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ABSTRACT. For an arbitrary diffusion process X with time-homogeneous drift 
and variance parameters J-L( x) and u 2 ( x), let V~ be 1/ c: times the total time X ( t) 
spends in the strip [a+ bt - tc:, a+ bt + tc:J. The limit V as c: ___. 0 is the full 
halfl.ine version of the local time of X ( t)- a- bt at zero, and can be thought of as 
the time X spends along the straight line x = a+ bt. We prove that V is either 
infinite with probability 1 or distributed as a mixture of an exponential and a unit 
point mass at zero, and we give formulae for the parameters of this distribution 
in terms of J-L(.), u(.), a, b, and the starting point X(O). The special case of a 
Brownian motion is studied in more detail, leading in particular to a full pro­
cess V(b) with continuous sample paths and exponentially distributed marginals. 
This construction leads to new families of bivariate and multivariate exponen­
tial distributions. Truncated versions of such 'total relative time' variables are 
also studied. A relation is pointed out to a second order asymptotics problem in 
statistical estimation theory, recently investigated in Hjort and Fenstad ( 199la, 
1991b ). 

KEY WORDS: Brownian motion, diHusion process, exponential process, local 
time, multivariate exponential distribution, second order asymptotics for estima­
tors 

1. Introduction and summary. Consider a time-homogeneous diffusion process 

X with dX(t) = J-L(X(t)) dt + u(X(t)) dW(t), using W(.) to denote a standard Brownian 
motion. In other words, X is a Markov process with continuous paths and with the 

property that X(t +h)- X(t), for given X(t) = x, has mean value J-L(x)h + o(h) and 
variance u2 (x)h + o(h). Consider 

1100 v~ =- I{IX(t)- a- btl:::; ~c} dt, 
E: -0 

( 1.1) 

the total amount of time spent by the process in the narrow strip [a+ bt- tc:, a+ bt + tc:J, 
divided by c:. We show in Section 2 that this variable has a well-defined lim.it V, and find 

its distribution, in terms of a, b, J-L(.), u(.), and the starting point X(O) = x. Under certain 

conditions the variable is infinite almost surely, and in the opposite case the variable is 
distributed as a mixture of an exponential and a unit point mass at zero. _Explicit formulae 

for the parameters of this distribution are also found. The variable is a pure exponential 

in the case X(O) =a. The simplicity ofthe result is remarkable, in view of the large class 

of diffusion processes; in particular X can have both GauBian and non-GauBian sample 

paths. 

The V variable can be thought of as the total relative time the X (.) process spends 

along the line x = a+ bt, and is related to what is sometimes called the local time at zero 
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of the X(t)- a- bt process. Usually such local times are studied and used for a limited 

time interval [0, 'T] only, however. 
A special case of the construction above is 

1 
Ve(b) =- measure{t 2: 0: W(t) E [bt- tc:, bt + tc:]}. 

c; 
( 1.2) 

That the limit V(b), the time Brownian motion spends along x = bt, is simply exponential 

with parameter lbl, follows from the general result of Section 2, but is proved in a more 
direct fashion in Section 3, using moment convergence. This second approach lends itself 

more easily to the simultaneous study of several relative times. In Section 4 we prove 

full process convergence of {Ve(b): b =I= 0} towards a {V(b ): b =I= 0} with continuous sample 
paths and with exponentially distributed marginals. Its covariance and correlation struc­
ture is also found. In particular this construction leads to new families of bivariate and 

multivariate exponential distributions. 
In Section 5 a more general variable V( c, b) is studied, defined as the total relative 

time during [c, oo) that W(t) spends along bt. The distribution of V( c, b) is again a mixture 
of an exponential and a unit point mass at zero. A simple consequence of this result is 
a rederivation of a well known formula for the distribution of the maximum of Brownian 
motion over an interval. Finally some supplementing results and remarks are given in 

Section 6. In particular some consequences for empirical partial sum processes are briefly 

discussed. 
A certain second order asymptotics problem in statistical estimation theory led by 

serendipity to the present study on total relative time variables for Brownian motion. 

Suppose {On:n 2: I} is an estimator sequence for a parameter 0, where en is based on 
the first n data points in an i.i.d. sequence, and consider Q6, the number of times, among 
n 2: cl b2 ' where IBn - el 2: 8. Almost sure convergence (or strong consistency) of en is 
equivalent to saying that Q6 is almost surely finite for every 8, and it is natural to inquire 

about its size. A particular result of Hjort and Fenstad (199la, Section 7) is that under 

natural conditions, which include the existence of a normal (0,£7 2 ) limit for .jn(en- e), 

82 Q6 --fd Q == Q(c,ll£7) = 1= I{IW(t)12: tiO"}dt (1.3) 

as 8 --f 0. If {On,d and {On,2 } are first order equivalent estimator sequences, with the 

same N(0,0"2 ) limit for .jn(On,j- 0), and Q6,j is the number of 8-misses for sequence j, 
then Q0,1 IQ0,2 --f 1 and 82 (Q0,1 - Q0,2 ) --f 0 in probability. One way of distinguishing 

between the two estimation methods is by studying second order aspects of Q 6, 1 - Q 6,2. 

It turns out that 8 times this difference in typical cases has a limit distribution which is a 

constant times V( c, 11 O")- V( c, -11 O" ), or times the simpler V(ll O")- V ( -1 I o-) if c = c( 6) 
is allowed to decrease to zero in the definition of Q o,j. Note the connection from Q( c, 1 I o-) 
of (1.3) to V(c,±1IO"). Some further details are in 6C in the present paper, while further 

background and discussion can be found in Hjort and Fens tad (199la, 1991 b). 

2. The time X spends along a straight line. In 2A we solve the problem for 

the time spent along a line parallel to the time axis. This rather immediately leads to the 

more general solution, which is presented in 2B. 
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2A. The time X spends along a horizontal line. Let X(t) be as in the introductory 

paragraph, with continuous and positive diffusion function cr( x) and continuous drift func­

tion J.L( x). For a temporarily fixed a, define 

{ 1Y 2J.L(x)} 
s (y) = exp - a cr2 ( x) ' 

also for negative y. The function S(z) = faz s(y) dy, or any linear translation thereof, is 

often called the scale function of the diffusion process. Two important quantities are 

(2.1) 

It is known that if k+(a) is finite, then there is a positive probability for the process to 

drift off towards +oo, and vice versa; and similarly the finiteness of k_ (a) corresponds 

exactly to there being a positive probability for drifting off towards -oo. See for example 

Karlin and Taylor (1981, Chapter 15.6). If in particular both integrals are infinite then 

the process is recurrent and visits the line x = a an infinite number of times. 

The current object of interest is 

11= V, =- I{IX(t)- ai::; tc:}dt. 
€ 0 

(2.2) 

Let V,( T) be defined similarly, but for the interval [0, T] only. This is the so-called local 

time at zero process, Paul Levy's 'mesure de voisinage', for X(t)- a; see for example Karlin 

and Taylor (1981, Chapter 15.12) and Ito and McKean (1979, Chapters 2 and 6). lt is a 

'remarkable and recondite fact', to quote Karlin and Taylor, that the limit V(T) of V,(T) 
as c; -+ 0 exists for almost every sample path [that is, V, ( T, w) con verges to a well- defined 

V( r, w) for each w in a subset of probability 1 of the underlying probability space]. It 
follows from this local time theory that V, = V, ( oo) converges to a well-defined V = V ( oo) 

too, with probability 1. We think of V as the total relative time X spends along the line 

x =a. 
In the following we are able to find the exact distribution of V. The arguments we 

shall use actually show convergence in distribution of V, to V directly, that is, we do not 

need or use the somewhat sophisticated local time theory or the almost sure pathwise 

existence of V to prove that V, has the indicated limit distribution as c; goes to zero. 

If a is positive, write V ,....., Exp( a) for the exponential distribution with density g( v) = 

ae-av for v 2:0. It has mean 1/a and Laplace transform Eexp(-.AV) = cxj(cx +.A). 

THEOREM 1. Assume that the X process starts at X ( 0) = a. If k+ (a) and k_ (a) 
are both infinite, then V = oo with probability one. Otherwise the limit V of V, is 
exponentially distributed with parameter a( a)= tcr2(a){1/k+(a) + 1/k-(a)}. 

PROOF: That V, goes almost surely to infinity when both integrals are infinite follows 

from the theory of Karlin and Taylor (1981, Chapter 15.6). This is connected to the 

recurrency phenomenon mentioned after (2.1) above. 
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Suppose next that both k+(a) and k_(a) are finite. For a fixed positive>., study the 
function 

where the subscript x here and below means that the expectation is conditional on starting 

point X(O) = x, and where fe(x) = e-1I{Ix- al :=; tc}. General results for diffusion 
processes imply that the U>..,e function has two piecewise continuous derivatives and satisfies 

see for example the theory developed by Karlin and Taylor (1981, Chapter 15.3). Inte­

grating from a-te to a+ tc and letting e -t 0 shows that a solution u>.(x) to the limit 
problem must satisfy 

(2.3) 

Now let w(x, a) be the probability that the process after start in X(O) = x succeeds 
in reaching the level x = a in a finite amount of time. If this happens then V starting from 
x is equal in distribution to a V starting from a, because of the Markov property and the 

postulated time-homogeneity. And if it does not happen then V = 0. Hence 

U>.(x) = Ex.e->-V = w(x, a) Eae->.V + {1- w(x, a)} Ee- 0 = w(x, a)u>.(a) + 1- w(x, a). 
(2.4) 

This equation is also ·reached if one more carefully starts with Ve-equations and then lets 

e -t 0. But w(x,a) can be found explicitly, since it satisfies ta-2 (x)w''(x, a)+tt(x)w'(x, a)= 
0 with boundary conditions w(-oo,a) = 0, w(a,a) = 1, w(oo,a) = 0. Derivation here is 
w.r.t. x and a is still fixed. The solution is 

if x 2 a, 

if x :::; a. 
(2.5) 

In particular, w'(a+,a) = -1/k+(a) and w'(a-,a) = 1/k-(a) in terms of the transience 
determining quantities (2.1). This can now be used in (2.3) to make (2.4) more explicit: 

u~(a+) = w'(a+,a){u>.(a) -1} and u~(a-) = w'(a-,a){u>.(a) -1} 

lead to { -1/k+(a) -1/k-(a)}{u>.(a) -1} = 2Au>.(a)jo-2 (a). And solving this produces in 
the end 

1/k+(a) + 1/k-(a) 
U>.(a) = 1/k+(a) + 1/k-(a) + 2>./o-2 (a) 

with the a( a) parameter as given in the theorem. 

a( a) 
a(a)+>.' 

Assume next that k+(a) is finite but k_(a) infinite. This case can be handled very 

much as the previous one. Now +oo is attracting but -oo is not, and the boundary 

conditions for w(x,a) become w(-oo,a) = 1, w(a,a) = 1, w(oo,a) = 0, giving as solution 
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if x 2 a, 
if x :::; a. 
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(2.3) and (2.4) are still valid, and we find after similar arguments that V is exponential 

with parameter a(a) = tu2 (a)/k+(a). The final case of k+(a) infinite and k_(a) finite is 
handled simiarly. D 

The proof actually gives the distribution of V for an arbitrary starting point x, namely 

VI{X(O) = x} ""'w(x,a) Exp(a(a)) + {1- w(x,a)} 5o, (2.7) 

in which 50 is a unit point mass at zero. The weight w(x, a) here has a direct probabilistical 

interpretation, and is given in (2.5) for the case of two attracting boundaries and in (2.6) 
for the case of only +oo attracting, with a similar modification for the case of k+ (a) infinite 

but k_(a) finite. In the case of (2.6) we see that V '""'Exp(a(a)) for any starting point to 
the left of a. 

2B. The time X spends along a general line from a general starting point. The gen­
eralisation to a result about the (1.1) variable is now immediate. Just consider the new 

process X*(t) = X(t) -bt, which is a diffusion with J.L*(x) = J.L(x)- band the same u(x) 2 . 

The previous result is valid for the time X*(t) spends along the horizontal line x* = a. 
We need Sa,b(Y) = exp[- J: 2{J.L(x)- b}/u2 (x)dx] as well as 

(2.8) 

We find the following. 

THEOREM 2. Let the process start at X(O) = x, and suppose one or both of the two 

integrals (2.8) are finite. Then Ve of (1.1) converges in distribution to the mixture 

- VI{X(O) = x} '""'w(x,a,b)Exp(a(a,b)) + {1- w(x,a,b)} 5o 

of an exponential and a unit point mass at zero. Here 

and 
if x 2:: a, 

if x:::; a, 

(2.9) 

if both denominators are finite. If one of them is infinite, replace the corresponding ratio 

with 1. 

20. Example: Total time for Brownian motion. Let us apply the general theorern 

to the case of X = W, the standard Brownian motion process, which has J.L( x) = 0 and 

u(x) = 1. We allow an arbitrary starting point W(O) = x. Take b positive and consider 

the total relative time Ve of (1.1). Then 

{ Exp(b) 
Vei{W(O) = x}- V""' e-2b(a-x) Exp(b) + {1 - e-2b(a-x)} bo 
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There is a symmetric result for negative b, involving an exponential with parameter lbl. 

Notice in particular that V'"'""' Exp(jbj) when the starting point is a. And when b = 0 then 
Vis infinite with probability one; see 6A for a more informative result. 

3. Moment convergence proof. In the following we stick to the Brownian motion, 

and for simplicity take it to start at W(O) = 0. For b # 0, let us consider 

11= Ve(b)=- I{W(t)Ebt±tc:}dt 
c: 0 

of (1.2) in more detail. That 

Ve(b) --+d V(b) '"'""' Exp( lbl) (3.1) 

is already a consequence of the general theorem, and indeed a special case of ( 2.10) above. 
We now offer a different proof, by demonstrating appropriate convergence of all moments. 
This is sufficient since the exponential distribution is determined by its moment sequence. 
In addition to having some independent merit this proof lends itself more easily to the 

study of simultaneous convergence aspects; see Section 4. 

For the first moment, observe that 

1 1= 1= EVe(b) =- _ Pr{bt- tc::::; W(t):::; bt + tc:} dt = ft(bt) dt + O(c:), 
c: o o 

(3.2) 

where ft(x) = 4>(x/Vt)/Vt is the density function for W(t). Accordingly EVe( b) goes to 
] 0= 4>(bVt)/ Vt dt = 1/jbj. Next consider the p-th moment. One finds 

where ft 1 , •••• ~11 (xl, ... , xp) is the density function of (W(ti), ... , W(tp)). By the l5au5sian 
and MapKoBian properties of W(.) this density can in fact be written 

when t 1 < · · · < tp. To carry out the p-dimensional integration, insert ( bt 1 , ... , btp) for 
(x 1 , ... ,xp), and transform to new variables u 1 = t 1 , Ui = ti- ti-l for-i= 2, ... ,p. The 

result is then that 

for each p. But this is manifestly the moment sequence of Exp(jbl), proving (3.1). 0 
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The case of b = 0 is different, since W spends an infinite amount of time along the 

time axis. An interesting IN(O, l)llimit result for the relative time in ±c- during [0, T] is 
in 6A below. 

4. The exponential process. We have seen that Ve (b) goes to an exponentially 

distributed V(b), and in the same manner we should find bivariate and multivariate ex­

ponential distributions by considering two or more b's at the same time. This requires 
verification of simultaneous convergence in distribution of ( Ve (b), Ve (c)) and similar quan­

tities. This section indeed demonstrates process convergence of Ve(.) to V(.), and studies 
some of the properties of the limiting process. 

4A. Process convergence. The first main result is as follows. 

THEOREM. There is a well-defined stochastic process V = {V(b): b i=- 0} with expo­

nentially distributed marginals and with the property that (V(b 1 ), .•. , V( bn)) is tl1e limit 

in distribution of(Ve(bl), ... , Ve(bn)) for each finite set of non-null indexes bi. There exists 
a version ofVwith continuous paths, and Ve(.) converges to V(.) in the uniform topology 
on the C-space C[bo, b1 ] of continuous functions on [b0 , b1 ], for each interval not containing 

zero. 

PROOF: Consider two rays bt and ct and their associated total relative time variables 
(Ve(b), Ve(c)). Using the Cramer-Wold theorem in conjunction with the moment conver­
gence method we see that convergence of EVe(b)PVe(c)q to the appropriate limit, for each 
p and q, is sufficient. But this can be proved by slight elaborations on the techniques of 

Section 3. By Fubini 's theorem 

and its expected value is seen to converge to 

by Lebesgue's theorem on dominated convergence. Note that the integral is over all of 

[O,oo)P+q and that a simple expression like (3.3) for the density of (W(s 1 ), ... , W(tq)) is 

only valid when the time-points are ordered, so the factual integration in ( 4.1) is difficult to 

carry through (but possible; see 4C below). What is important at the moment is however 
the mere existence of this and all other similar limits of product moments for the lie (. )­

process. We may conclude that all finite-dimensional distributions conve~ge to well-defined 

limits. That these finite-dimensional distributions also constitute a Kolmogorov-consistent 
system is a by-product of the tightness condition verified below. 

The Ve(. )-process has continuous paths in b i=- 0 for each c, since W(.) is continuous. In 

order to prove process convergence on C[bo, b1 ] for a given interval we need to demonstrate 

tightness of the {Ve(.)} family as c goes to zero. Note that if V/(b) = Ve:( -b), then 
the processes Ve*(.) and Ve(.) have identical distributional characteristics, so it suffices to 
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consider the positive part of the process. Following results in Shorack and Wellner ( 1986, 

page 52) it is enough to verify that 

limsupE{Ve(b +h)- Ve(b)} 4 :S Kh2 for some K, (4.2) 
e-+0 

for all h :2: 0 and for all b with b and b + h in [bo, b1 ], where 0 < bo < b1 . By the 
arguments for finite-dimensional convergence used above the left hand side of ( 4.2) is 

equal to m&(h) = E{V(b +h)- V(b)p. This is seen to be a smooth function of h with 
finite derivatives at zero. Ingenious and rather elaborate Taylor expansion arguments can 

in fact be furnished to prove that 

EV(b + h) 4 = (24/b4 ){1- 45 + 0(52 )}, 

EV(b)V(b + h) 3 = (24/b4 ){1- 65 + 0(52 )}, 

EV(b)2V(b + h)2 = (24/b4 ){1- 65 + 0(52 )}, 

EV(b) 3 V(b +h)= (24/b4 ){1- 45 + 0(52 )}, 

EV(b)4 = 24/b\ 

where 5 = hjb, so that mb(h) = K2(b)h2 + K 3 (b)h 3 + ... ,for local constants Kj(b) that 
are continuous functions of b (as long as b =f. 0). This is dominated by a common Kh 2 for 
all band b + h in the interval under consideration. This verifies ( 4.2), and incidentally at 

the same time verifies the so-called Kolmogorov condition for almost sure continuity of the 

sample paths, see Shorack and Wellner (1986, Chapter 2, Section 3). 
Using the moment formula in 4C below one may in fact calulate the left hand side of 

(4.2) explicitly, and a fair amount of analysis leads to mb(h) = 24 · 352 h2 jb6 + O(h3 ). The 
proof above circumvented the need for information on this level of detail, however. D 

4B. Dependence structure. In order to investigate this to some extent we calculate 

covariances and correlations. Let 0 < b < c and -c < 0 < d. Then 

1 1 
cov{V(b), V(c)} =- b 

c 2c-

1 1 1 1 1 
and cov{V(-c),V(d)}=dc+2d+-;;-2c+d- cd. (4.3) 

To prove this, consider the case of two positive parameters. Then by previous arguments 

EVe(b)Ve(c) = 100100 
Pr{W(s) E bs ± ~c, W(t) E ct ± ~c} dsdtjc 2 

--7 J r [!s,t(bs,ct) + !s,t(cs,bt)] dsdt 
Js<t 

J r [ ( ct - bs ) ( bt - cs ) ] 1 1 = ls<t c/>(bvs)c/> ~ + c/>(cvs)c/> ~ Js-~ dsdt, 

where (3.3) is used again. Now transform first to (s,u) = (s,t- s) and then to (x,y) = 

( .JS, y'U), to get 

4 roo roo [4>(bx)4>(cy2 + (c- b)x2) + 4>(cx)4>(by2- (c- b)x2)] dxdy. 
Jo Jo Y Y 
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The rest ofthe calculation is carried out using the formula j 0= exp{ -~(k2y2 +l2 jy2)} dy = 
t.J2;(1/k) exp( -kl). This formula can be proved by clever but elementary integrations, 

and is valid for positive k and l. One finds 

4 y'2; l6o [ 1 1 2 2 1 1 2 2 ] 1 1 1 1 --- - exp{ --(b + 4c(c- b))x } +- exp( --c x ) dx = - + --. 
27r 2 0 c 2 b 2 c 2c - b b c 

The first formula in ( 4.3) follows from this, and the other case is handled similarly. 0 
It is convenient to give formulae ( 4.3) in another form, using ( b, c) = ( b, b + h) in the 

first case and ( -c, d) = ( -c, kc) in the second. Then 

1 1 
cov{V(b), V(b +h)}= b + h b + 2h 

and the correlation coefficients become 

b 
corr{V(b), V(b +h)}= b + 2h 

For small h it is worth noting that 

and 

and 
1 -3 

cov{V( -c), V(kc)} = --;; (k . )(' k ) , 
c- • + 2 2 ·· + 1 

3k 
corr{V( -c), V(kc)} =- (k + 2)( 2k + 1) ( 4.4) 

1 1 1 
E{V(b +h)- V(b)} =--- =. --h 

b + h b b2 ' 
- 2 2 2 4 .4 

E{V(b +h)- V(b)} = b2 + (b + h)2 b(b + 2h) = b3 h. 

4C. Bivariate and multivariate exponential distributions. We have constructed a full 

exponential process, and in particular (V(bi), ... , V(bn)) is a random vector with depen­

dent and exponential marginals. These bivariate and multivariate exponential classes of 

distributions appear to be new. See Block (1985), for example, for a review of the field of 

multivariate exponential distributions. 

Formula (4.4) shows that if values f.Ll > 0, JL 2 > 0, p E (0, 1) are given, then a pair of 

dependent exponentials (V(b1 ), V(b2)) can be found with EV(bi) = JLI, EV(b2) = JL2, and 

correlation p. The class of bivariate exponential distributions is accordingly rich in the 

sense of achieving all positive correlations. The negative correlation in ( 4.4) starts out at 

zero fork small, decreases to-t fork= 1, and then climbs up towards zero again when 

k grows, so negative correlations between - t and -1 cannot be attained. Note that the 

maximal negative correlation occurs between V (b) and V (-b). 
In order to study the bivariate distribution for ( V (b), V (c)) we calculate its double 

moment sequence ( 4.1) explicitly, for the case of 0 < b < c. The technique is to split the 

integral into n! = (p + q)! parts, corresponding to all different orderings of the n = p + q 
time indexes, the point being that a formula like ( 3.3) for the density of ( vV ( t I), ... , W (in)) 
can be exploited for each given ordering. These orderings can be grouped into G) types 

of paths, say (e1 t1 , ... , entn) where t1 < · · · < tn and ej is equal tobin exactly p cases 

and equal to c in exactly q cases. There are p!q! different paths for given locations for the 

p b's and q c's, so the full integral can be written 2: p!q! g(path), where the sum is over all 
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(;) classes of paths and g(path) is the contribution for a specific path of the appropriate 

type. It remains to calculate the g-terms of various types, i.e. to evaluate 

for a path with ei 's equal to b or c. Stameniforous integrations, similar to but more 

strenuous than those used to prove ( 4.3), show in the end that 

( 1 )i(O) ( 1 )i(1) ( 1 )i(n) 
g(path) = - - · · · - , 

bo b1 bn 
( 4.5) 

where the path when read backwards, i.e. looking through (en, ... , e1 ) m the notation 
above, has i(O) b's first, then i(1) c's, then i(2) b's, &cetera. Furthermore b0 = b, b1 = 

c, and bj = b + j(c- b). Note that i(O) + i(2) + · · · = p, i(1) + i(3) + · · · = q, and 
i(O) + i(1) + · · · + i(n) = n. And EV(b)PV(c)q is equal to p!q! times the sum of all such 

g(path) terms. 
To illustrate this somewhat cryptic formula, try EV(b )2 V( c )2 . There are (~) = 6 types 

ofpaths,correspondingto(b,b,c,c), (b,c,b,c), (b,c,c,b), (c,b,b,c), (c,b,c,b), (c,c,b,b), and 
each ofthese has weight 2!2! = 4. Their ( i(O), i(1 ), ... , i( 4)) representations are respectively 

(0, 2, 2, 0, 0), (0, 1, 1, 1, 1), (1, 2, 1, 0, 0), (0, 1, 2, 1, 0), (1, 1, 1, 1, 0), (2, 2, 0, 0, 0). Accordingly 

2 v 2 - { _1_ 1 1 1 1 _1_} 
EV(b) (c) - 4 b2 b2 + b b b b + b b2 b + b b2 b + b b b b + b2 b2 ' _ · 1 2 1234 o 1 2 1z3 0123 01 

where bo = b, b1 = c, ... , b4 = b + 4( c - b). 
We have not been able to produce an explicit formula for the joint probability density 

of (V(b), V(c)), but at least an expression can be found for its joint moment generating 
function. It becomes 

Eexp{sV(b) +tV(c)} = L ~! L (n)sptq E{V(b)PV(c)q} 
n;:::o p+q=n P 

- L 1 L n! P q L I ( ) - - -s t p!q.g path n' p'q' 
n2:0 · p+q=n · · paths 

L sptq L (2_) i(o) (2_) i(l) ... (-1 ) i(p+q)' 
bo b1 bp+q 

i( 0) 'i( 1 ), ... ,i(p+q) 
( 4.6) 

where again the inner sum is over all (p + q)!jp!q! types of paths with p b's and q c's, 
and the multiplicities i(O), i(1), ... , i(p + q) have even-sump and odd-sum q, as explained 

above. 

One can similarly establish formulae for product moments of more than two V(b)'s, 
and investigate other aspects of the multivariate exponential distributions associated with 
the V(.) process. We remark that these distributions can be simulated, with some effort, 

through using Ve(b) with a small c, and this is one way of computing bivariate and mul­

tivariate probabilities when needed. Another way would be via numerical inversion of the 

joint moment generating function. 
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5. Total relative time along a line after time c. As a generalisation of (1.2), 
consider the total relative time spent along the ray w = bt during t ~ c, i.e. 

1 r= 
Ve(c,b) =-; Jc I{bt- tc::; W(t)::; bt + tc}dt. ( 5.1) 

The story told in the final paragraph of Section 1 is one motivation for studying these 
variables. The main result about them is that 

Ve(c,b) -+d V(c,b) "'k(lblvc)Exp(lbl) + (1- k(lblvc))8o, (5.2) 

where again 8o is degenerate at zero and k(u) = 2(1- 'i>(u)). Note that k(lbi.JC) = 1 when 
c = 0, so that (5.2) indeed contains our earlier result (3.1 ). 

It is possible to prove this by establishing a differential equation for the Laplace 
transform of V( c, b) with appropriate boundary conditions, and then solve, as in Section 
2, but it is as convenient to prove moment convergence. Take b > 0 for simplici Ly. It takes 
one moment to show that 

1= 1= 1 1= EVe(c,b)-+ ft(bt)dt = ¢(bVt)/Vtdt = b 2¢(x)dx = k(bye)jb. 
c c b..jC 

And when p ~ 2 we find 

The Laplace transform function of this limit distribution candidate becomes 

-Eexp(-.AV) = 1 + ~ (-.:\)P p!k(b.JC) (~)p-l 
6 p! b b p=l 

-.Ajb b 
= 1 + k(bvc) 1 + .A/b = k(bvc) b +A + 1- k(bvc), 

which is recognised as the moment generating function of the mixture variable that with 
probability k(b-JC) is an exponential with parameter band with probability 1- k(b.JC) is 

equal to zero. This proves (5.2). 0 -
REMARK. Let us briefly discuss a specific consequence, namely that Pr{Vc-(c, b)= 0} 

in this situation converges to Pr{V(c,b) = 0}, which is 1- k(b.JC) = 2<P(bye) -- 1. But 
having Ve(c, b) = 0 in the limit means that W(t) stays away from bt during [c, oo ), and it 

cannot stay above the curve all the time since W(t)jt goes to zero. Hence 2<I>(b.JC)- 1 

is simply the probability that W(t) < bt during all of [c,oo), or Pr{maxt;:::c W(t)jt < b}. 
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Using finally the transformation W*(t) = tW(1/t) to another Brownian motion one sees 

that 

Pr{ max W(t) :S b} = 2<P(bvc) -1 = Pr{JW(1/c)i :S b}. 
o::;t::;I/c 

( 5.4) 

We have in other words rederived a classic distributional result for Brownian motion. 0 
The distribution of V(c, -1)- V(c, 1) comes up in the statistical estimation problem 

discussed in Section 1; see also 6C below and Hjort and Fenstad (1991 b, Section 6). When 

c = 0 this is a difference between two unit exponentials with intercorrelation - t. The case 

c > 0 is more complicated. Then 

(V(c,-1), V(c,1)) = { ~~-J:~) 
(U-1, UI) 

with probability 7roo, 
with probability 1r1o, 
with probability 1ro1, 
with probability 1r11 , 

( 5.5) 

in which U _1 and U1 are unit exponentials with a certain dependence structure. Further­

more 7roo is the probability that W(t) stays between -t and t during [c, oo ), 1r1 o is the 

probability that W(t) comes below -t but is never above t, 1r01 is the probability that 

W(t) comes above t but is never below -t, and 1r11 is the probability that W( t) experi­

ences both W(t) < -t and W(t) > t during [c, oo ). When c = 0 then 1r11 is 1 and the 

others are zero. In the positive case these probabilities can be found in terms of H(u), 
the probability that maxo::;s::;IIW(s)J :S u, by the transformation arguments used to reach 

(5.4). One finds 

7roo = H( JC),- 7ro1 = 7r10 = 2<P( vc)- 1 - 7roo' 7rn = 1 - 7roo - 7rol - 7rlo' 

in which H(u) = Pr{maxo<s<1 JW(s)J :S u}. A classic alternating series expression for 

H(u) can be found in Shorack and Wellner (1986, Chapter 2, Section 2), for example, and 

a new way of deriving this formula is by calculating all product moments EV( -c)PV(c)q 
and then stu_dy the analogue of (4.6). This would be analogous to the way in which (.5.4) 
was proved above, but the present case is much more laborious. Here we merely note that 

EV(c,-1)V(c,1) = 1rnEU-1U1 = tk(3vc), 

from which the correlation between U( -1) and U(1) also can be read off. 

6. Supplementing results. 

6A. Total relative time along the time axis. The variable Ve(b) of (1.2) is infinite when 

b = 0. But consider 

v: T = ~ - 1- {T{-le: < W(t) < ~e:} dt 
e, e: .JT Jo 2 - - 2 ' 

( 6.1) 

the relative time along the time axis during [0, T]. The moment sequence converges as 

e: ---+ 0 and T ---+ oo, as follows, using (3.3) once more: 

E(Ve,T)P = p! 2 J · · · f [¢(O)P_e:_ · · · e: + O(~P+ 1 )] dt 1 ···dip 
e:PTPI Jo<t 1 <· .. <tp<T Vf; Jtp-tp-l 

---+ p! q?(O)P J · · · r x~ 1 /2 · • • (xp- Xp-1)- 1/ 2(1- Xp) 0 dxl · · · dxp 
Jo<x 1 < .. ·<x1,<1 

p! r( ~ )Pr(1) _1_ p! 

(21r)P/2 r(p/2 + 1) 2P/2 r(p/2 + 1) · 
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The limit distribution candidate V0 has consequently EV0
2P = (t)P(2p)!jp!, which means 

that Vo2 gets moment generating function (1- 2t)- 112 • So V02 is a xi (since the distribution 

of a chi-squared is determined by its moments), i.e. V0 is a JN(O, l)J. 
It wasn't necessary here to send T to infinity, since the scaling property for W [W*(t) = 

W( ct)/ Jc gives a new Brownian motion] implies that the limit distribution of v~.T as € ---+ 0 

is independent of T. 
One generalisation of this is in the following direction. Instead of ( 6.1), look at 

1 1 1T 1 1Tf~2 
Ve,T =- ;;;; h(W(t)j~E)) dt = -/'fTi2 h(W*(t)) dt, 

IE vT o T /€ 2 o 

where h( x) is any function with bounded support, and where W* in the second expression 

is another Brownian motion obtained from the first one by transformation. The case 

considered earlier is h(x) = I{JxJ ::; t}. It can be shown that V~,T ---+ aJN(O, 1)1 in 

distribution as T / e: 2 ---+ oo, where a is a constant depending on h. This is not easy to 

prove via the moment convergence technique, but can be established using methods from 

Khasminskii (1980). 

6B. Implications for partial sum processes. Let us first point out that an alternative 

construction of our total relative time variables is to use I{bt::; W(t)::; bt +IE} instead 

of I{W(t) E bt ± te:} in (1.2) and (5.1). Results of previous sections hold equally for this 

alternative definition of Ve(b) and Ve(e,b), and this is a bit more convenient in 6C below. 

Now suppose X 11 X 2 , ••• are i.i.d. with mean~ and variance o-2 , and consider the normalised 

partial sum process Wm(t) = m-112 It:~~l(Xi- ~)/o-. In particular Wm(~) = Sn/fo, 
writing Yi =(Xi- .e)/o- and Sn for their partial sums, and Wm(-) converges to Brownian 

motion by Donsker's theorem. Motivated by (1.2) and (5.1) we define 

where (em} denotes the sm<tllest integer exceeding or equal to em. It is clear that this 

variable is close to Ve( c, b) for large m, and should accordingly converge in distribution to 

V(e,b) of (4.2) when m---+ oo and e:---+ 0. , 

PROPOSITION. Assume that the Xi's have a n~hird absolute moment. If c > 0 is 
fixed, then Vm,e(m)(c,b) -+d V(e,b) if only e:(m)---+ 0 as m---+ 0. And 

Vm,e(m)(c(m),b) -+d V(b)"" Exp(JbJ) ( 6.3) 

provided e:(m)---+ 0, c(m)---+ 0, me(m)---+ oo, and e:(m)/c(m) 112 ---+ 0. 

PROOF: This can be proved in various ways and under various conditions. One 

feasible possibility is to demonstrate moment convergence of E{Vm,c:(m)( e, b )}P towards 
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the right hand side of (5.3), for each p. One basically needs the smallest n in the sum to 

grow towards infinity, so that the central limit theorem and Edgeworth-Cramer expansions 
can begin to work, and the largest of all c:( m) ...;:;;;r;; terms to go to zero, so that Taylor 

expansions can begin to work; see the middle term in (6.2). When cis fixed then the sum 

is over all n ~ me, and it suffices to have c:( m) ---+ 0 as m ---+ oo. To reach V (b) = V ( 0, b) in 
the limit we need the stated behaviour for c:( m) and c( m). We have used the third moment 

assumption to bound the error r( t) in the Edgeworth expression Gn( t) = 4>( t) + r( t) for the 

distribution of Tn = y'Ti{Xn- 0/u; one has lrn(t)l ~ cn- 112 /(1 + 1tl)3 , and this is helpful 
when it comes to verifying conditions when employing Lebesgue's theorem on dominated 

convergence. D 
We may conclude that the total relative time along b;:. for the normalised partial sum 

process has a limit distribution, which is either exponential or of the mixture type ( 4.2). 
The middle expression also invites Vm,e to be thought of as the total relative time for the 

normalised Tn process along the square root boundary b.;:;;r;;;,. The result is also valid 

for Tn = .jn(Bn- 0)/u in a more general estimation theory setup; see Hjort and Fenstad 
(1991a, 1991 b). 

The 6A result has also implications for partial sum processes. One can prove that 

111 
- J{IWm(t)l ~ tc:} dt ---7d IN(O, 1)1 
c: 0 

when c: ---+ 0 and m ---+ oo, under suitable conditions. This implies for example that 
m-1 / 2 2:::1 I{ISil ~-t} has the absolute normal limit, as does m- 1 / 2 2::: 1 I{Si = 0} for 

the random walk process. 

6C. Second order asymptotics for the number of 8-errors. To show how the total 
relative time variables for Brownian motion are related to the estimation theory problems 

described in Section 1, consider the structurally simple case of i.i.d. variables Xi with mean 

~and standard deviation u, and where n~kXn is used to estimate~- Consider Qs(k), the 

number of times I n~kXn - ~~ ~ 8, counted among n ~ cj 82 . Then 82 Qs(k) tends to 
Q = Q(c, 1/u) of (1.2), for each choice of k, and 82 times Qs(k)- Qs(O) goes to zero. This 

follows from results in Hjort and Fenstad (1991a). But 8{Qs(k)- Qs(O)} can be written 

As- Bs, after some analysis, where 

As= Vm I --- ~ Wm(t) ~ --- + --- -- dt, 1= { [mt]1 [mt]1 1 k~ 1 k} 

(mc)/m m 0' m 0' Vm 0' m 0' 

Bs = Vm I -- ~ Wm(t) ~ -- + -- + -- dt, 1= { [mt]1 [mt]1 1 k~ 1 k} 

(mc)/m m 0' m 0' Vm 0' m 0' 

and where m = 1/82 . These variables resemble those considered in (6.2) and (6.3). With 
c: = m -l/2 k0 u we have 

where' · d' signifies that the difference goes to zero in probability. It follows from the result 

of 6B that 

8{Qs(k)- Qs(O)} ---+d k0u {V(c, -1/u)- V(c, 1/u)} as 8---+ 0. (6.4) 
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This is also true with c = 0 in the limit, i.e. with k0<7{V(-l/<7)- V(l/<7)} on the right 
hand side, provided c = c(5) = 5 is used in the definition of Qs(k) and Qs(O). Note the 
relevance of (5.5) for the present problem. 

Hjort and Fenstad (1991b) also work with the direct expected value of Qs(k)- Q0 (0) 
and similar variables. These converge to explicit functions of k (and other parameters, in 

more general situations), which can then be minimised to single out estimator sequences 
with the second order optimality property of having the smallest expected number of 5-
errors. This is done in Hjort and Fenstad (1991b), in several situations. We remark that 

the skewness 1 = E(Xi- e)3 /<7 3 is not involved in (6.4), but is prominently present in the 

limit of E{Q0(k)- Q0(0)}, and its minimisation. 

6D. Relative time along other curves. To generalise our framework, consider 

11= Ve: =- I{b(t):::; X(t):::; b(t) + c:g(t)} dt, 
c; a 

( 6.5) 

where x = b(s) is some curve of interest and g(t) a possible scaling factor. In many cases 
there is a distributional limit as c; ---+ 0, and perhaps the first couple of moments can be 
obtained. The limit distribution is simple only for cases that can be transformed back to 

(1.1) and (5.1), however. For an example, we note that the total relative time an Ornsteiu­
Uhlenbeck process X(t) spends along bet can be shown to be exponential, for example, 

with suitable g(t) in (6.5). 

6E. Other exponential and gamma processes. (i) If U(b) = lbiV(b), then U(b) is unit 
exponential for each b. In particular its marginal mean and variance are constant, and 

cov{U(b), U(b+h)} = b/(b+2h). (ii) By adding independent copies of V(.) (or U(.)) we get 
processes with marginals that are gamma distributed. This leads in particular to bivariate 
and multivariate gamma distributions or chi-squared distributions (with even-numbered 
degrees of freedom only). (iii) There are other processes that share with V and U the 

property of having exponentially distributed marginals. An example is V * (b) = t { W1 (b) 2 + 
W2 (b) 2 }, where W 1 and W2 are independent Brownian motions. This is a Markov process, 
while our V(b) process is not. The possible correlations of (V*(b1 ), ... , V*(bn)) span a 

smaller space than those of (V(bi), ... , V(bn)), indicating that the V* process may be less 

adequate when it comes to building multivariate exponential models. 
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