith lifemonitored component fails at time Zk(Z;) (at which time the 
system may fail), i E M 

Jk =j 

Jk = 0 

JK= J 

Ro=M 

if the system fails at time zk due to the failure of a non lifemonitored 
component 

if the system fails at time Zk with fatal set Ai, j E {1, · · ·, m} 

if the system does not fail at time zk 

Rk = M - {I;' ... ' IZ} = the set of lifemonitored components being at risk just after z;. 

Now let R c M be a set of lifemonitored components at risk and ~ = M - R the 
corresponding set of failed components. Define 

F(R, i) = {j E {1, · · ·, m}lff C Ai, R c Aj, i E CA; n ff} (2.1) 
= the set of possible fatal sets, for which we also know that the 

lifemonitored component i is a member of the corresponding critical set. 

For any i such that j E F(R, i), we then introduce 

Pi(t) = P[(J = j) n (T = t)j ( n (Tt ::; t)) n ( n (Tt > t)) n(1i = t)] 
lERc-{i} lER 

- II Ft(t) II Ft(t). (2.2) 
lEA;-M lEAj-M 

Define 

F(R) = {j E {1, · · ·, m }Iff c Ai, R c Aj, C A; - M =/= 0}. (2.3) 
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For any j E F(R), we then introduce 

Pi(s, t) = P[(J = j) n (s < T < t)j ( n (Te::; s)) n ( n {1i > t))] 
lERc lER 

t 

= J L ,\i(u) IT Fe(u) II Fe(u)du. (2.4) 
8 iECA;-M lE(A;-M)-{i} lE(Aj-M)U{i} 

Fork= 0, · · ·, K- 1, t ~ z;, introduce 

the event that alllifemonitored components at risk just after z;, are still at risk just after 
t. 

Bo = 0 
Bk = {ZI,IbJI,···,Zk,lk,Jk} 

= the available information just after zk 
Eo= 0 
Ek = {z;,I;, ... , z;, IZ} 

= the available information just after z; on the lifemonitored components. 

For k = 0, ... , K - 1 we have 

Information in {Bk} =Information in {Ek n (T > z;)}. (2.5) 

The fundamental theorem in this section is the following. 

Theorem 2.1 Let 

S=VI\T 

~i = 1(1i < S), i EM, 

where M is the set of lifemonitored components. Then the complete likelihood function 
for our parameter vector, fl., is given by 

iEM 

{I(V > S)[I(h =I 0),\h(S) IT Ft.(S) II Fe(S) 
lEA:f-M 

IT Ft.(S) II 
lEA;-M-{i} f.E(A:f-M)U{i} 
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Note that the product 

iEM 

represents the full likelihood function for the lifemonitored components up till just before 
system failure or censoring. The factor multiplied by I(V > S)I(h =/= 0) is the intuitively 
obvious contribution to the likelihood function from a system failure due to the failure 
of a lifemonitored component. Similarly, the factor multiplied by I(V > S)I(h = 0) 
is the intuitively obvious contribution from a system failure due to the failure of a non 
lifemonitored component. Finally, the factor multiplied by I(V = S) is the intuitively 
obvious conditional survival probability of the system up till censoring. By setting M = 0, 
V = oo, S = t, noting that we then always have h = 0, L(fl.) reduces to (1.1). 

To prove the theorem we consider the proce&<:~ (Zk, Ik, Jk) as a marked point process 
with (Ik, A) as the mark at Zk, k = 1, 2,.. . . In the following lemma we compute the 
intensities associated with this marked point process. 

Lemma 2.2 Fork= 0, ... ,K -1, i E {0, 1, ... ,n}, j E {0, 1, ... ,m}, t 2::: Zk = z; 
define 

Pii(t; Z1, !1, ... , Zk, Ik) 

= lim P[(t < zk+I :::; t + dt) n (Jk+l = i) n (Jk+I = i)IBk n (Zk+I > t)]/dt. 
dt-+0 

We then have 

(2.6) 

where 

i) fori E Rb j E F(Rk - { i}, i) 

rij(t; Zll !1, ... , Zk, h) = .Xi(t)Fj(t), 

ii) fori E Rk 

iii) for j E F(Rk) 
d 

roj(t; Z1,J1, ... , Zk,Jk) = dt Pj(s, t), 

where the right hand side is just the integrand of {2.4} with u = t, s being arbitrary, 

iv) othennise 
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Proof Fork= 0, ... , K- 1, i E {0, 1, ... , n}, j E {0, 1, ... , m}, t ~ Zk = z;, we have 
using ( 2. 5) and the fact that T ~ Z k+I 

Pii(t; Z1, I1, ... , Zk, h) 
= lim P[(t < zk+I :s;t + dt)n(Ik+I =i)n(Jk+I = J)l£kn(T > z;)nRk(t)n(T > t)]/dt 

dt-+0 

= lim P[(t < zk+I ::; t + dt) n (Ik+l = i) n (Jk+I = J)l£k n Rk(t) n (T > t)]/dt 
dt-+0 

limdt--o P[(t < zk+I ::; t + dt) n (Ik+l = i) n (Jk+I = J)l£k n Rk(t)]/dt 
-

P(T > tj£k n Rk(t)) 

Hence (2.6) follows by defining 

rii(t; Z1, Ill ... , Zk, It) 
= lim P[(t < zk+I ::; t + dt) n (Ik+l = i) n (Jk+I = j)j£1: n Rk(t)]/dt, 

dt-+0 

and noting that 

i) ForiE Rk, j E F(Rk- {i}, i) 

rii(t; Z1, Ill ... , Zk, Ik) 

= M~oP[(t<Ii:s;t+dt)n( n (Te::; 7i)) n ( n (Te > 1i))1£knRk(t)]/dt 
lEA;-{i} lEAj 

=Jf~P[(t<Ii:s;t+dt)n( n (Te:s;7i))n( n (Te>Ti))1£knRk(t)]/dt 
lEA;-M lE(Aj-M)U(R~:-{i}) 

=d~~0 P[(t<1i:s;t+dt)n( n (Te:s;t))n( n (Te>t))1£knRk(t)]fdt 
lEA;-M lE(Aj-M)U(R~:-{i}) 

= li~ P[(t<Ti::; t + dt) n ( n (Te::; t)) n ( n (Te > t)) l£k n Rk(t)]/dt 
dt O lEA;-M lEAj-M 

= li~{P(t < 1i::; t+dt11i > t]fdt}P[( n (Te::; t)) n ( n (Te > t))] 
dt O lEA;-M lEAj-M 

= >..i(t)Pi(t) 
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ii) ForiE Rk 

= Jf~ P[(t< 1i ~t + dt)nRk(Ti) n (T > ZZ+1 )1£~:nRk(t)]/dt 

= dtlim { P[Rk(Ti) n (T > Ti)l£k n Rk(t) n (t < 1i ~ t + dt)]P[t < 1i ~ t + dtiTi > t]/dt} 
--+0 

= >.i(t) lim {P[T > Til£k n Rk(Ti) n (t < 1i ~ t + dt)] 
dt-+0 

xP[Rk(Ti)lt'k n Rk(t) n (t < Ti ~ t + dt)J} 

= >.i(t) Jf~ P[<f>(lRA:-{i}' QRku{i}' X(Ti)) = ljt < Ti < t + dt] 

= >.i(t)h(lRk-{i}' QRkU{i}l F(t)) 

iii) For j E F(Rk) 

/oj(t; Z1, /1, ... , Zk, Ik) 

= limP [ U {(t < 1i ~ t + dt) n ( n(Tt < Ti)) 
dt-+0 . . 

&ECAi-M lEAj-{t} 

n (,o, (Tt > T;)) }I&, n R,(t)] /dt 

= L li~ P[(t < Ti ~ t + dt)n ( n (Tt ~ t)) n ( n (Te > t)) ITi > t]!dt 
iECAi -M dt O lE(ArM)-{i} lEAj-M 

d 
= dt Pi(s, t) 

iv) This is obvious. 

n 
Proof of Theorem 2.1. Introducing~= 2:.: 6-i, we may write the likelihood, L(f!.), as 

i=l 

L(D.) = { g [P( Zk+ t > tiB,) PI,+,''+' (t; Zt, It, ... , z, ,I,))t=zw} 

x { P(Zk+l > tjBk)[I(V > S)pi6 +1J(t; Z1,!1, ... , ZtJ., It:.)+ I(V = S)]}(t,k)=(S,t:.)· (2.7) 
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By applying (2.5) we have since t 2:: z; 
P(Zk+l > tiBk) = P(Rk(t) n (T > t)iBk) 

= P(Rk(t)IBk)P(T > ti£k n (T > Zk) n Rk(t)) 

= II (Fi(t)/Fi(Zk))P(T > t1£k n Rk(t))/P(T > z;l£k) 

= II (Fi(t)/Fi(Zk))h(lRk•QR~· F(t))/h(lRk,Q~, F(Zk)). 
iERk 

Inserting this into (2.7), applying (2.6), we get 

L(~) = g [.[ (F,(Zk+!)IF;(Z•))] Jl (F,(S)IF,(Z"')) 

X { [fl: 'II.., o( zk+l; z!, h, ... , z., h) lh(h,, lln~, F( zm l I h(ln., lll<'!,., F( Zi,.))} 

x{I(V > S)'yit>-+lJ(S; Z1. I1, ... , Z~, I~) 

+I(V = S)h(lR6 ,Q~,F(S))}. 

We now apply Lemma 2.2, noting that (Zk+I,Ik+I) = (Z;+l,Ik+I) for k = 0, ... , ~- 1. 
Since h(l&,QR~· F(Z0)) = h(l) = 1 and Rk- {Ik+l} = Rk+l• we get 

L(~) = E: [.!1 (F,( Zk+l) IF, (Z.))] .ll ( F,( S) IF,( Z"')) g AI,., ( Zk+l) 

d 
{I(V > S)[I(I~+l =/= 0).\h+l (S)PJ(S) + I(I~+l = 0) dtPJ(s, t)it=s] 

+I(V = S)h(lR6 ,QR6, F(S))}. (2.8) 

By applying (2.2) and (2.4) our proof is now completed by noting that L = ~ + 1 when 
V > S, whereas L =~when V = S. 

3. Lifemonitored and conditionally lifemonitored com
ponents 

In this section we will extend the model of Section 2 and also allow for conditionallifemon
itoring of some components. Let 

C = the set of conditionally lifemonitored components 

= {p + 1, · · · ,p + q} C E, 1 ~ p < p + q ~ n. 

For i E C there exists some arbitrary stopping time (inspection time), Ti, such that the 
ith component is monitored from Ti onwards until system failure. This means that if 
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i E C and Ti < 'n ~ T, then 'n is known and the ith component is, after Ti, dealt with 
a.s a lifemonitored component. If on the other hand, 'n ~ ri ~ T, only this inequality 
becomes known. The inspection times are a.ssumed to occur immediately after the failure 
of a component that is currently being monitored. Furthermore, the set of components 
being inspected each time is chosen according to a specific strategy determined in advance. 
The idea behind the model is that lifemonitoring of components is expensive and special 
equipment might be needed. Hence for some components this is started only when we 
know that the system is in a serious state. 

The quantities z;, Zk, IZ, Ik and Rk are obvious modifications of the corresponding 
ones in Section 2, whereas the definitions of Jk, J, Rk(t), K and L are exactly the same. 
The role of R!f is now played by Qk. The new feature is the set Hk of components that are 
inspected immediately after z;. This set splits into Hk,o and Hk,1 , the sets of components 
in Hk that are found to have respectively failed or not on inspection. 

Formal definitions are given inductively in the following due to the sequential nature 
of the set up. 

Z~ = Zo = 0, 

Assume Rk-1 =/:- 0. 

ZZ = min{'Jili E Rk-1} 

zk = z;AT 
IZ = i if z; = Ti 

h = { IZ if zk = z; 
0 otherwise 

Ro = Af, Qo = 0 

Hk = {i E Clri = Zk} = a subset of conditionally monitored components in 
C- Rk-l U Qk-l being monitored from z; onwards, determined according 
to a specific strategy on the basis of information that is or becomes available 
at zz about components in M U C, provided zz < T 

Hk,o = {i E HkiXi(ZZ) = 0} 

Hk,l = {i E HkiXi(ZZ) = 1} 
k 

Nk = U Hl 
l=l 

k 
Nk,o = U Hl,O =the set of conditionally lifemonitored components being failed on 

l=l 
inspections, not after z; 

k 
Nk,l = U Hl,l = the set of conditionally lifemonitored components being function

l=l 
ing on inspections, not after z; 

Rk = (Rk-l- IZ) UHk,l =the set of lifemonitored and conditionally lifemonitored 
components being at risk just after z; 

Q k = ( Q k-l U IZ) U H k,o = the set of lifemoni to red and conditionally lifemonitored 
components having failed not after z; 
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It should be noted that if Rk = 0, there are no more lifemonitored and conditionally 
lifemonitored components at risk just after z; = Zk, and we define Zk+l = T. 

The information obtained by the inspections immediately after z; can be summarized 
as a vector Y~ = (Yk~p+l• ... , Yk*,rrq) E { -1, 0, 1 }q defined by 

rk = (1nA:,I'.QHk,O' -1). 

Hk, Hk,o and Hk, 1 can be recovered from rk by means of the functions g, g0 and g1 from 
{ -1, 0, 1}q into C defined by 

Also define 

g(y) = {i E Cjyi # -1} 

9o(Jj_) = { i E Cjyi = 0} 

91(Jj_) = {i E Cjyi = 1}. 

y ={rk if k<K 
.wr: -1 if k=K, 

reflecting that there is no additional inspection after the failure of the system since by 
that time the autopsy data (T, D) are known. 

Now let R C M U C be a set of lifemonitored and conditionally lifemonitored compo
nents known to be at risk and Q C M U C a corresponding set of components known to 
have failed. We haveR n Q = 0. However, since we might lack information on some of 
the conditionally lifemonitored components, we do not have Q = M U C - R. 

We then define F(R, Q, i) and F(R, Q) by replacing R_C by Q in respectively (2.1) and 
(2.3). Similarly, we define Pf"(t) and Pf"(s, t) by replacing M by MUNk in respectively 
(2.2) and (2.4). 

Furthermore, we introduce 

Bo = 0 

Bk = {Z1. I1. Y~> J1, ... , Zk, h,L, Jk} 

Eo= 0 
Ek = {z;, I;, Yi, ... , z;, I;,_rz} = 

the available information just after z; on the lifemonitored and conditionally 
lifemonitored components. 

With these definitions (2.5) is still valid for k = 0, ... , K - 1. 
Finally, the inspection strategy is defined in such a way that the following condition 

is satisfied 

lim P[rk = yjEk-1 n (t < z; ~ t + dt) n (I;= i)J 
dt-+0 -

= II Ft(t) II Ft(t), (3.1) 
lEgo (Jt) lEg1 (Jt) 
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for k = 0, 1, ... and for all y E { -1, 0, 1 }q such that the left hand side is positive. Denote 

these sets by o;,;-1 , k = 0, l, ... We will return to the construction of inspection strategies 
satisfying ( 3.1). 

The generalization of Theorem 2.1 is the following 

Theorem 3.1 Let 

S =VAT 

Lli = I(Ti < S), i EM 

Lli = I( Ti < 1i < S), i E c, 

where M and C respectively are the sets of lifemonitored and conditionally lifemonitored 
components. 

i=l 

Then the complete likelihood function for our parameter vector, fl., is given by 

L(fl.) = rr (,\i(Ti))tl' II Fi(Ti AS) rr fi(ri) 
iEMUC iEMUNt::..,1 iENt::..,o 

x{I(V > S)[I(h =1- 0),\h(S) rr 
lEA'j-M-NL-1 

+I(h = 0) rr rr 
lE(A'j-M-NL-1)U{i} 

To prove the theorem we consider the process (Zk, Ik,~, Jk) as a marked point process 
with (h, ~. Jk) as the mark at Zkl k = 1, 2, ... In the following generalization of Lemma 
2.2 we compute the intensities associated with this marked point process. 

Lemma 3.2 Fork= 0, ... , K -1, i E {0, 1, ... ,n}, j E {0, 1, ... ,m}, ']!_ E { -1,0, 1}q, 
t 2: zk = z; define 

Piy_j(t; Z1, I1, Y1, ... , Zk, h, ~) 
= lim P[(t < zk+I ::; t + dt) n (Ik+I = i) n (~+1 = y) n (Jk+I = J)IBk n (Zk+I > t)]Jdt 

dt-o -

We then hat'e 

where 
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i) fori E Rk, j E F((Rk-{i}),(QkU{i}),i) 

l'i(-!)i(t; Z1, I11 Y 1, ... , Zk, Ik,~) = >.i(t)Pr1 (t), 

l'i~( t; z11 IllY ll ... , zk, Ik, ~) 

= >.i(t) II Ft(t) II Ft(t)h(l(RJ;-{i})Ugt(ll)' .Q(QJ:U{i})Ugo(y)l F(t))' 
tego(J0 teg1 <tO - -

iv) otherwise 

Proof: Except for ii) the proof is completely parallel to the one of Lemma 2.2. 'Hence 
we only prove ii). 

For i E Rk, y E Gf~ - ' 

l'i~(t;Zl,Il,Yl, .. . ,zk,Ik,~) 

= lim P[(t < Ti ::::; t + dt) n Rk(Ti) n (~+I = y) n (T > z;+I)Iek n Rk(t)]/dt 
&~o -

= Jf~{P[Rk(Ti) n (~+I= u) n (T > 1i)l£k n Rk(t) n (t < 1i::::; t + dt)] 

xP(t < 1i::::; t + dtl1i > t)jdt} 

= >.i(t) lim {P[(T > Ti) n (~+I= y)l£k n Rk(Ti) n (t < 1i::::; t + dt)] 
dt~o -

xP[Rk(1i)l£k n Rk(t) n (t < 1i ::::; t + dt)]} 

= >.i(t) lim P[(T > Ti) n (Yt+I = y)lek n Rk(Ti) n (t < 1i ::::; t + dt)] 
dt-+0 -

= >.i(t) lim {P[Yk*+I = yl£k n (t < z;+1 ::::; t + dt) n (J;+I = i)] 
dt-+0 -

xP[T >Jilek n Rk(Ti) n (t < 1i ::S t + dt) n (Yk*+1 = u)]} 

= >.i(t) II Ft(t) II Ft(t) 
lEgo(Jl) lEg1 (Jl.) 

X lim P[¢(l(RJ:-{i})ug1 (y)' .Q(QJ:U{i})Ugo(Y)' X(Ti)) = lit< 1i ::S t + dt] 
dt-+0 - -

= Ai(t) II Ft(t) II Ft(t)h(l(RJ:-{i})ug1 (y)• il{QJ:U{i})Ugo(Y)' F(t)), 
lEgo (Jl.) lEg1 (1[) - -
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having applied (3.1). 

Proof of Theorem 3.1: Parallelling the proof of Theorem 2.1 all the way we end up with 
the following counterpart to (2.8), noting that 91(K:k+d = Hk+1,1 and 9o(L+I) = Hk+l,O 

~-1 

L(!l) = II [ II Fl(Zk+I) II (Fi(Zk+I)f Fi(Zk))] II (Fi(S)/ Fi(Z~)) 
k=O lEH1c+1,1 iER1c iERA 

~-1 ~-1 

X II II Fl(Zk+1) II .A/Ic+1 (Zk+I) 
k=O lEHk+l,O k=O 

X {1(V > S)[I(I~+l # O).Ah+l (S)Pf6 (S) (3.3) 

d N -
+1(1~+1 = 0) dt PJ 6 (s, t)it=sl + 1(V = S)h(lR6 ,!!Q6 , F(S))} . 

Our proof is now completed parallel to the one of Theorem 2.1 by noting that the factor 
displayed in the first line of (3.3) can be written as 

1f [ II Ft(Zk+1) I II Fl(Zk)l II (Fi(S)f Fi(Z~)) 
k=O lER~c+IU{/k+l} lER~c iERA 

~-1 

= II Fh+1 (Zk+I) II Fi(S) = II Fi(Ti 1\ S). 
k=O iEMUNA,1 

We now return to the construction of inspection strategies satisfying (3.1). The sim
plest way this can be done is to let Hk be determined by a function Hf~- 1 into the set of 
subsets of C- (Rk-1 - { i}) U ( Qk-1 U { i}) = C- Rk-1 U Qk-b being piecewise constant 
and right continuous in t > ZZ-u and with i E Rk_1. We then determine Hk by 

H Hek-1 
k = z· I*· 

/c' k 

To see that (3.1) is satisfied, note that there exists dt > 0 such that s;,~- 1 is constant 
for s E [t, t+dt). To ensure the left hand side of (3.1) to be positive, 1L E { -1, 0, 1}q must 
be such that g(JL) is equal to this constant value. Hence, for such 1L this left hand side 
equals 

limP [ n (Xt(Ti) = Yl)it < Ti ~ t + dtl , 
dt-+0 lEg(l!.) 

which again is equal to the right hand side of (3.1). 
The assumption of piecewise constancy of sZ,~- 1 ensures some stability in the inspec

tion strategy, and hence seems reasonable. 
The specification of the inspection strategy requires the specification of the functions 

H{,~- 1 for each possible history £k-l· When these functions are constant in t and depend 
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on the history only through the set of components at risk and the set of components 
known to have failed, i.e. H[~- 1 is of the form H(Rk-1 - {i}, Qk-1 U {i} ), we obtain an 
inspection plan of type 1 as defined in Gasemyr (1998). In analogy, we may call the 
inspection strategy discussed above a history dependent inspection plan of type 1. 

A more flexible strategy can be defined by allowing Hk to depend more extensively 
on information that becomes available at zz_ We then let Hk be determined through 
an iterative procedure involving a function H[,~- 1 (R, Q) into {C- R U Q} U {0}, being 
piecewise constant and right continuous in t > z;_1. Here i E Rk-b whereas Rand Q 
are disjoint subsets of C with Rk-1 - {i} ~Rand Qk-1 U {i} ~ Q. 

Hk is then the result of repeated applications of H~~-J.(R, Q) with (R, Q) = 
/c' 1c 

(Rk_ 1 - I;, Qk-l U I;) as initial values. For each iteration, a new component is selected 
for inspection and afterwards the pair (R, Q) is updated by adding the component toR 
if it is functioning and to Q if not. This procedure is stopped when for the first time 
H~~-J. (R, Q) = 0. We assume the procedure takes zero operational time. 

/c' 1c 

To see that ( 3.1) is satisfied, note that there exists dt > 0 such that the function 
s:~- 1 (R, Q) is constant for s E [t, t + dt) for each of the finitely many possible pairs 
(R, Q). Hence, for each iteration, where a single component is selected, (3.1) is true. 
Due to the independence of components it follows that (3.1) is satisfied for the whole 
inspection. 

If H{t1 (R, Q) = H(R, Q) depends on the history only through the pair (R, Q) of , 
components known to respectively be at risk and to have failed, His called an inspection 
function and the strategy is an inspection plan of type 2 according to the terminology in 
Gasemyr {1998). In that paper, the sets H(R, Q) are allowed to contain more than one 
component. This generality could be allowed in our history dependent framework as well, 
giving rise to a history dependent inspection function and a history dependent inspection 
plan of type 2. Again (3.1) will be satisfied. 

As a special case let us consider a socalled cause-controlling inspection plan as intro
duced in Gasemyr (1998). An inspection plan of type 2 is said to be cause-controlling 
if for k = 1, 2, ... , the risk set Rk, arising from the whole inspection immediately after 
z;, is always a path set for the system if possible. This can be achieved by using an 
inspection function H satisfying H(R, Q) =/= 0 if R is not a path set. Suppose in addition 
that M U C = E and that Ro = M is a path set. It is then easy to see that the system 
failure time T must coincide with the failure time of a component that is currently being 
monitored. Hence, the identity of the component causing system failure becomes known. 

This leads to the following corollary of Theorem 3.1. 

Corollary 3.3 For the case of a cause-controlling inspection plan the complete likelihood 
function for our parameter vector, fl., reduces to 
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Proof: The corollary follows immediately from Theorem 3.1 since for a cause-controlling 
inspection plan we always have h =I= 0. In addition, the contribution h(lRL, UQL, F( S)) = 1 
since RL is here a path set. 

4. An application to component replacement 

In this section we consider preventive system maintenance where components are replaced 
according to a specific strategy. We have to take into account that it is costly to intervene 
in system operation. Hence, it is desirable to postpone replacement of failed components 
as long as possible in order to replace several components at a time. On the other hand, 
it is obviously important to avoid a system failure. As a compromise we assume that 
components are replaced as soon as system weakening has reached a certain level; i.e. 
when '1/J(X(t)) jumps to zero, where '1/1 is a binary, monotone structure function such that 
'1/J (X ( t)) < ¢( (X ( t)). At this time a total inspection of the components is carried through 
and all failed components are replaced, while the others are not affected. We assume this 
procedure takes zero operational time. Afterwards, the replaced components are assumed 
to have the same lifetime distributions as the initial ones. 

It is natural to choose '1/1 such that when '1/!(X(t)) jumps to zero, at least one additional 
component must fail for ¢(X(t)) to jump to zero. H for instance¢ is a k-out-of-n system, 
we can choose '1/1 as a ( k + 1 )-out-of-n system. 

We denote by 1i,1. and Si,l. respectively the time for the t'th failure and replacement of 
the ith component, i E E, t' = 1, 2, ... The succ~ve times of preventive system main
tenance are denoted T1, T 2 , ... , and the interval (1""-1, T"] is called the rth operational 
period of the system, r = 1, 2, ... Here J>0 = 0. Formally, these variables are related as 
follows. Let 

Xi,t(t) = /(1';.,1 > t), i E E, t > 0 

X1(t) = (X1,1(t), ... , Xn,t(t)) 
T1 = inf{t > OI'I/I(X1(t)) = 0} 

Xi,2(t) = /(1';.,1 > t) + I(Ti,1 ::; T 1)I(1i.2 > t), 
X2(t) = (X1,2(t), ... ,Xn,2(t)) 
T 2 = inf{t > T1I'I/I(X2(t)) = 0} 

i E E, t > T 1 

Xi,r(t) = J(Ti,I > t) + /(1';.,1 ::; r-1 )I(Ti,2 > t) + · · · 
+l(Ti,r-1 ::; r-1)/(Ti,r > t), i E E, t > r-1 

Xr(t) = (X1,r(t), ... , Xn,r(t)) 
T'" = inf{t > r-111/i(Xr(t)) = 0} 

Si,O = 0 

Si,L = min{T'",r E {1,2, ... }11il::; T'"}, t' = 1, 2, ... 
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The component states at time t are given by 
(X) 

X(t) = L I('Y-1 < t ~ 'Y)Xr(t). 
r=l 

Our distributional assumptions can formally be stated by introducing 

Vit. = T;t- sil-l, ' ' , i E E, f= 1,2, ... 

Then the variables Vi,t are independent and Vi,l has distribution function Fi(t). 
In order to immediately register the successive times, T 1 , T2 , ... , of preventive system 

maintenance, a history independent inspection plan of type 2, which is cause-controlling 
with respect to '1/J, is followed. At the consecutive failure times, z;, of the currently mon
itored components, the risk set is updated by Hk,I, the set of conditionally lifemonitored 
components being functioning On inspection, k = 1, 2, ... If Zk = r for some T = 1, 2, ... , 
first all failed components are replaced, while the others are not affected. The risk set, 
Rk, can then be constructed by for instance starting out with the inspection function 
H(Rk_ 1 , 0) or simply start all over again with Rk = l4J = M. 

The inspection strategy leads to inspection times T;,t. defined as follows. Introduce 

i E E, £ = 1, 2, ... 

The possibilities r;:t. = Si,l-1 and rtt = +oo are not excluded. Let 

i E E, f= 1,2, ... 

Hence, we define exactly one inspection time T;,l for the ith component in its £th renewal 
cycle [Si,l-1, S;,t]· 

We want to calculate the likelihood function, L(fl..), based on data from observing the 
system components according to the scheme described above on the interal [0, to], where 
t 0 is either a fixed time point or the result of random censoring. Define 

Ti,O = 0 

max{T;,l, ru} = the time when the £th failure of the ith component is 
known 

Li =max{£ E {0, 1, ... }lfi,t ~to} 
- the number of known failures for the ith component before t 0 

Lli,t. = I( Ti,l ~ 1i,t.) 

Ri,l = max{r E {1, 2, ... }lrr < Si,t.} 

the number of operational periods of the system before the one that ends 
with the fth replacement of the ith component 

R = max{r E {1, 2, ... }!Tr ~to} 

- the number of operational periods of the system completed before t0 

R(t0 ) = the risk set at t0 . 
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For r = 0, ... , R define k;. by 
z;r = T'". 

Note that since Z0 = TJ = 0, we have k0 = 0. Finally, let 

G(R) = E- U (Hk,o U {Ik})- R(to) 
{k~kR+l!ZZ<to} 

- the set of components for which no information is acquired in the interval 
(TR, to]. 

We can now prove the following theorem. 

Theorem 4.1 The complete likelihood function for our parameter vector, e._, in the com
ponent replacement model, where all failed components are replaced, is given by 

L, 

L(fl.) = II IIP•i(1i,l- Si,t-dFi(Ti,t- Si,t-df~i,l 
iEEl=1 

x[Fi(Ti,l- Si,t-1)- Fi(TR..t- Si,t-1)] 1-~•.t 

x II Fi(to- Si,LJ II Fi(TR- Si,£.). 
iER(to) iEG(R) 

Proof: The likelihood is found by linking contributions from the consecutive operational 
periods of the system. With obvious notation we then have 

R-1 

L(fl.) = L(fl.I(O, to])= II (L(e..I(T'", T'"+l])]L(fl.I(TR, to]). (4.1) 
r=O 

The available information at the beginning of the ( r + 1 )th operational period is B~tr. 
Introduce the corresponding conditional distributions (r = 0, 1, ... , R- 1) 

Gr(t) = P(Xi,r+l(t) = O!B~tr), t > T'", 

with corresponding p.d.f. g[(t) and failure rate 1f(t) = g[(t)/Cl'; (t), i E E. 
Furthermore, introduce 

N~ = U Hk,o 
kr+1~k~kr+1 

= the set of components being failed on inspections in the (r + 1)th opera-
tional period 

Nt' = U Hk,o 
{k~kR+l!ZZ<to} 

= the set of components being failed on inspections in (TR, t 0 ). 

Qr = U {Jk} 
k,+l~k~kr+l 

the set of components observed to fail in the (r + 1)th operational period 
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QR = U {lk} 
{ k~kR+liZZ <to} 

= the set of components observed to fail in (TR, t 0 ) 

AJr+l = { i E EIXi,r+l (T"+l) = 0} 

= the fatal set corresponding to the (r + 1)th jump of '1/J(X(t)) to zero 

L[ =min{£ E {1, 2, ... }ISi,l > rr} 

= the number of renewal cycles for the ith component needed to just exceed 
rr 

By applying Corollary 3.3 for the case V > S with respect to '1/J we get 

L(~l(?, :rr+I]) = II -y[(1i,Lr) II G; (1i,Lr) 
iEQr iEQr 

X II Gr( Ti,Lj) II Gr(?+l) II a; (?+1) . 
iEN0 iEAJr+1-QruN0 iEA~r+l 

Now we have 

Furthermore, 

'7"'7"+1 
Ti,L': = J. , 

' . Ac 
Z E Jr+l 

Hence, we get from (4.2), noting that fori E A;r, Si,Lr_1 = T", 
' 

iEAJ.-

X II A·(T.·Lr- S·Lr-1) II F·(T.·Lr- S·Lr-1) t t, i 1, i t. 1, i '11 i 

iEQr iEQr 

Correspondingly, by applying Corollary 3.3 for the case V = S we get 

L(~I(TR, to]) = II [F\(TR- si,LR-1)t1 

"EAc 1 

t JR 

x II ..\i(1i,LR- si,LR-1) II Fi(~.LR- si,LR-1) 
1 I \ 1 

iEQR iEQR 

X II [Fi(ri,LR- si,LR-1)- Fi(TR- si,LR-1)] 
iENf' ' ' ' 
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Inserting (4.3) and (4.4) into (4.1), changing the order of multiplication, we get 

having used the fact that L~·t =f. and that Li = Lf fori E QR U Nf-. By noting that 
I(i E QR.,t) = lli,t and J(i E AJs..1 +1 -QR..t)J(Fr·t < R)+I(i E N!-)I(Jr.l = R) = l-lli,t 
and finally that Li = Lf- 1 fori E E- QR U Nt', our proof is completed. 

An alternative component replacement model is obtained if no total inspection of 
the components is carried through and hence only components known to have failed are 
replaced. We now define inductively 

Sio = 0 
' 

Ti,i = min{ZZI(ZZ ~ Si,t-d n (i E Hk)} 
Si,l = min{T", r E {1, 2, ... }lfi,t ~ T"}. 

Parallel to Theorem 4.1 we now get 

Theorem 4.2 The complete likelihood function for our pammeter vector, {!.., in the com
ponent replacement model, where only components known to have failed are replaced, is 
given by 
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Proof: The proof is very similar to the one of Theorem 4.1. We now have 

Hence, we get, noting that N0 ~ M U C- R~er, 

L(~I(T", T"+l]) = II (F\(T"- Si,L';-1)t1 II Aj(Ii,Li- Si,L';-1) II Fi(li,Li- Si,L';-d 
iERkr iEQr iEQr 

leading to the completion of the proof. 

5. Bayesian estimation of component parameters 

Having complete likelihood functions for our parameter vector, ~' a Bayesian approach 
to estimation of ~ is possible for our models. Taking prior knowledge into account this 
approach is especially suitable in reliability where data often are scarce and asymptotic 
properties of estimators are of less help. Let the prior distribution of~ be 1r(~). Then the 
posterior distribution given the data D is by Bayes theorem 

1r(~ID) ex: L(~)1r(~). (5.1) 

The posterior distribution of~ gives through (5.1) the basis for Bayesian inference on com
ponent lifetimes. A specific parameter may for instance be estimated by the expectation 
in its posterior marginal distribution. When exact methods for calculating the expec
tation are not available, one may use Markov Chain Monte Carlo simulation to obtain 
approximate values. See for instance Smith & Roberts (1993). 

Now assume that the lifetime of the ith component, 7i, is exponentially distributed 
with failure rate ()i, i E E. We have~= (01, ... , On). 

The following definition of the generalized gamma distribution is given in Gasemyr & 
Natvig (1998). 

Definition 5.1 For positive real numbers a, b, t 1, ... , tr define the functions 

r 
f(O; a, b,t.) = oa-le-b8 IT (1- e-eti), 0 2 o 

i=1 
f(O;a,b) = oa-1e-b8, () 2 0, 

(5.2) 
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where t = ( t1, ... , tr). Define the normalizing constant 1( a, b, t) by 

oo oo r 

(T'(a,b,t))-1 = j f(B;a,b,t)dB= L (-1)1BI I f(B;a,b+ ~IB(i)ti)dB 
0 BC{l, ... ,r} 0 z=l 

00 

= L ( -1)141 I f(B; a, b +d.. t)dB = r(a) L ( -1)141(b +d.. t)-a, (5.3) 
4E{O,lY 0 4E{O,l}r 

where IBI denotes the number of elements in B, d; = IB(i) and ld.l denotes d1 + · · · + dr. 
The generalized gamma distribution with parameters a, b and t is then defined as the 
probability distribution on [0, oo) with density function given by 

g(B;a,b,t) = r(a,b,t)f(B;a,b,t), B;::: 0. (5.4) 

The ordinary gamma distribution, g(B; a, b), is a special case corresponding tor= 0. 

Note that conditionally on fl., the reliability function of the system can be written as 

n 
h(F(t)) = L ¢(;c_) II (e-8;tyr;(1 _ e-8;t)l-x;, (5.5) 

~E{O,l}n i=l 

by total state enumeration. This method is computationally inefficient, but will serve 
the purpose to prove Theorem 5.3 to follow. In applications more efficient approaches 
are needed such as for instance the technique of recursive disjoint products, see Abraham 
(1979), Ball & Provan (1988) and Locks (1980, 1982). For network systems the factoring 
algorithm can be very efficient, see Satyanarayana & Chang (1983). 

The following lemma is obtained immediately from Theorem 3.1 using (5.5). 

Lemma 5.2 For the case of exponentially distributed component lifetimes the likelihoood 
function in Theorem 3.1 can be written in the form 

K 

L(fl.) = L II f(Bi; 1, 0, tk,i) II f(Bi; 1, tk,i) II f(Bi; 2, tk,i), (5.6) 

where Bk, Ck, Dk are disjoint subsets of E for each k = 1, ... , K. 

Our main result in our Bayesian approach is the following theorem being completely 
parallel to Theorem 2.2 in Gasemyr & Natvig (1998). 

Theorem 5.3 a) Suppose that the failure rates Bi, i E E for the components of a 
binary, monotone system (E, ¢) have a joint prior distribution of the form 

J n J n 

1r(fl.) ex l:IIJ(Bi;aj,i,bj,i,tj,i) = LII T'(aj,i,bj,i,tj,i)-1g(Bi;aj,i,bj,i,tj,J· (5.7) 
j=l i=l j=l i=l 
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Then the posterior distribution of fl. associated with the likelihood function given by (5. 6) 
is of the form 

J K 

1r(tZID) <X L L [ II f(Oi; aj,i, bj,i, ii,i' tk,i) J 
j=l k=l iEB~~; 

x [II f(Oi;aj,i,bj,i +tk,i,ij,i)] II f(Oi;aj,i + 1,bj,i +tk,i,ij,i) 
iEC~~; iED~~; 

x[ II f(Oi;aj,i,bj,i,ii,d]. (5.8) 
iEE-B~~;-C~o-D~o 

b) The class of distributions of the form (5. 7) is a natural conjugate class of priors for 
our exponential model. 

c) Suppose the prior distribution, 

n 

1r(fl.) = II g(Oi; ai, bi), (5.9) 
i=l 

for fl. is updated with data from r independent systems with likelihood functions of the form 
given by Theorem 3.1. Then the posterior distribution is of the form (5. 7}. 

Proof: a) is a straightforward application of Bayes theorem. b) follows since (5.8) is of 
the same general form as (5.7). c) follows by repeated use of a). 

Theorem 5.3 states that the weighted sum of products of generalized gamma distri
butions is the natural conjugate prior for fl. with respect to our exponential model. This 
seems to be a completely new generalization of the fact that the gamma distribution is the 
natural conjugate prior for the failure rate in an exponential model parallel to the gener
alization given in Gasemyr & Natvig (1998). For further comments we refer to that paper 
and to Gasemyr & Natvig (1996) where simulation procedures for parameter estimation 
and prediction in the model of Gasemyr & Natvig (1998) are suggested. 

By considering the likelihood functions given in Theorems 4.1 and 4.2 instead of the 
one given in Theorem 3.1, Theorem 5.3 is still valid. This follows since for the case of 
exponentially distributed component lifetimes we have 

Fi(ri,t- Si,t-1)- Fi(TRt,t- Si,t-I) = 
exp( -Oi(TRt,t- Si,t-1))(1- exp( -Oi(ri,t- TRt,t))]. 

We conclude this section by considering, for general lifetime distributions of the com
ponents, an example of a history dependent inspection plan of type 2. The example is 
motivated by a situation where due to scarcity of financial resources, technical equipment 
or personell, it is only possible to monitor a fixed number of components at a time. When
ever a currently monitored component fails, exactly one new component is added to the 
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risk set. To decide which component to start monitoring at z;, we order the components 
inC- Rk- 1 U Qk-1 according to the size of the quantity 

The components are inspected in decreasing order of Jvfi ( k) until a functioning one is 
found. This component is then included in the risk set. The motivation is that a com
ponent with larger Mi ( k) carries more information about the expected system lifetime. 
This quantity is very much linked to the N atvig measure of importance of components, 
see Natvig (1985). 

For 8 = 0, 1 we have 

P[T > tiBk n (Xi(ZZ) = 8)] (5.11) 

= I P[T > tiBk n (Xi(Zk) = 8),Q]1r(QIBk n (Xi(Zk) = 8))dQ 
[O,oo]" 

ex I P[T > tiBk n (Xi(Zk) = 8),Q)L(QIBk n (Xi(Zk) = 8))1r(Q)dQ, 
[O,oo)"' 

where 1r(QIBk n (Xi(Z;) = 8)) is the posterior distribution of Q. Mi(k) is determined by 
(5.11) since 

00 

Mi(k) = J {P[T > tiBk n (Xi(z;) = 1)]- P[T > tiBk n (Xi(Zk) = o)]}dt. 
0 

Hence we see that the current updating of the information on Q is not just a consequence of 
our monitoring scheme, but is in fact an integrated part of the scheme. The computation 
of Mi ( k) must in most cases be carried through by simulation. One starts by generating 
a sample from the posterior distribution of fl. by for instance rejection sampling, and then 
simulates the process X ( t) for given fl.. 
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