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ABSTRACT. The traditional kernel density estimator of an unknown den­
sity is by construction completely nonparametric, in the sense that it has 
no preferences and will work reasonably well for all shapes. The present pa­
per develops a class of semiparametric methods that are designed to work 
better than the kernel estimator in a broad nonparametric neighbourhood 
of a given parametric class of densities, for example the normal, while not 
losing much in precision when the true density is far from the parametric 
class. The idea is to multiply an initial parametric density estimate with 
a kernel type estimate of the necessary correction factor. This works well 
in cases where the correction factor function is less rough than the original 
density itself. Extensive comparisons with the kernel estimator are carried 
out, including exact analysis for the class of all normal mixtures. The new 
method, with a normal start, wins quite often, even in many cases where 
the true density is far from normal. Procedures for choosing the smoothing 
parameter of the estimator are also discussed. The new estimator should 
be particularly useful in higher dimensions, where the usual nonparametric 
methods have problems. The idea is also spelled out for nonparametric 
regression. 
KEY WORDS: bandwidth selection, correction factor, kernel methods, low­
ering the bias, semiparametric density estimation, test cases 

1. Introduction and summary. Let X 1 , ... , Xn be independent observations 
from an unknown density f on the real line. The traditional nonparametric density 
estimator is 

where Kh(z) = h-1 K(h-1 z) and K(z) is a kernel function, which is taken here 
to be a symmetric probability density with finite values of <Tk = I z2 K(z) dz and 
R(K) = I K(z) 2 dz. The basic statistical properties are that 

Ei{:z:) = f(z)+~ukh2 f"(z) and Vari{:z:) = R(K)(nh)-1 f(z)-f(z) 2 jn. (1.2) 

The integrated mean squared error is of order n-4 / 5 when his proportional to n-115 , 

which is the optimal size. See Scott (1992, Chapter 6) and Wand & Jones (1994, 
Chapter 2) for recent accounts of the theory. 

Method (1.1) is totally nonparametric and admirably impartial to special types 
of shapes of the underlying density. The intention of the present paper is to construct 
competitors to (1.1) with properties that are generally similar but indeed better in 
the broad vicinity of given parametric families. The basic idea is to start out with 
a parametric density estimate f(z, B), say the normal, and then multiply with a 
non parametric kernel type estimate of the correction function r( :z:) = f( :z:) / f( :z: ,8). 
Our proposal is r(:z:) = n-1 2::~= 1 Kh(Xi- z)/f(Xi,8), producing 

~ ~ 1~ f(z,B) 
f(z) = f(z,O)T(z) =- L..JKh(Xi- :z:) ~. 

n i=l f(Xi, 0) 
(1.3) 
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We emphasise that the initial parametric estimate is not (necessarily) intended to 
provide a serious approximation to the true density; our method will often work 
well even if the parametric description is quite crude. The case of a constant start 
value for f{z, 0), corresponding to choosing a uniform distribution as the initial 
description, gives back the classic kernel estimator {1.1). 

The basic bias and variance properties of the new estimator {1.3) are investi­
gated in Section 2, treating the simplest case of a non-random start function f0{z), 
and in Section 3, covering a broad class of parametric start estimators. It turns 
out that the variance of the {1.3) estimator is simply the same as the variance of 
the traditional {1.1) estimator, to the order of approximation used, while the bias is 
quite similar in structure to {1.2), and often smaller. Comparisons with the tradi­
tional estimator {1.1) are made in Sections 4 and 5. It is seen that the new method 
generally is the better one in cases where the correction function is less 'rough' than 
the original density, in a sense made precise in Section 4, and illustrated there in 
the realm of Hermite expansions around the normal. 

Further analysis is provided in Section 5, for the version of {1.3) that starts with 
the normal, comparing behaviour with the kernel method when the true density be­
longs to the large class of all normal mixtures. There and in the paper's appendix 
comparative formulae are developed for exact analysis of asymptotic mean squared 
error as well as for exact finite-sample mean squared error. The results are illumi­
nated by working through a list of 15 'test densities' proposed by Marron & Wand 
{1992), chosen to exhibit a broad range of distributional shapes. The new 'nonpara­
metrically corrected normal estimate' outperforms the usual kernel method in 12 of 
these 15 test cases, and in all the 'not drastically unreasonable' cases, in terms of 
approximate mean integrated squared error. The same pattern is observed for finite 
sample sizes. 

The bottom line is that {1.3) will be more precise than {1.1) in a broad non­
parametric neighbourhood around the parametric family, while at the same time 
losing surprisingly little, or not at all, when the true density is far from the para­
metric family. One explanation is that the uniform prior description, which in the 
light of {1.3) is the implicit start estimator for the kernel estimator {1.1), is overly 
conservative and less advantageous than say the normal, even in quite non-normal 
cases. 

The problem of selecting a good smoothing parameter is discussed in Section 6, 
and some solutions are outlined, including versions of plug-in and cross validation. 
Our method also works well in the multi-dimensional case, starting out for exam­
ple with a multi-normal start estimate, as demonstrated in Section 7. The method 
should be particularly useful in the higher-dimensional case since the ordinary non­
parametric methods, including the kernel method, are quite imprecise then. Our 
paper ends with some supplementary comments in Section 8. In particular Remark 
BE spells out the corresponding estimation idea for nonparametric regression, giving 
a generalised Nadaraya-Watson estimator. 

Our estimators can be viewed as semiparametric in that they combine para­
metric and nonparametric methods. They are as such in the same realm as recent 
methods of Hjort {1993) and Hjort & Jones {1993). These latter methods are quite 
different but also have the property that the variance is approximately the same 
as in {1.2) while the bias is similar but sometimes smaller. The {1.3) method is 
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also similar in spirit to the projection pursuit density estimation methods, see for 
example Friedman, Stuetzle & Schroeder (1984), and also to the normal times Her­
mite expansion method, see for example Hjort (1986), Buckland (1992), and Hjort 
& Fenstad (1994). A somewhat less attractive semiparametric method is that of 
Schuster & Yakowitz (1985) and Olkin & Spiegelman (1987), see the discussion in 
Jones (1993). Various semiparametric Bayesian density estimators are proposed in 
Hjort (1994). 

Another semiparametric technique, perhaps mildly related to our new method, 
is the transformation idea of Wand, Marron & Ruppert (1991), where data are 
semiparametrically transformed so as to work well with a non-adaptive constant 
smoothing parameter, and then ending in a back-transformed density estimator. 
This is a promising way of using an adaptive smoothing parameter, and our estimator 
can be seen as as having similar intentions. In other words, (1.3) can be seen as being 
similar in spirit to a suitable semiparametrically adaptive n-1 2::~= 1 K h(a:,9)(Xi- z ). 
Finally we mention a recent bias reduction method due to Jones, Linton & Nielsen 
(1993). Our (1.3) idea is to start with any parametric estimator and then multiply 
with a nonparametric correction function, and in essence this does not affect the 
variance but changes the bias. Serendipitously and independently of the present 
authors Jones, Linton & Nielsen (1993) use essentially the same idea but in a totally 
nonparametric mode, correcting the initial kernel estimator with a nonparametric 
correction factor in the (3.1) manner. This typically gives a smaller bias but a 
somewhat larger variance. 

2. Nonparametric correction on a fixed start. Suppose fo is a fixed 
density, perhaps a crude guess of f. Write f = for. The idea is to estimate 
the nonparametric correction factor r via kernel smoothing. One version of this is 
r(z) = n-1 2::~= 1 Kh(Xi- z)/fo(Xi), with ensuing estimator 

(2.1) 

Note that a constant fo ( z) gives back the ordinary kernel estimator ( 1.1). We have 

Er(z) =I Kh(Y- z)fo(Y)-1 f(y) dy 

=I K(z)r(z + hz) dz = r(z) + ~ukh2r"(z) + O(h4), 

and 

Varr(z) = ~[~ Khj~~:)2 
f(y)dy- {Er{z)}2] 

= R(K) f(z) _ r(z)2 + O(h/n), 
nh fo(z)2 n 

by a variation of the arguments traditionally used to establish (1.2). This shows 
that the (2.1) estimator has 
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In other words, the variance is of the very same size as that of the traditional 
estimator, to the order of approximation used, and the bias is of the same order h2 , 

but proportional to for" rather than to f". The new estimator is better than the 
traditional one in all cases where for" is smaller in size than f" = /61 r + 2/6 r1 +for". 
In cases where fo is already a good guess one expects r near constant and r" small, 
so this describes a certain neighbourhood of densities around fo where the new 
method is better than the traditional one. This is further discussed and exemplified 
in Section 4. 

3. Nonparametric correction on a parametric start. Let f(z, 0) be a 
given parametric family of densities, where the possibly multi-dimensional param­
eter 0 = ( 01, ... , OP )' belongs to some open and connected region in p-space. The 
parametric start estimate is f(z,B), where we for concreteness let 0 be the maxi­
mum likelihood estimator (quite general estimators for 0 are allowed later). Thus 
f(z, o) could be the estimated normal density, for example, or an estimated mixture 
of two normals. This initial data summary is not necessarily meant to be a serious 
description of the true density; the method we will develop is intended to work well 
even iff cannot be well approximated by any f(., 0). 

The task is to estimate the necessary correction function f( z) If( z, 0) by kernel 
smoothing means. In view of Section 2 r(z) = n-1 2::~= 1 Kh(Xi- z)lf(Xi,O) is a 
natural choice. In other words, 

(3.1) 

In order to understand to what extent the parametric estimation makes this 
estimator quantitatively different from the cleaner version (2.1), we bring in facts 
about the behaviour of the maximum likelihood estimator outside model condi­
tions. It aims at a certain 00 , the least false value according to the Kullback­
Leibler distance measure J f(z)log{f(z)lf(z,O)}dz from true f to approximant 
f(., 0). Write fo(z) = f(z, Oo) for this best parametric approximant, and let u0 (z) = 
8log f( z, 00 ) I 80 be the score function evaluated at this parameter value. A Taylor 
expansion gives 

leading to 

f(z,O) ~ ~ 
....:......:.,_..:...._~.;_... = exp{log f( ;e' 0) - log f( xi' 0)} 
/(Xi, 0) 

. fo ( z) fo ( z) ( 1 ~ ) 

= fo(Xi) + fo(Xi) {uo(z)- uo Xi)} (0- Oo , 

(3.2) 

~ 1 ~ /o ( z) 1 ~ 
f(z) =;;: {:tKh(Xi- z) /o(Xi) [1- {uo(Xi)- uo(z)} (0- Oo)] (3.3) 

= f*(z) + Vn(z ), 

say. Here f* is as in (2.1), except for the fact that the fo function appearing here 
is not directly visible, and the Vn( z) term stems from the parametric estimation 
variability. 
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Representation (3.3), in concert with expressing 0-80 as an average ofi.i.d. zero 
mean variables plus remainder term, can now be used to establish approximate bias 
and variance results for f( z). We shall be somewhat more general and allow arbitrary 
regular estimators having an influence with finite covariance matrix. To define this 
properly, let F be the true distribution, the cumulative of f, and let Fn be the 
empirical distribution function. We consider functional estimators of 8 of the form 
0 = T(Fn) with influence function I(z) = liiile .... o{T((1- e)F + et5m)- T(F)}je;, 
writing t5m for unit point mass at z, and assume that ~ = Eti(Xi)I(Xi)' is finite. 
The best approximant fo ( z) = f ( z, 80 ) to f ( z) that f ( z }) aims for is determined 
by 80 = T(F). Under mild regularity conditions, see for example Huber (1981) or 
Shao (1991), one has 

(3.4) 

where en = Op(n-1 ) with mean O(n-2 ), i.e. djn is essentially the bias of 0. It is 
generally possible to de-bias the estimator, for example by jackknifing or bootstrap­
ping, making the djn term disappear. The maximum likelihood case corresponds to 
I(.v) = J- 1u0 (.v) where J = -E,82 logf(Xi,8o)/8888'. 

PROPOSITION. Let fo(z) = f(.v,80 ) with 80 = T(F) be the best parametric 
approximant to f, and let r = f / fo. The semiparametric estimator ( 3.1) has 

Ef(.v) = f(.v) + tu}ch2 fo(z)r"(.v) + O(h2 jn + h4 + n-2 ) 

and Var f(z) = R(K)(nh)-1 f(.v)- f(z) 2 /n + O(h/n + n-2 ). 

PROOF: The detailed proof we present needs a second order Taylor approxima­
tion version of the simpler first order Taylor versions (3.2)-(3.3). This more complete 
approximation becomes f(.v) = f*(z)+ Vn(z)+ tWn(.v), where we write f*(z) =An, 
Vn(.v) = B~(O- Bo), and Wn(.v) = (0- Bo)'Cn(O- Bo). The representations are in 
terms of averages of i.i.d. variables 

Ai = Kh(Xi- ov)fo(z)/fo(Xi), 

Bi = -Kh(Xi- z){fo(z)/ fo(Xi)} {uo(Xi)- uo(z)}, 

Ci = Kh(Xi- .v){fo(z)/fo(Xi)}w(z,Xi), 

where in fact w(z,Xi) = vo(z)- vo(Xi) + {uo(z)- uo(Xi)}{uo(z)- uo(Xi)}'. 
Starting with the expected value, we already know that f* has mean f( z) + 

tu}ch2 fo(z )r"(.v )+O(h4 ). Through (3.4) and the averages representations above one 
finds EVn(.v) = n-1 EB~Ii+n-1 (EBi)'d+O(n-2 ) andEWn(z) = n-1 Tr(ECiEiiii)+ 
O(n-2), using the fact that Ii = I(Xi) has mean zero. But it is not difficult to see 
that each of EBi, EB~Ii, ECi is of size O(h2); for example, 

Glad Hjort 

EB~Ii = -I Kh(Y- z) ~:~:~ { uo(Y)- uo(z )}'I(y)f(y) dy 

=-I K(z)fo(z){uo(z + hz)- uo(z)}'(Ir)(.v + hz) dz 

= -h2 ukfo(z){u~(.v)'(Ir)'(.v) + tu~(.v)'(Ir)(z)}+ O(h4 ). 
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One can also see that the remainder of the second order Taylor approximation 
used, involving (Oi - 00 ,i)3 terms, is of size Op(n-2). Thus the bias of i{z) is 
!u}ch2 fo(z)r"(z) + (h2 ln)b(z) + O(h4 + n-2), for a certain b(z) function. 

Next turn to the variance. The variance of f*(z) is known from Section 2. From 
(3.4) and the representation above one finds VarVn(z) = Var(.B~fn) + O(n-2 ) = 
n-1 (EBi)'~(EBi)- {O(h2 ln)P + O(n-2) = O(h4 In+ n-2), and similarly Wn(z) 
can be seen to have unin:fluential variance O(h4 ln2 ). Finally cov{f*(z), Vn(z)} = 
n - 1 (EBi )'EAJi + 0 ( n - 2 ) = 0 ( h2 In). This combines to give the necessary variance 
expression. 0 

The result is remarkable in its simplicity; the sizes of bias and variance are only 
affected by parametric estimation noise to the quite small 0 ( h2 In+ n - 2 ) order. The 
reason lies with (3.2); not only is 0 close to 00 , but the [( z) estimator uses only Xis 
that are close to z, making u0 (Xi) close to u0 (z). The story is somewhat different 
for the correction term r(z) alone, see Remark 8B. 

Consistency of the density estimator requires both h --+ 0 (forcing the bias 
towards zero) and nh --+ oo (making the variance go to zero). The optimal size 
of h will later be seen to be proportional to n-1/ 5 . These observations match the 
traditional facts for the classic (1.1) estimator. Note also that if the parametric 
model happens to be accurate, then the r function is equal to 1, and the bias is only 
O(h4 + h2 In). 

EXAMPLE 1: NORMAL START ESTIMATE. The normal start estimate is of 
the form <r-1 ¢>(u-1(z - Ji)), where one can use maximum likelihood estimates 
Ji = n-1 2:~= 1 Xi and <12 = n-1 2:~=1 (Xi - il)2 (or the de-biased version with 
denominator n -1). In view of the generality ofthe proposition above quite general 
estimators are allowed, without changing the basic structure of bias and variance of 
[(z). One might for example wish to use robust estimates of mean and standard 
deviation. In any case the density estimator is 

(3.5) 

Note that its implementation is straightforward. 

EXAMPLE 2: LOG-NORMAL START ESTIMATE. One option for positive data is 
to start with a log-normal approximation and then multiply with a correction factor. 
The result is 

[(z) = ~ :t Kh(Xi- z) exp{ -t(logz- Ji)2 1<12} Xi. 
n i=1 exp{ -t{logXi- Ji)2 1<12} z 

EXAMPLE 3: GAMMA START ESTIMATE. A version of the general method which 
should work well for positive data from perhaps unimodal and right-skewed distri­
butions is to start with a gamma distribution approximation. The final estimator is 
then of the form 

- 1 n - -
f( z) = - L K h(Xi - z )( z I Xi)a-1 exp{ -/3( z - Xi)}, 

n i=1 

for example with moment estimates for the gamma parameters. 
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EXAMPLE 4: NORMAL MIXTURE START ESTIMATE. We believe proper use ofthe 
three special cases mentioned now would work satisfactorily in many applications. 
Most unimodal densities would be approximable with either a normal, a log-normal 
or a gamma, perhaps after a transformation. Cases where still other tactics might 
prove superior include densities exhibiting two or more bumps. One method in such 
cases would be to fit a normal mixture first and use that as the f(:c,'O), correcting 
afterwards with a r(:c). 

REMARK 1. The correction factor f(:c, 0)/ f(Xi,O) can occasionally be too 
influential, in cases where the denominator is too small. This is not a problem for 
small h since then only Xis quite close to :c matter, but it can happen for moderate 
hand for lonely data points. An effective safety procedure is to replace the original 
f(:c,O) function with a somewhat adjusted /(:c,O), bounding it suitably away from 
zero. fu the normal case we advocate putting /( :c, 0) equal to f(Ji ± 2.5 u, /1, u) = 
(27r)-112u-1 exp( -2.52 /2) for l:c- /11 2: 2.5 cr. 

REMARK 2. We have developed a method that can be used for any given 
parametric model. It is intuitively clear that the method works best in cases where 
the model employed is not too far from covering the truth (and this is borne out by 
precise analysis in the following sections). One could think of ways of automatising 
the choice of the parametric vehicle model, through suitable goodness of fit measures, 
thereby obtaining an overall adaptive density estimator, but this is not pursued here. 

4. Comparison with the traditional kernel density estimator. fu this 
and the following section the performance of the new estimator is compared to that 
of the usual (1.1) estimator. We look into a couple of 'test areas', that is, classes 
of densities for which comparison of behaviour can be carried out. fu 4B and 4C 
below we study two versions of Hermite expansions around the normal density. The 
calculations we give for these turn out to be useful also in connection with the 
problem of choosing the bandwidth parameter h, see Section 6. The second test 
area is that of finite normal mixtures, studied in Section 5 and in the Appendix, 
with attention given to the list of 15 test densities chosen by Marron & Wand (1992). 

4A. GENERAL MSE AND MISE COMPARISON. Expressions can be found for the 
leading terms of the integrated mean squared errors of the usual kernel estimator 
(1.1) and the new estimator (3.1), using respectively (1.2) and the proposition of 
Section 3. We find 

amise for f = i-uich4 Rtrad(/) + R(K)(nh)-1 , 

amise for f = i-uich4 Rnew(/) + R(K)(nh)-I, 

featuring 'roughness' functionals 

(4.1) 

Rtrad(/) =I {/"(:c)}2 d:c and Rnew(/) =I {/o(:c)r"(:c)}2 d:c. (4.2) 

The new estimator is better, in the sense of approximate (leading terms) integrated 
mean squared error, whenever Rnew(/) is smaller than Rtrad(/). This defines a 
nonparametric neighbourhood of densities around the parametric class. When f 
belongs to this neighbourhood, f is better than J when the same K and the same h 
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are used in the two estimators. In such a case the new estimator can be made even 
better by choosing an appropriate h, see Section 6. 

It is also of interest to see in which :~:-regions the new estimator is better than 
the traditional one. Write f = exp(g) and fo = exp(go). Then 

!" = f{g" + (g')2} while for"= f{g"- g~' + (g'- g~) 2 }. {4.3) 

This is useful for actual inspection of the bias terms for different fs, and is attractive 
in that it clearly exhibits the roles of the first and second log-derivatives. Note in 
particular that if the parametric model used is good enough to secure lg'- g~ I :S: IY'I 
and lg"- g~'l :S: IY"I, for a region of relevant zs, then that clearly suffices for the 
new method to be better than the traditional one. These requirements can also be 
written 0 :S: g~f g' :S: 2 and 0 :S: g~ / g11 :S: 2. 

4B. FIRST TEST-BED: HERMITE EXPANSIONS. A test area where these matters 
can be explored is in the context of the Hermite expansions considered (for other 
purposes) in Hjort & Jones {1994) and in Hjort & Fenstad {1994). Let Hj(z) be the 
jth Hermite polynomial, given by <f>U)(z) = ( -1)j</>(z)Hj{z). Consider the Hermite 
expansion representation 

(Z-J.£)1{ ~'"'f· (Z-J.t)} (Z-J.£)1 
f(z) = </> -u- ;; 1 + ~ j~ Hj -u- = g -u- ;;' 

j=3 

(4.4) 

writing g(y) = </>(y){1+ ~d=3 {'Yj/ j!)Hj(y)}. Its mean is J.t and its standard deviation 
is u, and 'Yj = EHj((X- J.t)/u). Note that 'Yo= 1 and that '"'11 = '"'12 = 0, while 

( X- J.£)3 (X- J.£)4 (X- J.£)5 (X- J.£)3 '"'13 = E -u- , '"'14 = E -u- , '"'15 = E -u- -10E -u- , 

and so on, featuring skewness, kurtosis, pentakosis and so on, all of which are zero 
for the normal density. Any density with finite moments can be approximated with 
one of the form ( 4.6), through inclusion of enough terms. See Hjort & Jones {1994) 
for details pertaining to this and some of the following calculations. 

Assume that the true f is as in (4.4) and that the normal-corrected estimator 
(3.5) is used, so that f = for with fo being the simple normal approximation and 
r(z) = ro(y), where ro(Y) = ~j=0 {'Yjfj!)Hj{y), writing y = (z- J.t)fu. Then 

m 

/"(z) = u-3 g11 (y) = u-3</>(y) L('Yjfj!)Hj+2(Y), 
j=O 

m 

fo(z)r"(z) = u-3 </>(y)r~(y) = u-3</>(y) L{'Yjfj!)j(j- 1)Hj-2{y). 
j=2 

Calculations give that Aj,k = J HjH~c</>2 dy is zero when j + k is odd and equal 
to ( -1)HP(2y'i)-1(2p)!/(p!22P) when j + k = 2p, see Hjort & Jones {1994). This 
makes it possible to evaluate 

j,k~m 

""' 'Yj 'Yk and Rnew{f) = u-5 ~ (. _ 2)! (k _ 2)!Aj-2,k-2 
2~3,k~m J 
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for given values of m. As an example, suppose terms corresponding to skewness, 
kurtosis and pentakosis are included. Then 

Rnew = u-5{·dA1,1 + ('rl/4)A2,2 + ("Y:f36)i~ + 2(1'3/5/6)A1,3} 
1 = u-5 ;;;;{(1/2hi + (3/16}rl + (5/96)1~- (1/4)13/5} 

2y11" 

-5 3 (2 2 1 2 5 2 1 ) 
= 0" 8-/i 3'3 + 4'4 + 7215 - 3/3/5 ' 

while Hjort & Jones (1994) finds 

R _ u_5_3_ ( 1 35 35 2 385 2 1001 2 _ 77 ) 
tra.d - 8-/i + 48 14 + 3213 + 102414 + 1024015 1281315 · 

(4.5) 

This indicates that the new estimator is better than the traditional one for all cases 
in a large neighbourhood around the normal distribution. 

One might also use this test-bed to see where fo (a: )r" (a:) is smaller in size 
than f"(a:), say for moderate values of /3, 14, /5· This would be analogous to the 
experiments described in Section 5A for normal mixtures. 

4C. SECOND TEST-BED: ROBUST HERMITE EXPANSIONS. The Hermite expan­
sion ( 4.4) is of the type encountered in Edgeworth-Gramer expansions. It is pleasing 
from a theoretic point of view in that it incorporates· skewness, kurtosis etc. to refine 
the normal approximation, but it has shortcomings as well. The coefficients are not 
always finite, and empirical estimates are quite variable and non-robust. Hjort & 
Jones (1994) and Hjort & Fenstad (1994) give further reasons favouring another 
and more robust Hermite expansion, in terms of the polynomials Hj(y) = Hj( .j2y) 
instead. In this case 

f (a:) = </> (a: - J.L) ]:_ ~ ~J H ~ (a: - J.L) , 
0" 0" ~ J! 3 0" 

J=O 

(4.6) 

where the coefficients are determined from Dj = -J2EHj( V2(X- J.L)/u) exp{ -t{X­
p,) 2 ju2}. IT f is taken as an approximation to a given density q with mean J.L and 
standard deviation u, then the £ 2 distance J(f-q) 2 da: is minimised for exactly these 
Dj, see Hjort & Jones (1994). For this expansion, f0 (a:)r"(z) = u-3</>(y) ~7=2 2j(j-
1){8j/j!)Hj_2(y). It follows from this that 

(4.7) 

An expression for Rtra.d(/) for this robust Hermite expansion is in Hjort & Jones 
(1994). For illustration consider the 4th order case, where terms having 80 , ••• , 84 

are included. Then 

( ) u-5 ( 2 2 39 2 25 2 41 2 ) 
Rtra.d f = 8-/i 380 +1581 + 282 +283 + 884 -128o82 -208183 -148284+28o84 , 

while Rnew(/) = (2u-5 /-/i)(8~ + 8~ +tel). Again this indicates superiority of the 
(3.5) estimator in a broad neighbourhood around the normal. 
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For simplicity 
the figure is 
placed at the 
end of our 
report 

5. Exact analysis for normal mixtures. Consider a normal mixture 

k 

!(~) = LPifi(~), where fi(~) = </>u;(~- JLi), (5.1) 
i=1 

writing <!>u(u) = u-1¢(u-1 u). The family of such mixtures form a very wide and 
flexible class of densities. Marron & Wand {1992) studied such mixtures and in 
particular singled out 15 different 'test densities', covering a broad spectrum of not 
so difficult to extremely difficult cases, see the figure. These will now be used by 
us to compare the new normal-start times correction method with the traditional 
kernel method. In 5A the asymptotic mean squared errors of the two methods are 
compared, involving the leading terms of the Taylor-based approximations to bias 
and variance. In 5B we go further and analyse exact finite-sample mean squared 
errors for the two methods. 

5A. EXACT AMISE ANALYSIS. To monitor the two bias terms we should compare 
f" to for", where fo is the best approximating normal, with JLo = 2:::7=1 PiJLi and 
ufi = 2:::7=1 Pi{u] + (JLi - JLo) 2 }. Write fi = exp(gi) and fo = exp(go). Then 
r = fIfo = 2:::7=1 Pi exp(gi- go) and r" = 2:::7=1 Pi exp(gi- go ){gi'- g~ + (g~- gb )2}. 

This leads to 

k 

fo(~)r"(~) = LPdi(~)[1lu5 -1luf + {(~- JLi)luf- (~- JLo)lu5}2], (5.2) 
i=1 

while 
k k 

f" ( ~) = LPi<l>~; ( ~ - JLi) = LPi{( ~ - JLi) 2 I uf - 1} /i( ~)I uf. (5.3) 
i=1 i=1 

With some efforts (5.2) and (5.3) also lead to formulae for the roughness values 
Rtrad {f) and Rnew (f), cf. ( 4.2). Exact expressions are given in Proposition A.1 in 
our Appendix I. 

In the figure these formulae are used to visually inspect f" ( ~) versus fo ( ~ )r" ( ~), 
for each of the 15 test cases. There are two immediate points to note. The first is 
that in most cases where the initial normal approximation is not very unreasonable, 
the new estimator manages to be better than the usual one, in significant ~-areas. 
The second observation is that in cases where the initial description is clearly a 
bad start, the new semiparametric method turns almost nonparametric and behaves 
almost like the kernel method. 

FIGURE. The 15 test densities (left hand side) presented together with the 
bias factor functions f" (solid line, for the kernel method) and for" (dotted 
line, for the new method). 

We have also computed the global criteria Rtrad{f) and Rnew{f), for each of 
the 15 test densities; see the formulae and Table A.1 in Appendix I. The overall 
comparison in terms of approximate mise is in clear favour of the new method. 
Roughly speaking the first nine test cases are the not drastically unreasonable ones, 
whereas cases 10-15 probably originate from another planet and were chosen by 
Marron & Wand to exhibit particularities of smoothing parameter problems. And 
the new method wins in each of the nine worldly cases: the Gaufiian, the skewed 
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unimodal, the strongly skewed, the kurt otic unimodal, the outlier, the bimodal, 
the separated bimodal, the skewed bimodal, the trimodal. It is also better for the 
claw density (#10 in Marron & Wand), the double claw (#11), and even for the 
asymmetric double claw ( #13). It only loses to the traditional kernel method, and 
then only very slightly, in cases # 12 (the asymmetric claw), # 14 (the smooth comb), 
and #15 (the discrete comb). 

So in terms of approximate mise the semiparametric (3.5) estimator wins over 
the kernel method in 12 out of 15 cases. It is fair to add that only about half of 
these victories are clear-cut, and that the remaining cases are almost draws, with 
surprisingly similar values for Rnew and Rtrad. This picture emerges also when one 
computes values for the L1-based criteria J If" I versus J I for" I, also given in the 
table of Appendix I. According to this measure the (3.5) estimator wins in 14 out 
of 15 cases. 

We also inspected separately the case oftwo components in the normal mixture. 
Only in quite extreme cases does the kernel method win in approximate mise, and 
then only slightly. And the new method always wins when the two standard devia­
tion parameters in question are equal. It is mildly surprising that a nonparametric 
correction on a normal start performs better than the kernel method even in such 
highly non-normal situations. 

5B. EXACT FINITE-SAMPLE COMPARISON. The comparison analysis above was 
in terms of the Taylor-based approximations to bias and variance. Now we go further 
and analyse exact finite-sample mise for the two methods. Such analysis was carried 
out in Marron & Wand (1992) for the kernel method (1.1). Their Theorem 2.1 
implies that if f is as in ( 5.1), then 

(5.4) 
Reaching a similar result for the mise of the normal-start estimator (3.5) is much 
more demanding. Proposition A.2 in Appendix II delivers such a formula. It sim­
plifies the comparison quest to care only about 'best case versus best case', which 
means comparing the two best achievable mise values, say mise:rad and mise*. We 
programmed formula (5.4) and the one in Proposition A.2 and went through the list 
of the 15 test densities again, and found for each the minimising value of h and the 
resulting minimum mise values, for each of the five sample sizes 25, 50, 100, 200, 
1000. The results are displayed in Table A.2 of Appendix II, along with the ratio 
mise* /mise:rad. These numbers support the previous positive conclusions for the 
new estimator, in its particular form (3.5). The mise-ratio is quite often below 1, 
and for the quite difficult test densities, where the analysis of 5A gave very similar 
values for Rtrad and Rnew, Table A.2 yields mise-ratios mostly between 0.99 and 
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1.01. Even in these highly non-normal situations the new method has, overall, a 
slight edge. The table also illustrates that choosing the same bandwidth for the new 
method as for the kernel method will be quite acceptable in most of the definitely 
non-normal situations. In a broad vicinity of the normal it should pay to use a little 
larger bandwidth than what is optimal for the kernel method, however. 

It should be kept in mind that the list of 15 test densities is not at all constructed 
to be favourable to using the normal model as start description. Statistically speak­
ing we believe that a high proportion of densities actually encountered in real life are 
closer to the normal than each of cases #3-#15. In other words, the new method 
will win quite often. 

6. Choosing smoothing parameter. Our method is defined in terms of a 
kernel function K and a bandwidth or smoothing parameter h. Choosing h is the 
more crucial problem, and methods for doing this parallel but by necessity become 
harder than the well-developed ones for the traditional (1.1) estimator (which is the 
special case of a constant initial estimator). 

6A. MINIMISING AMISE. From (4.1) it is seen that the h parameter minimising 
approximate integrated mean squared error for f is 

h = h* = {R(K)/uk }1/5 Rnew(/)-1/5 n-1/5. (6.1) 

The resulting minimal amise is H O"K R( K)} 4/ 5 R~'~n - 4/ 5 • The same { O"K R( K)} 4/ 5 

factor appears also in a similar expression for the theoretically best point-wise mean 
squared error, so the efficiency of the kernel choice lies entirely with this num­
ber. This is very similar to what happens with the traditional estimator (1.1), see 
Scott (1992, Chapter 6), for example. The best possible kernel in this sense is the 
Yepanechnikov kernel Ko(z) = i{1- 4z2 ) supported on [-t, tJ (or any other scaled 
version). 

A 'plug-in rule' for his to estimate the roughness Rnew of (4.2) and insert this 
into (6.1). We outline three methods for doing this. 

The first method is in the parametric 'rule of thumb' tradition and fits the data 
initially to a normal mixture, say of two or three components, using likelihood-based 
methods. The idea is then to use the formula for Rnew in Appendix I to estimate 
h* of (6.1). This would work well in many cases. 

The second method is to exploit the Hermite expansions of Section 4 as approx­
imations to the true f. An approximation to f that takes the first five moments 
into account is (4.4), with empirical estimates inserted for -y3 , 'Y4, 'Y5· This leads to 
an estimate of Rnew via ( 4.5). The result, in the case of the normal kernel K = </J, 

becomes 

h1 = (4/3)115{(2/3)::Yi + (1/4)::Yl + (5/72)9~- (1/3)::Ya::Ys} - 1/ 5un-1/ 5. (6.2) 

One should preferably use robust estimates for the parameters, and one should 
ideally also deduct for bias when plugging in squared estimates, as explained in 
Hjort & Jones (1994). In any case (6.2) may be somewhat unstable, particularly 
for small to moderate sample sizes, since the empirical ::Yj statistics are unstable. 
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The alternative robust Hermite expansion described in 4D should be safer, using 
(4.6)-(4.7) instead of (4.4)-(4.5). It uses the automatically robust estimates 

.... 1 ~ rn ( rnX·- Ji) { (X·- 'ji)2} 5j =;; L..J v2Hj v2 ~(j exp -~ '(j 
i=1 

(the summands are bounded in Xi) and 

(6.3) 

for example. Again bias should ideally be deducted when plugging in squared esti­
mates. See analogous comments in Hjort & Jones (1994). 

While this second method can be seen as a semiparametric way of getting hold 
of Rnew, the third plug-in method is nonparametric on this account and takes the 
natural statistic 

as its starting point. Explicit expressions for the integral here can be worked out for 
most choices of K; see formula (A.6) in Appendix II. Using (3.2) and the techniques 
of Section 3 one can show that 

R;ew = /{fo(z)(r*)"(:z:)}2 d:z: 

= 2_2_ '"'/ fo(z) fo(z) K"(h-1( -X·))K"(h-1( -X·))d 
n2 h6 ~ fo(Xi) fo(Xj) a: ' a: 3 z, 

t,J 

in which fo(z) = f(z,Bo) and r*(:z:) = n-1 2::7=1 Kh(Xi- z)/fo(Xi), is a good 
approximation to Rnewi in particular the mean of Rnew is only O(h2 /n + n-2 ) 

away from the mean of R:ew· Now somewhat long calculations, involving Taylor 
expansions, can be furnished to reach 

where R(K") = J(K") 2 dz. Since nh5 is stable this shows that there is a fixed 
amount of overshooting. This is similar to but more involved than the corresponding 
result for the traditional kernel estimator ( 1.1) (which is the special case where fo (a:) 
is constant), see Scott & Terrell (1987). This invites n~1 {Rnew- R(K")/(nh5 )} to 
be used as a corrected estimate. One version of the plug-in method is therefore as 
follows: Select a start value for h in a reasonable way, perhaps using (6.3). Then 
compute Rnew and its de-biased version, and insert in (6.1). One might also iterate 
this scheme further. 

It is required that K here is smooth with vanishing derivatives at the end points 
of its support; in particular the Yepanechnikov kernel is not allowed in this operation. 
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6B. MINIMISING ESTIMATED AMISE. A useful idea related to the previous 
calculations is to estimate the approximate mise of (4.1) directly, that is, producing 
the curve 

--:- 1 4 4 { ~ R(K")} R(K) 
armse(h) = bcv(h) = 4uKh Rnew(h)- nh5 + ~' (6.4) 

including for emphasis h in the notation for the roughness estimate. This function 
must now be computed for a range of h-values, up to some upper limit h08 , the 
'over-smoothing' bandwidth. Scott & Terrell (1987) and Scott (1992) call this strat­
egy (for the traditional estimator) 'biased cross validation', although nothing seems 
to be cross validated per se. The bcv name derives rather from formula-wise simi­
larity to unbiased cross validation, see below, and the desire to estimate the biased 
approximation amise to the true mise. 

6C. NEARLY UNBIASED CROSS VALIDATION. A popular technique for the tradi­
tional kernel estimator is that of unbiased least squares cross validation, minimising 
an unbiased estimate of the exact mise as a function of bandwidth. A version of this 
idea can be carried through for our new estimator as well. The crux is to estimate 
mise( h)- R(f) = E{J fl d:z:- 2 J ff d:z:} with 

I ~ 2 2~~ 
ucv(h) = fh(:z:) d:z:-- L..J fh,(i)(Xi)· 

n i=l 

(6.5) 

Here h is included in the notation for clarity, and Jh,( i) is the estimator constructed 
from the diminished data set that excludes Xi. The function to compute is 

where ~i) is computed without Xi. In the case of the normal start method (3.5) 
with normal kernel K = ¢> a formula for the first term here is given in (A.6) in the 
Appendix. 

It turns out that ucv( h) is nearly but not exactly unbiased for mise( h) - R(f). 
We have 

which is subtly different from 
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The difference is minuscule, however, and choosing h to minimise the ucv( h) func­
tion, among h ~ h08 for a suitable over-smoothing upper limit, remains a useful and 
honestly nonparametric option. 

6D. OTHER TECHNIQUES. Other techniques can also be proposed, for example 
trying to adapt recent methods of Sheather & Jones (1991) and of Hall, Sheather, 
Jones & Marron (1991) to the present situation. One could also look into possible 
advantages of using a variable h. These matters are not pursued here. In our 
somewhat limited experience the (6.3) method has been satisfactory. 

7. The multi-dimensional case. Our multiplicative correction factor method 
works well also in the vector case, as is now briefly explained. The setting is that 
d-dimensional i.i.d. vectors X1, ... , Xn are observed from a density f. 

7 A. THE TRADITIONAL AND THE NEW ESTIMATOR. The traditional kernel 
estimator uses a kernel density function K(z1, ... , zd), usually symmetric about 
zero in each direction and often of product form K1(zt) · · ·Kd(zd)· Its value at the 
point x = ( :v1, ... , :vd)' is 

(7.1) 

where Kh(z1, ... , zd) = (h1 · · · hd)-1 K(h11 z1, ... , hd,1 Zd)i see for example Scott 
(1992, Chapter 6) or Wand & Jones (1994, Chapter xx). In the product kernel case 
the basic bias and variance behaviour is described by 

d 

bias~ i Lu(K3)2 h~Jjj(x), 
j=1 (7.2) 

variance~ R(Kt) · · ·R(Kd)(nh1 · · ·hd)-1 f(x)- n-1 f(x) 2 , 

where u(K3)2 = I z2 K3(z) dz and R(K3) = I K3(z) 2 dz. Furthermore fjj is the 
second partial derivative off in direction :v3. 

Our parametric start with a multiplicative correction method is now 

..-.. .-.. 1 n .-.. 
f(x) = f(x, 0)- L Kh(Xi- x)/ f(Xi, 0). 

n i=1 

(7.3) 

This is the appropriate vector version of (1.3), employing any parametric family 
f(x, 0) and any reasonable parameter estimation method to produce the initial 
f(x}). The most important case is that of a multinormal start density, in which 
case the new estimator is 

and with some computational simplifications possible if a GauBian kernel is used. 
One may now go through the theory developed in Sections 2 and 3 and generalise 

results there to the present d-dimensional state of affairs. We omit details and merely 
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present the result. Firstly, the variance of the (7.2) estimator is found to be exactly 
equal to the variance noted above for the traditional (7.1) estimator, to the order of 
approximation used. Secondly, the bias is of the form 

d d 
t 2:u(K3)2h;fo(x)rj3(x) + o(L(h~ + h;/n) + n-2), 

j=l j=1 

involving the best parametric approximant fo(x) = f(x, Oo) and the ensuing correc­
tion factor r(x) = f(x)/ f0 (x). Again the result is remarkably resistant to the actual 
parameter estimation used to obtain 0, for example, cf. the discussion of Section 3. 

Method (7.3) can therefore be expected to perform well in all situations where 
the for'}; functions are smaller in size than the fjj functions. This essentially says 
that the correction factor r should have smaller sized curvature than f itself, which 
again means that the initial parametric description should capture the main features 
of the density. Special cases can be inspected as explained in Sections 4 and 5. 
We expect the attractive (7.4) method, for example, in which case fo becomes the 
multinormal with parameters equal to the true mean and true covariance matrix 
for /, to work better than the traditional (7.1) estimator, for densities in a broad 
nonparametric vicinity of the multinormal. 

7B. A PARTICULAR SCHEME. We speculate that the new methods could prove 
to be particularly useful in higher dimensions, since the traditional estimators, like 
( 7.1), have quite slow convergence rates then. Implementation of the ( 7.4) estimator 
is straightforward, but the smoothing parameters remain to be specified. This is 
a harder problem than in the one-dimensional case. For completeness we briefly 
describe one particular solution here. It is practical and should work well in many 
situations, but does not claim optimality. 

Start out considering the density g(y) of Yi = I:-112(Xi- JL), where JL and I: 
are mean vector and covariance matrix for Xi. Since these 'sphered' variables have 
mean zero and covariance matrix the identity a natural start description of g is go, 
the standard multi-normal, and furthermore it appears reasonable to smooth with 
the same amount in each direction, for example using the standard multi-normal 
Kh(z) = h-d(27r)-d/2 exp( -~llzJI 2 /h2). An estimate of g would consequently be of 
the form g(y) = go(y)n-1 Z:~= 1 Kh(Yi- y)/go(Yi)· After estimating mean and 
covariance matrix this amounts to an estimated multinormal start for f and leads 
to 

i(x) = g(~-1/2(x- ;:t))l~l-1/2 

_ ~ f exp{ -Hx- xi)'~-1 (x- xi)/h2} exp{ -t(x- /L)'~- 1 (x- It)} 
- n i=l (27r)d/2hd exp{ -t(Xi- /L)'~- 1 (Xi- It)}. 

(7.5) 
This estimator can also be motivated directly without Yis. The main reason for us­
ing the g-representation is however that it can be used to find a suitable h, as follows. 
By previous results the approximate mise is R( ¢>)d(nhd)-1 + th4 Rnew(g), featuring 
Rnew(g) = J {go(y)r"(y)p dy. Its minimiser h* = {dR(¢>)dp/(d+4)Rnew(g)-1/(d+ 4) 

n-l/(d+4) can be estimated in various ways, and one feasible solution, aiming to 
generalise (4.7) and (6.3), is to approximate r using an expansion with products 
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Hj1 (yt) · · ·Hjd(Yd) as basis functions, where again Hj(y) = H;(-/2y). We omit the 
many necessary details here but report that 

R (g)- 4 """"' (8 · +2 · + · · · + 8 · · +2)2/(J.1 1 • • ·J.d1) new - ( 2y'7r)d . L....,;. 31 , ... ,Jd J1, ... ,)d • • , 

J1, ... ,Jd 

where 
8· · =2d/2E exp(-liiYII 2 )H~(Y1)···H~(Yd)· 311"" ,)d g 2 31 3d 

The procedure is as with (4.7) and (6.3), namely estimating the first few of these 
using 

-g. · = 2d/2 _!_ ~ exp{-l(X·- »)'lJ-1(X·- »)} H~ (Y:·1) · · ·H~ (Y.· d) J1, ... ,Jd L.....t 2 $ ,_ l ,_ 31 ~. 3d $, , 

n i=1 

where now Yi = lJ-112(Xi- 11), and finally calculating 

8. Supplementing remarks. 

8A. How CLOSE IS THE NEW ESTIMATOR TO THE OLD? For simplicity of 
presentation consider f(z) in the form (2.1) in terms of a basis function fo(z) 
rather than with estimated parameters. In the sum that defines j( z) the ratios 
fo ( z) / fo (Xi) are close to 1 for small values of h since then the Xis quite close to 
z are those given significant weights. In other words, f(z) cannot be very different 
from the traditional kernel estimator 1( z) of ( 1.1) when h is small. A Taylor analysis 
is informative: 

where ao(z) and bo(z) are the two first z-derivatives oflogfo(z). Hence 

(8.1) 

where eq(z) = n-1 2::~= 1 Kh(Xi- z)(Xi- z)q. One can now show that e1(z) has 
mean u}ch2 f'(z) + O(h4 ) and small variance O(hn-1 f(z)), while e2 (z) has mean 
u}ch2 f(z) + O(h4 ) with even smaller variance O(h3n-1 f(z)). Thus the difference 
is of size 0 ( h2 ). If fo ( z) is the standard normal, for example, then j( z) - 1( z) = 
h2 u}c{zf'(z) + ~(z2 + 1)/(z)} + Op(h4 ). 

8B. ACCURACY OF THE ESTIMATED CORRECTION FACTOR. Our machinery 
can also be used for model exploration purposes, by inspecting the correction factor 
against z for various potential models. A model's adequacy could be inspected by 
looking at a plot ofr(z ), perhaps with a pointwise confidence band, to see if r(z) = 1 
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is reasonable. In the notation of Sections 2 and 3, and using techniques from these 
sections, one can establish that 

Er(a:) ~ r(a:) + tu.kh2r"(a:)- n-1 r(a:)u0 (a:)'{J(a:) + d}, 

Varr(a:) ~ (nh)-1 R(K)r(a: )/ f 0 (a:)- n-1 r(a: )2{1 + 2uo(a:)'J(a:)- uo(a:)'~uo(a: )}, 

with some simplification in the maximum likelihood case, for which I( a:) = J-1 uo (a:) 
and~= J-1 . 

It is also informative to plot the log-correction factor log r( a:)' to see how far 
from zero it is. The bias and variance results for this curve are 

Elogr(a:) ~ logr(a:) + tu.kh2r"(a:)jr(a:) 

- tR(K)(nh)-1{r(a:)fo(a:)}-1 - ~ukh4 r"(a:) 2 /r(a:) 2 , 

Varlogr(a:) ~ R(K)(nh)-1{r(a:)f0 (a:)}-1 - n-1{1 + 2u0 (a:)'I(a:)- uo(a:)'~uo(a:)}. 

A nice graphical goodness of fit method emerges: plot 

Z(a:) = logr(a:) + tR(K)(nh):1 f(a:, o)-1 

{R(K)(nh)-1 f(a:, B)-1 }l/2 
(8.2) 

against a:, possibly with a more accurate denominator. Under model conditions this 
should be approximately distributed as a standard normal for each a:, that is, the 
Z( a:) curve should stay within ±1.96 about 95% of the time. 

8C. THE INTEGRAL. Our estimator does not integrate to precisely 1. The 
normal-based version (3.5), for example, when the Gaufiian kernel K = </>is used, 
has 

j jda: = (1 + h2 ju2 )- 1 12 ~ texp{th2(Xi- P-) 2 /{u2(u2 + h2 )}}, 

t=1 

which after Taylor expansions is found to be equal to 1 + ~::Y4 h4 ju4 , where 14 = 
n-1 2:~=1 {(Xi- Ji)/u}4 - 3 is the estimated kurtosis. Dividing the original estimate 
with this amount does not lead to superior performance in terms of mise, however. 
In the general case, in the notation of (2.1), for example, one finds 

via Taylor expansions. The h2 term vanishes in the normal case. 

8D. PARAMETRIC HOME-TURF CONDITIONS. If model conditions /(a:)= f(a:, B) 
can be trusted the natural estimator is simply f(a:}), for example with the maxi­
mum likelihood estimator. From y'n(B- B) --+d Np{O, J-1 } where J is the informa­
tion matrix, combined with the delta method and some extra arguments, follows 

where u(a:, B)= 8log f(a:, B)j8B is the score function. Algebraic calculations for the 
normal model lead to a parametric mise of size i(2yt'7ru)-1 jn. (This is the large­
sample approximation to the exact mise, for which an exact formula also can be 
found.) 

Semiparametric density estimation 18 January 1994 



It turns out that the mise of the new nonparametric (3.5) estimator, computed 
under Gaufiian home turf conditions, is only slightly larger than this. Going through 
formulae (A.8)-(A.10) of Appendix II one finds 

1 {( 1)1 11 q 2} 
mise( h)= 2..Ji 1-;; ; + ;;-,;, (u2 _ h2)1/2 -; · 

It is of separate interest to note that this is minimised for h* = u I v'2, regardless of 
sample size; cf. Case #1 in Table A.2. The minimum value is mise*= (2...(iu)-1 In, 
only 14% larger than the parametric mise. Of course one should use an estimated 
u I v'2 in practice, but this can be seen to alter the minimum mise only to second 
order terms O(n-2). This is shown via an exact formula for ise(ulv'2), using results 
appearing after (A.6) in Appendix II. 

8E. NONPARAMETRIC REGRESSION WITH A PARAMETRIC START. The basic 
estimation idea of our paper works well also in other areas of curve smoothing. An 
important such area is that of nonparametric regression. Assume that i.i.d. pairs 
(zi,Yi) are observed from a smooth bivariate density f(z,y) = f(z)g(ylz), and 
that interest focuses on the conditional mean function m( z) = E(Y I z). A standard 
method is the Nadaraya-Watsonestimatorm(z) = :E~=l YiKh(z-zi)l :E~=l Kh(z­
zi), see for example Scott (1992, Chapter 8) and Wand & Jones (1994, Chapter xx). 
Taylor expansion analysis and somewhat lengthy calculations lead to 

Em(z) = m(z) + !u_kh2{m"(z) + 2m1(z)f'(z)lf(z)}, 

Varm(z) = R(K)(nh)-1u(z)2 I f(z) + O(hln). 
(8.3) 

This is a somewhat more complete version of calculations in Scott (1992, p. 223-
224). Our calculations are also mildly more general, in that we took care here not to 
assume merely a constant value for u(z)2 = Var(Y I z), for reasons appearing below. 

A semiparametric estimator can now be constructed as follows. Start out with 
a parametric initial description, say m( z, 73), perhaps the simple linear 731 + $2 z. 
This start estimator aims really at m( z, ,80), say, the best parametric approximant. 
A multiplicative correction factor, aiming at r(z) = m(z)lm(z,,B0), can be given 
as a N adaraya-Watson estimator using yif m( Zi, 73). This leads to a generalised 
Nadaraya-Watson estimator 

(8.4) 

Calculations involving the above result, using yif m( Zi, ,80 ) with conditional variance 
u(zi)2 lm(zi, ,80 ) 2, and Taylor expansions of 73 around ,80 , as in Section 3, lead in 
the end to 

Em(z) = m(z) + !u_kh2{m(z,,B0)r"(z)2 + 2m0(z,,B)r'(z)f'(z)lf(z)}, (8.5) 

with approximation error of size at most O(h4 +h2 ln+n-2 ), and to a variance being 
of the very same size as that in (8.3), to the order of approximation used. In many 
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cases this will mean a genuine reduction of mise, and hence that the generalised 
Nadaraya-Watson estimator (8.4) is better than the usual estimator. This idea 
could be particularly useful in situations with several covariates. 

Hjort (1993, final section) gives yet another example of the type (3.1) con­
struction, in the realm of nonparametric hazard rate estimation. The result is once 
again that a bias reduction vis-a-vis the traditional estimator is possible in a broad 
neighbourhood of the parametric model used, without sacrificing variance. 

Appendix 1: Roughness measures for normal mixtures. Here formulae 
are provided for roughnesses Rtrad and Rnew for a general normal mixture, results 
that were used in Section 4B. A table comparing the performance of the normal­
start semiparametric method with that of the usual kernel estimator, for each of 15 
test cases, is also given. 

PROPOSITION A.l. For a normal mixture f(z) = 2:::=l Pi<Pu; (z- JLi), let uf,j = 
uf + uj and 8i,j = (JLj- JLi)/ui,j· The roughness functionals defined in (4.2) can be 
calculated explicitly; 

Rtrad = I (!")2 dz = ~PiPj(8i,j- 68f,j + 3)¢J(8i,j)/uf,j, 
t,3 

Rnew =I (for")2 dz = T1 + · · · + Ta, 

with these terms being defined in equation (A.1) below. The Rtrad result is also 
proved in Marron & Wand (1992, Theorem 4.1). 

PROOF: Start out noting that 

say. Taking derivatives with respect to JLi and JLj gives in general that 

say, Hr and H. again being the Hermite polynomials. This leads to 

Rtrad(f) = ~PiPj I <P~;(z- JLi)<P~;(z- JLj)dz = ~PiPj</J(4)(8i,j)/uf,j, 
t,3 t,3 

proving the first and simplest assertion. To find J(f0 r")2 dz, write (4.5) as 

k 

fo(z)r"(z) = LPifi(z){ci + di(z- JLi) + a;(z- JLi) 2}, 

i=l 

where ai = 1/uf -1/u5, bi = (JLi- JLo)/u5, Ci = b~- ai, and di = -2aibi. Somewhat 
strenuous calculations yield in the end the sought-for six-term expression T1 + · · ·+T6 
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for Rnew{f), where 

Tt = LPiPjCiCjA~,·J' 
i,j 

T2 = 2 L PiPjCidjuj A~,'], 
i,j 

,.., 2 L 2( 4A0,2 + 2AO,O) .1.3 = PiP3'Cia· U· · · q. · · , 3 3 t,3 3 t,3 
i,j 

T4 = LPiPjdidjulujA!;], 
i,j 

i,j 

Ts = LPiPja~a;uluj(ulujA;;J + uf A;,·J + ujA~;J + A~,·J). 
i,j 

It is furthermore the case that A;:; = ( -1 t <fJ( r+ ") ( 5i ,j) / u[,j •+ 1 . Hence 

A~;J = <P(5i,j)/ui,j, 

A~·? = 5i 3·A.(5i 3·)/u~ · = -A?·~, 
1. 1J I 'f' I t,j t 1j 

A~·? = (5~ ·- 1)A.(5i 3·)/u~ · = A?·~ = -A~·~, t 13 t 13 'f' I t 13 t 13 t 13 

A~·~= (5~ ·- 35i 3·)A.(5; 3·)/u~ ·=-A~·~, t 13 t,3 I 'f' •1 to3 t 13 

A~·~ = (5~ ·- 65~ · + 3)A.(5; 3·)fu? ·· t,3 '·3 t,3 'f' ., t,3 

(A.1) 

This delivers a programmable formula for Rnew and proves the second assertion. D 
In the table below we have chosen to display 

Ptrad{f) = u{f)Rtrad{f)115 and Pnew{f) = u{f)Rnew{f)1/ 5 (A.2) 

rather than Rtrad and Rnew, for the 15 test cases chosen in Marron & Wand (1992). 
The Rtrad values in raw form range wildly from 0.212 to 70730, for example, and are 
not easily interpretable. The p-numbers are scale invariant and are directly tied to 
the best possible approximate mise; the minimum amise for j can be derived from 
(4.1) and is ~u(f)-1 {uKR(K)}415pnew(f)jn4 15 , with a similar expression for f. 

We have also included similar 'difficulty measures' based on integrated absolute 
bias plus integrated mean absolute deviation. This is a statistically meaningful 
criterion which is also a simple upper bound on the expected L1-distance. The 
parallel to (4.1) can be shown to be 

(iab + imad)(J) = tu.k I If" I dz + (2/7r)112 R(K)112(nh)- 112 I ll2 dz, 

(iab + imad)(j) = tu.k I I for" I dz + (2/7r)112 R(K)112(nh)- 112 I ll2 dz, 

so the values to compute and compare are primarily I lfor"l dz and I 1!"1 dz. We 
have carried out numerical integrations to obtain these numbers, again for each of 
the 15 test cases. Displayed in the table are 

Ptrad{f) =(I l 12r15 (I l!"lf15 and P~ewU) =(I l 12r15 (I lfor"lf15 · 
(A.3) 
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This is because the minimal possible value of iab + imad for f can be shown to 
be !(23 j1r2) 1l 5{ O"K R(K)} 215 P~ewU)/n2 15 , and similarly with f. The quantities in 
(A.3) are scale invariant. 

TABLE A.l. Values of the global mise-based comparison values Ptrad and 
Pnew, given for each of the 15 normal mixture test cases. Also included 
are the L1-based global comparison values Ptrad and P~ew· The normal­
start estimator (3.5) wins in approximate mise over the kernel method 
for all cases except #12, 14, 15, where it loses very slightly. In terms of 
approximate iab plus imad it wins in all cases except #3. 

Case Ptrad Pnew 
1 

Ptrad 
1 

Pnew 
1 0.7330 0 1.8933 0 
2 0.8921 0.6739 2.0343 1.7910 
3 5.6070 5.5985 3.4988 3.5202 
4 3.8664 3.8354 3.5512 3.5369 
5 2.3201 2.2088 2.9388 2.9042 
6 1.1183 1. 0615 2.1786 2.0575 
7 2.0215 1.9579 2.4701 2.4177 
8 1.3753 1.3468 2.3095 2.1998 
9 1.5600 1.5335 2.4608 2.3763 

10 3.5571 3.5421 3.8812 3.8674 
11 12.4450 12.4447 5.5611 5.5590 
12 6.4350 6.4382 4.0978 4.0909 
13 11.1149 11.1147 4.9481 4.9465 
14 14.6610 14.6615 4.8733 4.8703 
15 9.6259 9.6261 4.3863 4.3821 

Appendix II: Exact mise comparisons. The task considered in the fol­
lowing is that of computing the exact mise(h) for the (3.5) estimator, for normal 
mixtures. The point is to facilitate comparison with the kernel method, for which 
exact mise-calculations are known (and much easier). 

Suppose again that f( z) = 2::;=1 pi</>0'; ( z - J.Li) is a normal mixture. Start out 
with 

(A.4) 

where 

(A.5) 

again using O"i,j = (ui + uj)112 • To give useful expressions for Ah and Bh we note 
the technical fact that 

I IT <PO'; (z- J.Lj) dz = vf2;o:[fi ¢0'; (J.Lj- a)] exp [to:2 {f(J.Lj- a)Juj} 2], (A.6) 
j=1 j=1 j=1 

where 1/0:2 = L:j=11/uj. The value of a is arbitrary and can be chosen for the 
occasion. Proving (A.6) is not very difficult and we omit the details. For the first 
term this identity gives 

_ _!_ ""' I ¢h(z- Zi)¢h(z- Zj)<h(z- JL) 2 

Ah - 2 L...J ..~,._( ~)"'-( ~) dz 
n i,j=:;n '~"u Zi - J.L '~"u Zj - J.L 

= _!_ ""' _1_ U </Jh( Zi - jL) </Jh( Zj - 'ji) exp { !.(12 ( Zi - 'ji + Zj - 'ji) 2 } 

n2 .~< 2y'i'U2 <h(zi-JL)<h(zj-JL} 2 h2 ' 
t,J_n 
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where 
2 2 1 ~2 

-2 ( ) - 1 (7 2 
(7 = (12 + h2 = 2(12 + h2 h . 

And for the second term, 

where this time 

Finding further exact expressions for the mise involves finding the exact means 
of Ah and Bh. This would depend on the parameter estimation method used, and in 
any case seems forbiddingly difficult. The formulae for Ah and Bh can however be 
used to compute their mean values, and hence the mise, via stochastic simulation, 
for each given mixture and each given sample size. At this stage we are content to 
find the exact mise for the estimator that employs true parameter values J.Lo and 
u0 for mean and standard deviation. This allows a 'best case versus best case' 
comparison with the kernel method to be made, and the extra variability caused by 
using parameter estimates for J.L and u is in any case of second order importance. 

PROPOSITION A.2. Consider the normal start times correction estimator with 
the normal kernel, 

Its exact mean integrated squared error, in the case when f is a normal mixture 
l:;=tPi<l>u;(z- J.Li), can be expressed as 

mise(h) = (1- n-1 )EAt,h + n-1 EA2,h- 2EBh + R(f), (A.7) 

where R(f) is given in (A.5) and where formulae for the other three terms appear 
in equations (A.B-10) below. 

PROOF: We start out finding an exact expression for the expected value: 

using the z = (y- z)/h substitution. Expanding the exponent and collecting z2 

terms, and using 
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Indeed this is f(z) + O(h2). Next consider Ah of (A.4) and its mean value. Split­
ting Ah into non-diagonal and diagonal terms leads to EAh = (1- n-1 ) EA1,h + 
n-1 EA2,h, leaving us the task of calculating EA1,h and EA2,h by integration. First, 

EA1,h = E I{ </>h(z- Xt)</>u0 (z- JLo) </>h(z- X2)</>u0 (rt- JLo)} dz 
</>u0 (X1- JLo) </>u0 (X2- JLo) 

=I {Ej(z)}2 dz 

1 (Z-JLi Z-JLo) 2h2 1 (Z-JLj Z-JL0)2h2 } 
+ 2 ~ - uo2 b~ + 2 u~ - uo2 b~ . 

t t 3 3 

Collecting z 2 terms and transforming to the standard normal, employing 

Ci,j = { :? + :~ - (:? - :02 r ~; -(:~ -:02 r ~:} 112
, 

t 3 t t 3 3 

JLi JLi ( 1 1) (JLi JLo) h2 ( 1 1) (JLi JLo) h2 

di,j = u? + u~ - u~ - uo2 u? - uo2 b~ - u~ - uo2 u~ - uo2 b~ ' 
t 3 t . t t 3 3 3 

the result is 

_ rn= ~ PiPi ( ) ( ) 1 { 1 d;,j EA1,h- Y 27r L...J -,;r:</>u; JLi <Pu; JLj -.-. exp 2T. 
. . ' 3 c,,3 c, 3 
t~ ' (A.8) 

1 ( JLi JLo) 2 h2 1 ( JLj JLo) 2 h2 } + 2 u? - uo2 b~ + 2 u~ - uo2 b~ . 
t t 3 3 

Similar and somewhat arduous calculations yield the mean of A2,h· The starting 
point is 

k 
-1 ~ I ( )2{1 ( )2 </>u;(z- JLi + hz) } = h L...JPi <Puo z .- JLo </> z </> ( _ h )2 dz dz. 

i=1 uo z JLo + z 

Again z2 terms have to be collected for the inner integral and then z 2 terms to do 
the rest. We need to introduce 
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The answer is 

h-1 k 2 2 2 h2 
E " Pi { 1 Yi 1 JLi 1 ( JLi JLo) } 

A2,h = '2= L..J u·e·f· exp 2 ~~ - 2 u~ + 2 u~ - 2 u2 e~ . 
v ~7r i=1 ' ' t ' ' ' 0 ' 

(A.9) 

This is close to h-1(2y'7r)-1 when his small. 
It remains only to find the mean of Bh = J ff dz. By our earlier result about 

the exact mean of f this is equal to 

EBh = J f(z) Ei(z) dz 

1 " 1 j { 1 ( z - JLi z - JLo) 2 h2 = '2= L..JPiPj~ exp 2 --~-- 2 b~ 
V~7r . . u, t u, Uo ' 

t,J 

1(Z-JLi)2} 
-2 u~ <f>u;(Z-JLj)dz. 

' 
This time we need 

{ 1 1 (1 1)2h2}1/2 
ki,j = u~ + u~ - u~ - uo2 M ' 

' 3 ' ' 

This ends our proof. 0 
Consider the limiting case where u0 -+ oo. Then our estimator is nothing but 

the usual kernel estimator. Somewhat strenuous algebraic calculations yield 

EA1,h = LPiPj<f>(ut+o}+2hl)lf2(JLj- JLi), 
i,j 

EA2,h = (2y7rh)-1 , 

EBh = LPiPj<f>(ut+o}+hl)lfl(JLj- JLi), 
i,j 

which with (A.7) and (A.5) again quite satisfactorily give the (5.4) formula for the 
exact mise( h) of the kernel estimator. 

We used these results to go through the 15 test densities of Marron & Wand 
(1992), with the natural aim of comparing the minimum possible mise for the kernel 
method with the minimum possible mise for the new method (3.5). These minima, 
respectively mise~rad and mise*, were found, along with the minimisers h:rad and h*, 
for sample sizes n = 25, 50, 100,250,1000. See the discussion of Section 5B. 

TABLE A.2. Values are given of the mise-minimising smoothing parameters 
h* and h~rad for the (3.5) estimator and the kernel estimator, along with 
the minimum mise values mise* and mise~rad. This is done for each of the 
15 test densities of Marron & Wand, for sample sizes 25, 50, 100, 200, 1000. 
Also included in each case is the ratio mise* /mis~rad. 
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h* mise* h:rad 
. * mise-ratio n rmsetrad 

Case #1, Gaufiian: 
25 0.7071 0.0113 0.6094 0.0137 0.8217 
50 0.7071 0.0056 0.5199 0.0087 0.6492 

100 0.7071 0.0028 0.4455 0.0054 0.5215 
200 0.7071 0.0014 0.3830 0.0033 0.4245 

1000 0.7071 0.0003 0.2723 0.0010 0.2740 

Case #2, skewed unimodal: 
25 0.3928 0.0228 0.4251 0.0211 1.0772 
50 0.3787 0.0123 0.3591 0.0134 0.9173 

100 0.3544 0.0068 0.3054 0.0083 0.8250 
200 0.3209 0.0040 0.2611 0.0051 0.7767 

1000 0.2381 0.0012 0.1841 0.0016 0.7396 

Case #3, strongly skewed: 
25 0.0728 0.1456 0.1481 0.1032 1.4107 
50 0.0720 0.0786 0.1082 0.0682 1.1523 

100 0.0720 0.0444 0.0827 0.0435 1.0208 
200 0.0655 0.0270 0.0654 0.0270 0.9996 

1000 0.0415 0.0084 0.0414 0.0084 0.9989 

Case #4, kurtotic unimodal: 
25 0.1252 0.1098 0.1241 0.1101 0.9972 
50 0.0976 0.0688 0.0967 0.0691 0.9949 

100 0.0791 0.0421 0.0784 0.0424 0.9937 
200 0.0656 0.0253 0.0650 0.0255 0.9930 

1000 0.0445 0.0075 0.0441 0.0076 0.9922 

Case #5, outlier: 
25 0.0634 0.1433 0.0646 0.1424 1.0062 
50 0.0562 0.0862 0.0548 0.0890 0.9690 

100 0.0487 0.0523 0.0468 0.0548 0.9549 
200 0.0420 0.0317 0.0402 0.0334 0.9492 

1000 0.0299 0.0096 0.0285 0.0102 0.9462 

Case #6, bimodal: 
25 0.5568 0.0197 0.6028 0.0182 1.0792 
50 0.4559 0.0123 0.4721 0.0119 1.0342 

100 0.3823 0.0075 0.3854 0.0075 1.0067 
200 0.3247 0.0045 0.3217 0.0046 0.9888 

1000 0.2278 0.0013 0.2208 0.0014 0.9663 

Case #7, separated bimodal: 
25 0.3701 0.0303 0.3661 0.0306 0.9881 
50 0.3136 0.0183 0.3082 0.0187 0.9813 

100 0.2674 0.0110 0.2616 0.0112 0.9768 
200 0.2291 0.0065 0.2235 0.0067 0.9738 

1000 0.1620 0.0019 0.1575 0.0020 0.9700 

Case #8, skewed bimodal: 
25 0.5136 0.0243 0.5549 0.0222 1.0953 
50 0.3903 0.0158 0.4085 0.0151 1.0507 

100 0.3112 0.0100 0.3179 0.0097 1.0251 
200 0.2554 0.0061 0.2572 0.0061 1.0099 

1000 0.1712 0.0019 0.1697 0.0019 0.9924 
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Case #9, trimodal: 
25 0.5373 0.0224 0.5889 0.0206 1.0840 
50 0.4331 0.0144 0.4551 0.0138 1.0435 

100 0.3509 0.0091 0.3588 0.0089 1.0193 
200 0.2858 0.0057 0.2874 0.0056 1.0052 

1000 0.1848 0.0018 0.1829 0.0018 0.9910 
Case #10, claw: 
25 0.4930 0.0659 0.5101 0.0636 1.0372 
50 0.4267 0.0578 0.4034 0.0570 1.0145 

100 0.0955 0.0371 0.0959 0.0370 1.0033 
200 0.0774 0.0224 0.0775 0.0224 1.0007 

1000 0.0517 0.0067 0.0516 0.0067 0.9979 
Case #11, double claw: 
25 0.5556 0.0212 0.6018 0.0197 1.0748 
50 0.4550 0.0138 0.4717 0.0134 1. 0318 

100 0.3817 0.0090 0.3851 0.0089 1.0073 
200 0.3242 0.0060 0.3215 0.0061 0.9925 

1000 0.2248 0.0028 0.2176 0.0029 0.9854 
Case #12, asymmetric claw: 
25 0.7289 0.0363 0.6657 0.0359 1.0121 
50 0.6044 0.0312 0.5231 0.0309 1.0079 

100 0.1989 0.0232 0.2016 0.0229 1.0115 
200 0.1428 0.0161 0.1436 0.0160 1.0073 

1000 0.0675 0.0064 0.0678 0.0064 1.0043 
Case #13, asymmetric double claw: 
25 0.5254 0.0254 0.5620 0.0241 1.0532 
50 0.4315 0.0174 0.4428 0.0171 1. 0188 

100 0.3608 0.0123 0.3612 0.0123 1.0008 
200 0.3021 0.0091 0.2971 0.0091 0.9937 

1000 0.1030 0.0045 0.1030 0.0045 1.0010 
Case #14, smooth comb: 
25 0.2866 0.0678 0.2858 0.0675 1.0037 
50 0.2035 0.0488 0.2031 0.0487 1.0026 

100 0.1434 0.0348 0.1434 0.0347 1.0021 
200 0.1015 0.0245 0.1016 0.0244 1. 0018 

1000 0.0439 0.0101 0.0439 0.0101 1.0007 
Case #15, discrete comb: 
25 0.2459 0.0704 0.2469 0.0702 1.0033 
50 0.2016 0.0493 0.2014 0.0493 1.0007 

100 0.1638 0.0362 0.1630 0.0362 0.9998 
200 0.0815 0.0266 0.0816 0.0266 1.0016 

1000 0.0422 0.0087 0.0423 0.0087 1.0006 
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FIGURE. The 15 test densities (left hand side) presented together with the 
bias factor functions f" (solid line, for the kernel method) and for" (dotted 
line, for the new method). 
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FIGURE 2. The Glad Hjort method, nonparametrically improving on a 
preliminary normal density estimate: 

n { 1( ...... )2/ ...... 2} 1""' 1 1 1 2 2 exp - 2 a:- J.L u 
=- LJ 2 '--h exp{ -2(Xi- a:) jh } { 1 (X ...... )2j ...... 2} 

n i=1 v 7r exp - 2 i - J.L u 
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