
OptiqueNLQF: A natural
language query formulation
system based on Semantic
Technologies
Tomas Stein Sæbu
Master’s Thesis Autumn 2015

OptiqueNLQF: A natural language query
formulation system based on Semantic

Technologies

Tomas Stein Sæbu

3rd August 2015

ii

Acknowledgements

First of all I would like to thank my supervisors Martin Giese, Jan Tore
Lønning and Dumitru Roman for help and guidance along the way.

Secondly I want to thank my family and friends for their continuous
positive support.

A special thanks to Carl Martin, Lars Kristian, Jonas, Kristian, Trond,
Petter and Helene for all the hours of discussion and supporting

conversations.

Thank you all!

iii

iv

Abstract

This master project investigates the possibilities of having a natural
language query formulation system where users will be able to specify an
initial version of a query. Instead of confining users to pointing, clicking,
scrolling and searching the menus for the right classes and attributes of
a visual interface, we want to provide the opportunity to express their
information requests in their own words. We want to create a system that is
usable for a wider range of people, and where the technical background and
knowledge about query generation no longer needs to be a requirement.
Making database searches available for the average worker will increase
the information flow, when everyone can retrieve the information they are
interested in without having to ask specialists, non-technical staff are free
to focus on their primary tasks and the information flow is undisrupted.

The OptiqueNLQF-system analyzes an input information request and
generates a SPARQL query. The prototype developed in this thesis
is capable of handling simple natural language input phrases and will
generate a functioning SPARQL query. Throughout this thesis we will
discuss the design choices which have been made and the implementation
of the system, as well as what possible improvement can be made.

v

vi

Contents

Acknowledgements iii

Abstract v

List of figures xi

List of tables xiii

I Introduction 1

1 Background 3
1.1 Introduction . 3
1.2 Optique . 3
1.3 Goals . 4

2 Previous work 7
2.1 State of the Art . 7

2.1.1 SINA . 7
2.1.2 Unified Service Intelligence 8
2.1.3 Pythia . 10
2.1.4 Quepy . 11

2.2 System differences . 12

3 Natural Language Processing 15
3.1 Overview . 15

3.1.1 Tokenization . 15
Lemmatization . 15

3.1.2 Parsing . 16
A Language model . 16

3.2 NLP Difficulties . 16
3.2.1 Ambiguities . 16
3.2.2 Conjunctions . 18

4 Semantic Technologies 19
4.1 Semantic technologies . 19

4.1.1 Ontology . 19
Concepts/Relations/Attributes 19

vii

4.1.2 Resource Description Framework 19
4.1.3 Web Ontology Language 20
4.1.4 SPARQL . 20

II The project 23

5 OptiqueNLQF 25
5.1 Introduction . 25
5.2 System architecture . 25

5.2.1 Overview . 26
5.2.2 The Algorithm . 26

6 String Analysis 29
6.1 Introduction . 29
6.2 Design choices . 29

6.2.1 Parse-Tree . 30
OpenNLP . 30
Limitations of using the parse-tree method 32

6.2.2 Substrings . 34
6.3 Main differences . 36
6.4 Possible Changes / Further work 37

7 Ontology Matching 39
7.1 Introduction . 39

7.1.1 Ontology . 39
7.2 Implementation . 40

7.2.1 String matching . 42
7.3 Other functionality . 44

7.3.1 Levenshtein distance variation 44
7.3.2 Stopwords . 45

7.4 Further work . 45

8 Interpretation ranking 47
8.1 Introduction . 47
8.2 Implementation . 47

8.2.1 Tree method . 48
8.2.2 Pyramid . 49

8.3 Possible changes / further work 52

9 Query graph ranking 53
9.1 Introduction . 53
9.2 Implementation . 53

9.2.1 Concept neighbors . 54
9.3 Future work . 58

viii

10 Query Generation 59
10.1 Overview . 59

10.1.1 Query language . 59
10.2 Design choices / Implementation 60

10.2.1 Writing the query . 60
10.3 Further work . 62

11 Evaluation 65
11.1 Testing . 65

11.1.1 Test data . 65
11.1.2 Test set . 66

Simple test input . 66
Complex test input . 67
Technical information . 67

11.2 Result . 67
11.2.1 Simple test results . 68
11.2.2 Complex test results . 68

Testing the system’s time use 70
8 word sentences: 70
9 word sentences: 70
10 word sentences: 70

11.3 Northwind . 72
11.4 Summary . 72

III Conclusion 75

12 Conclusion 77
12.1 Overview . 77

12.1.1 System comparison . 77
12.2 Future work . 78

13 Appendix A 81
13.1 Initial tests . 81
13.2 Second evaluation . 84

14 Appendix B 89

Bibliography 91

ix

x

List of Figures

1.1 Screenshot of Optique interface. 4

2.1 The USI work-flow pipeline. 9

3.1 Ambiguous example sentence: parse-trees. 17

5.1 System architecture overview. 25

6.1 System architecture overview: String analysis. 29
6.2 Example of parse-tree data structure. 31
6.3 Example of parse-tree data structure. 31
6.4 Phrasal verb parse proposition. 33
6.5 Substring pyramid. 35
6.6 Phrases generated with different methods. 37

7.1 System architecture overview: Ontology matching. 39
7.2 Number of ontology-matches done by the substring and

Parse-tree methods. 40

8.1 System architecture overview: Interpretation ranking 47
8.2 The bottom line of the pyramid. 49
8.3 Calculation the second line scores of the pyramid. 50
8.4 The second line of the pyramid. 50
8.5 Calculation of line three in the pyramid. 50

9.1 System architecture overview: Query graph ranking. 53
9.2 Example of shortest path in graph. 56
9.3 selection of the ontology represented as a graph. 57

10.1 System architecture overview: Query generation. 59

12.1 System architecture overview. 77

xi

xii

List of Tables

2.1 Projects . 12

7.1 Results of string matching on “Current field operators of
Ekofisk”. 43

7.2 Results for Levenshtein distance with and without replace. . . 45

9.1 Query generation input. 54
9.2 Example input. 55

10.1 Example input. 60

11.1 Time table for query generation. 71
11.2 Chart representation of time use. 71

12.1 Projects . 78

13.1 OptiqueNLQF phrase test with parse-tree method. 81
13.2 OptiqueNLQF phrase test with substring method. 82
13.3 Test without stopword removal. 84
13.4 Tests with increased complexity, parse-tree method. 84
13.5 Tests with increased complexity, substring method. 86
13.6 Case sensitive parse-tree method. 88

14.1 Tests on the Northwind ontology, parse-tree method. 89
14.2 Tests on the Northwind ontology, substring method. 89

xiii

xiv

Part I

Introduction

1

Chapter 1

Background

1.1 Introduction

With the colossal amount of data stored in enterprises increasing, the
continuous need to retrieve this data faster and easier is a never ending
struggle for computer scientists. More aspects of business are driven by
data and more people are depending on quick data access. This results in a
need for people with little knowledge of query extraction to be able to attain
the data they need themselves.

The overall goal of this thesis is to implement a prototype of a natural
language query formulation system. The idea is for a user to formulate
a phrase, an information request, and be able to retrieve data through a
query execution on a database. This prototype will be implemented as a
component of the Optique platform.

1.2 Optique

Optique 1 is an EU funded project coordinated by the University of Oslo. It
is a scalable end-user system for access to big data. Optique aims to provide
a semantic end-to-end connection between users and data sources, and in
this way make it easier for people with limited programming and query
language experience to search for, and retrieve data. The Optique system
has a menu based “point and click” navigation module, a “visual query
formulation” tool, OptiqueVQS [17]. This is illustrated with a screenshot
from the working system in Fig. 1.1. The user can choose between the
ontology concepts in a table, select relations or attributes (e.g. names,
values) and create a graph describing the information needed in the visual
interface. The OptiqueVQS then formulates a SPARQL query and executes
the query on the database.

1http://http://optique-project.eu/

3

Figure 1.1: Screenshot of Optique interface.

1.3 Goals

This master project investigates the possibilities of having a natural
language query formulation system where users will be able to specify an
initial version of a query. Instead of confining users to pointing, clicking,
scrolling and searching the menus for the right classes and attributes, we
want to provide the opportunity to express their information requests in
their own words. We want to create a system that is usable for a wider range
of people, and where the technical background and knowledge about query
generation no longer needs to be a requirement. Making database searches
available for the average worker will increase the information flow, when
everyone can retrieve the information they are interested in without having
to ask specialists, non-technical staff are free to focus on their primary tasks
and the information flow is undisrupted.

The system would work like this. A user needs some data from the
database. Regardless of how complex the request is, the user formulates an
initial overall part of the question. Consider the complex query in Tab. 1.3.

“In my area of interest (AOI) return all wellbores that
penetrates the cronostrat unit <C1> and return information
about the lithostratigraphy and the hydrocarbon content
(saturated and moveable + shows) in the wellbore interval
that penetrates the <C1> unit. Also return information about
other wellbore intervals with hydrocarbon content (saturated
and moveable + shows) in the wellbores with hydrocarbon in
<C1>.”

4

“In my area of interest return all wellbores that penetrates
the “Miocene” cronostrat unit and return information about
the lithostratigraphy and the hydrocarbon content in the well-
bore interval that penetrates the “Miocene” unit. Also return
information about other wellbore intervals with hydrocarbon
content in the wellbores with hydrocarbon in “Miocene”.”

Note that <c1> in the first version of the quote is a variable representing
an attribute, e.g. “Miocene”, AOI is “area of interest”. The initial query
would be “return all wellbores that penetrates the cronostrat unit”. The
user will then be presented with a graph representation of the question, on
the form shown in Fig. 1.1. Now the user will have the opportunity to add
more specifications to the query by adding attributes to the graph in the
menu-system, or by writing more specific information request. The system
will then again update the graph, and the user will be able to change or
add to the graph. When the user is satisfied, he runs the query. The user
will now be presented with the lists and tables containing the requested
information.

5

6

Chapter 2

Previous work

2.1 State of the Art

Beginning a project like this, it is important to look into which methods
and approaches have been used before, to get some pointers on how we
are going to tackle the problem at hand. Therefore we investigate how
others have handled these problems in similar projects, and identify what
has worked for them and consider if what they have done is relevant for us.
The following are projects with the same general goal as ours, a natural
language query formulation/question answering system, which we have
looked closer into.

2.1.1 SINA

The SINA project [15] is developed at the University of Leipzig 1. It is
a natural language question answering system where they emphasize the
challenges of working with data from different data sets, and they want to
exploit the links between the data sets. To do this they match segments,
a piece of a sentence or in this case a word, of the input query against all
available data sets. With these segments they create N-tuples, and again
create triples from these segments and map the triples together to make
query graphs. The system employ a Hidden Markov Model 2 (HMM), which
is a statistical method for finding the optimal segments from the input.
A HMM is used by performing supervised learning on a training set with
the similar language to what will be used in the system. By doing this the
program learns what the transition probabilities and emission probabilities
are. Transition probability is the probability that one state is followed by
one other state. In language tagging a state is usually a part-of-speech
(POS) tag. Emission probability is the probability that a given observation
emits from a state. An observation is in this case a word from the input
query. The input query is a set of states, and we know what POS-tags the
states most likely are tagged as, we also know what POS-tags most likely
are following every POS-tag. The Viterbi Algorithm [9] is now applied

1https://www.zv.uni-leipzig.de/en/
2http://en.wikipedia.org/wiki/Hidden_Markov_model

7

to calculate the optimal path. After this is done the query is correctly
disambiguated and segmented. After the input is segmented it is time to
construct the query graph. To construct a query graph one starts out by
making an incomplete query graph containing all possible combinations of
the resources detected from the query input. This will produce two or more
disjoint sub-graphs. To connect these sub-graphs a minimal spanning tree
method is used. The approach used for connecting the graphs by SINA
are Prim’s Algorithm. Prim’s algorithm is an algorithm for finding the
minimum spanning tree from a graph, like the one earlier created. To
connect disjoint graphs the owl:sameAs links are applied to compute a
comprehensive set of properties.

This system has many similarities to what Optique wants with their
natural language system, but it may not be as complex as Optique aims
to be. The way SINA removes stop-words and uses lemmatization to create
N-tuples of the input query can remove part of the meaning from some
sentences. And by this make the system less robust when dealing with plain
text input, and well structured sentences formulated in a uniform manner
is not something we can rely on from our future users. Parsing sentences
this way is easier, and it is a straightforward way of handling easy and well
structured sentences. The way the SINA system maps segments to triples
and by this making it into SPARQL queries is smart and simple and works
very well when working with RDF data. It is an idea to make an initial
system like this, but it would not understand the sentences we have been
given as example queries. We have some data that can be used as training
data, which has proven to be one thing that is a challenge when working
with classifiers, which also has the potential to be very expensive. This
training data makes a good starting-point if we decide to use the HMM
method. The Viterbi algorithm is also a fast way of finding the most likely
sequence, and is something we will consider when choosing disambiguation
methods.

2.1.2 Unified Service Intelligence

“USI answers” is a system developed by Siemens /footnotehttp://www.siemens.com/.
In the paper [20] the system’s method for parsing and analyzing the input is
described as a work-flow pipeline system, shown in Fig ??, with a primary
and secondary knowledge base. This describes a complex system with many
different components that each play its part in creating a query from the
natural language input. The USI knowledge base is represented by an on-
tology. Here they have provided a short description of each concept and
a large set of the most common synonyms have been added. The primary
knowledge base is where the actual data is stored. This consists of both
structured data, with clear key-value association, and unstructured data,
e.g text extracted from pdf reports. The secondary knowledge base is used
as a resources for additional evidence for interpretation hypothesis, and for
additional potential answers. This is non-specific Siemens data, like open
domain-based resources such as DBpedia, FreeBase, GeoNames.

8

Figure 2.1: The USI work-flow pipeline.

• The pipeline from input to answer includes question analysis, the
step where the input question is parsed and normalized. This step
applies:

– question normalization, which is analyzing and dealing with
brackets and quotes in the input string.

– Metadata annotation for adding metadata, like user keys and
session keys.

– Question parsing as standard parsing like part-of-speech tag-
ging, lemmatization, disambiguation and named entity recogni-
tion.

– Analysis validation for handling domain-specific input terms,
different numbers and codes, after this was split and parsed in
the parsing.

– Question classification is analyzing what type the question
is (e.g. fact-based or list-based), how the answer will be
represented and the question focus.

• The second step is query generation where the input question is
transformed into a query. From what was learned in the question
analysis step the most likely query type and the most likely query
format is generated. This component supports Dictionary- and
Regular Expression look-ups, Apache Lucene-, SPARQL-, and SQL-
based queries.

9

• Candidate search is a step where the goal is to search for and
categorize concepts (called answerFields), concept value instances
(called searchFields) and augmented key-value pairs (called domain-
Fields).

• The next step in the pipeline is soft filtering. Here the system’s
detects and validates the categorization from the candidate search,
and rank the different annotation referenced to a query token. This is
done with pre-learned prior models.

• Hypothesis generation is a step where different interpretations of
the analysis is generated. With what was learned in the candidate
search step, the different ways of how the answer field and the search
field is connected are generated.

• Next come the hypothesis scoring and ranking. Here the
hypothesizes, generated in the previous step, are scored and ranked,
before the highest ranked interpretation is sent to the next step.

• The knowledge base router detects the data sources needed from
the knowledge base for joining and querying.

• Query translation is where the query is constructed. The system
automatically generates SQL, Apache Lucene SPARQL and solution
object queries.

• The last step is answer extraction. This is where the actual answer
to the input query is given.

• There is also a final step answer manager, this step coordinates the
front-end - back-end communication. The system has an interface
with several attributes to help form the information request the right
way. It provides a list of concept-instance relations, so the user may
change or adjust the input question. It also gives you the opportunity
to add different data sources to the question, and finally you are able
to give feedback on the question interpretation.

This system is the one most similar to what we are working to achieve,
the way the question input is thoroughly analyzed and interpreted is
something to strive for. The system interface with opportunity to change
the question, and the system showing what you will be searching for is
something we deem important in our project as well. In the SINA project
they discussed the exact methods they were using, but in the USI project
they write more conceptual, and do not go into detail on specific methods.
USI is also a commercial, very big, project. And even though we can look to
it for inspiration, we must keep in mind that it has taken Siemens several
years and a lot of money and manpower to develop the USI answering
system.

10

2.1.3 Pythia

The Pythia system [19] is an ontology-based question answering system
developed at the Biefeld University 3. In this project, natural language
is transformed into a formal query, using a linguistic analysis driven by
an ontology-based grammar. The grammar used to interpret the in-
put is divided into two parts, an ontology-specific part and an ontology-
independent part. The ontology-specific part contains lexical entries on in-
dividuals, concepts and properties of the ontology. This is generated auto-
matically from an ontology-lexicon model. A framework called LexInfo4 is
used to supply the ontology with information about its verbalization. The
framework creates a declarative specification of the ontology by creating
a connection from concepts of the ontology to information about their lin-
guistic realization, i.e. Part-of-speech, morphology decomposition and sub-
categorization frames. A mechanism for generating grammar entries, i.e.
pairs of syntactic and semantic representations, are then used on the lexical
entries. These linguistic representations are used to parse and interpret the
natural language question input. Now the system can map the input into
formal queries. This involves three main steps. First the input is parsed by
constructing a linguistic tree-adjoining grammar (LTAG) derivation tree,
witch only considers the syntactic part of the grammar entries. After this a
derived tree and an according dependency-based underspecified discourse
representation structure (DUDES) is applied using semantic and syntactic
composition rules. Lastly, when all argument slots are filled, the result are a
set of disambiguated discourse representation structures (DRS), and these
are translated into a formal query.

There are many similarities between the Pythia project and what
Optique are interested in making. The fact that they are specifically
describing a system using an ontology model, and there are mentioned
several interfaces and structures that are relevant for Optique. Lexinfo,
as a model to represent lexical information to ontologies, is a model that
we have to take into consideration when dealing with the disambiguation.
This project also provides the LTAG model for generating domain-specific
grammars. This is also something that is of great interest to Optique.

2.1.4 Quepy

Quepy 5 is a framework for transforming natural language questions into
database queries. It is developed by a company called Machinalis. The
query transformation is done by first applying a regular expression method,
where the regular expressions are predefined to match the natural language
questions. The input question is parsed using a library called REfO
(Regular Expressions of Objects), which is also developed by Machinalis 6,
that uses tokenization and lemmatization on the words. After this the

3http://www.uni-bielefeld.de/
4lexinfo.net
5http://quepy.machinalis.com/
6http://www.machinalis.com/

11

system use the NLTK interface to part-of-speech tag the tokens in the input
question. Natural Language ToolKit (NLTK) is an platform for Python that
handles several natural language processing issues, in this case part-of-
speech tagging. Quepy then constructs the tokens into triples in adjacency
lists, merges the triples, and prints them out as a SPARQL-query (Quepy
also has the option to make MQL-queries).

The Quepy project is a commercially built natural language to query
interface, it has a working test demo online where you can translate
questions about counties and movie-stars into queries. This is a system that
works perfectly within a controlled sentence structure. However, their use
of regexes, and setting up a specific way for a question to be formulated,
is not an ideal way to handle the huge variation of questions the Optique
system is required to handle. The way this system is built works more like
a “fill in the blanks” way of question answering, and is not robust. The use
of NLTK is something to look into, as a easy and user frendly method to use
and implement.

2.2 System differences

So far we have looked into what these systems contain, and how they are
put together. Now we will look more into what sets them apart. This will
be done by focusing on some points that must be taken into account when
developing a system like this. We have created a four-point list of importent
factors when developing a system:

• Setting up a new project - This is how easy implementable the system
is, and how difficult it would be for someone new to put the system to
use.

• Use on new domain, new vocabulary - Measures how much work is
needed before the system can be used on the domain of a new user.
This is where generic system will get a high score.

• Scalability - The ability for a system to handle a growing amount of
sentences, be able to parse a larger variety of input questions. This
is a measurement of how the system can handle increasingly complex
sentences.

• Upper limit - What can the system manage? Measurement of what the
system can handle, this represents the top of the systems capability.

Tab. ?? also has the open source field. This is a “is or is not” information
on the systems, as it is interesting to know which ones are open source. This
table is a visual representation comparing the systems.

Looking at the projects from these four points it is more the systems
capability and how the system perform we are interested in, rather than
specific methods used. And we can see how different approaches give
different results in way of performance. If we look at the Quepy framework,
where regular expressions are used and the form of all question possibilities

12

Table 2.1: Projects
SINA USI Pythia Quepy

Setting up a new project 7 77 7 33

Use on new domain, new vocabulary 3 7 3 3

Scalability 3 3 33 77

Upper limit 3 33 3 7

Open source ? 7 ? 3

Table 1 shows a visualization of the differences of the systems. We have
used a grading-system with the scale: 77,7, 3, 33.

are predefined in the system, scalability will have a lower score, since one
would have to add more regular expressions manually. On the other hand,
the system will be less complex and easier to implement for new users. This
is the system out of the ones that we have looked at that stands out the most
from the others. Most different from the Quepy is Siemens USI Answers
system, the most complex system we have looked at. This system has a
very detailed language parsing component, and a huge set of synonyms
connected to its ontology. This makes the system stronger on scalability
compared to the Quepy, and because of its potential to grow, it gets a high
score on the upper limit. The complexity of the system, its size, and the
fact that is has to have synonyms added to the ontology, USI Answers score
lower on the setting up the project and use on new domain.

Pythia and Sina are two more similar systems, when it comes to
capability and complexity. They also have a focus on usability on new
domain, which is an important factor in creating the Optique Natural
Language Query Formulation System.

13

14

Chapter 3

Natural Language
Processing

3.1 Overview

Natural language processing (NLP) is a field in computer science regarding
interaction between human language and computers. Human language, or
natural language, will in this master thesis concern the user’s connection
to the system, or more precisely the user’s input information request. The
input will be a sentence or a phrase, a phrase being a sequence of words
and not a complete sentence. The NLP tasks performed in OptiqueNLQF
will primarily be tokenization 1 and sentence parsing 2.

3.1.1 Tokenization

Tokenization is a process of segmenting a character input sequence into
a list of tokens. Tokens are usually words, punctuation or numbers. The
sentence “I saw a man with a telescope.” will yield the tokens: “I”, “saw”,
“a”, “man”, “with”, “a”, “telescope”, “.”. Another approach is to perform
lemmatization on the sentence.

Lemmatization

Lemmatization [7, p. 80–81] is the operation of finding the root of a given
word. Different words can have a common lemmas if the root of the words
are the same. Running, ran and runs all have the same common lemma:
run, since this is the base form of the word. The notion of lemmatization
can be applied to string matching, and can prove useful if the form of the
user input varies from its intended match.

1 http://en.wikipedia.org/wiki/Tokenization_%28lexical_analysis%29
2http://en.wikipedia.org/wiki/Parsing

15

3.1.2 Parsing

Parsing natural language is the process of analyzing a sequence of words
using the rules of a formal grammar. The word sequence is analyzed and a
parse-tree 3 is generated from the sequence of words using the rules in the
language model. The parse-tree shows the syntactic relations between the
words and generates phrases from the different parts of the sequence. The
parser also assigns the nodes in the parse-tree with word- or phrase labels.
Word labels are known as part-of-speech tags (POS-tags).

Language model

A Language model is a statistical model composed of word sequences [7, p.
117]. It contains the formalization of the idea of word prediction where the
last word of an N-gram is predicted by the previous ones. An N-gram is a
token sequence of words, a 2-gram (bigram) is a two-word sequence like “I
saw” or “a man”, a 3-grams (trigram) is a three-word sequence, “I saw a”
or “a man with”. The model predicts what word most likely follows a word
sequence:

I saw a man wi th ...

This word sequence is likely to by followed by “a” or “the”, and probably not
“I”.

3.2 NLP Difficulties

NLP can be divided into two main areas, natural language understanding
(NLU) 4 and natural language generation (NLG) 5. NLU is enabling
computers to acquire some meaning from the natural language input,
NLG involves generating natural language. We will focus on the NLU
part. In NLU there are many known obstacles because understanding
human language is complicated. Natural language can be inconsistent and
there are different words which can have the same general meaning, or
similar words with different meaning according to context. A human will
understand a statement with knowledge about their surroundings or using
some prior knowledge, this however is more difficult for a computer.

3.2.1 Ambiguities

Ambiguity refers to an interpretation of a word sequence that cannot be
concluded given a set of rules. Ambiguity in natural language is prevalent
and when parsing a word sequence there will often be several different
semantic possibilities. Consider the sentence:

I saw a man wi th a telescope.

3http://en.wikipedia.org/wiki/Parse_tree
4http://en.wikipedia.org/wiki/Natural_language_understanding
5http://en.wikipedia.org/wiki/Natural_language_generation

16

S

NP

NP

I

VP

V

V

saw

NP

Det

a

N

N

man

PP

P

with

NP

Det

a

N

N

telescope

S

NP

NP

I

VP

VP

V

V

saw

NP

Det

a

N

N

man

PP

P

with

NP

Det

a

N

N

telescope

Figure 3.1: Ambiguous example sentence: parse-trees.

This is an ambiguous sentence, because it is impossible for a parser to know
if the subject I had the telescope, or if the direct object a man had it. When
relying on the parser to extract the needed phrases from the sentences,
ambiguous sentences can prevent us from receiving our intended result. In
this case it would be preferable to generate multiple parse-trees, presenting
the different interpretations of the sentence.

Two different parse-tree examples from the ambiguous sentence “I saw
a man with a telescope” are shown i in Fig. 3.1. We can think of every
node in the tree, and the sub-tree this node produces as the phrases of the
sentence. The parse-tree on the left will generate the phrases:

• saw a man with a telescope

• I saw a man with a telescope

While the parse-tree on the right will generate the following phrases:

• saw a man

• a man

• with a telescope

17

• a telescope

• saw a man with a telescope

• I saw a man with a telescope

Both examples will also generate the phrases representing each individual
word. As we can see the rightmost parse-tree contains all the subphrases
of the leftmost parse-tree, including some additional phrases. It could be
preferable to use the parse-tree generating some phrases from the middle of
the sentence, and not only the individual words and the complete sentence.

3.2.2 Conjunctions

Conjunctions often reveal problems regarding NLP in query generation
systems. In the paper Natural language interfaces to databases - an
introduction [1] its noted that the word “and” often is used to denote a dis
junction rather than a conjunction, for example:

F i el d s oper ated by St atoi l and H ydr o

The meaning of this sentence is not fields that are co-operated by the two
companies, rather the fields operated by either one of them. The following
example demonstrates the opposite case:

F aci l i t y t y pe and l ocati on o f st atoi l f aci l i t i es

In this sentence the “and” denotes that we are interested in both type and
location of the facilities operated by Statoil. The mentioned paper presents
the solution of calculating and presenting both alternatives in situations
like this.

18

Chapter 4

Semantic Technologies

4.1 Semantic technologies

The definition of semantics is “the study of meaning”. Semantic techno-
logies, as used in this project, involves storing and accessing data. For our
purposes, the concepts of ontologies, resource description frameworks, web
ontology languages and the SPARQL query languages are particularly im-
portant. For a general overview of the field of semantic technologies, see
Foundations of semantic web technologies [6].

4.1.1 Ontology

An ontology 1 [14] in relation to semantic technologies is a formal descrip-
tion of concepts within a domain of classes and properties describing re-
lations and attributes regarding the classes. In this project we have not
created or changed any existing ontologies. It has however been important
to understand and be able to extract meaning from an existing ontology.

Concepts/Relations/Attributes

In this thesis concepts will represent classes from the ontology, typically
Field, Company and Facility. Relations are the connections between
the concepts. A Field will be connected to a Company by the relation
fieldOperator and Facility is related to Company by pipelineOperator.
Attributes are names, values, ranges or data types connected to the
concepts. This includes Field names, Company names, drilling depth or
Facility type.

4.1.2 Resource Description Framework

The Resource Description Framework (RDF) 2 [10] is a framework for rep-
resenting information. The foundation of RDF is a model for representing
named properties and property values. The RDF data model consists of
three object types:

1http://www.w3.org/TR/owl-features/
2http://www.w3.org/RDF/

19

• Resource - All things described by RDF is a resource. In our case, this
involves everything described in the ontology.

• Property - A property is something used to describe a resource. It can
be an attribute characteristic or relation.

• Statement - According to Resource Description Framework (RDF)
Model and Syntax Specification [10] “A specific resource together
with a named property plus the value of that property for that
resource is an RDF statement”. These three parts of the statement
is referred to as the subject, the predicate and the object. The object
in a statement can be another resource or it can be a literal. A literal
is a string or some datatype connected to a resource. In the ontology
we refer to literals as attributes.

A typical statement will contain a subject (resource), predicate (property)
and a object (literal), and it is a representation of a statement, this is also
referred to as a triple. Consider the sentence:

F i el d s oper ated by St atoi l Petr oleum AS

This sentence contains three parts:

• Subject: Field

• Predicate: operatedBy

• Object: “Statoil Petroleum AS”

4.1.3 Web Ontology Language

The Web Ontology Language (OWL) [13] is a knowledge language for
processing content of ontologies. The most common way to write OWL
syntax is OWL/RDF.

4.1.4 SPARQL

SPARQL Protocol And Query Language (SPARQL) 3 is a semantic query
language for databases. SPARQL queries are the semantic technology-field
we are most concerned with in OptiqueNLQF. A SPARQL query consists
of a set of triples and optional patterns. SPARQL resembles other query
languages, like SQL 4, with its use of the terms SELECT, WHERE and
ORDER BY. There are several forms of SPARQL queries, CONSTRUCT,
ASK, DESCRIBE, but in this thesis we will only handle the SELECT form.
The difference between SPARQL and SQL is how SPARQL handles the
querying. A SPARQL query is executed by matching the SPARQL triples
to RDF triples. The result of a SPARQL query can be sets or RDF graphs.
The triple statements in a SPARQL query resembles the RDF statements,

3http://www.w3.org/TR/rdf-sparql-query/
4http://en.wikipedia.org/wiki/SQL

20

except in SPARQL it is allowed to take use of variables and blank nodes.
Variables and blank nodes can be in the subject or object position of the
triple. Variables are used in the triples to represent something which
is unknown. The predicate of the statement is a ontology relation or a
identifier of what the subject is, this is represented with an rdf:type or
simply an “a”. The following is a SPARQL query representing the previous
used sentence “Fields operated by Statoil Petroleum AS”:

SELECT DISTINCT ?v1
WHERE {
?v1 a Field .
?v2 a Company .
?v1 operatedBy ?v2 .
?v2 name ?l1.
Filter(regex (?l1, ‘‘Statoil Petroleum AS’’))
}

Listing 4.1: SPARQL query

We can see from the query above that the variables ?v1, ?v2 and ?l1 is used.
We will use ?v{number} for variables regarding concepts and ?l{number}
for variables representing literals. This query express that we are interested
in the fields that are operated by a company, and the company has the
name “Statoil Petroleum AS”. To extract data for a given name or value
the pattern FILTER is used. The queries created by OptiqueNLQF will not
contain more complicated query terms than this.

21

22

Part II

The project

23

Chapter 5

OptiqueNLQF

5.1 Introduction

In the following chapters we will present the OptiqueNLQF-system, and
give a thorough description of how the system is put together. We will go
into detail of how each part of the system works and what it produces. Each
of the system’s main parts will be described in its own chapter, after we
have described the system architecture overview. Going into the different
parts of the system we will take a close look at the the algorithm, the design
choices which have been made, possible changes to the implementation and
discuss some improvements that can be done in the future. After the system
is thoroughly described we will evaluate it, go into how the system is tested,
describe what is used during these tests and how the system performs. After
the evaluation comes the conclusion and a general summary of what should
be done with the system in the future.

String
analysis

Ontology
matching

Interpretation
ranking

Query graph
ranking

Query
generation

Figure 5.1: System architecture overview.

5.2 System architecture

When planning the implementation of OptiqueNLQF it was important
to keep the different parts of the system separated, so if we wanted to
do minor or major changes, this could be done without interfering with
the other parts of the system. Therefore it is natural to approach the
parts as individual working components, and this is the approach we
have chosen when we wrote the code, and the writing of the thesis itself.

25

This system is not a substitute for the OptiqueVQS system, but rather
an additional natural language component. This system communicates
with the Optique system and takes advantage of some of the already
implemented functionalities. In the future it is intended that the user will
be able to use OptiqueNLQF and OptiqueVQS coherently.

5.2.1 Overview

The OptiqueNLQF-system consists of five main parts, as is shown in the
system architecture overview in Fig. 5.1. Each part does its particular job,
and passes its result on to the next part. String analysis controls how
the sentence is parsed, and contains the main natural language processing
components. Ontology matching is the part of the system that performs
the searching. In this component the system searches the ontology for
matching words and phrases. Interpretation ranking puts together and
selects the concepts, relations and facets that represent the sentence in the
best way with the lowest score, given the ontology matching output. Query
graph ranking extracts one final combination of these objects. Lastly, after
the correct information is retrieved, the query generator makes it into a
SPARQL-query that can be executed on the database.

5.2.2 The Algorithm

OptiqueNLQF’s main task is to receive a user’s input information request,
perform a query execution and present the user with the correct results. The
initial input for the system is the user’s information request which is passed
to the string analysis where the input question is split into phrases. A term
“phrase” will be used a lot and means a sequence of words: in our system it
can be everything from a single word to the complete sentence. The string
analysis part creates a tree data structure for representing the phrases, and
sends the data structure to the ontology matching part. Here each phrase is
individually matched against all the objects in our ontology. This matching
is done by calculating the phrase’s edit distance to the names of the ontology
objects. Each phrase keeps a ranked list of its N-best ontology matched
objects where the best match is the one with the lowest edit distance, 0
being a perfect match. Now there is a tree with nodes containing lists of
ontology objects. The interpretation ranker traverses the tree, comparing
each node’s score to the combined score of this nodes children. If the
children have a lower combined score, they take the current nodes place
in the tree. When calculating this with a bottom up approach, we will
eventually be left with a top node containing the N-best combinations of
node objects, with lists of ontology objects, which together represent the
initial user input sentence. These N-best objects will then be passed to
the query graph ranker where the N findings for each initial phrase again
will be ranked using its relation to the other objects from the ontology.
The connection distance in the ontology is what decides which objects is
selected as the final input for the query generation. Only one of each
ontology object from the previous combination of N lists are passed on

26

from here, including, if there are any, ontology objects missing to create
a connected graph based on the ontology concepts and relations. Finally
these objects are selected, based on ontology type, and written as triples
in the outputted SPARQL query with the proper prefixes and filters. The
SPARQL query is then presented to the user in the OptiqueNLQF interface,
before it is executed on the Optique system.

27

28

Chapter 6

String Analysis

6.1 Introduction

String analysis is the first and initial step in the OptiqueNLQF-system.
This is where the user’s input information request is analyzed. This
step is of great importance and can in many ways severely decrease the
systems complexity and time use. Since the ontology contains concepts,
relations and attributes that may be a composition of several words, we
have to perform searches on the substrings of the input string, from the
full sentence and down to every individual word. However, a good natural
language interpretation can reduce the number of phrases passed on by
the string analysis component by omitting the redundant substrings of the
user’s input. Handling this problem was one of our starting points for the
system.

String
analysis

Ontology
matching

Interpretation
ranking

Query graph
ranking

Query
generation

input
string

Figure 6.1: System architecture overview: String analysis.

6.2 Design choices

In this part of the system we have created two different approaches. It
is clear that the string analysis is a place where changes can have great

29

impact on the final results of the query formulation. To have different
implementation choices available to switch between provides us with the
possibility to test the system with different run configurations, and we will
get more data in the final testing phase, which is helpful for doing a more
extensive evaluation of the system.

From the user’s input string, handled by this part of the system, we
are interested in locating the most relevant substrings, or phrases, before
passing them on to the system’s next part, the ontology matching. The most
relevant substrings are the strings that are most similar to an object found
in the ontology. From our example sentence “Fields operated by Statoil
Petroleum AS”, the optimal phrases would be: “Fields”, “operated by” and
“Statoil Petroleum AS”. Knowing how to locate the correct phrases as fast
as possible and avoiding the need to handle irrelevant phrases are the main
difficulties of the string analysis part of the system. We have kept these
goals in mind while deciding how to handle the string analysis part and
during the implementation of what we have called the parse-tree method
and substrings method.

6.2.1 Parse-Tree

This method uses a natural language toolkit to syntactically analyze the
input information request, and generate a parse tree of the sentence. This
provides us with a suitable data structure for the sentence, and is also a
way to filter out the most relevant sub-phrases of the input string. By
reducing the number of phrases extracted from the sentence, we will greatly
reduce the number of actions done throughout the systems algorithm. We
tested out several different toolkits, but the library we decided to go for
was the Apache OpenNLP library 1. This was chosen because Optique is a
JAVA-project and OpenNLP is JAVA-based, whereas NLTK 2 for instance
is Python-based 3. Another factor was the legal reasons: OpenNLP is
licensed 4 for commercial use, and since we are working with something
that can be commercialized in the future, OpenNLP was the most sensible
choice.

OpenNLP

OpenNLP is a JAVA-based natural language processing toolkit. For
OptiqueNLQF we need to do a complete parse of the sentence for
generating the parse-tree structure. When we analyze our example
sentence “Fields operated by Statoil Petroleum AS” with OpenNLP it
produces the tree shown in Fig. 6.2. In this tree every node represents
a sub-phrase from the sentence, and they are given phrase tags or word
tags, POS-tags accordingly. It is these sub-phrases of the sentence we are

1https://opennlp.apache.org/
2http://www.nltk.org/
3https://www.python.org/
4http://www.gnu.org/copyleft/gpl.html

30

Top

NP

NP

NNP

Field

VP

VBN

operated

PP

IN

by

NP

NNP

Statoil

NNP

Petroleum

NNP

AS

Figure 6.2: Example of parse-tree data structure.

interested in, and it is them we perform the string matching with against
the ontology.

The sub-phrases from our example sentence are shown in Fig. 6.3. The
phrase problem was encountered in the planning part when we looked at
the last part of the example sentence “Statoil Petroleum AS”. We could
immediately see that this part of the sentence would be a natural phrase,
and we needed to find a smart way to identify what parts of the sentence
would be best suited as phrases, and where a single word would be
most correct. We wanted to use the parse-tree to locate noun-phrases,
because nouns, especially names, are often represented by more than one
word and is the most common occurrence of several words with natural
coherence. However we realized that it would be sensible to apply this to
the whole sentence, as it might also prove useful for relation phrases like
“currentFieldOperator”, “taskForCompany” or “corePhotoForWellbore”.

A tree structure like this one will branch out from the top node,
throughout the complete sentence, and down to the individual words. Let’s
say we skip the occurrences where a phrase only has one child, which always
will represent the same phrase as its parent. We know that a tree can have
several children, but for the tree to generate the highest amount of sub-
phrases every node must have no more than two children, it has to be a
binary-tree 5. By using these two rules we know that the highest possible

5http://en.wikipedia.org/wiki/Binary_tree

31

Fields operated by Statoil Petroleum AS

Fields operated by Statoil Petroleum AS

Field

Field

Field

operated by Statoil Petroleum AS

operated

operated

by Statoil Petroleum AS

by

by

Statoil Petroleum AS

Statoil

Statoil

Petroleum

Petroleum

AS

AS

Figure 6.3: Example of parse-tree data structure.

count N of sub-phrases generated from a parse-tree (p) is:

Np ≤ 2n −1

Using our example sentence containing 6 words(n) this results in (2*6)-1 =
11. But the example sentence is not binary: it has a phrase that generates
three children, “Statoil Petroleum AS”, therefore the total number of
phrases, not counting unary representations, in our example sentence will
be 10.

Limitations of using the parse-tree method

There are some issues with the parse-tree method previously described.
The OpenNLP toolkit requires a large 36 MB file containing the language
model in order to parse and analyze the input sentence. This is a great
deal and it takes the method just about 5 seconds to do a complete analysis
of the sentence. Another problem is the lack of completeness regarding
possible phrase pairs, and especially on occasions where a verb is followed
by a preposition. This particular incident occurs in our example question
where the words in “operated by Statoil Petroleum AS” do not form the
phrases“operated by” and “Statoil Petroleum AS”. Instead “Operated” is
set to be a daughter of the former phrase, with “by Statoil Petroleum AS”
as its sibling. One possible solution to this problem could be to force
the language parser to treat all occurrences of verb + particle and verb
+ preposition as what is called phrasal verbs, described in Foundations

32

Top

NP

... VP

VBN

operated

PP

IN

by

NP

...

=⇒

Top

NP

... VP

PV*

VBN

operated

PP

IN

by

NP

...

Figure 6.4: Phrasal verb parse proposition.
“...” indicates parts of the tree that is similar in both trees.
The tree to the left is similar to the Fig. 6.2.

33

of Statistical Natural Language Processing [12, pp. 96–97]. OpenNLP
does not identify phrasal verb occurrences as a unit, instead treating them
like verb + possible remaining sentence. By forcing this phrasal verb
structure upon sentences containing verbs + preposition / particles the tree
structures would change and be more suited for ontology matching. An
example of this is shown in Fig. 6.4, where the tree on the left illustrates
how a string is handled by the OpenNLP parser, and the tree on the right
illustrates how a string might have been handled using a phrasal verb
identifier. Note that the prepositional phrase (PP) node has switched to be
a child of the new phrasal verb (PV) node, and now the words “operated by”
forms the center phrase of the sentence. Though an interesting idea with
potential to manage the phrasal verb problem, to achieve this would require
that we change the OpenNLP parser structure, and we simply did not have
the time to implement our theory. We did however experiment with a node-
shifting JAVA-method to perform these actions in the OptiqueNLQF, but
this proved rather unsuccessful.

6.2.2 Substrings

The parse-tree method generates most of the needed phrases. It also
provides additional potentially useful information about the words, phrases
and the sentence. However, we wanted to create another implementation
of the string analysis problem. Since the current version of the parse-tree
method failed to provide us with all the phrases we needed, we wanted to
find all substrings from the sentence, and perform a search on them all. The
time-use of reading the language model is currently so high that the effect
of doubling the number of phrases will actually decrease the run speed of
the system, compared to parse-tree method.

To extract all sub-phrases and still get a sensible data structure for the
ontology matching we decided to make a string pyramid building up from
the individual words, adding onto each other generating all the phrases in
the sentence. The OpenNLP toolkit is used to make a list of words from
the user’s input string using the tokenizer. The pyramid is structured as is
shown in Fig. 6.5. The bottom row is a list of all the individual words in
the input question, and has the size n where n is the number of words. The
second row is a list of tuples of the words in the sentence, and will have
the size n-1. The third line in the pyramid will be a line of the triples of the
words in the input sentence, and have the size n-2, and so on until the top
where the list contains one element, which is the complete sentence and
has the size n-(n-1), which is 1. To calculate how many words are in a given
row m, with a given sentence length n we have the formula n-(m-1). We can
use this further by stating that the sum of all rows is given by:

(n − (1−1))+ (n − (2−1))+ ...+ (n − (n −1))

⇓
n∑

k=1
(n − (k −1))

34

Fields
operated
by Statoil
Petroleum

AS

Fields
operated
by Statoil
Petroleum

operated
by Statoil
Petroleum

AS

Fields
operated
by Statoil

operated
by Statoil
Petroleum

by Statoil
Petroleum

AS

Fields
operated

by

operated
by Statoil

by Statoil
Petroleum

Statoil
Petroleum

AS

Fields
operated

operated
by

by Statoil Statoil
Petroleum

Petroleum
AS

Fields operated by Statoil Petroleum AS

Figure 6.5: Substring pyramid.

35

Now it is the matter of finding the sum of a finite sequence of numbers. For
this we can use the Gaussian sum [2], and we can write our formula for
getting the maximum number (N) of sub phrases using the substrings (s)
method on the form:

Ns ≤ n(n +1)

2

Going back to our example sentence which has 6 words, we now know that
the total number of substrings extracted from this string will be:

6∗ (6+1)

2
= 21

So, using the substrings method, we end up with 21 sub-phrases from
our example sentence. Whereas with the previously explained parse-tree
method we had 18 sub-phrases, but since a lot of these are duplicates,
and we simply can skip the phrase when we know it is similar to the
preceding one, there were 10 unique phrases given from the parse-tree
method. This number will vary on word type, structure and length, but
it will be considerably lower than the number of sub-phrases we get if we
want to use the substrings method. We also know that the total number of
phrases will increase faster using the substrings method than the parse-tree
method, so the difference will increase when sentence length is increased.
Even though the sentences are short in the prototype stage, we must think
forward and prepare the system for longer, more complex sentences.

Getting all substrings from a string is a very brute force way of solving a
problem, but it is nevertheless an interesting baseline for testing other ways
of selecting which phrases to use.

6.3 Main differences

The two main measurements for the task of finding the correct sub-phrases
of the sentence is speed, the time it takes the system to run, and recall 6,
how many of the correct phrases was retrieved by the system. Concerning
recall, the substrings method will always get a 100% recall score, since
it retrieves all possible sub-phrases and therefore always will find every
correct phrase. This method will, however get a very low precision score.
Assuming that “Fields”, “operated by” and “Statoil Petroleum AS” are the
correct phrases from our example sentence, we have three correct phrases.
The substrings-method will get a precision and a recall score of:

Precision = relevant phrases∩ retrieved phrases

retrieved phrases

Recall = relevant phrases∩ retrieved phrases

relevant phrases

Precision = 3

21
= 14%.

6http://en.wikipedia.org/wiki/Precision_and_recall

36

0 20 40

0

500

1,000

W or d s

P
h

ra
se

s

Par se − tr ee
Substr i ng s

Figure 6.6: Phrases generated with different methods.

Recall = 3

3
= 100%.

The parse-tree method will, using the same example sentence, get a
precision and recall score of:

Precision = 2

10
= 20%.

Recall = 2

3
= 66.6%.

It is problematic that the parse-tree does not find all correct phrases.
Implementing the phrasal verb theory will hopefully increase both recall
and precision of the pare-tree method.

How fast the two methods will run is harder to evaluate. Precision
will play a part here, since the number of phrases retrieved is highly
relevant. As seen in Fig. 6.3 the quadratic growth of the substrings method
is considerably higher than the linear growth of the parse-tree method.
We have to assume that there is a number of operations that will have to
be done on every phrase, so keeping this number down can prove to be
important. We will come back to this issue in the following chapters. The
constant 5 second parse-time for the language model gives the substrings
method a head start, but let it be noted that this is a constant number, it has
no noticeable rise according to sentence length, or number of sentences.

6.4 Possible Changes / Further work

For future versions of the system we know that applying a natural language
understanding module can provide information on what word types a given
word is. It would be prudent to add specifications to handle different
POS-tags or apply word entity recognition so we can get an understanding
on what a single word is supposed to describe given some pre-defined
categories. This is one of the main reasons for sticking to the parse-tree
method. Although the substrings method is the fastest one, provided we

37

use smaller 5 - 10 word sentences, the parse-tree implementation has its
advantages and also provide us with many possibilities when the system is
expanded and a more complex sentence evaluation is needed. Adding the
opportunity to include conjunctions to the question, and then in particular
“and” and “or” is certainly one of the main focus points for further work. A
parse-tree will in these cases naturally parse a conjunction as a link between
two verb phrases or noun phrases, and split the sentence into phrases with
the conjunction as the divider. The conjunction and the phrases connected
by the conjunction will carry with them this information, and in the final
query generation-part the proper steps will be taken to write the “and” or
the “or” into the query. Negations in a sentence will work in a similar way.
When an adverb is recognized as a negation, a variable is passed with the
strings adding a negation filter to the final query. We are also interested in
possibly retrieving multiple parse tree representations from the parse-tree
method. This is not currently possible using the OpenNLP system, but it
would provide us with an optional phrase composition that could be used
if the first one should prove not to contain the optimal interpretation of the
sentence.

38

Chapter 7

Ontology Matching

7.1 Introduction

The ontology matching is the second part of the OptiqueNLQF-system and
it is the main search component. This is where the system communicates
with an ontology, uses the phrases generated in the string analysis part and
retrieves data. Performing this task is mostly string matching, using what
we know and trying to find the most similar data from the data set we have.
This is also the point of the system where we step away from strings and
phrases and start handling objects representing data from the ontology.
We are searching for the objects whose name is most similar to the phrases
given from the previous part of the system.

String
analysis

Ontology
matching

Interpretation
ranking

Query graph
ranking

Query
generation

Ontology

Figure 7.1: System architecture overview: Ontology matching.

7.1.1 Ontology

The system parses an ontology which is a specification of the concepts de-
scribing information in the database, the relations between the concepts
and the attributes/facets [4] associated to the individual concepts. Con-
cepts represent specific things like “Field”, “Company” or “JacketTripod-

39

0 20 40

0

1

2

·106

W or d s

O
p

er
a

ti
o

n
s

Par se − tr ee
Substr i ng s

Figure 7.2: Number of ontology-matches done by the substring and Parse-
tree methods.

Facility”. Attributes/facets are datatype properties with possible ranges or
values. The relations are relationships between the concepts, object prop-
erties in OWL 1. The loading and parsing of the ontology is performed by
a previously existing method in the Optique system, so OptiqueNLQF is
making use of this method. We use an already integrated part of the Op-
tiqueVQS 2 system, and it is important that OptiqueNLQF use the same
methods as the OptiqueVQS and that the systems are compatible for fur-
ther integration in the future. When the ontology is loaded it is parsed and
we retrieve the information, which is returned as JSON-objects [18]. The
ontology which is being used in this project is an annotated test-ontology
based on Oljedirekoratet’s NPD 3 factpages [16]. This ontology contains 213
concepts, 736 relations and 962 attributes. Together these groups sum up
to 1911 searchable objects from the ontology.

7.2 Implementation

The ontology matching in OptiqueNLQF is called from the preceding string
analysis part every time a phrase is located. A phrase is passed to the
ontology matching class, and it returns a list of the three objects from the
ontology that is most similar to the phrase. With there being so many
objects in the ontology, and many of them having similar names, or parts
of the name being identical, we have to return the N-best findings. The fact
that we use three is just a starting point, and further testing to find out if
there should be more or less returned matches is recommended. Changing
this will, however, be an uncomplicated procedure.

All the phrases from the string analysis is compared with all the objects
from the ontology. All return its 3-best list, no matter how good or bad

1http://www.w3.org/2001/sw/wiki/OWL
2 http://fact-pages.fluidops.net/resource/VisualQueryFormulation
3http://factpages.npd.no/factpages/Default.aspx?culture=no

40

they are scored by the system. We do not yet know which set of phrases
form the lowest scoring combination of ontology objects, and even though
one phrase gets a high score it can still be a part of the lowest scoring set.
Fig. 7.2 shows the difference in operations done by the ontology matching
part based on which method was used in the string analysis part. Given
our example input sentence “Fields operated by Statoil Petroleum AS” and
the phrases generated by the two different implementations in the string
analysis step we can calculate how many operations the ontology matching
have to perform. From the parse-tree method there was 10 distinct phrases
passed on, which results in:

10∗1911 = 19110 operations.

This is easy for a computer to handle, and it is done quickly. Using the
substring method for the string analysis task the number of phrases is more
than doubled, and is now 21, which results in:

21∗1911 = 40131 operations.

This is also handled very quickly by a computer, but as we mentioned in
the last chapter, the number of phrases passed on by the substring method
has a noticeably higher growth than the parse-tree method, especially when
the sentence gets longer. In the introduction chapter we presented a user
example question Ref. 1.3, retrieved through the Optique user testing,
which contains two sentences, each containing respectively 33 and 18
words. That is if we presume that the system separate the input strings
when getting to a period. (The parse-tree method does this automatically
and it is easy implemented into the substring method.) The parse-tree
method will in this case generate a maximum of:

((2∗18)−1)+ ((2∗33)−1) = 35+65 = 100 phrases

⇓
100∗1911 = 191100 operations.

This is 10 times the number of operations compared to the other example,
this is not a dramatic increase in operations considering the word count
increased from 6 to 41. The substring method on the other hand will
generate:

(
(18∗ (18+1))

2
)+ (

(33∗ (33+1))

2
) = 171+561 = 732 phrases

⇓
732∗1911 = 1398852 operations.

The difference in numbers of operations is evident, the substring method
has to do more than 7 times the operations of the parse-tree method.
The substring method also has to do 35 times the number of operations
compared to the previous example, it increases much more than the parse-
tree method. This example is however, for now, of the unlikely kind and
handling these words would probably cause more harm than good at this
stage.

41

7.2.1 String matching

Calculating the similarity of a phrase and of a name of an ontology object
is done using the edit distance 4 of the two strings, or more precisely,
calculating their Levenshtein distance [11, p. 53–55]. This is a method of
comparing two strings using three operations i) inserting a character ii)
removing a character, and iii) replacing a character by another character.
Each of these operations has a cost of 1, and the Levenshtein distance
between two strings is the total number of operations that have to be done
on the strings before they are equal. When our phrase “Fields” from the
example sentence is compared with the concept name “Field”, it will get the
Levenshtein distance of 1. The top three lowest scoring ontology objects for
“Fields” is:

1. “Field” - concept - 1.0

2. “Well” - concept - 4.0

3. “FieldArea” - concept - 4.0

“Fields” has the score 1 since the only operation needed is to remove the
“s” in the end of the input phrase “Fields”. “Well” gets a score of 4.0 since
the first letter “F” is removed, the second letter “i” is replaced with a “W”
and the final letter “d” is replaced with an “l”. “FieldArea” also has en
Levenshtein distance of 4.0, the final “s” in “Fields” is replaced with an “A”,
and the three last letter is added, to get “FieldArea”.

In the example above with the three matches for “Fields” the only object
type that was returned was concepts, and the sentence “Fields operated
by Statoil Petroleum AS” does not contain all ontology object types. We
will therefor look at another example sentence: “Current field operators
of Ekofisk”. The produced sub-phrases and scores from this sentence can
be seen in Tab. 7.1. As we can see from the table each phrase, in bold, is
followed by its three most similar objects from the ontology. In column
one, below the phrase itself, is the string that the given phrase was matched
with. Note that the objects of the type attribute do not have their matched
string in column one, but what type of attribute was found, for example
name. In column two is the Levenshtein distance between the phrase and
its matched string. Only attributes and relations have something in column
three, here they have what concept the ontology object is related to. Only
relations have something in column four, this is the concept that is related
to the concept that is listed in column three. In column five is the object
type of each finding: concept, relation or attribute. Some of the relations is
marked with a ˆ at the beginning of its name, this represents that it is an
inverse relation. “operator” is the only phrase that has a concept, relation
and an attribute in its top three list, but it had a string similarity of 4.0
with both the relation “wellOperator” and an attribute “facilityType”, and
it is likely that there are several other objects that has a string similarity of
4.0 with “operator”. It is interesting to observe the phrases “field operator”,

4http://en.wikipedia.org/wiki/Edit_distance

42

Current
Agent 4.0 Concept
Survey 4.0 Concept

Quadrant 4.0 Concept
Current field

currentFieldOwner 6.0 Field ProductionLicence Relation
ˆcurrentFieldOwner 7.0 ProductionLicence Field Relation

wellboreType 8.0 InitialWellbore Attribute
Current field operator

currentFieldOperator 2.0 Field Company Relation
ˆcurrentFieldOperator 3.0 Agent Field Relation
ˆcurrentFieldOperator 3.0 Company Field Relation

Current field operator of
currentFieldOperator 5.0 Field Company Relation

ˆcurrentFieldOperator 6.0 Agent Field Relation
ˆcurrentFieldOperator 6.0 Company Field Relation

Current field operator of Ekofisk
currentFieldOperator 13.0 Field Company Relation

ˆcurrentFieldOperator 14.0 Agent Field Relation
ˆcurrentFieldOperator 14.0 Company Field Relation

field
Field 0.0 Concept
Well 3.0 Concept
Oil 3.0 Concept

field operator
fieldOperator 1.0 Agent Company Relation
FieldOperator 1.0 Concept
fieldOperator 1.0 FieldOperator Company Relation

field operator of
fieldOperator 4.0 Agent Company Relation
FieldOperator 4.0 Concept
fieldOperator 4.0 FieldOperator Company Relation

field operator of Ekofisk
fieldOperator 12.0 Agent Company Relation
FieldOperator 12.0 Concept
fieldOperator 12.0 FieldOperator Company Relation

operator
Operator 0.0 Concept

wellOperator 4.0 DevelopmentWellbore Company Relation
facilityType 4.0 FixedFacility Attribute

operator of
Operator 3.0 Concept

operatorForField 6.0 FieldOperator Field Relation
operatorForField 6.0 Operator Field Relation

operator of Ekofisk
operatorForField 9.0 Agent Field Relation

operatorForLicence 9.0 Agent ProductionLicence Relation
operatorForField 9.0 FieldOperator Field Relation

of
reservesResourceClass 1.0 DiscoveryReserve Attribute
reservesResourceClass 1.0 DiscoveryReserve Attribute

mudType 1.0 WellboreDrillingMudSample Attribute
of Ekofisk

name 5.0 Pipeline Attribute
name 5.0 OilGasPipeline Attribute
name 5.0 CondensatePipeline Attribute

Ekofisk
name 0.0 FieldReserve Attribute
name 0.0 Field Attribute
name 0.0 Reserve Attribute

Table 7.1: Results of string matching on “Current field operators of
Ekofisk”.

43

“current” and “Ekofisk”. All three have an equal string similarity for all their
top three matches, and again there are most likely other objects that might
just as well be in the list. This also illuminate another problem: which
one is the correct one? As for “Ekofisk”, it is a name for both a “field”,
“FieldReserve” and a “Reserve”. “Current” has Levenshtein distance of 4.0
with “Agent”, “Survey” and “Quadrant”, and these concepts represent very
different things. Resolving this problem will be discussed in the next two
chapters, the interpretation ranking chapter and the query graph ranking
chapter.

7.3 Other functionality

The edit distance calculation can be changed in several ways to improve
the matching. The method can handle the input string as it is, it will
then separate between capital and lower-case letters, even if they are the
same letter like “f” and “F”. Or the method can make all strings into lower
case letters (or upper case, as one prefers). This can possibly make a
difference in what objects are chosen for each phrase. All concepts in the
ontology begins with a capital letter and all relations begin with lower-
case letters. Attributes are a little of both, where names always start
with a capital letter, but types and data types often begin with lower-case
letters. This can cause difficulties for instance since starting a sentence
with a capital letter must still be assumed to be common amongst future
users. For our project we have implemented an ignorecase() option, an
easy way to switch between these two functionalities, and this will be tested
and evaluated on the test-set questions. Let it be noted that the findings
in Tab. 7.1 are retrieved with the ignorcase() activated. Another way to
possibly improve the edit distance is to make it sensible to the camel cased 5

relation names. “current field operator” gets an edit distance of 2.0 to the
relation “currentFieldOperator” in Tab. 7.1, and it would even get a score of
4.0 if the ignorecase() was inactive. This is problematic since it obviously
is the correct ontology object, and it should get the lowest score possible.
One way of handling this is to recognize a capital letter in the middle of the
name of the ontology object. When this occurs we make the letter lower
case and add a space before calculating the edit distance. A function for
handling such an operation is not implemented in the system since it was
not considered an immediate issue. It is however important to keep these
matters in mind if the system is to be improved further.

7.3.1 Levenshtein distance variation

The Levenshtein distance’s third operation option, iii) replacing a character
by another character, may in some cases cause another object than the one
intended to be retrieved. This because the replace action can be seen as the
same as the two other Levenshtein rules combined: remove one character
and insert another. One way of dealing with this problem is if the replace

5http://en.wikipedia.org/wiki/CamelCase

44

Levenshtein distance with replace
1. “field” - “well” 3.0
2. “field” - “fieldArea” 4.0
Levenshtein distance without replace
1. “field” - “fieldArea” 4.0
2. “field” - “well” 5.0

Table 7.2: Results for Levenshtein distance with and without replace.

operation will have a scoring penalty of 2, instead of 1, or just remove the
possibility of using the replace rule completely. If we look at the word
“field” and it’s matching results with the words “well” and “fieldArea” we
will see the difference in the two methods, shown in Tab. 7.2. Using the
regular Levenshtein distance method “well” will get a score of 3.0, after the
operations remove “f”, replace “i” with “w” and replace “d” with an “i”. The
word “fieldArea” will get a score of 4.0, after adding the last four letter to
the original word. Using the alternative Levenshtein distance method, the
same words would be in opposite order. “FieldArea” will still score 4.0 after
adding the four letter, but “well” will now score 5.0. Now the method has
to remove the “f” and the “i”, and add the “w”, remove the “d” and add the
final “l”. In this example the two concepts switch places, and this can have
great impact on the final generated query.

7.3.2 Stopwords

One thing that can cause problems in the upcoming stages of the system
is occurrences of words that don’t have any special meaning for the
sentence, and don’t provide any information on its own. These words are
called “stopwords” [7, p. 806], and there are two main ways of handling
them; keep them, or remove them. If we look at Table. 7.1 the phrase
“of” has a string similarity 1.0 with three attributes, and most likely
many more. Given the sentence “Current field operators of Ekofisk” the
“reservesResourceClass” of a “DiscoveryReserve”, or the “mudType” of a
“WellboreDrillingMudSample” will most likely be completely irrelevant for
the query’s meaning and for the information the user needs to retrieve.
By removing the stopwords we are removing possibly irrelevant phrases,
thereby decreasing the number of operations needed to perform. If the
stopwords are useful it is most likely in combination with other words, by
creating a phrase and matching it with a relation in the ontology. We have
therefor implemented a removeStopwords-method which can be activated
after the phrases are identified, to enable the opportunity to perform test
runs on the system both with and without stopwords.

7.4 Further work

There are many ways of improving this part of the system. The Levenshtein
method is one way of handling string similarity, and we have already gone

45

over some aspects of the method that can be changed. The camel case action
is a step towards better matches for phrases similar to relation names.
There are many other ways of handling the string matching. There are
alternatives to the Levenshtein distance, for instance a string matching
automata [8] 6. The automata will use the letters in the ontology object
names as the automata’s alphabet and run the phrases located in the string
analysis part as the finite input string. To implement another method for
string analysis would be interesting, as we are always searching for ways to
make improvements.

6 http://en.wikipedia.org/wiki/Automata_theory

46

Chapter 8

Interpretation ranking

8.1 Introduction

Interpretation ranking is the third main part of OptiqueNLQF. After the
phrases are extracted from the user’s input sentence and these phrases are
matched with objects from the ontology, a ranking algorithm is executed
to get the lowest scored ontology objects. The goal for this algorithm is
to find the combination of ontology objects which together form the initial
input sentence with the lowest combined score. This is where the filtering
of objects begins and removing redundant objects that might have been
selected at an earlier stage, and we are now at the start of locating the
objects that together will form our final query.

String
analysis

Ontology
matching

Inter-
pretation
ranking

Query graph
ranking

Query
generation

Figure 8.1: System architecture overview: Interpretation ranking

8.2 Implementation

This part of the system is highly based on the string analysis part, and the
way we chose to represent the phrases in the previous parts will be put
to good use at this stage. Since we have two different ways of handling
the string analysis, there are also two ways of handling the interpretation
ranking of the phrases. The ranking methods are however quite similar,
and are built using the same general idea: matching one node to its children
and passing on the one with the lowest combined score. The methods also
return the same type of data structure in the end, making it easy to switch

47

from one to the other. Also, notice that in isolation both methods in use
produce the same result given that the similar, lowest scored phrases are
retrieved for the two methods.

8.2.1 Tree method

Algorithm 1 Recursive tree algorithm
1: procedure TREERANK(Par se)
2: Ar r ayLi st values ← quer y.g etV alues(Par se)
3: valueM ap.put (Par se, values)
4: Ar r ayLi st bestLi st
5: chi l dr enScor e ← 0
6: if Par se.g etC hi l dCount () == 0 then
7: Ar r ayLi st temp ← valueM ap.g et (Par se)
8: return new Combi ned(valueM ap.g et (Par se).g etScor e(), temp)

9: for Par se chi ld : Par se.g etC hi l dr en do
10: Combi ned temp ← TREERANK(chi l d)
11: chi l dr enScor e+= temp.g etV alue()
12: bestLi st ← temp.g etOb j ect s()

13: if chi l dr enScor e ≤ valueM ap.g et (Par se) then
14: return new Combi ned(chi l dr enScor e,bestLi st)
15: else
16: Ar r ayLi st temp ← valueM ap.g et (Par se)
17: return new Combi ned(valueM ap.g et (Par se).g etScor e(), temp)

When the system runs the parse-tree method the objects are ranked
by a recursive method that calls on the children of each node, starting at
the head of the parse tree. The algorithm implemented in OptiqueNLQF is
shown in pseudocode in Alg. 1. The argument of the treeRank() method
is called Parse. In this context Parse comes from the OpenNLP library
and is a data structure containing information about a sentence that has
been parsed using the OpenNLP toolkit. This data structure contains
several built-in methods which have been implemented in the system.
The treeRank algorithm uses two: getChildCount() returns the number of
children connected to a node; while getChildren() returns a list of the nodes’
children. Combined is a data structure we have created for keeping track of
the score of the objects, as well as a list of the objects. This is also the data
structure used for keeping track of the selected objects from here on out
in the system. There are also some other methods we have created that is
seen in the pseudocode, getValue() and getObjects(), the function of which
is respectively retrieving the scores and objects connected to the Parse. As
the method runs it uses the data stored in the valueMap which can also
be seen in the pseudocode. We find the call to the string matching part of
the system (query.getValues()) described in the previous chapter in the first
two lines of the pseudocode, and this is why an arrow pointing back to the
ontology matching is added to the system architecture overview in Fig. 8.1.

48

Current=4 field=0 operator=0 of=1 Ekofisk=1

Figure 8.2: The bottom line of the pyramid.

The algorithm for the treeRank() method works by starting with an if-
test to see if the current node is one of the leaf nodes by checking if its child
count is nil, Alg. 1[line 6]. If it is one of the leaf nodes the method returns
a Combined object, Alg. 1[line 8], with the score and ontology object of the
current node, to be added with the other siblings of the current node, if
there are any. If the node is not a leaf node the algorithm continues to the
for-loop and recursively calls the method, treeRank(), Alg. 1[line 10], on
the current node’s children. After the node have retrieved the scores and
objects of its children it returns itself or the combination of its children to
the parent node of the current node. When there is no parent node to return
to the algorithm is complete. Then the top node, the one we started with,
returns the combination, the Combined object, of the set of phrases which
have the lowest combined score. The algorithm works its way down to the
leaf nodes of the tree, and when it reaches the end, it goes back up again,
combining the children of each node and continuously selects the nodes
with the lowest scores.

8.2.2 Pyramid

The substring method from the string analysis part is built like a pyramid,
and its phrases are ranked using the idea of the pyramid’s composition.
The idea behind the pyramid algorithm is that we start by looking at the
scores of the bottom of the pyramid. These are the phrases containing every
individual word, except now it is not the phrase, but a list of the N-best
objects which matched the phrase, and the edit distance of these objects.
From the sentence “Current field operator of Ekofisk” the bottom line will
contain what is shown in Fig. 8.2. Note that this is a simplification of what
it would look like, we only show the best result from each phrase and the
objects are represented by their original phrase, not the retrieved ontology
object. Calculating the scores for the first line is trivial, it can only contain
the score of which the single word by itself is assigned.

The second line of the pyramid is calculated by checking the phrases
located in the second line of the pyramid, all substrings containing two
of the words from the sentence: “Current field”, “field operator”, ... ,“of
Ekofisk”, and the combination of this phrase’s children. The children of
the second line nodes are the node below and the node below and to the
right. “Current field” will have “Current” and “field” as its children, and it
is the combination of these two that will be compared to “Current field”.
This is represented in Fig. 8.3, each second line node will be compared
with the combinations of the nodes whose arrows are directed at it. In
our example, none of the two-word phrase scores are lower than any of

49

Current
field=6

field
operator=1

operator
of=3 of Ekofisk=5

Current=4 field=0 operator=0 of=1 Ekofisk=1

Figure 8.3: Calculation the second line scores of the pyramid.

Current
+ field=4

field +
operator=0

operator
+ of=1

of +
Ekofisk=2

Figure 8.4: The second line of the pyramid.

the combinations of one-word phrases and therefore the second line will
contain the combination of the first line’s one-word phrases. Fig. 8.4 shows
how the second line are represented.

The third line is slightly more complicated, because we do not combine
the two nodes below the node we are currently in, but all combinations of
the nodes building up to the sub-pyramid that has the third line node as
its head. This means that when we are in the third row of the pyramid, we
combine the node in the first row with the node below and to the right in
the second row, and the node below in row two with the number three node
to the right in the first row. As we can see from Fig. 8.5, this gives us three
options for every third line node, which in this example would yield:

1. (Current + field) + operator = 4 + 0 = 4

2. Current + (field + operator) = 4 + 0 = 4

Current field
operator=2

Current
+ field=4

field +
operator=0

Current=4 field=0 operator=0

- or -

Current field
operator=2

Current
+ field=4

field +
operator=0

Current=4 field=0 operator=0

Figure 8.5: Calculation of line three in the pyramid.

50

3. Current field operator = 2

Algorithm 2 Pyramid algorithm
1: procedure PYRAMID(tokens)
2: i ← tokens.leng th −1
3: j ← 0
4: for i ≥ 0 do
5: for j ≤ tokens.leng th do
6: if pyr ami d [i][j] 6= null then
7: cur r ent ← pyr ami d [i][j]
8: k ← i
9: for k ≤ j do

10: r i g ht ← pyr ami d [i][k]
11: l e f t ← pyr ami d [k +1][j]
12: if r i g ht + le f t < cur r ent then
13: pyr ami d [i][j] ← r i g ht + le f t

14: k ← k +1

15: j ← j +1

16: i ← i −1

In this isolated sub-pyramid it’s the third row node “Current field
operator” that has the lowest score. From here on and throughout the
pyramid the nodes are calculated by matching the possible combinations of
the sub-pyramid the given node is the head of, following the same pattern
as described. This means that the first fourth line nodes will have to check
the combinations: first row first node and third row second node, second
row first node and second row third node, third row first node and first row
forth node, and finally itself. The pseudo code of how this is implemented
in the system is presented in Alg. 2. When the loop is completed, the head
node of the pyramid, containing the final objects, is returned and used as
the input in the final part of the system.

Using the pyramid as the data structure is a sensible way of representing
data that builds something together from smaller to bigger pieces, like in
our case words that form phrases and eventually form a sentence. Our
pyramid method and the algorithm for calculating the pyramid is greatly
inspired by the CYK-algorithm 1 [7, p. 469–477]. This is a widely used
parsing algorithm for context-free grammars, and it is a bottom-up parsing
and dynamic programming algorithm. The CYK-algorithm is also very
effective, and so is our pyramid algorithm. The pyramid algorithm has
a complexity of O(n3), where n is the number of words in the sentence,
this is manageable given our short sentences and is handled easily by the
computer.

1http://en.wikipedia.org/wiki/CYK_algorithm

51

8.3 Possible changes / further work

In this part of the system what needs to be done is fairly straightforward and
the actions are very dependent on what is done in the two previous parts.
The data structure is based on past choices, and the biggest issue has been
to decide how to design the algorithm concerning how the data should be
properly traversed. Regarding the conceptual algorithmic choices there are,
compared to the other system parts, not many pressing changes that need
to be dealt with. Both the methods in use are fast and equally correct and
do the job they are supposed to do. There are of course, as always, things
that can be improved and the interpretation ranking part of the system is
far from being complete.

52

Chapter 9

Query graph ranking

9.1 Introduction

The fourth part of OptiqueNLQF is the query graph ranking. This is where
the final selection of objects take place, and this part communicates its
returned values to the final part of this system, the query generator. In the
previous system part we ranked the ontology objects by comparing their
edit distance and selected the N-best object combinations for the sentence.
Now we are interested in the objects’ relation to each other in the ontology.
We also further want to separate the irrelevant objects.

String
analysis

Ontology
matching

Interpretation
ranking

Query
graph

ranking

Ontology

Query
generation

Figure 9.1: System architecture overview: Query graph ranking.

9.2 Implementation

The graph rank receives a Combined data structure from the interpretation
rank. Combined contains three combinations of objects where each
combination represents the user’s input question. The content of the
Combined data structure is illustrated in Tab. 9.1. Here we can see the
three sentences, phrase by phrase, followed by the concept the phrase is

53

1 Current field operator of Ekofisk
Field Reserve FieldReserve
Company reservesResourceClass name
currentfieldOperator null null
2.0 1.0 0.0

2 Current field operator of Ekofisk
Agent Reserve Field
Field reservesResourceClass name
ˆcurrentfieldOperator null null
3.0 1.0 0.0

3 Current field operator of Ekofisk
Company Reserve Reserve
Field reservesResourceClass name
ˆcurrentfieldOperator null null
3.0 1.0 0.0

Table 9.1: Query generation input.

related to, the attribute type or the concepts relation target, the name of
the relation and finally the phrase’s edit distance to its retrieved ontology
object. The column will contain “null” if the object type does not contain
some of this information. As we can see the three combinations of objects
are fairly similar, which is normal, because the phrases with the lowest
scores often are repeated in different places in the ontology, often with
similar names. There are relations with the same name or facets, typically
names, which are represented in multiple concepts, like “Statoil Petroleum
AS” being both a Company name and an Agent name, like FieldLicensee
and TUFacility. Also words like “operator” and “facility” are parts of many
different concepts. It would not have been necessary to have the N-
best phrase combinations as input if the system only used the best one.
Therefore we once again make use of the ontology, illustrated in Fig. 10.1,
and employ how the different concepts are related [5] to each other in order
to get a final opportunity to determine which objects to use. By doing this
we can locate the ontology objects which is connected to each other in the
graph. This works as the final sentence disambiguation when objects with
no connection to the other objects will be removed.

9.2.1 Concept neighbors

To be able to select the correct objects at this stage we take another factor
into account: in addition to the string similarity score of the input phrases’
edit distance to the ontology object names. We are now also interested in
how the potential objects are related to each other, or more precisely, how
close an object is to the other objects in the graph, which is our ontology.
Doing this is complicated and we have to figure out how to scale these two
measurements against each other. One way to handle the scaling is to find
out how close the objects that represent the different parts of the sentence

54

1 Statoil Petroleum AS Current field operator
Agent Field
name Company
null currentfieldOperator
0.0 2.0

2 Statoil Petroleum AS Current field operator
Company Agent
name Field
null ˆcurrentfieldOperator
0.0 3.0

3 Statoil Petroleum AS Current field operator
Company Company
shortName Field
null ˆcurrentfieldOperator
0.0 3.0

Table 9.2: Example input.

are to the objects representing the other parts of the sentence and score
each part with a number according to how many edges it is between each
object an its closest neighbor. We will then have one score ranking the
objects by edit distance and one ranking their relevance through similarity
in the graph, and finally put weights on the two measurements and then
calculate which objects best represent the initial input sentence. This idea
is still under development and is not yet implemented in the system. There
is, however, implemented a simplification of this neighbor-theory as a
temporary solution in the graph ranking. Here the idea is to check if the
second object is a neighbor of the first object in the first answer set. If it is,
we add it to the query generator, if not, we check the object in the second
set to see if the object related to the same phrase here are closer to the first
object than the second object in the first answer set. If it is we add this to
the query generator, if not we carry on and check all the N objects in the M
answer sets until we have the N objects that is the closest according to the
ontology graph. This method makes the dangerous assumption that all the
objects in the M answer sets are equally correct, and that the closest one is
the correct one, no matter what. This is one of the reasons for having such
a small answer set, just 3 combinations of objects, so that the edit distance
of all the objects is fairly similar.

In Fig. 9.2 is a simplified sketch of how the retrieved ontology objects
can be represented in the ontology graph. In this example the circles
represent concepts, the squares represent attributes and the lines represent
relations. The part in red represents the objects that have been retrieved
by the system, “Atr1”, “Atr.2” and operator. In this example the system
has retrieved two attributes, the one in the top of the graph, “Atr2” and
the one in the bottom of the graph, “Atr1”. The system has also retrieved
the relation operator, where three different findings for the same phrase
are represented in the graph, as relations connected to concept A. Without

55

B

F

G

Atr.2

EAts.3 A

Atr.1

C

Ats.4

D

operator oper
at

or

operator

Figure 9.2: Example of shortest path in graph.

56

Company

Agent

Field

Figure 9.3: selection of the ontology represented as a graph.

looking at how the nodes are connected in the ontology it would have been
arbitrary which one of the three operator relations that would have been
chosen. However, with the knowledge of what nodes each node is related
to we can conclude that the operator relation to the right, relating A to D,
most likely is irrelevant since it is impossible to connect B with the other
attribute retrieved, “Atr.2”. By counting how many steps there are between
the retrieved nodes we can see that by taking the path up and left from A,
through B to F where the dotted line is drawn, we get the shortest path
between the retrieved nodes, which also is a connected graph. This way
of using the ontology to create a graph employing our retrieved ontology
objects and adding the concepts from the ontology which creates a complete
subgraph is inspired by the SINA [15]-system.

Assume the input sentence “where is Statoil petroleum AS current field
operator”. If we remove stopwords and the system runs the substring
method, the input for the query generator is as shown in Tab. 9.2. The
problem in this example is that the first object found for “Statoil Petroleum
AS” is a facet related to the concept “Agent”, whereas the facet we are
interested in, in this specific case, is “Company”. In this example the
method for getting the nearest neighbors from the top of each column
will solve our problem. From Fig. 9.3 we can see an estimation of how
the ontology graph looks for the mentioned concepts. Agent has another
concept linking it with Field, and Company has a direct link with Field.
I have left out the relation names as they are irrelevant for this example,
there are also several relations between Field and Company. In a case like
this our system would note that Agent and Field have one node separating
them, and move on to the next possibility which is Company and Field. As
it is shown these concepts are neighbors and the system will select these
objects since they are the ones with the highest ranking and all objects

57

are neighbors, so there is no point in moving on. It will send an attribute
object with a name type and a relation object between the concepts Field
and Company to the query generator.

9.3 Future work

As mentioned earlier the neighbor method needs to weight the edit distance
and how many steps one node is from the other. The current method is
naive and rests on the assumption that the closest of the neighbors always
is the correct one. There are also the case of several nodes with more than
one connection, and the graph is much more complicated, and it is a lot
more relations, than the previous figures show. This implies that it often
will occur that all the concepts chosen have the same connection distance,
and counting the distance won’t give much additional information. It is
in fact the case that there seems to be some central nodes, Field, Facility,
Company and Operator, that connects with many nodes, and have a lot of
connections between each other. Because of this the connect distance will
rarely be more than two, and most often one.

To improve the query graph ranker it is imperative that we implement
the previous described idea. Because the naive current implementation is
unsound, and will easily fail to select the correct ontology objects.

58

Chapter 10

Query Generation

10.1 Overview

The fifth and final part of the OptiqueNLQF system is the query generation.
This is where all the information retrieved in earlier stages is transformed
into a formal database query. The query generation’s input is the Combined
data structure introduced in the previous system part. At this stage we
facilitate the generation of the query in the correct manner. OptiqueNLQF
has run its course when the query is generated, but it will communicate
with the Optique back-end and execute the query using the already existing
software.

String
analysis

Ontology
matching

Interpretation
ranking

Query graph
ranking

Query
generation

Results

Figure 10.1: System architecture overview: Query generation.

10.1.1 Query language

The query language currently supported by OptiqueNLQF is SPARQL 1. The
goal for the system is to implement a query visitor [3] and give the user the
opportunity to select between several query languages, like the Structured
Query Language (SQL), JSON and SPARQL. This had to be postponed
due to lack of time and a SPARQL query generator was implemented,
mostly because this is the query language we were most familiar with. The

1http://en.wikipedia.org/wiki/SPARQL

59

Statoil Petroleum AS Current field operator
Company Field
name Company
null currentfieldOperator
0.0 2.0

Table 10.1: Example input.

OptiqueVQS system uses JSON queries2, but it can also execute SPARQL
queries. In fact, it translates every information request into SPARQL and
gives the user the option to see the information request represented as a
SPARQL query before the identical JSON query is executed on the system.

10.2 Design choices / Implementation

The objective for the query generator is implementing a generic generator
that handles the objects inputted and generates the final query as a string.
The idea behind our implementation is to identify what type of ontology
objects we are dealing with as they are traversed and use a series of tests
to handle the various object types and generate the query in the correct
SPARQL notation.

10.2.1 Writing the query

At this stage in the workflow of the system all the results have been selected
and it is just writing the query that remains. We operate with a set
of connected objects and the main difficulty here is to make a generic
method that will create the correct triple from the given objects. The
query generation part of the system does not contain the most complex
algorithms or complicated programming parts, but there are still a lot to
calculate and a lot that must be taken into account when generating the
SPARQL query. In our current implementation we first check what type
of ontology object the current ontology object is, this is determined by
looking at the data structure Combined. If row three contains something
(see Tab. 10.1) we know the object is a relation. If the third column is
null, but the second one contains something we know it is an attribute,
and if none of the above checks out the ontology object is a concept. From
this we want to generate triples where we have a subject, a predicate and
an object. We also need to keep track of different variables and literals,
for which we have declared two counters, literal (?l{literal counter}) and
variable (?v{variable counter}). When a concept object is encountered we
generate a triple where the ?{variable number} is the subject, ns1:type, or
simply an a, is the predicate and a concept uri is the object. “Company” will
generate the following triple:

?v1 a http : //sws.ifi.uio.no/vocab/npd−v2#Company .

2http://www.jsoniq.org/

60

?v1 ns1 : typehttp : //sws.ifi.uio.no/vocab/npd−v2#Company .

The two triples above will be handles as identical triples. We keep a track
of the concept name and variable number, since it will occur later and
we need to combine it with additional information, and we increment the
variable counter. When the ontology object input is a relation we have to
read the concept, the concept target and the relation name. Unless one
of the concepts is already in use, this will generate three lines of SPARQL
code. The first two lines will be generated with the same structure as the
concept object. The relation will be written as the predicate between the
two concepts, which will be represented by its appointed variables. The
relation current field operator will generate the following triples:

?v1 a http : //sws.ifi.uio.no/vocab/npd−v2#Field .

?v2 a http : //sws.ifi.uio.no/vocab/npd−v2#Company .

?v1 http : //sws.ifi.uio.no/vocab/npd−v2#currentFieldOperator ?v2 .

Note that the variable counter is increased to two after the first concept.
The third object type is attributes, and these are a little more complicated
than the other two. With attributes we have to connect a type to a concept
and add a filter at the end of the query. To do this we use the attribute type
to write the filter correctly. If the attribute is of the type string we add a
filter function called regex (regular expression) and uses the string found
in the ontology as its argument. The system is not complete at this area
and handles other facet types, like numbers or intervals, poorly. Given the
ontology facet object “Statoil Petroleum AS” the system would generate the
following SPARQL triples:

?v1 a http : //sws.ifi.uio.no/vocab/npd−v2#Company .

?v1 http : //sws.ifi.uio.no/vocab/npd−v2#name ?v1 .

Filter(regex(?v1,“Statoil Petroleum AS′′))

The triple with the filter is added to a queryFilter() method and will be
written last in the SPARQL query. If there are more than one attribute
object there will be added more filters, the literal counter then works in the
same way as the variable counter. Using these rules the input information
request “where are Statoil Petroleum AS the current field operator?” the
following SPARQL query will be generated:

61

PREFIX ns1:
<http://www.w3.org/1999/02/22-rdf-syntax-ns\#>

PREFIX ns2: <http://sws.ifi.uio.no/vocab/npd-v2\#>
SELECT DISTINCT *
WHERE {
?v1 ns1:type ns2:http://sws.ifi.uio.no/vocab/npd-v2\

#Field .
?v2 ns1:type ns2:http://sws.ifi.uio.no/vocab/npd-v2\

#Company .
?v1 ns2:http://sws.ifi.uio.no/vocab/npd-v2\

#currentFieldOperator ?v2 .
?v2 ns2:http://sws.ifi.uio.no/vocab/npd-v2\#name ?l1.
Filter(regex (?l1, ‘‘Statoil Petroleum AS’’))
}

Listing 10.1: SPARQL query

The “SELECT”, “WHERE” and the curly brackets are added before
and after the triples are automatically added in the start and at the end.
For now the query is always written with the “DISTINCT” modifier and
a *, the star meaning “select everything from the following”. The prefix
<http://sws.ifi.uio.no/vocab/npd-v2#> used is from the OptiqueVQS 3

and represents all the ontology objects. The other prefix PREFIX ns1:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> is the standard RDF
syntax for SPARQL queries.

10.3 Further work

This particular part of the system needs a lot of changes to be able
to generate a larger variety of queries. A necessary improvement is
adding the possibility to filter on attribute types other than strings. The
“FILTER (regex (?l{literal number} “attribute name”))” is, as of now, the
only supported alternative. The scope of the system’s capability would
greatly increase if OptiqueNLQF was able to formulate queries given an
information request like:

Fields with remaining oil more than 100 Million m3.

Transportation and Utilization Facilities valid from 4−5/2015.

The first information request requires the system to possess the ability to
recognize values and value types, which in this case is “100 million” and
“cubic meters” (m3). The system also has to identify textual representations
of numbers (in this case “million”) and calculate this according to any
possible numeric number in the input. The first example would return 100
000 000 (one hundred million). This number is then used as a filter in the
query with the corresponding measurement, in this case cubic meters (m3).

3 http://fact-pages.fluidops.net/resource/VisualQueryFormulation

62

The system also has to observe the adjective “more” to add a greater than
(≥) attribute to the SPARQL filter. We also have to connect the filter literal
to the correct concept, in this case RemainingOil. The second example
sentence listed above contains a date which is a common datatype property
in the ontology. handling dates is complicated since the phrase containing
the date can return, practically, any concept from the ontology which has
a date attribute. To handle cases where the input phrase contains a date,
we have to implement a method for checking if any of the selected concepts
have a date as its attribute type. Then it will have to formulate a SPARQL
filter containing the date, accordingly.

63

64

Chapter 11

Evaluation

11.1 Testing

Even though OptiqueNLQF is far from finished and this is only an initial
prototype, the system needs some sort of evaluation to test its potential
and its limitations. Hopefully the evaluation will unravel the system’s most
pressing needs for improvement and shed light on the system’s flaws. Since
it is so early in the project, and the system is unable to handle a wide
enough variety of sentences, the testing will be performed on a test set
developed by us. The purpose of the testing will be to test the system’s limits
and therefore the test set will contain example sentences in increasing
complexity and varying in sentence length and word order. The test results
will also be evaluated in a more lenient way, and the system will be judged
by its ability to generate sensible SPARQL queries, and not what results are
retrieved by the Optique back-end system. The system will run the tests
with the parse method and the substring method, with both the stopwords
action and the case sensitivity activated and deactivated. The system will
also be tested on how fast all the queries are generated. The tests will
primarily be executed on the NPD annotated ontology we have used during
the development of OptiqueNLQF. We will also perform some tests on
another ontology called Northwind 1. This ontology is also developed as
a part of the Optique project, but unlike the NPD ontology describing the
Norwegian Petroleum Directorate, Northwind describes the database of
a company. We want to test our system on another ontology to test the
system’s ability to work on a new domain, and see if it occurs any problems
when switching to an unknown ontology.

11.1.1 Test data

The data used in the following tests from the NPD ontology 2 will mainly
consist of the concepts: Company, Field, Wellbore, Facility and Oper-
ator. These concepts have many relations. We will primarily employ
currentFieldOperator, developmentWellboreForLicence, drillingOperat-

1 optique-northwind.fluidops.net/
2http://sws.ifi.uio.no/project/npd-v2/

65

orCompany and pipelineOperator, other relations will occur, these are re-
lations between the concepts earlier listed. The most frequent attributes
are “Statoil Petroleum AS” and “JACKET 4 LEGS”, these are a company
and a facility type respectively. The reason for using these is because they
are the most frequent in the database and will therefore yield results for the
majority of the information requests.

11.1.2 Test set

To achieve a broad evaluation and produce a sort of measuring scale for the
sentence complexity we generate increasingly harder sentences, starting at
a simple concept name, increasing until the system’s starts failing. The
system also generates a lot better queries if the input sentence contains
as few other words additional to the words or phrases representing an
ontology object.

Simple test input

The first simple test phrases:

• Fields

• All fields

• Give me all fields

• Return all fields

These phrases practically means the same thing, but will possibly generate
different queries. We will therefore test the system knowing that fewer
words, and words more directed to the ontology, will generate better
queries. After the tests with one concept from the ontology we will increase
the complexity and test two ontology concepts. At this stage there are two
options, the concepts are related in the ontology, and the concepts are not
related. The test phrases with two concepts are:

• Field company

• Field facility

• Company facility

In the first two examples above the concepts are related, but in the third
example they are not. This will test the system’s ability to generate relations
between concepts, and see what happens when two ontology concepts are
located which do not have a relation. The next step is testing how the
system handles the provided relations. Relations are often several words
put together, hence the user needs to formulate the input phrase correctly
according to the ontology. The same applies to the attributes, which in this
case will be counted in the same category as relations. We have generated
the following phrases:

66

• status for field

• Pipeline operator

• Statoil Petroleum AS

These initial examples are the most basic tests we will perform and they will
work as tests to see if the different settings return the same answers given
the most basic input.

Complex test input

Increasing the complexity of the input sentence further involves adding
one ontology object of a different type to any of the above examples. Also
making the input phrase more authentic by adding words and forming a
continuous words sequence. To illustrate this, the following phrases are
constructed:

• Fields operated by Statoil Petroleum AS

• Current field operator of Statoil Petroleum AS

• Fields where the operator is Statoil Petroleum AS

• companies with jacket 4 legs facilities

• Development wellbore for license with Statoil Petroleum AS

• Field where drilling operator company is Statoil Petroleum AS

These six sentences contain concrete ontology objects and some other
words to make the sentences more realistic. These input phrases will test
the systems ability to handle two to three objects, and objects of varying
types. The words in the sentence still match the ontology object names, and
words forming a relation name are put in the order matching the relation
object name.

Technical information

The tests for OptiqueNLQF will be performed on an Asus k55vm notebook 3

with an Intel Core i7 processor, 8GB RAM and an Intel 520 180GB SSD. The
Java version used during the testing is the jre 7 Standard VM, the program
is run using Eclipse Juno 4.

11.2 Result

The results discussed in this section are based on the phrases presented in
Sec.11.1.2, and the phrases’ generated SPARQL queries are located in the
Appendix Chap.13.

3http://www.asus.com/Notebooks_Ultrabooks/K55VM/
4https://eclipse.org/juno/

67

11.2.1 Simple test results

In Tab. 13.1 and Tab. 13.2 we see the results from our initial tests. These
test were run using the parse-tree method and the substring method
respectively. As shown in the tables, the methods gave identical results.
These particular tests are run with the removeStopwords() and ignorecase()
methods deactivated. This however have no impact on these tests and
every setting retrieves the same result. We can nonetheless conclude
that the system will return the correct SPARQL query given a vary basic
input phrase that is matched with the ontology object names. If we direct
our attention to the rightmost column in the earlier mentioned tables we
can see the time use for the query generation. From the data currently
retrieved we can see that the parse-tree results ranges from 6.2 seconds
to 7.6 seconds, while the substring method ranges from 0.7 seconds to 1.6
seconds. For both tests the time is clearly correlating with the word count.
The parse-tree time increases more than the substring time, but as we can
see the substring time more than doubles its time use from the one-word
test to the three-word test. It is too early to draw any conclusion, but the
numbers are clear, nonetheless. Also note that our previous assumption
that the time use of the reading of the language model seems to be fairly
accurate, at least for the time being.

11.2.2 Complex test results

Tab. 13.3 shows the SPARQL query generated from the input phrase “Fields
where the operator is Statoil Petroleum AS”. This is clearly an incorrect
query and we can start of by stating that running the system without the
stopword removal action will generate some wild queries when a complete
sentence is provided. Because of this we see no reason to continue testing
without the stopword removal.

Tab. 13.4 and Tab. 13.5 contains the six phrases presented in the
previous section, SPARQL queries and the systems run time to generate the
query. The tables show the system performance with the parse-tree method
and the substring method respectively. The first three test phrases are:

• Fields operated by Statoil Petroleum AS

• Current field operator of Statoil Petroleum AS

• Fields where the operator is Statoil Petroleum AS

All these phrases have the same basic meaning, and generate very similar
SPARQL queries for both the parse-tree and substring method. The second
phrase is the one generating the most correct query, and this one will
retrieve the correct answers from the Optique system. In the other two
queries the triples concerning the Operator and the operatorForField are
redundant and will cause a “Nothing found” data return. Any of these
phrases will be notably affected by the status of the ignorecase option, the
same queries will be generated regardless of run configuration. The time
use for creating these queries are still in favor of the substring method,

68

although the time difference seems to be decreasing. The time difference
is 4.4 seconds for the first query, and just under 3 seconds for the other
two.

The fourth example phrase “Companies with jacket 4 legs facilities”
generate quite different queries given the different system options. The idea
of this information request is to retrieve all companies that have facilities
of the type JACKET 4 LEGS. As sees in the tables earlier mentioned, as
well as Tab. 13.6, the queries generated are very different. The parse-tree
method define two concepts, Company and Jacket4LegsFacility, while the
substring method define Company and Jacket4LegsFacility, connects the
Jacket4LegsFacility to an attribute “JACKET 4 LEGS”, defines the concept
Facility and relates it to Company through pipieLineOperator. In this
case it is the parse-tree method that creates the correct query, which is
interesting, since it is the substring method that found the lowest scored
phrase combination. The reason for this it that the substring method
located the Company concept, most likely with a edit distance of 0 or 1,
the JACKET 4 LEGS attribute, also with a very low score, and connected
this attribute to Company using the Jacket4LegsFacility concept and the
facilityType relation. Finally it takes the Facility concepts and connects
this to the Company concept with the pipelineOperator relation. This being
the lowest combination of objects is implicit. However, when the parse-
tree method creates its parse tree it does not recognize the “JACKET 4
LEGS” sub-phrase. Therefore it is left with the two concepts: Company and
Jacket4LegsFacility, which is not connected in the ontology, and therefore
no relation is added. This sentence’s generated query executed using the
parse-tree method with activated case sensitivity is presented in Tab. 13.6.
It illustrates some serious flaws with case sensitivity. Because of the parse-
tree method being unable to retrieve the “JACKET 4 LEGS” phrase and
the Jacket4LegsFacility concepts is in lowercase letters the objects retrieved
with the lowest scores are some random attributes and therefore the query
generated is gibberish.

The fourth example sentence supports the assumption that the sub-
string method will find the correct ontology objects, while the parse-tree
method will struggle with relation names containing multiple words. In
this sentence the relation name developmentWellboreForLicence was the
key for generating the correct query, and the parse-tree was unable to loc-
ate this particular sub-phrase. The substring method’s generated query
however works perfectly and is about 2.3 seconds faster. The final input
sentence was supposed to illustrate the same problem, but instead display
another one. The relation drillingOperatorCompany was the key in this ex-
ample. It was not retrieved by any of the system methods, but not because
they were unable to locate it. The reason is in fact that the words by them-
selves acquire a lower combined score. The concepts Operator and Com-
pany and a taskType attribute “drilling” all get a score of 0 in ignorecase
mode and a score of 1 in case sensitivity mode. The relation will retrieve the
same scores for the words, but an automatic +2 total score because of the
spaces between the words. This example additionally presents another in-
teresting discovery: the time use of the substring method exceeds the time

69

use of the parse-tree method. The parse-tree method is in fact about one
second faster.

Testing the system’s time use

To test the system’s time use we will create a set of sentences with word
count ranging from 8 to 10 words, containing phrases from the ontology,
full sentences based on the ontology objects and some independent test
sentences. The sentences are created in the manner such that the first
phrase in the 8-word sentences corresponds to the first phrase in the 9th
and 10th word sentences, as does the second phrase and the third phrase.
The phrases are:

8 word sentences:

1. Company field facility wellbore well point wellhead area

2. The company with the most facilities and wells

3. The table on the floor is very big

9 word sentences:

1. Company field facility wellbore well point wellhead area discovery

2. The company with the most facilities and oil wells

3. The table on the floor is big and blue

10 word sentences:

1. Company field facility wellbore well point wellhead area discovery
Refining

2. The company with the most loading facilities and oil wells

3. The table on the floor is big and mostly wood

In Tab. 11.1 we can see the sentences presented above as sentence 1, 2
and 3, containing 8, 9 and 10 words, respectively, for both the parse-tree
method and the substring method. We can see that the substring method
is the fastest for all three sentences in their eight word version. When one
word is added to the sentences things change, the parse-tree method now
run sentence 1 the fastest. In all ten word sentence examples the parse-tree
method is plainly faster. At nine words the parse-tree method produces 16
phrases, and the substring method produces 45, and the difference begins
to grow. It is clear that the parse-tree method makes up for the time it
spends on loading the language model after about 9-10 words, and that the
decrease in phrases pays of. In Fig. 11.2.2 we can see how the red lines,
representing the three sentences generated using the substring method,
have a much steeper increase compared to the blue lines, the sentences
generated using the parse-tree method.

70

Sentence words parse-tree() substring()
1 8 10.045 8.785

9 10.727 11.466
10 11.569 15.340

2 8 9.885 7.830
9 10.267 9.810
10 11.397 12.850

3 8 10.087 6.780
9 10.286 8.720
10 10.909 10.930

Table 11.1: Time table for query generation.

8 9 10

8

10

12

14

16

W or d s

T
im

e
in

se
co

n
d

s

sentence 1

8 8.5 9 9.5 10

8

9

10

11

12

13

W or d s

sentence 2

8 8.5 9 9.5 10

7

8

9

10

11

W or d s

T
im

e
in

se
co

n
d

s

sentence 3

Table 11.2: Chart representation of time use.
Par se − tr ee; Substr i ng

71

11.3 Northwind

To test the Northwind ontology we will use some simple phrases containing
the concept and relation names from the ontology. This will resemble the
initial test 11.1.2 performed on the NPD ontology. Only this time, we are
not as interested in whether the queries generated are correct, as we are in
how seamless the transition from one ontology to another will be. There are
not yet added any attributes to the ontology, so our test phrases will only
contain concepts and relations. The following phrases are tested with the
Northwind ontology as the OptiqueNLQF ontology input:

1. Which employee has this territory.

2. The shipped data of the order.

3. Location of company.

The results for these phrases are displayed Tab. 14.1, for the parse-tree
method, and Tab. 14.2, for the substring method, in appendix B 14. We
have not given the Northwind ontology much attention and we have not
gone in depth to understand the structure of the ontology. It is neither as
complicated nor as complete as the NPD ontology, so to run more tests
on Northwind is not necessary at this time. The transition to another
ontology was however a success, and the system had no problems creating
the queries shown in Appendix B 14. This is much because of the system’s
back-end ontology parsing part’s ability to extracted the ontology objects
correctly. The main problem with new ontologies at this stage is to learn the
names of the concepts and relations and learn the structure of the ontology.
This is time consuming for new users, and it also oppose one of the focus
points of this project; creating a system which is easy to use for a person
with limited knowledge of databases and query languages.

11.4 Summary

OptiqueNLQF has proven to generate functioning queries within a limited
scope of complexity. The two different methods of running the system,
parse-tee() and substring(), have proven to provide quite similar queries,
even though the substring method works better when the input gets more
complex. The stopword remover have demonstrated it’s importance as the
SPARQL query in Tab. 13.3 shows. The case sensitivity test results did not
provide any clear answers. The problem being that a search for “jacket 4
legs” will possibly yield an attribute name, “JACKET 4 LEGS”, or a concept
name, Jacket4LegsFacility, depending on what setting the case sensitivity
is set to. This issue needs some more testing before we can present a
conclusion. The system has also confirmed that it can handle the process
of working with a new ontology, when OptiqueNLQF was tested with the
Northwind ontology. It was a welcome result, as this was one of the projects
goals.

72

It would have been preferable to perform some sort of user test for
a more conclusive system evaluation. However, this turned out to pose
several challenges, as the user would need extended knowledge of the
system in order to be able to test it in a sufficient manner.

73

74

Part III

Conclusion

75

Chapter 12

Conclusion

String
analysis

Ontology
matching

Inter-
pretation
ranking

Query
graph

ranking

Query
generation

Ontologyinput
string

Results

Figure 12.1: System architecture overview.

12.1 Overview

In this thesis the development and functionalities of the OptiqueNLQF
system, a prototype of a natural language query formulation system, has
been presented. The system architecture and its main parts have been
described. A final illustration of system workflow is presented in Fig. 12.1.

12.1.1 System comparison

In Chap. 2, the chapter describing four similar systems, a table scoring the
systems was presented. This table is represented again in Tab. 12.1, only
this time the scores of the OptiqueNLQF are included. Let it be stated
that this scoring is done by the creators of OptiqueNLQF, and is in no way

77

Table 12.1: Projects
SINA USI Pythia Quepy OptiqueNLQF

Setting up a new project 7 77 7 33 3

Use on new domain 3 7 3 3 33

Scalability 3 3 33 77 3/7

Upper limit 3 33 3 7 77

Open source ? 7 ? 3 7

This table shows a visualization of the differences of the systems. We have
used a grading-system with the scale: 77,7, 3, 33.

an official ranking or evaluation. The projects are merely defined by the
descriptions given in the papers in which they are presented.

• Setting up a new project is easy and the system will be functional from
the beginning. The need for adding synonyms and similar words to
the ontology objects in the future will however increase the workload
before the first time the system can be used.

• As shown in the result chapter, tested with the Nortwind ontology,
OptiqueNLQF is easily used on new domains, and this is done simply
by providing a new ontology for parsing.

• As scalability is concerned the system needs some improvement. It
does nonetheless make sense of different types of ontology objects,
and, with its limitations, handles this fairly good.

• The system’s upper limit is, for the time being, very low. It works
fairly well when the input contains two, maybe three, ontology ob-
jects. Any more than this and the queries generated are nonsensical.

The tests of the system demonstrated that there is potential, and for
expressing short, direct information needs the system is able to provide the
correct query formulation. Regarding the system, the two finishing parts,
the query graph ranking and the query generation, have a lot of potential
for improvement. Improving how the system handles ontology objects as
neighbors in the ontology graph before starting the query generator can
change the system’s capability drastically. The parse-tree have shown its
potential in phrase extraction and performing some improvements on this
part as well can help develop the competence of OptiqueNLQF.

12.2 Future work

Some other ideas, apart from improving the already created system parts,
would also be interesting to implement in OptiqueNLQF. The fact that
the users would have to know the exact names of the ontology objects to
formulate the correct queries is a huge and quite obvious disadvantage. An
improvement in this area is highly needed, and there are several ways in

78

which this can be done. One way is to add a set of synonyms as a part
of the ontology object information. This idea was introduced in the USI-
system [20] as an added part of the ontology. The ontology matching would
in this case compare the input phrases to the ontology object names, and
its synonym list. This could work for concepts, but it would require a lot
of varying phrases for the relations. It would likely add resembling phrases
and descriptions for the different relation names, which have potential to
be similar enough as it is. This could further increase the possibility of
extracting an unintended ontology object, if the user’s input string fails to
be precis enough. Another problem faced if we intend to let the input string
structure be as free as possible is the word order in the relation names. We
want the relation currentFieldOperator and an input string such as “Fields
currently operated” to have an as low score as possible. To enable this we
could implement a method for rearranging the word order, after finding
the lemma 1 of the phrases. Regardless, implementing the lammatization
method from the OpenNLP toolkit would be an interesting notion.

An idea for parsing the words in the input string in a more suitable way,
according to the ontology, would be to implement the ontology into the
parser’s language model. This idea is inspired by the Pythia-system [19],
where the input sentence is analyzed by an ontology-based grammar. We
would create a more domain specific language model. The sentence parsing
would automatically recognize the ontology object names and identify these
as a part of the sentence. By doing this we could perform the string analysis
and the correct phrase extraction in the same operation. This could also
improve the correct phrase extraction rate of the parse-tree method.

It is also of interest to change the structure of the system and let the
user see the final query both in SPARQL language and as a graph in the
OptiqueVQS system before the user chooses to execute the query. At
this stage we want to give the user the opportunity to alter the query or
add additional information. This is one of the main future goals for the
continuing expansion of OptiqueNLQF.

1http://en.wikipedia.org/wiki/Lemmatisation

79

80

Chapter 13

Appendix A

The prefix used in all the following SPARQL queries:

• PREFIX ns1: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

• PREFIX ns2: <http://sws.ifi.uio.no/vocab/npd-v2#>

The ns1 prefix is the standard RDF prefix for SPARQL queries. The ns2
prefix maps to the ontology objects found in the NDP ontology.

13.1 Initial tests

Table 13.1: OptiqueNLQF phrase test with parse-tree
method.

Input
phrase:

Query Run time

Fields:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
}

Time: 6.157

Field
comany:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : currentFie ldOperator ?x2 .
}

Time:
6.647

company
facility:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F a c i l i t y .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : p ipe l ineOperator ?x2 .
}

Time:
6.789

81

Field facil-
ity:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : F a c i l i t y .
}

Time:
6.807

Status for
field:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d S t a t u s .
?x2 ns1 : type ns2 : F i e l d .
? x1 ns2 : s t a t u s F o r F i e l d ?x2 .
}

Time:
7.547

Pipeline
operator:

SELECT *
WHERE {
? x1 ns1 : type ns2 : FeederPipe l ine .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : p ipe l ineOperator ?x2 .
}

Time:
6.882

Statoil Pet-
roleum AS

SELECT *
WHERE {
? x1 ns1 : type ns2 : Company .
? x1 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
7.095

Table 13.2: OptiqueNLQF phrase test with substring
method.

Input
phrase:

Query Run time
(sec)

Fields:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
}

Time:
0.748

Field
comany:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : currentFie ldOperator ?x2 .
}

Time:
1.206

82

company
facility:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F a c i l i t y .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : p ipe l ineOperator ?x2 .
}

Time:
1.264

Field facil-
ity:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : F a c i l i t y .
}

Time: 1.170

Status for
field:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d S t a t u s .
?x2 ns1 : type ns2 : F i e l d .
? x1 ns2 : s t a t u s F o r F i e l d ?x2 .
}

Time:
1.624

Pipeline
operator:

SELECT *
WHERE {
? x1 ns1 : type ns2 : FeederPipe l ine .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : p ipe l ineOperator ?x2 .
}

Time: 1.217

Statoil Pet-
roleum AS

SELECT *
WHERE {
? x1 ns1 : type ns2 : Company .
? x1 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
1.720

83

13.2 Second evaluation

Table 13.3: Test without stopword removal.

Input
phrase:

Query Run time

fields were
the op-
erator is
Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Award .
?x3 ns1 : type ns2 : WellboreDocument .
?x3 ns2 : documentFormat ? v1 .
?x4 ns1 : type ns2 : Operator .
?x3 ns2 : operatorForFie ld ?x4 .
?x5 ns1 : type ns2 : Oi l .
?x6 ns1 : type ns2 : Company .
?x5 ns2:^ currentFie ldOperator ?x6 .
?x6 ns2 : name ?v2 .
Filter (regex (? v1 , " the "))
Filter (regex
(? v2 , " S t a t o i l Petroleum AS"))
}

time:
10.701

Table 13.4: Tests with increased complexity, parse-tree
method.

Input
phrase:

Query Run time

Fields
operated
by Statoil
Petroleum
AS

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Operator .
? x1 ns2 : operatorForFie ld ?x2 .
?x3 ns1 : type ns2 : Company .
?x2 ns2:^ currentFie ldOperator ?x3 .
?x3 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
9.476

84

Current
field op-
erator of
Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : currentFie ldOperator ?x2 .
?x2 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
9.376

Fields
were the
operator
is Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Operator .
? x1 ns2 : operatorForFie ld ?x2 .
?x3 ns1 : type ns2 : Company .
?x2 ns2:^ currentFie ldOperator ?x3 .
?x3 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
11.336

Companies
with
JACKET
4 LEGS
facilities:

SELECT *
WHERE {
? x1 ns1 : type ns2 : Company .
?x2 ns1 : type

ns2 : J a c k e t 4 L e g s F a c i l i t y .
}

Time:
8.975

Development
wellbore
for licence
with Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : DevelopmentWell .
?x2 ns1 : type ns2 : Wellbore .
?x3 ns1 : type ns2 :

WellboreDrillingMudSample .
?x2 ns2:^ mudTestForWellbore ?x3 .
?x4 ns1 : type ns2 : Licensee .
?x5 ns1 : type ns2 : Company .
?x4 ns2 : dri l l ingOperatorCompany ?x5 .
?x5 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
11.660

85

Fields
where the
drilling
operator
company
is Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Production−

LicenceWorkObligation .
?x2 ns2 : taskType ? v1 .
?x3 ns1 : type ns2 : Operator .
?x2 ns2 : operatorForFie ld ?x3 .
?x4 ns1 : type ns2 : Company .
?x3 ns2:^ currentFie ldOperator ?x4 .
?x5 ns1 : type ns2 : Agent .
?x5 ns2 : name ?v2 .
Filter (regex (? v1 , " d r i l l i n g "))
Filter (regex
(? v2 , " S t a t o i l Petroleum AS"))
}

Time:
13.117

Table 13.5: Tests with increased complexity, substring
method.

Input
phrase:

Query Run time

Fields
operated
by Statoil
Petroleum
AS

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Operator .
? x1 ns2 : operatorForFie ld ?x2 .
?x3 ns1 : type ns2 : Company .
?x2 ns2:^ currentFie ldOperator ?x3 .
?x3 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
5.066

Current
field op-
erator of
Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : currentFie ldOperator ?x2 .
?x2 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
6.644

86

Fields
were the
operator
is Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Operator .
? x1 ns2 : operatorForFie ld ?x2 .
?x3 ns1 : type ns2 : Company .
?x2 ns2:^ currentFie ldOperator ?x3 .
?x3 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
8.399

Companies
with
JACKET
4 LEGS
facilities:

SELECT *
WHERE {
? x1 ns1 : type ns2 : Company .
?x2 ns1 : type ns2 : J a c k e t 4 L e g s F a c i l i t y .
?x2 ns2 : f a c i l i t y T y p e ? v1 .
?x3 ns1 : type ns2 : F a c i l i t y .
? x1 ns2 : p ipe l ineOperator ?x3 .
Filter (regex
(? v1 , "JACKET 4 LEGS"))
}

Time:
4.705

Development
wellbore
for licence
with Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : Wellbore .
?x2 ns1 : type ns2 : ProductionLicence .
? x1 ns2 : developmentWellboreForLicence

?x2 .
?x3 ns1 : type ns2 : Company .
? x1 ns2 : dri l l ingOperatorCompany ?x3 .
?x3 ns2 : name ? v1 .
Filter (regex
(? v1 , " S t a t o i l Petroleum AS"))
}

Time:
9.230

87

Fields
where the
drilling
operator
company
is Statoil
Petroleum
AS:

SELECT *
WHERE {
? x1 ns1 : type ns2 : F i e l d .
?x2 ns1 : type ns2 : Production−

LicenceWorkObligation .
?x2 ns2 : taskType ? v1 .
?x3 ns1 : type ns2 : Operator .
?x3 ns2 : operatorForFie ld ? x1 .
?x4 ns1 : type ns2 : Company .
?x3 ns2:^ currentFie ldOperator ?x4 .
?x4 ns2 : name ?v2 .
Filter (regex (? v1 , " d r i l l i n g "))
Filter (regex
(? v2 , " S t a t o i l Petroleum AS"))
}

Time:
14.293

Table 13.6: Case sensitive parse-tree method.

Input
phrase:

Query Run time

Company
with
JACKET
4 LEGS
facilities:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Company .
?x2 ns1 : type ns2 : BlowoutWellbore .
?x2 ns2 : s t a t u s ? v1 .
?x3 ns1 : type ns2 : F i e l d .
?x2 ns2 : currentFie ldOperator ?x3 .
?x3 ns2 : name ?v2 .
?x4 ns1 : type ns2 : F i e l d .
?x3 ns2 : currentFie ldOperator ? x1 .
?x4 ns2 : name ?v3 .
?x5 ns1 : type ns2 : F a c i l i t y .
? x1 ns2 : p ipe l ineOperator ?x5 .
Filter (regex (? v1 , "JACKET"))
Filter (regex (? v2 , "4"))
Filter (regex (? v3 , "LEGS"))
}

Time:
8.932

88

Chapter 14

Appendix B

The following SPARQL queries use the same prefixes as before. It is,
however, not clear if the Northwind object are supposed to involve the ns2
prefix affiliated to the NDP ontology. The queries still employ the ns1 prefix.

Table 14.1: Tests on the Northwind ontology, parse-tree
method.

Input
phrase:

Query Run time

which
employee
has this
terretory:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Region .
?x2 ns1 : type ns2 : Employees .
?x3 ns1 : type ns2 : T e r r i t o r i e s .
?x2 ns2 : Employees_has_Territories ?x3 .
}

Time: 5632

The
shipped
data of the
order:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Shippers .
?x2 ns1 : type ns2 : Orders .
? x1 ns2:^ ShipVia ?x2 .
?x4 ns1 : type ns2 : Shippers .
?x3 ns2 : ShipVia ?x4 .
}

Time: 6106

Location of
company:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Location .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : Company . Location ?x2 .
}

Time: 5272

Table 14.2: Tests on the Northwind ontology, substring
method.

89

Input
phrase:

Query Run time

which
employee
has this
terretory:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Region .
?x2 ns1 : type ns2 : Employees .
?x3 ns1 : type ns2 : T e r r i t o r i e s .
?x2 ns2 : Employees_has_Territories ?x3 .
}

Time: 415

The
shipped
data of the
order:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Shippers .
?x2 ns1 : type ns2 : Orders .
? x1 ns2 : ShipVia ?x2 .
}

Time: 727

Location of
company:

SELECT DISTINCT *
WHERE {
? x1 ns1 : type ns2 : Location .
?x2 ns1 : type ns2 : Company .
? x1 ns2 : Company . Location ?x2 .
}

Time: 320

90

Bibliography

[1] Ion Androutsopoulos, Graeme D Ritchie and Peter Thanisch. ‘Nat-
ural language interfaces to databases–an introduction’. In: Natural
language engineering 1.01 (1995), pp. 29–81.

[2] Bruce C Berndt and Ronald J Evans. ‘The determination of Gauss
sums’. In: American mathematical society 5.2 (1981).

[3] Erich Gamma et al. Design patterns: elements of reusable object-
oriented software. Pearson Education, 1994.

[4] Bernardo Cuenca Grau et al. ‘On Faceted Search over Knowledge
Bases’. In: Informal Proceedings of the 27th International Work-
shop on Description Logics, Vienna, Austria, July 17-20, 2014. 2014,
pp. 153–156.

[5] Peter Haase et al. ‘Optique System: towards ontology and mapping
management in OBDA solutions.’ In: WoDOOM. 2013, pp. 21–32.

[6] Pascal Hitzler, Markus Krotzsch and Sebastian Rudolph. Founda-
tions of semantic web technologies. CRC Press, 2011.

[7] Daniel Jurafsky and James H. Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. 1st. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2000. ISBN: 0130950696.

[8] Donald E Knuth, James H Morris Jr and Vaughan R Pratt. ‘Fast
pattern matching in strings’. In: SIAM journal on computing 6.2
(1977), pp. 323–350.

[9] L.D. Landau. ‘The Viterbi Algorithm’. In: Zhurnal Eksperimental’noi
i Teoreticheskoi Fiziki (1937), pp. 302–309.

[10] Ora Lassila and Ralph R Swick. ‘Resource description framework
(RDF) model and syntax specification’. In: (1999).

[11] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze.
Introduction to Information Retrieval. New York, NY, USA: Cam-
bridge University Press, 2008. ISBN: 0521865719, 9780521865715.

[12] Christopher D. Manning and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. Cambridge, MA, USA:
MIT Press, 1999. ISBN: 0-262-13360-1.

[13] Deborah L McGuinness, Frank Van Harmelen et al. ‘OWL web on-
tology language overview’. In: W3C recommendation 10.10 (2004),
p. 2004.

91

[14] Natalya F Noy, Deborah L McGuinness et al. Ontology development
101: A guide to creating your first ontology. 2001.

[15] Saeedeh Shekarpour, A.C. Ngonga Ngomo and S Auer. ‘Question an-
swering on interlinked data’. In: Proceedings of the 22nd interna-
tional conference on World Wide Web (2013), pp. 1145–1155.

[16] Martin G. Skjæveland and Espen H. Lian. ‘Benefits of Publishing the
Norwegian Petroleum Directorate’s FactPages as Linked Open Data’.
In: Norsk informatikkonferanse (NIK 2013). Tapir, 2013.

[17] Ahmet Soylu et al. ‘OptiqueVQS – Towards an Ontology-based
Visual Query System for Big Data’. In: International Conference
on Management of Emergent Digital EcoSystems (MEDES 2013).
ACM, 2013.

[18] Johannes Trame et al. First Prototype of the Core Platform. Public
Deliverables, WP 2: Implementation Infrastructure. 2013.

[19] Christina Unger and Philipp Cimiano. ‘Pythia: Compositional mean-
ing construction for ontology-based question answering on the Se-
mantic Web’. In: Proceedings of the 16th international conference
on Natural language processing and information systems 6716
(2011), pp. 153–160.

[20] Ulli Waltinger, Dan Tecuci and Mihaela Olteanu. ‘USI Answers:
Natural Language Question Answering Over (Semi-) Structured
Industry Data’. In: Twenty-Fifth IAAI Conference (2013), pp. 1471–
1478.

92

	Acknowledgements
	Abstract
	List of figures
	List of tables
	I Introduction
	Background
	Introduction
	Optique
	Goals

	Previous work
	State of the Art
	SINA
	Unified Service Intelligence
	Pythia
	Quepy

	System differences

	Natural Language Processing
	Overview
	Tokenization
	Lemmatization

	Parsing
	A Language model

	NLP Difficulties
	Ambiguities
	Conjunctions

	Semantic Technologies
	Semantic technologies
	Ontology
	Concepts/Relations/Attributes

	Resource Description Framework
	Web Ontology Language
	SPARQL

	II The project
	OptiqueNLQF
	Introduction
	System architecture
	Overview
	The Algorithm

	String Analysis
	Introduction
	Design choices
	Parse-Tree
	OpenNLP
	Limitations of using the parse-tree method

	Substrings

	Main differences
	Possible Changes / Further work

	Ontology Matching
	Introduction
	Ontology

	Implementation
	String matching

	Other functionality
	Levenshtein distance variation
	Stopwords

	Further work

	Interpretation ranking
	Introduction
	Implementation
	Tree method
	Pyramid

	Possible changes / further work

	Query graph ranking
	Introduction
	Implementation
	Concept neighbors

	Future work

	Query Generation
	Overview
	Query language

	Design choices / Implementation
	Writing the query

	Further work

	Evaluation
	Testing
	Test data
	Test set
	Simple test input
	Complex test input
	Technical information

	Result
	Simple test results
	Complex test results
	Testing the system's time use
	8 word sentences:
	9 word sentences:
	10 word sentences:

	Northwind
	Summary

	III Conclusion
	Conclusion
	Overview
	System comparison

	Future work

	Appendix A
	Initial tests
	Second evaluation

	Appendix B
	Bibliography

