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Consider a binary system of n independent components having absolutely continuous life­
time distributions. The system is observed until it fails. At this instant, the set of failed 
components and the failure time of the system are noted. The failure times of the compo­
nents are not known. These are the socalled autopsy data of the system. Meilijson (1981), 
Nowik (1990) and Antoine et al. (1993) discuss the corresponding identifiability problem; 
i.e. whether the component life distributions can be determined from the distribution of 
the observed data. Assuming a model where autopsy data is known to be enough for 
identifiability, Meilijson (1992) goes beyond the identifiability question and into maximum 
likelihood estimation of the parameters of the component lifetime distributions based on 
empirical autopsy data from a sample of several systems. He also considers lifemonitoring 
of some components and conditionallifemonitoring of some other. In the present paper a 
corresponding Bayesian approach is presented. Due to prior information one advantage is 
that the identifiability problem represents no obstacle. 
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1. Introduction 

Consider a binary system of n independent, binary components having absolutely contin­
uous lifetime distributions. Denote the lifetime of the system by T and the lifetime of the 
ith component by 7i, with distribution function F1(t), survival function F 1(t) = 1- ~(t) 
and p.d.f. J,(t), ic:E = {1, · · ·, n}. Let 

D = the fatal set = { ic:EI1i ::; T} 

A= {possible fatal sets}= {A C EIP(D =A)> 0} 

= {A1, ···,Am} 

The system is observed until it fails. At this instant, the fatal set, D, and the failure time 
of the system, T, are noted. The failure times ofthe components are not known. (T, D) are 
the socalled autopsy data of the system. Meilijson (1981), Nowik (1990) and Antoine et 
al. (1993) discuss the corresponding identifiability problem; i.e. whether the distributions 
of 1i, ic:E can be determined from the distribution of the autopsy data (T, D). For a very 
readable presentation of these efforts we recommend to start with the latter paper. 

Following these papers let 

C A = the critical set corresponding to the fatal set A 
= {ic:AIP(1i =TID= A)> 0} 
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This set consists of those components of the fatal set A which may have failed when the 
system failed at T and thus may have caused the failure of the system. The distribution 
of the autopsy data (T, D) is given by 

Gi(t) = P(T ~ t,D = ~) 

with density function 
d 

Yi(t) = dt Gi(t) 

The latter can be considered as a likelihood function on the space R+ x {1, 2, · · · , m} with 
respect to the measure 

J..L = Lebesgue measure x counting measure. 

This follows since I Yi(s)dJ..L(s, j) = I gi(s)ds = Gi(t) 
[O,t] x { i} [O,t] 

Because the system fails when the last component of the critical set corresponding to the 
fatal set fails, we have 

Yi(t) = II F,(t): II F,(t) II F,(t) 
le_Ao-CAo t lt>C.4o leA~ 

= L fi(t) II F,(t) II F,(t) 
jt>C.4o le_Ao-{j} leA~ 

Introduce the failure rate .Ai(t) and the cumulative failure rate 

t 

Ai(t) =I .Ai(s)ds 
0 

corresponding to Fi(t), icE. We then get 

Yi(t) = L .Ai(t) II (1 - e-At(t)) II e-At(t) 

jt>C.4o leA1-{j} leA~U{j} 

= L .Ai(t) L ( _ 1)1BI-IA~I-I II e-At(t) 
(1.1) 

j~>C.4o AiU{j}cB leB 

The Ai 's depend on a parameter vector fl_; i.e. 

Assuming a model where autopsy data is known to be enough for identifiability, Meilijson 
(1992) goes beyond the identifiability question and into maximum likelihood estimation 
of the parameter vector f)_ based on empirical autopsy data from a sample of several sys­
tems. In the present paper a corresponding Bayesian approach is presented. Let the prior 
distribution of f)_ be 1r(fl_). Then the posterior distribution of f)_ given the autopsy data 
(T = t, D = Ai) is obviously 

1r(fl.IT = t, D = ~) ex gi(t)1r(fl_) (1.2) 
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By the Bayesian approach one avoids the asymptotics of Meilijson (1992), which is of less 
help in reliability where data often are scarce. 

In Section 2 we consider, as Meilijson (1992), a model where the 7i's are exponentially 
distributed. Due to prior information a further advantage of the Bayesian approach is that 
the identifiability problem represents no obstacle. To illustrate this in detail we treat in 
Section 3 a parallel system of two components. Meilijson (1992) also considers lifemoni­
toring of some components and conditional lifemonitoring of some other components. In 
Sections 4 and 5 the complete likelihood function for these cases are arrived at for general 
lifetime distributions of the components making a fully Bayesian approach possible. Our 
present work is an attempt to get as much information as possible from a failing system. 
This parallels and should be combined with Gasemyr and Natvig (1994) which is con­
cerned with the combination of expert opinions about the lifetimes of components having 
a multivariate exponential distribution of the Marshall-Olkin type. Finally, it should be 
stated that the general idea of Sections 4 and 5 is much inspired by Arjas (1989) although 
we have found it inconvenient to use his framework of marked point processes. 

2. Exponentially distributed component lifetimes 

Assume now 
,.\(t) = fh, icE; 

i.e. the component lifetimes are exponentially distributed. Assume furthermore the prior 
distributions of ()i, to be independent and gamma with shape parameter ai and scale 
parameter bi, icE. Denote the corresponding p.d.f. g(Oi; ai, bi)· Then from (1.1) and (1.2) 
we get the following posterior distribution of fl. given the autopsy data (T = t, D = Ai) 

1r(fl.IT = t,D =~)ex L ()i L (-1)1BI-IA~I-I 
jECJ, A~U{j}cB 

n blll 
x II _1_0;rle-BI(bt+I(IEB)t) 

l=l f(al) 

= L L ( -1)1BI-IA~I-1~ Il(-bl_)ai 
jECJ, AjU{j}cB bj + t IEB b1 + t 
n 

x Ilg(01; a1 + bil, b1 + I(lcB)t) 
1=1 

(2.1) 

This is a mixture of products of gamma distributions. Concerning the number of addends 
in (2.1) we see that the minimum of 1 is obtained for a series system whereas the maximum 
of n2n-1 is obtained for a parallel system. 

To deal with autopsy data from a sample of several systems we show how the updating 
works when autopsy data from a single system arrives. Assume the prior distribution of fl. 
to be given as a mixture of products of gamma distributions; i.e. 

K n 

1r(fl.) = L Wk ITg(01; akt, bkl), (2.2) 
k=1 1=1 
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where some of the wk's may be negative. Then parallel to (2.1) we get the following 
posterior distribution of fl given the autopsy data (T = t, D = A;) 

K 

1r(fliT = t,D =A,) ex 'Lwk L L (-1)1BI-IA~I-1 
k=1 jeC~ A~U{j}cB 

X b akj ncb bkl )a1" frg(O,; akl + bjl, bkl + I(lcB)t) 
kj + t leB kl + t l=1 

(2.3) 

This is again a mixture of products of gamma distributions. Hence this distribution is the 
natural conjugate prior for fl with respect to our exponential autopsy model. This seems to 
be a completely new generalization of the fact that the gamma distribution is the natural 
conjugate prior for the failure rate in an exponential model. 

3. A parallel system of two components 

Note that with the Bayesian approach the identifiability problem represents no obstacle. 
To illustrate this in detail we now consider a parallel system of two components. From 
the references given in Section 1 it is well known that the lifetime distributions of the two 
components are unidentifiable. This is obvious since, under the autopsy model, one in 
effect observes only the system failure time, which has the distribution function F1(t)F2(t), 
from which it is impossible to single out F1(t) and F2(t). 

Assume as in Section 2 that component lifetimes are exponentially distributed, but with, 
as a start, a general prior distribution 1r(01 , 02). Obviously T = max(T1, T2) and the only 
fatal set is A1 = {1, 2}. Introduce 

Then 

Bi(t) = {1i = t, 1j :::; t} i = 1, 2; j =f= i 
p,(t) = P(B,(t)JT = t) i = 1, 2 

{T = t} = B 1(t) U B2(t), 

where the events B1(t) and B 2(t) are a.s. disjoint. The posterior distribution of (Ob 82) 
given the autopsy data, T = t, can now be written as 

2 

7r(01, 02JT = t) = LPi(t)7r(Ob 02JB,(t)) (3.1) 
i=1 

Assuming 01 and 02 to be prior independent we will show that they are posterior negatively 
correlated. From (3.1) we have 

2 00 00 

Cov(Ob 02JT = t) = ?= p,(t) j j [81- E(01JT = t)][02- E(02JT = t)] 
1=1 0 0 
jfi . 

X 7r(Oil1i = t)7r(OjJ7j :::; t)d01d02 
2 

= L Pi(t)[E[O,Jli = t)- E(OiiT = t)][E(OjiTj:::; t)- E(OjiT = t)] 
i=l 
jfi 
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By noting that (i = 1, 2;j =J i) 

we get since P1 ( t) + P2 ( t) = 1 

From Barlow and Proschan (1985) we have "under mild regularity conditions" that E( ()i IIi) 
is nonincreasing in 7i, i · 1, 2. Hence Cov(B1, B2 IT = t) ::; 0. 

Assume furthermore the prior distribution of ()1 and ()2 to be gamma. Then from (2.1) and 
(3.1) (i = 1,2;j =J i) 

7r(Bl, B21T = t) ex: [Ble-elt(1- e-e2t) + B2e-e2t(1- e-elt)] 

x g(B1; a1, b1) · g(B2; a2, b2) 

1r(B1, B2IBi(t)) = g(Bi; ai + 1, bi + t) 
g(Bj; aj, bj)- (bj/(bj + t))aig(Bj; aj, bj + t) 

x.::........:.._.::..__.::..__::....:._____:_-"-':--'---::--:-:-----'-..:........,-,---'----''-------''----"---'--

1- (bjj(bj +t))ai 

Pi(t) = ai(t)/(al(t) + a2(t)), where 

ai(t) = bi: t ( bi ~ t) a; ( 1 - ( bj b~ t) ai) 

P1(t)jp2(t) = a1(t)/a2(t) 

Now by L'Hopital's rule 

l. ( )/ ( ) ai/b1 1. a2(b2/b2 + t))a2- 1b2(b2 + t)-2 1 1m P1 t P2 t = -- 1m = 
t---+0 a2/b2 t---+0 a1(bi/b1 + t))a1 - 1b1(b1 + t)-2 

(3.2) 

Hence p1(0) = p2(0) = 1/2; i.e. equal weight is allocated to the two components when 
system lifetime approaches zero, irrespective of prior assessments. 

Now again by L'Hopital's rule ( i = 1, 2; j =J i) 

lim 1r(B1, B2IBi(t)) = g(Bi; ai + 1, bi)( -bj/aj) 
t-+0 

. d 
x [hm -d g(Bj; aj, bj + t)- (ajfbj)g(Bj; aj, bj)] 

t-+0 t 

= g(B1; a1 + 1, b1)g(B2; a2 + 1, b2) 

From (3.1) we now have 
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This is intuitively obvious since the shape parameters are each added by 1 corresponding 
to failures of both components whereas the scale parameters are unchanged due to zero 
time at test. 

Now assume a2 > a1. Then 
a ba1 (b + t)a2+1 

limp1(t)/P2(t) =lim \! (b2 ) +I = oo 
t->oo t->oo a2 22 1 + t a1 

Hence p1(oo) = 1 and p2(oo) = 0; i.e. all weight is allocated to the component with the 
smallest shape parameter when system lifetime approaches infinity. Now by (3.1) and the 
expression for 1r(B1, B2IB1(t)) in (3.2) the probability measure corresponding to 
1r(B1, B2IT = t) converges weakly when t---+ oo to the product measure of the Dirac measure 
at 0, 80 (B1), and the measure corresponding to g(B2; a2, b2). For the second component this 
is intuitively obvious since we just know that its lifetime is less than infinity and hence our 
prior assessment is unchanged. 

Now let a2 > a1, b2 < b1. Here the prior mean, ai/b1, of B1 is less than the prior mean, 
a2/b2 , of B2. Consider a vector, T, of system lifetimes. We shall show that 

1r(B1 ~BolT) < 1r(B2 ~ BolT); 
i.e. B2 is posterior stochastically larger than B1. Hence the first component is still the 
better one. 

Denote the likelihood function by L(B1, B2; T). This is obviously symmetric in B1 and B2. 
Define (i = 1, 2) 

We now have 
1r(B1 ~BolT)- 1r(B2 ~BolT) ex: 

j L(BI, B2; T)[I(BI)- J(B2))1r(BI, B2)dB1dB2 
0<112<111<00 

+ J L(BI, B2; T)[I(BI)- J(B2)]7r(BI, B2)dB1dB2 
0<111 <112<00 

By interchanging B1 and B2 in the last integral using the symmetry of L(B1, B2; T) this 
equals 

J L(BI, B2; T)[I(BI)- J(B2)][7r(BI, B2)- 7r(B2, BI)]dB1dB2 
0<112<111<00 

ex: j L(B1 , B2; T)[J(B1) _ J(B2))(B1B2)a1-Ie-(ll1+ll2)b2 

0<112<111<00 

X [B~2-a1e-(b1-b2)ll1 _ Br2-a1e-(b1-b2)112)dBldB2 < 0 

Finally, we have in Figure 3.1 tabulated 1r(B1 , B2) and in Figures 3.2, 3.3, 3.4 tabulated 
1r(B1 , B2IT = t) fort= 1, 5, 50, for the more complex case a1 = 4, b1 = 1; a2 = 6, b2 = 3. 
Here the prior mean of B2 is less than the one of B1. Note that 1r(B1, B2IT = 1) is not that 
far from 1r(B11 B2). 1r(B1, B2IT = 5) indicates that the second component is still the better 
one, whereas 1r(B1, B2IT = 50) reveals, as in the case above where t ---+ oo, that the first 
component is the better one. 
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Figure 3.1 11:(/J, IJ,) for a1 ~ 4, h1 ~ 1; a, ~ 6, h, ~ 3. 

Fi/5Ure 3.2 7r(/J1, ll,fT ~ 1) for a1 ~ 4, h, ~ 1; a, ~ 6, h, ~ 3. 
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Figure 3.3 1r(81, 82/T = 5) for a1 = 4, ~ = 1; a2 = 6, ~ = 3. 
Note the scale on the Z-axis . 

Figure 3.4 1r(81, 82/T =50) for a1 = 4, b1 = 1; a2 = 6, ~ = 3. 
Note the scale on the Z-axis. 
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4. Lifemonitored components 

To know the autopsy data (T, D) means to know T and to know which component lifetimes 
are at most T and which are above T. The order of failure of the components and the 
failure times are indeed unknown. In actual practice, often some of the components are 
lifemonitored until system failure. Let 

M = the set of lifemonitored components 

={1,···,p}CE, 1~p~n 

This means that for icM and 7i ~ T, 7i is known. In this section a complete likelihood 
function for this case is arrived at for general lifetime distributions of the components 
making a fully Bayesian approach possible. 

We are now back at the notation of Section 1. Let furthermore Z~ = 0 and 

(z;, ... , z;) = 

the order statistics of the lifetimes of the lifemonitored components 

Z,· = Z~ 1\ T i = 0 · · · p 
' ' ' ' 

Zp+l = T 

Zi, i = 1, · · · ,p + 1 are the points of time where either a component or system failure (or 
both) is observed. The number, K, of different such time points (until system failure) is 
at most p + 1. We obviously have 

K = min{k1Zk+1 = Zk} 1\p+ 1 

Introduce (k = 1, · · ·, K) 

h(IZ) = i if the ith lifemonitored component fails at time Zk(ZZ) (at which time the 

system may fail), icM 

Ik = 0 if the system fails at time Zk due to the failure of a non lifemonitored 

component 

Jk = i if the system fails at time Zk with fatal set Ai, ic{1, · · ·, m} 

Jk = 0 if the system does not fail at time zk 

Jx=J 

Ro=M 

Rk = M- {11, · · ·, Ik} =the set of lifemonitored components being at risk just 

after zk 
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Rk: is defined correspondingly by replacing I 1 , • · ·, Ik by I;,···, IZ and Zk by ZZ. 

Bo = 0 
Bk = {Z1, I1, J1, · · ·, Zk, Ik, Jk} 

= the available information just after zk 

Our likelihood function will be a density function on the space 

n = (R+ X {O,l,···,p} X {O,l,···,m})p-tl 

with respect to the measure 

J.L = (Lebesgue measure x counting measure x counting measure)P+l 

Now let R c M be a set of lifemonitored components at risk and Rc = M- R the 
corresponding set of failed components. Introduce 

P(t, iiR) = II Fl(t) II Ft(t) (4.1) 
lc-A,-Rc 

= the probability that the system has failed at time t with fatal set Ai, given 
the set R of lifemonitored components at risk just after t. 

The associated set of possible fatal sets, for which we also know that component I is a 
member of the corresponding critical set, is given by 

F(R, I)= {ic:{1, · · ·, m}IRc c ~' R c Af, Ic:CA.} 

G(s, t,ijR) 

t d 
= j II Ft(u) du ( II Ft(u)) II F1(u)du 

s lc-A,-CAo-Rc lc-C.4o-Rc lc-A~-R 

(4.2) 

(4.3) 

= the probability that the system fails in (s, t] with fatal set Ai given the set 
R of lifemonitored components at risk in this time interval. 

The associated set of possible fatal sets is given by 

F(R) = {ic:{1, · · ·, m}IRc c Ai, R c Af, GAo- Rc =J 0} (4.4) 

Fork= 0, · · ·, K- 1, t ~ Zk, introduce 

the event that alllifemonitored components at risk just after Zk, are still at risk just after 
t. 

Rk:(t) is defined correspondingly by replacing Rk by Rk:. 

Eo= 0 
Ek = { z;, I;, · · · , zz, IZ} 
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For k = 0, · · · , K - 1 we have 
Bk = Ek n {T > Zk} 

We will start by proving two lemmas. 

Lemma 4.1 

For k = 0, · · · , K - 1 and t ~ Zk, we have 

P(T > tiEk n Rk(t)) 
k 

= 1- L L P(Zj, iiRj) 

k 

- L L G(Zj-1, Zj, iiRj-1)- L G(Zk, t, iiRk) 
j=l ieF(Rj-1) ieF(R~r) 

Proo£ Introduce the events 

ic{1 .. · m} ' ' ' 
Then obviously fork= 0, · · ·, K- 1, t ~ zz we have 

P(T > tiEk n RZ(t)) 
m 

= P((U Ai(t))ciEk n RZ(t)) 
i=l 

m 

= 1- E P(Ai(t)IEk n RZ(t)) 
i=l 

k 

= 1- L L P(ZJ,iiRj) 
j=l iEF(Rj,Ij) 

k 

- E E G(ZJ-l, z;, iiRj_l) - E G(z;, t, iiRZ) 
j=l ieF(Rj_1) ieF(R~) 

(4.5) 

The first double sum is the contribution from the lifemonitored components causing system 
failure. The second double sum is the contribution from non lifemonitored components 
causing system failure before zz and the last sumthe corresponding contribution after ZZ, 
Note that the lifetime distributions of the non lifemonitored components are unaffected 
by Ek n Rk(t) since this just contains independent information on the lifemonitored com­
ponents. Since k < K, (ZJ, Rj) can be replaced by (Zj, Rj), j = 0, · · ·, k and the proof is 
completed. 

Lemma 4.2 

Fork= 0, · · · ,K -1, t > Zk and ic{1, · · · ,m} define 

Pi(tiEk n Rk(t) n T ~ t) 

= Ji~ P[(J = i) n (t::; T::; t + dt) IEk n Rk(t) n T ~ t]/dt 
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Then 
Pi(tJEk n Rk(t) n T ~ t) 

= [ L Aj(t) II Fl(t) II Ft(t)] 
lc-A;-RJ;-{j} 

where the denominator is given by Lemma 4.1. 

Proof By introducing the events Ai(t), i.s{1, · · ·, m} as in Lemma 4.1 we have (since 
t > Zk) 

= lim P[Ai(t + dt)- Ai(t)JEk n Rk(t)]/dt 
dt-+o P(T ~ tJEk n Rk(t)) 

= lim G(t, t + dt, iJRk)/dt 
dt-+o P(T ~ tJEk n Rk(t)) 

The proof is completed by using (4.3) and noting that P(T ~ tJEk n Rk(t)) = 

P(T > tJEk n Rk(t)) since t > Zk. 

Theorem 4.3 

Let 
~i = I(Ti ::; T), i.sM 

The complete likelihood function of our parameter vector fl._ is, for the case where M is the 
set of lifemonitored components, given by 

L(fl_) = II (>.i(Ti) )~i Fi(Ti 1\ T) 
ic-M 

K-1 

x II P(T > zk+IIEk n Rk(zk+1))/ P(T > ZkJEk) 
k=O 

K-2 

X II (1-

+ I(IK = O)pJ(ZKJEK-1 n RK-1(ZK) n T ~ ZK)] 
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An explicit expression is arrived by applying (4.1)-(4.4) and Lemmas 4.1 and 4.2. Se also 
our subsequent (4.12). 

Proof. With obvious notation we can write L(~) in the following form 

K-1 

L(fD = II L(~; zk+liB~c)L(~; Ik+liB~c, zk+l) 
k=O (4.6) 

x L(~; J~c+IIB~c, Z~c+l, Ik+l) 

We start by establishing L(~; Z~c+IIB~c). Assume t > Z~~;. Then fork= 0, · · ·, K- 1 using 
(4.5) we have 

P(Zk+1 > t!B~c) = P( n (7i > t) n T > t!B~c) 
iERk 

= II (Fi(t)/Fi(Z~c))P(T > t!E~c n T > Z~c n R~c(t)) 
iERk 

= II (Fi(t)/ Fi(Z~c))P(T > t!E~c n R~c(t))/ P(T > Z~ciE~c), 
iERk 

smce 

Hence 

= [P(T > t!E~c n R~c(t))/P(T > Z~ciE~c)] II Fi(t)/Fi(Z~c) 
iERk 

x [2::: >.i(t) + I: Pi(t!E~c n R~c(t) n T 2:: t)], 
jERk jEF(R~c) 

having applied the definition of Pi(t!E~c n R~c(t) n T 2:: t) given in Lemma 4.2 and the fact 
that t > Z~c, and also (4.4). By inserting t = Zk+l in the expression above we get for 
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k = O,···,K -1 

L(fl_; Zk+11Bk) = [P(T > Zk+11Ek n Rk(Zk+1))/ P(T > ZkiEk)] 

x II (Fi(zk+1)/ Fi(Zk))[L Aj(zk+1) + L: Pj(zk+11Ek n Rk(zk+I) n T 2:: zk+I)] 
ieRk jERk jEF(Rk) 

By a competing risk argument we get fork= 0, · · ·, K- 2 by using (4.5) 

L(fl;Ik+11Bk, Zk+1) = L(fl;Ik+11Ek, Rk(Zk+1), T 2:: Zk+1) 

= A1k+l (Zk+I)/[2: Aj(zk+1) + E Pj(Zk+IIEk n Rk(zk+I) n T 2:: zk+1)] 
jERk jEF(Rk) 

whereas 
L(fl; IxiBx-1, Zx) = 

[AIK(Zx)I(Ix =I 0) + E Pj(ZxiEK-1 n Rx-1(Zx) n T 2:: Zx)I(Ix = 0)) 
jEF(RK-1) 

/[ E Aj(Zx) + E Pj(ZxiEK-1 n Rx-1(Zx) n T 2:: Zx)] 
jERK-1 jEF(RK-1) 

Fork= 0, · · ·, K- 2, we get by applying (4.2) 

L(fl; Jk+11Bk, zk+b Ik+1) = L(fl; OIBk, zk+b h+I) 

= 1- E P(Zk+1, iiRk+1) 

Finally, we get by using ( 4.5) 

L(fl; JxiBx-1, Zx, Ix) 
= I(Ix =/= O)P(Zx, JIRx) 
+ I(Ix = O)pJ(ZxiEx-1 n Rx-1(Zx) n T 2:: Zx) 

/[ E Pj(ZxiEK-1 n Rx-1(Zx) n T 2:: Zx)] 
jEF(RK-1) 

By inserting (4.7)-(4.11) into (4.6) our proof is completed. 

Note that the product 

iEM 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

represents the full likelihood function for the lifemonitored components. Secondly, note 
that by applying Lemma 4.1 we have 

P(T > Zk+11Ek n Rk(Zk+1))/ P(T > ZkiEk) 
k 

= 1- E c(zk, zk+l, iiRk)/[1- E E P(Zj, iiRj) 
iEF(Rk) j=1 iEF(R;,I;) ( 4.12) 

k 

- E E G(Zj-1, Zj, iiRj-1)] 
j=1 iEF(R;-1) 
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5. Lifemonitored and conditionally lifemonitored components 

In this section we will extend the model of Section 4 and also allow for conditionallifemon­
itoring of some components. Let 

C = the set of conditionally lifemonitored components 

- {p+l,···,p+q}cE, l~p<p+q~n. 

For icC there exists some arbitrary stopping time (inspection time), Ti, in terms of the 
monitored components such that the ith component is monitored from Ti onwards until 
system failure. This means that if icC and Ti < 7i ~ T, then 1i is known and the ith 
component is, after Ti, dealt with as a lifemonitored component. If on the other hand, 
7i ~ Ti ~ T, only this inequality becomes known. The idea behind the model is that 
lifemonitoring of components is expensive and special equipment might be needed. Hence 
for some components this is started only when we know that the system is in a serious 
state. Note that the system may well be a human being at a hospital. 

Introduce 

For each Ti ~ T, icC, we assume that Ti = Zk for some k = 1, · · ·, K, where now 

implying that inspections take zero (operational) time. 

Let for k = 1, · · · , K 

Ho = 0 

Hk = { icCITi = Zk} = the set of conditionally lifemonitored components being mon­
itored from zk onwards 

Hk,o = {icHkiYi = 0} 

Hk,l = {icHkiYi = 1} 

k 
Nk,o = .U Hj,o = the set of conditionally lifemonitored 

J=l 

inspections, not after Z k 

k 

components being failed on 

Nk,l = j~I Hj,l = the set of conditionally lifemonitored components being functioning 

on inspections, not after zk 

Ro=M 

Rk = MUNk,1 - {11, · · ·, Ik} =the set of lifemonitored and conditionally lifemonitored 
components being at risk just after zk 

Qo = 0 
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Qk = Nk,o U {II,···, h} = the set of lifemonitored and conditionally lifemonitored 
components having failed not after zk 

Bo = 0 

Our likelihood function will be a density function on the space 

0= (R+ x {0,1,···,p+q} x {0,1,···,m})p+q+I x {0,1F 

with respect to the measure 

J1, = (Lebesgue measure x counting measure x counting measure )P+q+l 

x (counting measure )q 

Now let N0 be a set of conditionally lifemonitored components being failed on inspections. 
Compared with the deductions in Section 4 we have for lcN0 and 0 ::; t ::; Tz to replace 
Fz(t) by Fz(t)/F'z(Tz) and hence Fz(t) by (Fz(t)- Fz(Tz))/F'z(Tz). Introduce 

¢z,N0 (t) = Fz(t)- I(lcNo)Fz(Tz) 0::; t::; Tz (5.1) 

Let furthermore R c M U C be a set of lifemonitored and conditionally lifemonitored 
components known to be at risk and Q c M U C a corresponding set of components known 
to be failed. We haveR n Q = 0. However, since we might lack information on some of 
the conditionally lifemonitored components, we do not have Q = M U C - R. 

Parallel to (4.1)-(4.4) we now introduce 

P(t, iiQ, R, No)= II Fz(t) II ¢z,N0 (t)/ II F'z(Tz) (5.2) 
l£Ai-Q lcA'f-R lc[(Ai-Q)U(A'j-R)]nN0 

F(Q,R,I) = {ic{1, · · · ,m}IQ c Ai,R c Af,IcCAJ (5.3) 

G(s, t, iiQ, R, No) 

=] II Fz(u) d~ ( II Fz(u)) II ¢z,N0 (u)duj II Fz(Tz) (5.4) 
8 lcAi-CAi-Q leG A, -Q lcA'f-R lc[(Ai-Q)U(A'j-R)]nNo 

F(Q, R) = {ic{1, · · ·, m}IQ c Ai, R c Af, CAi- Q # 0} 

Introduce 
Eo =0 
Ek = { ZI, II, Yi, icHI, ... 'zk-I, h-I, Yi, icHk-I, zk, h} 

For k = 0, · · · , K - 1 we have 

Bk = {Ek, Yi, icHk} n {T > Zk}. 
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Let ( 0 -5: j -5: k) 

Rj = M U Nk-1,1 - { 11, · · · , Ij} = the set of lifemonitored and conditionally lifemoni­
tored components being at risk just after Zj according to Ek. 

Note that RL1 = Rk_1. The Rj's are determined recursively from the relations. 

R8 = M , Ho,1 = 0 
R~ = R~-1 U Hk-1,1 1 -5: k 

Rj = Rj _1 - Ij , 1 -5: j -5: k 

For k = 0, · · ·, K- 1, t 2: Zk define Rk(t) from Rk as in Section 4. The proofs of the two 
following lemmas are very parallel to the ones of Lemmas 4.1 and 4.2 and are left to the 
reader. 

Lemma 5.1 

For k = 0, · · · , K - 1 we have 

P(T > ZkiEk) 
k-1 

= 1- L L P(Zj, iiQj, Rj, Nk-1,o)- L P(Zk, iiQk-1 U h, R~, Nk-1,o) 
j=1 ir::F(Qj,Rj,Ij) ir::F(Qk-lUh,RZ,h) 

k 

- L L G(Zj-1, Zj, iiQj-1, RJ_u Nk-1,o) 
j=1 ir::F(Qj-l,RJ_ 1 ) 

Here 
[(Ai- Qj) U (Af- Rj)J n Nk-1,o = Nk-1,o- Nj,o,J = 0, · · ·, k- 1 

[(Ai- Qk-1 U Ik) U (Af- R~)J n Nk-1,o = 0 
For k = 0, · · · , K - 1 and t 2: Zk, we have 

P(T > ti{Ek, Yi, icHk} n Rk(t)) 
k 

= 1- L L P(Zj,iiQj,Rj+l,Nk,O) 
j=1 ir::F(Q· Rk+l I·) 

J' j ' J 

k 

- L L G(Zj-1, zj, iiQj-1, Rj~t, Nk,o)- L G(Zk, t, iiQk, Rk, Nk,o) 
j=1 ir::F(Qj_ 1 ,RJ~i) ir::F(Qk,Rk) 

Here, in addition 
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Lemma 5.2 

Fork= 0, · · · ,K -1,t > Zk and ic:{1, · · · ,m} define 

= dtlim P[(J = i) n (t::; T::; t + dt)i{Ek, Yi, ic:Hk} n Rk(t) n T ~ t]/dt 
--+0 

Then 

= [ L Aj(t) II Fl(t) II cf>t,Nk,O (t)] 
jECA;_-QJc le.At-Q~c-{j} le(A~-R~c)U{j} 

/P(T > ti{Ek, Yi,ic:Hk} n Rk(t)), 

where the denominator is given by Lemma 5.1. 

Theorem 5.3 

Let 
~i = I(Ti ::; T) , ic:M 
~i = l(Ti < 1i::; T), ic:C 

The complete likelihood function of our parameter vector !1 is, for the case where M is the 
set of lifemonitored components and C the set of conditionally lifemonitored components, 
given by 

ieMUNK-1,1 

K-1 

x II P(T > zk+Ii{Ek, Yi, ic:Hk} n Rk(zk+I))/ P(T > ZkiEk) 
k=O 

K-2 

x II (1- L P(Zk+b iiQk U Ik+I, RZ!L Nk,o) 
k=O ieF(Q~cuik+l,RZ!~,Ik+l) 

+ I(Ix = O)pJ(Zxi{Ex-b Yi, ic:Hx-I} n Rx-I(Zx) n T ~ Zx)] 

An explicit expression is arrived at by applying (5.2)-(5.5) and Lemmas 5.1 and 5.2. 
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Proof. 

With obvious notation we can write L(fl) in the following form 

K-1 

L(fl) = IT L(fl; zk+liBk)L(fl; h+1IBk, zk+1) 
k=O (5.9) 

By an argument parallel to the one leading to (4.7) replacing (4.5) by (5.6) we get for 
k = O,···,K -1 

(5.10) 

Parallel to ( 4.8) we get for k = 0, · · · , K - 2 

= ..\1w (Zk+1)/[2.: ..\i(Zk+1) + 2.: Pi(Zk+11{Ek, Yi, icHk} n Rk(Zk+l) n T 2: Zk+l)], 
jeRk jeF(Qk,Rk) 

(5.11) 

whereas 

L(fl; IxiBx-1, Zx) = 

T 2: Zx)] 
(5.12) 
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For k = 0, · · · , K - 2, we get by applying (5.3) 

= 1- L P(Zk+b iiQk U Ik+b RZ!L Nk,o) 
(5.13) 

icF(Q~cuik+l,RZt~,Ik+l) 

By using (5.6) we get 

(5.14) 

Finally, by using (5.6) the new contribution is for k = 0, · · · , K - 2 given by 

(5.15) 
whereas 

(5.16) 

since at Zx the system fails and we know which components (AJ) that have failed and 
which (A)) that have survived. 

We now insert (5.10)-(5.16) into (5.9). Note that 

P(T > Zoi{Eo,Yi,icHo}) = P(T > ZoiEo) = P(T > 0) = 1. 
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Furthermore, we have by letting Ti = 0, icM 

K-l K-l 

II II Fi(Zk) X II II Fi(Zk+I)/ Fi(Zk) 
k=l ieHk,1 

ieNK-1,1 ieMUNK-1,1 k=O 

II Fi(Ti) X II 
ieMUNK-1,1 ieMUNK-1,1 

II Fi(Ii 1\ T) 
ieMUNK-1,1 

Hence our proof is completed. 

Let R C M U C still be a set of lifemonitored and conditionally lifemonitored components 
known to be at risk and Q C M U C a corresponding set of components known to be failed. 
Assume that at each inspection time point, a set of conditionally lifemonitored components 
is chosen iteratively according to the set function H ( Q, R). This is done to improve the 
control of the inspection procedure. Obviously 

H(Q,R) c C- (QUR) 

In general, at each Zk, k = 1, · · ·, K- 1, inspection is stopped when H(Qk, Rk) = 0. By a 
slightly generalized argument it is seen that Theorem 5.3 is valid also in this case. 

Assume now that one is allowed and can afford always to inspect components such that 
all the time at least one of the lifemonitored and conditionally lifemonitored components 
known to be at risk, must fail for the system to fail. Then the likelihood function of 
Theorem 5.3 becomes especially simple as is seen from the following intuitive obvious 
corollary. 

Corollary 5.4 

Let H(Q, R) be chosen such that 

(H(Q, R) U R) n Ai =!= 0 for all i€{1, · · ·, m}, 

implying that at Zk, k = 1, · · ·, K- 1 

Rk n Ai =!= 0 for all ic{1, · · ·, m }. 

Then 

L(fl_) = 
ieMUNK-1,1 ieNK-1,0 

X II Fi(T) X II 
ie{E-M-NK-1,1-NK-1,oiYi(T)=O} ie{E-M -NK-1,1-NK-1,oiYi(T)=l} 
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Proof. 

By assumption 

k = 1, · .. , K - 1 for all ic{ 1, · .. , m} 

Hence from (5.3) and (5.5) we have 

F( Qk, Rk, Ik) = F( Qk, Rk) = 0 k = 1, .. · , K - 1 

Furthermore, this implies 

Hence, all the double sums in (5. 7) and all sums in (5.8) disappear and we get for k = 

O,···,K- 1 

(5.17) 

Since F(Qx-1, Rx-1) = 0, it follows from (5.12) that I(Ix = 0) = 0. Finally from (5.1) 
and (5.2), noting that [(AJ- Qx-1 U Ix) U (AJ-- R~)] n Nx-1,0 = 0, we have 

P(Zx, JIQx-1 U lx, R~, Nx-1,0) 

II Fl(Zx) II ¢l,NK-t,o(Zx) 
lcA;-QK-tUh lcA'J-R~ (5.18) 

II Fi(T) II 
ic{E-M-NK-l,l-NK-t,oiY;(T)=O} ic{E-M-NK-l,l-NK-t,oiY;(T)=1} 

By inserting (5.17) and (5.18) into the likelihood function of Theorem 5.3, remembering 
that I(Ix = 0) = 0, our proof is completed. 

Since inspections are costly and should be reduced to a minimum it is reasonable to stop 
inspection at Zk, k = 1, · · ·, K- 1 when for the first time Rk n Ai =/= 0 for all ic-{1, · · ·, m}. 

Note that the likelihood function of Corollary 5.4 is of the same simple form as the one 
given by (1.1). Hence by assuming exponentially distributed component lifetimes, the 
posterior distribution of fl. is arrived at as in Section 2. Remember that the maximum 
number of addends in (2.1) was obtained for a parallel system and the minimum for a 
series system. In contrast, in the set up of Corollary 5.4 one just has to monitor one 
component at a time for the parallel system whereas for the series system all components 
have to be monitored. For a k-out-of n system, where at least k components must function 
for the system to function, obviously a minimum of k components must be monitored at 
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a time. Note also that the fatal sets A1, ···,Am in Corollary 5.4 can be replaced by the 
minimal cut sets of the system. 

It should also be stressed that the inspection procedure of Corollary 5.4, in spite of giving 
simple mathematics and a simple likelihood function, does not need to be a realistic one 
in a specific application. Hence, the general result of Theorem 5.3 is indeed of importance. 

Although this paper is concerned with autopsy data, it is finally worth noting that if these 
data are not observed, due to interrupted operation of the system, our results can easily 
be adapted to cover this case as well. Suppose V > 0 is a censoring time, either fixed 
in advance or being a random variable, with an absolutely continuous distribution, being 
independent of~' i = 1, · · ·, n. The corresponding intensity is assumed not to depend on 
fl._. We now just have to replace T by min (T, V). Then the likelihood functions for fl._ given 
in Theorems 4.3 and 5.3 are just modified by replacing the last factor [· · ·], corresponding 
to a system failure at ZK, by [· · ·]I(J =J- 0) + I(J = 0). Here J = 0 corresponds to a 
censoring at ZK. 
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