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In this paper we define a generalized gamma distribution, which is shown to enter naturally 
in Bayesian analysis of exponential survival models with left censoring. Some simple 
examples are given in Section 1. In Section 2 we discuss the use of this distribution 
in the analysis of autopsy data in a shock model, an application which is treated in depth 
in Gasemyr & Natvig (1995b). In the present paper we also focus on a comparison of 
the generalized gamma distribution with the ordinary one with respect to computational 
efficiency in this model. Furthermore, we suggest in Section 3 simulation procedures mostly 
based on the Metropolis-Hastings algorithm that may be used for parameter estimation 
and prediction in situations where exact methods are intractable. 

Key words: exponential survival models, left censoring, autopsy data, shock model, 
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1 The generalized gamma distribution 

It is a well known fact that the class of gamma distributions is a natural conjugate class 
of prior distributions for the exponential distribution. This is the case also for exponen
tial models which may lead to right censored observations. However, in some models left 
censoring arises naturally. In this note we introduce a generalized gamma distribution, 
which turns out to be useful in order to handle such models. We also give some simple 
examples on the use of the distribution in this section, and elaborate on the more com
plicated application to the exponential autopsy shock model, considered in Gasemyr & 
Natvig (1995b), in Section 2. In Section 3 we suggest simulation procedures mostly based 
on the Metropolis - Hastings algorithm that may be used for parameter estimation and 
prediction in situations where exact methods are intractable. 

For positive real numbers a, b, t 1 , · · · , tm, m 2: 0, define the functions 

m 

h(B; a, b, t) = ea-le-be IT (1- e-eti), () 2: 0, (1.1) 
i=l 

where f ( h, · · · , tm). Corresponding to m 0, we have in particular h( B; a, b) 
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ea- 1e-b0 . Define the normalizing constant 'Y(a, b,I) by 

00 

(')t(a, b,I))-1 = J h(e; a, b,I)de 
0 

oo m 

2:::: (-1)1BI J h(e;a,b+ ~IB(i)ti)de 
BC{1, .. ·,m} o ~=1 (1.2) 

00 

2:::: ( -1)141 J h(e; a, b + !1 · I)de 
4E{0,1}m 0 

=r(a) 2:::: (-1)141(b+!l·I)-a, 
4E{0,1}m 

where lEI denotes the number of elements in B, di = IB(i) and 141 denotes d1 + · · · + dm. 
The generalized gamma distribution with parameters a, b and I is then defined as the 
probability distribution on [0, oo) with density function given by 

g( e; a, b, I) = ')'(a, b, I)h( e; a, b, I), e :2: 0 (1.3) 

The ordinary gamma distribution, g(e; a, b), is a special case corresponding tom= 0. 

As seen by the subsequent examples, the generalized gamma distribution arises naturally 
as the posterior distribution for the failure rate e in certain exponential models. One will 
then often be interested in estimating e. The standard Bayes estimator, minimizing the 
expected loss with respect to a quadratic loss function, is 

'L: ( -1) 141 ( b + g . I)- (a+ 1) 
Q.E{0,1}m 

E(e) =')'(a, b, I)/'Y(a + 1, b, I) =a 'E ( _1)141 (b + Q. I)-a (1.4) 

4E{0,1}m 

Another quantity of interest is the predictive survival probability beyond some time t for 
a variable T, which, given e, is exponentially distributed with failure rate e. This is given 
by 

00 

P(T > t) = J P(T > tle)g(e; a, b,I)de = 'Y(a, b,I)/'Y(a, b + t,I) 
0 

I: (-1)141(b+t+f1·I)-a (1.5) 
4E{0,1}m 

I: ( -1)141(b +g. I)-a 
4E{0,1}m 

Example 1. Suppose r identical components are put on test in separate test chambers 
under identical conditions. Under the experimental conditions, the components have inde
pendent exponential life distributions with failure rate e. The ith component is inspected 
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at a deterministic inspection time ti, and it is observed whether the component has failed 
before k The inspection interfers with the experimental conditions, so further testing of 
the component cannot be done. The inspection may itself for instance be destructive to 
the component, or its failure rate may be increased due to stress related to the inspection. 
A priori () is assumed to be gamma distributed with parameters a, b. Let Ti be the lifetime 
of the ith component, interpreted as the potential lifetime that would have resulted if the 
experiment had not been interrupted. Define Di = I(Ti ~ ti)· The likelihood function for 
the data Di = di, i = 1, · · ·, r, is then 

r r 

i=l i=l 

If di = 0 for i = i1, · · ·, im, di = 1 otherwise, we obtain by Bayes theorem the posterior 
distribution 

Example 2. Suppose r identical components are put on test under identical conditions at 
time 0. The components can be continuously monitored during the test, but monitoring 
is costly and is therefore restricted to the interval ( s, t). For simplicity, both s and t are 
assumed deterministic. As in the previous example, we assume a constant failure rate 
() with prior distribution g((); a, b). Let Ti be as in Example 1. We observe the random 
variables Di = I(Ti > s), Ei = I(Ti ~ t) and Xi = (1- Di)s + (Di- Ei)Ti + Eit. Note 
that Di and Ei can be expressed in terms of Xi as Di = I(Xi > s), Ei = I(Xi ~ t), so 
the likelihood can be expressed as a Radon- Nikodym derivative of X= (X1, · · ·, Xr) with 
respect to the measure (Lebesgue measure +8t + DsY, where Dt is the Dirac measure at t. 
For notational convenience, however, we retain the quantities Di, Ei in the expression for 
the likelihood, given by 

r r r 

l:)di-ei) i:Cl-di) -eeL: dixi) 
= {)i=l (1 _ e-es)i=l e i=l 

By Bayes theorem we obtain the posterior distribution 

7r(()ID1 = dl, El = el, xl =XI, ... ' Dr= dr, Er = er, Xr = Xr) 
r r 

= g((); a+ l)di- ei), b + L dixi, s, · · ·, s), 
i=l i=l 

r 

with 2: (1- di) copies of s occuring in the last part. 
i=l 

The density function g( (); a, b, f.) can also be expressed in terms of ordinary gamma distri
butions as 

g((); a, b,f.) ex: L ( -1)141 (r(a)/(b + 4 · t.)a)g((); a, b + 4 ·f.) 
QE{O,l}m 
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The number of summands in (1.6) equals the number of summands in the normalizing 
constant for g(O; a, b,t.), given by (1.2), indicating that the computational complexity of the 
two forms are approximately equal. In the more complicated examples of the next section, 
however, it will be seen that the generalized version of (1.6) may become considerably 
more complex than the corresponding expression based on generalizing (1.3). In any 
case the form (1.3) has considerable conceptual advantages. It expresses the density in 
terms of a single function, all of whose parameters are interpretable as reflecting updating 
of a prior distribution with experimental data. For instance, with the non-informative 
prior 1r( 0) = e-1 , a, b and t. represent respectively the number of failed components whose 
exact failure times are known, the total time on test for the components that are not 
left censored, and the censoring times for the components that are left censored. In the 
form (1.6), interpretation of the parameters is much more difficult, especially since the sum 
contains both positive and negative terms. We therefore think that the generalized gamma 
distribution will be a useful object in Bayesian analysis of exponential survival models. 

2 Application to the autopsy model 

Rather than a single component, we now consider a binary, monotone system (E, ¢) of n 
binary components, E = {1, 2, · · ·, n }. Let Ti be the lifetime of the ith component, and 
Xi(t) = I(Ti > t) the state of the ith component, functioning or failed, at timet. ¢is the 
structure function, a nondecreasing function on {0, 1 }n, whose value is either 0 (failed) or 
1 (functioning). The state of the system at time t is ¢(X 1 ( t), · · · , Xn ( t)). The lifetime of 
the system is T = inf{ti¢(XI(t),···,Xn(t)) = 0}. The autopsy data of the system is the 
pair (T,D), where D = {iiTi ~ T}, the set of failed components by the time of system 
failure, see Meilijson (1981). 

We assume, as in Gasemyr & Natvig (1995b), that the system can be described by a shock 
model, see Boyles & Samaniego (1984). There exists a set of shocks S = {1, 2, · · ·, n + p }. 
Here, 1, 2, · · ·, n represent individual shocks destroying the corresponding component of E, 
whereas n+ 1, · · ·, n+p represent common shocks; the Zth shock destroying the components 
in Dz c E. Similarly, the set of components destroyed by a set B of shocks is denoted by 
DB; i.e. DB = U Dz. Let 1/i be the time until the Zth shock occurs. Thus, Ti = min{Vzli E 

lEE 

Dz}, i = 1, · · ·, n. We assume that V1, · · ·, Vn+p are absolutely continuously distributed, 
independent random variables with distribution functions Fz ( t), survival functions Fz ( t), 
densities fz(t) and failure rates >..z(t), l = 1, 2, · · ·, n + p. Due to the absolute continuity 
of the 1/i's a subset A C E satisfies P(D = A) > 0 if and only if A is a cut set, i.e. 
¢(x1 , · · ·, xn) = 0 if Xi = 0 fori E A, and there exists a shock j E S such that Dj C A 
and A- Dj is not a cut set. Such a set A is called a fatal set, and we introduce A = 
{A1 , ···,Am}, the set of fatal sets. ForiE {1, 2, · · ·, m} define Gi(t) = P(T ~ t, D = Ai)· 
Then the likelihood function for the data (T = t, D = Ai) is 9i(t) = G~(t), which is 
the Radon-Nikodym derivative of the probability measure for (T, D) with respect to the 
Lebesgue measure xcounting measure on [0, oo) x{1, 2, · · ·, m}. Gasemyr & Natvig (1995b) 
gives a procedure for deriving a computationally efficient expression for the likelihood, see 
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their (2.5). In the present paper, we will only be interested in the general form of the 
likelihood, which can be easily derived. Fori E {1, · · ·, m }, define 

Bi = {(B,j) with B C S,j E S I DEu{j} = Ai,DE is not a cut set} 

The likelihood can then be written as 

gi(t) = L II F1(t) II F1(t)>..j(t) 
(E,j)EBi lEE lES-E 

(2.1) 

Specializing to the exponential case so that the joint distribution of T1 , T2 , · · · , Tn is a 
multivariate exponential distribution of the Marshall-Olkin type, see Marshall & Olkin 
(1967), we get in particular the following lemma. 

Lemma 1 Suppose that in the shock model the times to shocks Vi are exponentially dis
tributed with failure rates ()l, l = 1, 2, · · · , n + p. Then the likelihood for the autopsy data 
(T = t, D = Ai) can be written in the form 

K 

gi(t) = L II h(()l;1,0,t) II h(()l;1,t)h(()jk;2,t), (2.2) 

where Bk, Ck, {jk} are disjoint subsets of S for each k = 1, · · ·, K. 

Proof: One version of equation (2.2) follows by indexing the members of the pairs (B, j) of 
Bi in (2.1) by k and putting Ck = S- (Bk U {jk} ). The more general form (2.2) where we 
can have B k U Ck U {j k} =J S, may, however, arise by applying the procedure for calculating 
the likelihood given in Gasemyr & Natvig (1995b), see their (2.11). 

The following result is also given in Ga,semyr & N atvig ( 1 995b). 

Theorem 1 
a) Suppose that the rates ()b ()2, · · · , ()n+p for the occurence of shocks in an exponential shock 
model for a binary monotone system (E, ¢) have a joint prior distribution of the form 

J n+p J n+p 

1r(fl.) ex L II h(()l; aj,l, bj,l, lj,l) = L II "!(aj,l, bj,l, lj,l)- 1g(()l; aj,l, bj,l, lj,l) (2.3) 
j=l l=l j=l l=l 

Then the posterior distribution of fl. given the autopsy data (T = t, D = A) with likelihood 
function given by (2.2) is of the form 

J K 

1r(fl.IT = t, D =A) ex L L[ II h(()l; aj,l, bj,l,lj,l,t) 
j=l k=l lEEk 

II h(()l;aj,l,bj,l +t,tj,1)]h(()jk;aj,jk + 1,bj,jk +t,tj,jk) 
lECk 

x [ II h(()l; aj,l, bj,l,lj,l) 
lES-(Ekucku{jk}) 
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b) The class of distributions of the form (2. 3) is a natural conjugate class of priors for the 
exponential autopsy shock model. 

c) Suppose the prior distribution 

n+p 

1r(fl.) = II g(()1; a1, b1), (2.5) 
1=1 

for fl. is updated with autopsy data from r independent systems, of the form (T1 = t 1 , D1 = 
Ah, · · ·, Tr = tr, Dr = AiJ· Then the posterior distribution is of the form (2.3}, with Ij,1 
a subvector off= (tb t2, · · ·, tr) for all j = 1, · · ·, J, l = 1, · · ·, n + p. 

Proof: a) is a straightforward application of Bayes teorem. b) follows since (2.4) is of the 
same general form as (2.3). c) follows by repeated use of a). 

Distributions of the form (2.3) arise naturally in the model if one chooses a prior of the 
form (2.5), or if information used to construct a prior can be thought of as consistent with 
autopsy data. A wider class of priors is obtained if one allows for a positive weight Wj for 
the jth summand in (2.3). An even wider class of natural conjugate priors is the class of 
distributions of the form 

J n+p 

1r(fl.) = L Wj II g(()1; aj,1, bj,1), (2.6) 
j=1 1=1 

where in this case, we have to allow for negative weights Wj. The requirement is that 
J 

_E Wj = 1, and that 1r(fl.) ~ 0 for all vectors fl. with positive entries. Posterior densities 
j=1 

of the form (2.6) arise, like distributions of the form (1.6) in the single component case, if 
the factors (1 - e-(ht), l E Bk, k = 1, · · ·, K appearing in (2.2), are multiplied out. This 

K 
may potentially increase the number of summands in the likelihood from K to _E 2IBk 1. 

k=1 

Admittedly, when updating with autopsy data, both complexity of the system and abun
dance of data may lead to prohibitively complicated posterior distributions. We do, how
ever, primarily have in mind situations where data are scarce, which is typical in reliability. 
However, the following discussion strongly indicates that expressing the posterior distribu
tion in terms of the generalized gamma distributions as in (2.3) leads to considerably more 
computationally tractable expressions than using only ordinary gamma distributions, as 
in (2.6). 

Referring to (2.3), let f = (t1, t2, · · ·, tr) be a vector with positive entries such that Ij,1 

is a subvector of f for all j = 1, · · ·, J, l = 1, · · ·, n + p (cf. c) of Theorem 1). For 
j = 1, · · ·, J, l = 1, · · ·, n + p define d.j, 1 = (dj,1,1, dj,1,2, · · ·, dj,l,r) by putting dj,l,i = 1 if ti 
occurs as an entry in the subvector Ij,l and 0 otherwise. 
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Defining i(d.j,l) =the vector whose entries are the non-zero entries of (hdj,l,l, · · ·, trdj,l,r) 
recovers lj,l from d.j,l· Note that the normalizing constant corresponding to the lth factor 
of the jth summand of (2.3) can be calculated as in (1.2) 

(bj,l + Q . i) -aj,l) -1 (2.7) 

Introduce d.j = (dj,l,l, · · ·, dj,l,r, · · ·, dj,n+p,l, · · ·, dj,n+p,r), i.e. the vector made up by the 
subvectors d.j,l' l = 1, · · ·, n + p. The distribution in (2.3) can then be written in the form 
(2.6) as 

J n+p r 
7r(fl_) ex L II II (1- e-Bzti)dj,l,ih(Bz; aj,l, bj,l) 

j=l l=li=l 
J n+p r 

= L L (-1)1£1 II h(Oz;aj,l,bj,l + I:ccz-l)r+iti) 

j=l £E{O,l}r(n+P)I£~Qj l=l i=l 

(2.8) 

It is worth noting that the notation introduced in this discussion may be conveniently 
used when updating 1r with data. The updated distribution (2.4) is determined by the 
binary vectors d.(j-l)K+k,l = (d.j,l' I(l E Bk)) relating to the vector (i, t), together with 
the parameters a(j-l)K+k,l = aj,l + I(l = jk) and b(j-l)K+k,l = bj,l + ti(l E Ck), j = 
1, · · ·, J, k = 1, · · ·, K, l = 1, · · ·, n + p. 

J 
To calculate the distribution from (2.8), one must calculate a weight for each of the 2:: 214j I 

j=l 
summands, each of which involves a product of n+p factors of the form r(a)(b+d.·i)-a. In 
contrast, (2.3) has only J summands, and the weight corresponding to the jth summand 

n+p 
involves 2:: 214j,zl terms of the form r(a)(b +d.· i)-a (cf. (2.7)). Note that 

l=l 

n+p n+p r 

L ld.j,ll = L L dj,l,i = ld.j I 
l=l l=l i=l 

Hence, 
n+p L 214j,ll :S 214j I (2.9) 
l=l 

It is difficult to give a precise comparison of the computational complexity involved in the 
two different forms, since this will depend on concrete implementations of computation 
algorithms. It may be possible to make efficient use of the fact that different weights 
contain many identical factors. Nevertheless, the above discussion indicates strongly that 
(2.3) is considerably more efficient computationally than (2.6) in the present model, thus 
providing a good case for the usefulness of the generalized gamma distribution. 
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We conclude this section by generalizing (1.4) and (1.5) to the shock model, giving expres
sions also presented in Gasemyr & Natvig (1995b ). Estimation of Om, m = 1, · · ·, n + p in 
analogy with (1.4) leads to the following straightforward calculation by applying (2.3). 

J n+p 

2:: TI "Y(aj,l + I(l = m), bj,l,Ij,z)-1 

(2.10) 

j=l l=l 

We now turn to the computation of the predictive survival probability P(T > t) based 
on a distribution 1r of the form (2.3). A similar problem has been considered in Gasemyr 
& Natvig (1995a) where P(T > t) is updated with life data from identical systems. This 
follows the paradigm of Natvig & Eide (1987) of using the distribution of the component 
reliabilities, possibly updated with data at the component level, as a basis for computing 
the distribution of system reliability, and then updating this distribution with data at the 
system level. In practice, however, data from operation of systems may contain information 
about specific components, as is the case with autopsy data. Then one cannot separate 
the component and system level as prescribed by Natvig & Eide (1987). In our situation 
we assume that the autopsy data has already been incorporated in the distribution 1r, as 
described above. 

Conditionally on fl_, the system survival probability can be written as 

P(T > tjfl_) = L 8A IT e-fht, (2.11) 
ACE kEEA 

where 8 is the signed domination function of (E, ¢) defined through the equation 

¢(;£) = L 8A IT Xk, 

AcE kEA 
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see Gasemyr & Natvig (1995a). Combining (2.3) and (2.11) we then obtain 

P(T > t) = J P(T > tifl)1r(ft)dft 
[O,CXJ]n+p 

J n+p 
J 2:::: 2:::: DA n e-fht n h(f)z; aj,l, bj,l,Ij,l)dfh ... d()n+p 

[O,CXJ]n+p ACE j=l kEEA l=l 

J n+p 
f 2:::: TI h(Oz; aj,l, bj,l,Ij,l)dOI · · · dOn+p 

[O,CXJ]n+p j=l l=l 

J n+p 
2:::: 2:::: DA n ry(aj,l, bj,l + I(lEEA)t, Ij,l)- 1 

AcEj=l l=l 

(2.12) 

3 Simulation procedures for parameter estimation and 
prediction 

Let us start by returning to Example 1 in Section 1. Remember that the prior distribution 
of () was assumed to be gamma with parameters a, b, and that we ended up with the pos
terior distribution being the generalized gamma distribution g( (), a, b + g · f., ti 1 , · · • , tim). 

r 

Here m = 2:::: (1 - di) is the number of left censored observations. From the expressions 
i=l 

for E(O) and the predictive survival probability, P(T > t), given by respectively (1.4) and 
(1.5), we see that for both of them the number of summands both in the numerator and 
denominator is 2m. The same is true in Example 2. If m is large, the computational com
plexity can be an obstacle and simulation may be an alternative. Especially, importance 
sampling seems relevant, see Geweke (1989). 

Moving to our autopsy model in Section 2 the corresponding expressions for E(Oz), l = 
1, · · ·, n + p and P(T > t) are given by respectively (2.10) and (2.12). The number of 
summands both in the numerator and denominator of (2.10) and in the denominator of 
(2.12) is J, whereas in the numerator of (2.12) the number is I{AI8A =1- O}IJ:::; 2nJ. Here, 
n is the number of components. Furthermore, if 1r(ft) given by (2.3), entering in (2.10) 
and (2.12), results from updating of a prior distribution 1ro with independent autopsy data 
from r systems, the potential number of summands involved in the computation of each of 
the normalizing constants ry(aj,l, bj,l,Ij,l)-I, see (2.7), increases with a factor of 2 for each 
new observation, i.e. with a factor of 2r altogether. Thus the computational complexity of 
(2.12) may be formidable. In some cases it may even be impossible to calculate the signed 
domination function 8. To overcome such problems simulation can be the only alternative. 

Again importance sampling may be relevant. However, we will in addition suggest some 
simulation procedures based on the Metropolis-Hastings algorithm, see Smith & Roberts 
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(1993), Tierney (1994), Besag et al. (1995) and Chib & Greenberg (1995) with correspond
ing discussions and references. We assume that it is easy to simulate from ?To. ?To may 
for instance be a product of independent gamma distributions. We denote by L(fllti, AjJ 
the likelihood for fl. given the autopsy data (Ti = ti, Di = AjJ· Thus, we have by Bayes 
theorem 

r 

?T(fl.) = 1r(fl.IT1 = tr, D1 = Aj1 , • • ·, Tr = tn Dr= Ajr) CX: ?To(fl.) IT L(fllti, AjJ (3.1) 
i=l 

We want to simulate a Markov chain { Bk} whose stationary distribution is ?T. Actually, in 
the terminology of Tierney (1994), we suggest simulating from an independent chain with 
fixed density ?To. We then start with an arbitrary fl., e.g. a value drawn from ?T0 . Given 
fl.k, draw fl.' from ?To. Put fl.k+l =fl.' with probability a(fl.k,fl.') = min{1,,6(fl.k,fl.')}, where 

r r 

,6(fl.k, fl.') = ( ?T(fl.')?To (flk)) I (?T(fl.k)?To (fl.')) = (IT L(fl' lti, AjJ) I (IT L(flk lti, AjJ) (3.2) 
i=l i=l 

With probability 1 - a(flk, fl.') we put flk+l = flk· The predictive survival probability, 
P(T > t), for the system may then be estimated by 

N 

N-l L P(T > tlflk), (3.3) 
k=l 

where N is chosen sufficiently large to ensure convergence, possibly after a burn-in period. 
If the exact reliability of the system is hard to calculate, an approximation to (3.3) may 
be obtained by replacing the summands of (3.3) by approximate values based for instance 
on the bounds for the reliability of a shock system given in Gasemyr & Natvig (1995a). 

If autopsy data (Tr+l = tr+l, Dr+l = Ajr+J from another system is obtained, one must in 
principle repeat the procedure. Note that it is reasonable to expect that the Markov chain 
converges faster the closer ?To is to ?T. One would therefore expect convergence to ?T(·IT1 = 

t1, D1 = Ah, · · · , Tr+l = tr+l, Dr+l = Ajr+ 1 ) to be faster if drawing candidate values fl.' 
from ?To could be replaced by drawing from 1r(·IT1 = t1, D1 = Ah, · · ·, Tr = tn Dr = Ajr). 
It may therefore be profitable to draw from an easily simulated approximation ?T(r) to the 
latter distribution. One possible choice for ?T(r) is a product of gamma distributions with 
the correct marginal expectations, see (2.10), and correct variances. This seems to be 
an original suggestion of an "adaptive sampler", the design of which is a legitimate goal 
according to Besag et al. (1995), see page 61. Note that E(BziT1 = tr, D1 = Aj1 , • • ·, Tr = 
tn Dr= AjJ and E(B[IT1 = tr, D1 = Aju · · ·, Tr = tn Dr = AjJ, l = 1, · · ·, n + p, may 
be estimated by replacing P(T > tlflk) with Bk,l and B~ z respectively in (3.3). The original 
simulation procedure would then be modified by modifying ,6(flk, fl.') to 

r+l r+l 
,6(fl.k, fl.') = ( ?To(fl') IT L(fl' lti, AjJ?T(r) (flk)) I (?To (flk) IT L(flk lti, AjJ?T(r) (fl.')) (3.4) 

i=l i=l 
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The effect on the convergence rate of choosing a prior and/ or a distribution for candidate 
values fl.' as close as possible to the distribution that we want to simulate, may justify 
choosing more complicated distributions than products of gamma distributions; for ex
ample products of generalized gamma distributions or even convex combinations of such. 
Thus, generalized gamma distributions may play a role even when we have to resort to 
simulation. 

The approach described above, is quite general. Here it is used once for each data set, the 
starting point being the arrival of additional data. It should be mentioned, as also has been 
pointed out to us by Arnoldo Frigessi, that the approach could also be used successively for 
the same data set. This gives rise to questions on stopping rules, convergence properties 
etc. and lots of space for computational experiments. 

Another suggestion of an "adaptive sampler" is to recursively use the output of the simu
lations based on the data (T1 = t1, D1 = Ah, · · ·, Tr = tr, Dr- AjJ as input simulations 
when updating with the new data (Tr+l = tr+l, Dr+l = Ajr+1 ), r = 1, 2, · · ·. The fol
lowing calculations show that this all the way simulates Markov chains with the desired 
stationary distributions. 

It should be noted that this idea may be viewed as basically the same resampling idea 
as presented in Smith & Gelfand (1992) whereby samples from one distribution may be 
modified to form samples from another distribution. The two methods given in the latter 
paper are the Rejection Method and the Weighted Bootstrap. In Rubin (1988) the latter 
is referred to as SIR (sampling importance resampling). This is applied successfully in 
Gordon et al. (1993) to nonlinear/non-Gaussian Bayesian forecasting. 

The first step is identical to the one leading to (3.2). Hence, with slightly extended notation 

(3.5) 

We also introduce the transition probabilities 

(3.6) 

corresponding to a Markov chain with stationary distribution 1r(fl_jT1 = t1, D1 = Ah). 

To obtain a Markov chain with stationary distribution 1r(fl_jT1 = t1, D1 = Aju T2 = t2 , 

D 2 = Ah), following the general Metropolis-Hastings algorithm, introduce 
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2 

7ro(fl.') IT L(ft'lti, AjJ7ro(fl.) min{1, L(fl.lt1, Aj1 )/ L(ft'ltb AjJ} 
i=l (3.7) 
2 

7ro(fl.) IT L(ftlti, AjJ7ro(fl.') min{1, L(fl.'ltb Aj1 )/ L(fl.lt1, Aj1 )} 

i=l 

= L(fl.'lt2, A12)/ L(fl.lt2, A12), 

the second equality following from (3.5) and (3.6). Also introduce 

a 2 (fl., fl.') = min{ 1, (32 (fl., fl.')}, (3.8) 

giving the transition probabilities of the desired Markov chain 

def (() ()') q3 _,_ ' 

having applied (3.5)-(3.8). 

Repeating this procedure, all the way we establish the correct transition probabilities and 
hence Markov chains with the correct stationary distributions. Note especially that 

(3.10) 

the simplicity of which, for instance compared to (3.4), suggests that this "adaptive sam
pler" may be computationally efficient. 

Note that in this approach at stationarity, the input variables for the ( r+ 1 )th run, being the 
output variables for the rth run, possess the desired joint distribution. In particular, the 
variables do not only have the correct marginals, but also the correct dependence structure, 
which may be a great advantage. In contrast, in our first approach, the marginals are 
supposedly good approximations, but the components of fl. in the proposal distribution are 
always independent (except in the suggestion of using convex combinations of generalized 
gamma distributions). 

Thorough simulations are planned to investigate the adequacy of the suggestions in this 
section. 
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