
Reinforcement Learning as a
Decision Making Strategy for a
Mobile Robot

Bendik Kvamstad
Master’s Thesis Autumn 2015

Reinforcement Learning as a Decision Making
Strategy for a Mobile Robot

Bendik Kvamstad

3rd August 2015

ii

Abstract

While autonomous mobile robots used to be built for domain specific tasks
in factories or similar safe environments, we are now seeing a shift towards
the general market. Automated lawn movers and cleaning robots are
sold at general stores. They will have to be able to adapt to unknown
environments while being safe around humans and animals. This means
that we will have to think differently when building the decision making
systems for these robots. Reinforcement learning is a field in robotics
inspired by humans’ ability to learn by trial-and-error. Agents trained
with reinforcement learning has been developed and successfully applied
to computer games, performing at a world class level.

This master thesis describes the implementation of an AI designed for
a robot competing in the 2015 Eurobot-competition. The task is set to a
dynamic environment with a robotic opponent. A Goal Oriented Action
Planner was implemented as the planner for the AI. In order to adapt the
planner to a changing environment, a decision making policy trained with
reinforcement learning was utilized to rate actions depending on the state
of the game. An implementation of SARSA with feature value function
approximation was used to train the policy.

The learned decision making policy showed promising results in
experiments conducted for this thesis. The AI found a good static solution
to the Eurobot task, and was able to adapt the strategy to a dynamic
environment by avoiding the opponent and respecting time limits.

iii

iv

Acknowledgment

I would like to sincerely thank my supervisiors, Associate professor Kyrre
Harald Glette and PhD candidate Kim Mathiassen, for their support dur-
ing the work on this thesis.

I want to thank my fellow students from Robin, FUI and FIFI for all the
memorable moments at IFI.

I would also like to thank my friends from TacoTirsdag for making my
student years an enjoyable experience.

Last, but not least, I would like to thank my family and my significant
other, Emmy Henriette Netka, for continued support throughout the whole
process.

v

vi

Contents

1 Introduction 1
1.1 Background and Motivation 1

1.1.1 The Eurobot competition 1
1.1.2 The team . 2
1.1.3 This year’s task . 2

1.2 Problem definition . 3
1.3 Outline of the thesis . 3

2 Background 5
2.1 Planning . 5

2.1.1 Definition . 5
2.1.2 Terms . 6
2.1.3 FSM . 6
2.1.4 Markov Decision Processes 7
2.1.5 GOAP . 7

2.2 Reinforcement learning . 8
2.2.1 Definition . 9
2.2.2 Terms . 9
2.2.3 Q-learning . 10
2.2.4 SARSA . 11
2.2.5 Value function approximation 11

2.3 Pathfinding . 11
2.3.1 Theta* . 12
2.3.2 Potential fields . 12
2.3.3 Probabilistic roadmap 13

2.4 Related Problems . 13
2.4.1 Traveling Salesman Problem 13
2.4.2 Vehicle Routing Problem 14

2.5 Previous Work . 15
2.6 Discussion . 16

3 Robot 19
3.1 Design . 19
3.2 Modules . 20

3.2.1 MotorController . 20
3.2.2 Localization . 21
3.2.3 Vision . 21

vii

3.3 Module communication . 21
3.3.1 ZeroMQ . 21

4 Implementation 23
4.1 AI . 23

4.1.1 Controller system . 23
4.1.2 Planner . 24

4.2 Goal Oriented Action Planning 24
4.2.1 States . 25
4.2.2 Actions . 25
4.2.3 Goals . 25
4.2.4 Creating Plans . 26
4.2.5 Evaluating Plans . 26

4.3 Value Function Approximation 27
4.3.1 Weights . 27
4.3.2 Features . 27
4.3.3 Learning parameters 28

4.4 Simulator . 29
4.4.1 Driving . 29
4.4.2 Obstacles . 29

4.5 Path Planning . 30
4.5.1 Constructing the NavMesh 30
4.5.2 Obstacle Avoidance 30
4.5.3 Optimizing . 30

4.6 The Opposing Robot . 30
4.6.1 Long-term avoidance 31
4.6.2 Short-term avoidance 31

5 Experiments and Results 33
5.1 Overview . 33
5.2 Experimental Setup . 33

5.2.1 Experiments on the simulator 34
5.2.2 Robot configurations 34
5.2.3 Eurobot playing fields: 34
5.2.4 Simulations . 34
5.2.5 Learning parameters 34
5.2.6 Rating policies . 35
5.2.7 Analyzing results and policies 35

5.3 Static planning . 35
5.3.1 Feature extraction . 35
5.3.2 Training on multiple maps 40
5.3.3 Train with multiple feature weights 42
5.3.4 Performance . 43

5.4 Experiments on a changing environment 46
5.4.1 Delivery on time . 46
5.4.2 Avoiding the opponent 47
5.4.3 Eurobot edge cases . 51

viii

6 Discussion 57
6.1 Discussion . 57
6.2 Conclusion . 58
6.3 Future Work . 58

6.3.1 RL-policy . 58
6.3.2 Eurobot project . 58

ix

x

List of Figures

1.1 Eurobot 2015 playing field . 2

2.1 Model of a Finite-state-machine 7
2.2 GOAP model . 8
2.3 Reinforcement Learning model 9

3.1 A model of the robot . 19
3.2 The robot seen from an angle. 20
3.3 The robot built for the Eurobot competition. 22
3.4 The robot’s grippers, used for gathering boxes. 22
3.5 A replica of the original Eurobot playing field was built for

testing. 22

4.1 Overview of the main controller system AI. 24

5.1 Example plot of trained policies. Each column represents
policy. 36

5.2 Box plot of performance on Medium 2 38
5.3 Box plot of performance on Large 2 38
5.4 Weight distribution for policies with a ActionStates feature

extractor over multiple runs. 39
5.5 Weight distribution policies with a NoPosition feature ex-

tractor over multiple runs. 39
5.6 Weights after training on multiple maps 41
5.7 Weights for PickBoxAction when training with multiple

features . 43
5.8 Weights for DeliverBoxAction when training with multiple

features . 44
5.9 Weights for PickBoxAction when training with multiple

features . 44
5.10 Weights for DeliverBoxAction when training with multiple

features . 45
5.11 Results with maximum time 70 47
5.12 Results with maximum time 160 48
5.13 Avoiding the opponent first map second configuration . . . 50
5.14 Avoiding the opponent second map first configuration . . . 50
5.15 Weights when trained vs opponent with a static threat feature 50
5.16 Weights when trained vs opponent with a dynamic distance

to opponent feature . 51

xi

5.17 Illustration of case A: With limited time, the robot must
choose between delivering or pick another box 52

5.18 Illustration of case B: With limited time, the robot must
choose between deliver or gathering another box. With two
boxes close together, this decision should be harder than case
A. 53

5.19 Illustration of case C: The robot must choose which box to
gather next. Choosing Box B will lead to a crash with the
Opponent. 53

5.20 Illustration of case D: The robot must choose which box to
gather next. Choosing Box B will lead to a crash with the
Opponent. 55

5.21 Results for static solutions on case E. 56
5.22 Overall performance on edge cases 56
5.23 Weights for the SFSM policy. 56

xii

List of Tables

5.1 Playing field configurations 34
5.2 Learning Parameters . 35
5.3 Performance average of feature extractors 37
5.4 Best performance of feature extractors 37
5.5 Trained on single map vs multiple maps average 40
5.6 Trained on on single map vs multiple map best performance 41
5.7 Trained with multiple feature weights performance average 42
5.8 Trained with multiple feature weights highest performance . 42
5.9 Overview of performance for the different variations used

for the static solver. 45
5.10 Early delivery average . 46
5.11 Early delivery best run . 47
5.12 Avoiding opponent average 49
5.13 Avoiding opponent best run 49
5.14 Results from edge case A . 54
5.15 Results for policies tested on Case B 54
5.16 Results for policies tested on case C 54
5.17 Results for policies tested on case D 54

xiii

xiv

Chapter 1

Introduction

In today’s world autonomous and mobile robots are entering the general
market. While autonomous mobile robots used to be built for domain
specific tasks in factories or similar safe environments, we are now seeing
a shift towards targeting the general market. Automated lawn movers and
cleaning robots are sold at general stores. This means that we will have
to think differently when building the decision making systems for these
robots. They will have to be able to adapt to unknown environments while
being safe around humans and animals.

In this thesis i have looked at how we can build an autonomous mobile
robot with multiple tools that can adapt to a new environment. The
purpose of the robot is to optimize its performance of goal driven action
sequences by learning the environment it operates on. A similar example
could be a cleaning robot working in an office environment. The robot is
equipped to perform multiple cleaning jobs and should be able to optimize
for any given build configuration and job requirement within its domain.
Typical examples could be to avoid the hallways during peak office hours
or finding a optimal path to collect trashcans.

These tasks may sound trivial, but optimizing them will be essential in
the future of robot development when robots will work in environments
usually operated by humans.

1.1 Background and Motivation

1.1.1 The Eurobot competition

Eurobot is an international amateur robotics competition aimed at student
projects hosted annually around Europe. In this contest the goal is to
build a robot that can perform goal scoring tasks on a small playing field
while competing against other robots. While the tasks and the outline of
the playing field is changed every year, the goal is always to collect more
points than your opponent. The main tasks are always in the context of
common autonomous robotic challenges like image recognition, position
control, avoiding obstacles and collecting objects. This year the competition
is hosted in Yverdon-les-Bains (Switzerland) from the 22th to 24th of May.

1

The theme is “RoboMovies”.

1.1.2 The team

This is the first year that UiO is competing in the Eurobot challenge. The
team consists of three master students from the robotics group Robin, de-
partment of informatics. The main focus for this team will be to lay a found-
ation for later participants by building a robot that can pass the qualifica-
tion to the contest. All team members will participate in the main building
process of the robot, and also write individual master thesis specializing on
different parts of the project. A brief introduction to the projects of other
team members are given below.

Andre Kramer Orten will work on the localization and positioning of the
robot. For global positioning a IR-system consisting of a tower mounted on
the robot and 3 beacon towers around the playing field will be used. Dis-
tance sensors will be used for detecting the opponents robot. The master
thesis can be found here [28].

Eivind Wikheim will work on the main motor controller system and other
actuators necessary for completing each specific task. The design of the
robot will be explained more thoroughly later in this paper.

1.1.3 This year’s task

Figure 1.1: Eurobot 2015 playing field

The team RoboMovies takes it inspiration from Hollywood and movie
theatres. The tasks include gathering popcorn, building spotlights and
clapping clapboards. One of the more difficult tasks is to climb a 10 cm
heigh stairway while laying out carpets on each side of the robot.
Tasks Boxes are represented by yellow and green cylinders. To score points
the robot must collect boxes and bring them to either its home field or a
common delivery area marked as red in the center-side off the map. Extra
points are given if the cylinders are stacked in height. Additional extra
points can be gained by adding a tennis ball to the top of a stack. A stack
of multiple boxes are referred to as spotlights.

2

Popcorn is represented by white ping pong balls and are located in cups
and in popcorn machines placed on the side. To score points the popcorn
must be gathered in either cups and placed on the same fields as spotlights
or in a special popcorn container in the home base. The popcorn cups
are neutral and can be collected and stolen by both teams. Three clapper
boards for each team are positioned on the sides of the map. You score
points by folding the clapper.
Each team has a stair located on the north side of the map. You score points
by climbing the stairs. Additional points can be collected by covering the
grey fields on both side of the stairs with a red carpet. The carpet can be
preloaded on the robot before the game starts. The team has decided that
a second smaller robot will be required to perform the stairway climbing,
and I will not focus on handling the stairway in this thesis.

1.2 Problem definition

The goal of this project is to implement an AI for a mobile robot that util-
izes Reinforcement Learning as a decision making strategy. The AI will be
used for a robot competing in the Eurobot 2015 competition. A major part
of the project will also consist of building the actual robot. The AI must be
able to plan a strategy for a match and tackle hindrances during the game.
Operating in a changing environment, the robot must be able to recalculate
plans fast and efficiently in order to avoid collisions and loss of precious
time.

The A.I should fulfill the following requirements:

• The AI should be able to calculate safe and efficient plans for
collecting game objects and scoring points.

• The planning system must be able to efficiently recalculate new plans
to handle changes to the playing field during a match.

• The robot is not likely to be finished until a few weeks before the
competition. In order to test the AI thoroughly, a game simulator
must be built. The simulator should run in real-time displaying the
robot, the game objects and the opponent robot. It is also preferable
that the simulator can display real data from the robot when the
construction is complete.

1.3 Outline of the thesis

The thesis consists if six chapters: introduction, background, robot,
implementation, experiments and results, and discussion.

Chapter 2 contains general background information about the theory
which this work is based on, including an overview of Planning strategies,
Reinforcement Learning, Pathfinding and previous work this thesis is built
on. Chapter 3 contains details on the robot that was built for the Eurobot

3

competition. Chapter 4 describes the implementation of the AI and the
decision making policy based on Reinforcement Learning. Chapter 5 then
outlines the experiments that were conducted, and presents results as well
as an analysis for each experiment. Chapter 6 contains a general discussion
and a conclusion.

4

Chapter 2

Background

Humans and human behaviour has always been a source of inspiration in
the field of robotics. Robot learning is a fairly new research field at the
intersection of machine learning and robot design. Learning algorithms
allows a robot to discover optimal behaviour through trial-and-error
interactions with its environment.

2.1 Planning

A fundamental problem in robotics is to construct systems that can
translate high-level specifications of humanly tasks into low-level orders
of robotic movements. In Artificial Intelligence, an agent can use planning
algorithms to construct orders of actions to perform in its environment.
However, solving tasks in complex dynamic enviroments is a difficult
problem [2], and planning in robotics has evolved from simple motion
control to include decision making and game theories. More information
on the background of planning algorithms can be found here [17] [3]

2.1.1 Definition

Planning is a branch in Artificial Intelligence that concerns decision mak-
ing and the realization of strategies for intelligent agents or autonomous
robots [20]. To reason about what to do, an agent must have goals, a world
model and a understanding about the consequences of its actions.

A general planning problem consist of:

• A initial world state S

• A set of actions descriptions A

• A goal state description G

The planners objective is to find a sequence of actions, or plan, such that
executing them in the initial state will change the world to satisfy the goal
state description.

5

2.1.2 Terms

State: In a planning problem, the state-space represents all possible out-
comes [17]. A state can for example be a specific position in a chess game
and the state-space would contain all possible moves. A state can also con-
tain information about the robot, for example the position of a robot.

Time: All planning algorithms must consider the concept of time. It is
not limited to the minutes and seconds of a clock, but could also represent
distance travelled or KWs used.

Actions are the tools that robot can use to interact with the environment
and change its state. Motions can vary from movement to recognizing and
picking objects.

Plan: A plan may simply be a sequence of actions an agent must perform
to achieve a goal. However, a plan can be dynamic and react differently to
future states for example in a non deterministic environment. In this ex-
ample the action is a function of state.

Initial and goal state: Initial state is considered as the starting position
when a new plan is calculated. A goal state is a state where the agent has
completed a specific task. A planner can have multiple initial state and goal
states. In a game of chess the initial state can be the board configuration of
a new game, and a goal state can be any state where a winner is declared
or a draw is agreed.

2.1.3 FSM

A Finite state-machine (FSM) is a model used to represent and control be-
haviour and execution flow [8]. In a FSM the behaviour of an agent is rep-
resented as a finite number of states. A simple example of a FSM model
can be seen in figure 2.1. The agent can transition between states, but can
only be in one state at a time. The state transition can be triggered by an
input event from sensors or an internal condition like a timer. An agent
working in a complex state-space can structure the control logic into a hier-
archie of FSMs. A typical solution would be to separate movement control
and action selection into separate FSMs and create a higher order controller
that decides which FSM is active [8]. More information about FSMs can be
found here [18] [11].

FSMs are hard to generalize and are typically hand coded for specific prob-
lems [25]. This result in a heavily customized planning algorithm which
can be hard to maintain and update for new features.

6

Figure 2.1: Model of a Finite-state-machine

2.1.4 Markov Decision Processes

A Markov decision process (MDP) is a probabilistic decision making
framework that can be used to model planning problems [13]. In an ideal
world from a planner perspective, all environments would be deterministic
and fully observable. Unfortunately, this is often not the case. When an
agent performs an action in a dynamic environment, there is a possibility
of failure. MDP can be explained as a process that has a state s and a set
of possible actions A. A decision maker picks an action a from A, and the
process responds with a new state and an accompanying reward based on
the performance of action a in s.

The core problem for an MDP is to find a policy for the decision
maker. A policy can be defined as a function π that specifies the action
a = π(s) that the decision maker will take when in state s. The goal of
a MDP-planner is to find a policy that maximizes the rewards returned
from performing π(s) for all states. A extensive research of different policy
strategies can be found in this article [19]. Reinforcement learning is one of
the more popular policy strategies developed over the last years and will
be discussed in section 2.2.

2.1.5 GOAP

Goal Oriented Action planning is an AI system that allows an agent to plan
a sequence of actions to satisfy a specific goal. The planning algorithm was
first introduced in [27]. The plan does not only depend on the particular
goal but also the state of the environment and the internal state of the agent.
A simple example can be seen in figure 2.2. In order to satisfy a goal, the
agent has to search for actions that will forfill the requirements for this
state. All actions in GOAP has preconditions, effects and costs. By using

7

the preconditions and effects, the algorithm creates a graph of reachable
states and the actions that are required to achieve the specific states. Using
a graph search the agent can find the sequence of actions that are required
to reach its current goal state.

Decoupling states and actions in such a manner makes the GOAP
algorithm very flexible and easy to maintain for agents with large state-
spaces. And using preconditions and effects, there can never exists a plan
with illegal sequences of actions. Using graph search algorithms like A*
and the cost of actions, the algorithm can be optimized to always choose
the lowest cost plan to achieve a goal.

Figure 2.2: GOAP model

2.2 Reinforcement learning

Reinforcement learning (RL) is the name given to a range of techniques
for learning based on experiences. RL bears striking resemblance to the
learning process of humans and animals: actions that are rewarded tend
to occur more frequently; actions that are punished are less likely to be
repeated [32]. The first remarkable breakthrough in reinforcement learning
was the TD-Gammon, a backagammon AI created by Gerry Tesauro in 1992
[33]. TD-Gammon required little backgammon knowledge, yet learned
to play near the level of the worlds strongest grandmasters. In later
years, agents trained with reinforcement learning has been developed and
successfully applied to games, performing at a world class level [24].

8

2.2.1 Definition

A reinforcement algorithm in its most general form has three components.
An exploration strategy for trying out different actions, a reinforcement
function that evaluates the performance of an action, and a learning rule
that links the two together.

A standard reinforcement learning model consists of

• A set of states S

• A set of actions A

• Rules that determine the reward of performing action a in state s

• Rules that describe what the agent observes

A reinforcement learning agent interacts with an environment E in a
sequence of actions, observations and rewards. At each time-step the
agent selects an legal action a from A. The action is then executed on the
environment and updates the state. The learning agent then observes the
new state s′ and a reward r representing the performance of action a in
s. The agents learning task is to execute actions in environment, observe
results and learn a policy a = π(s) that maximizes the future reward. A
detailed introduction to reinforcement learning can be found here [14]. RL
implementations for mobile robots are discussed in [30] and [21]

Figure 2.3: Reinforcement Learning model

2.2.2 Terms

Unsupervised learning
The area of machine learning where an agent learns by interacting with its
environment rather than from an experienced teacher.

Policy
A policy determines how a learning agent should behave at any given time.

9

The policy is typically formed during a learning phase by experimenting on
a environment.

Value function
A mapping from states to real numbers, where the value of a state repres-
ents the long term reward for applying a particular policy.

2.2.3 Q-learning

Q-learning is a model-free reinforcement algorithm named for the set of
quality information (Q-values) it holds about each possible state and ac-
tion [36]. The algorithm treats the environment as a state machine. At any
point in time the algorithm is in some state. The state should represent both
internal information about the agent and external knowledge about the en-
vironment. For example the battery level, tasks completed, agent position,
distance to obstacles. Any information that is not in the state cannot be
learned [29]. The Q-learning algorithm learns by testing out every possible
action for every state, and evaluating the performance. Over time the al-
gorithm will learn which action that performs best for each state at a given
time. More information on GOAP can be found here [23] [29].

The algorithm keeps track of a history of experience tuples, often written
as < s, a, r, s′ >, where s is the start state, a is the action performed, r is the
reward and s′ is the resulting state. The experience tuple is divided into
two sections. The first two elements < s, a > is used to look up the Q value
in the algorithms memory. The second two elements < r, s′ > are used to
update the Q-value based on the reward of the action and how good it will
perform in the next state s′.

The update is handled by the Q-learning rule:

Q(s, a) = (1− a)Q(s, a) + a(r + ymax(Q(s′, a′)) (2.1)

where a is the learning rate and y is the discount rate.

The first component (1− a)Q(s, a) is just the current Q-value for the state
and action. Using this information means that we never lose previously
discovered experiences. The second component is the reward of the s, a
and the maximum potential of the future state s′, a′. So in addition to the
reward of doing action a, we also consider the Q-value of all possible ac-
tions that can be taken from the new state s’. This helps rewarding actions
that has a high future reward. For example in Backgammon where the only
rewards are Loose -100 and Win +100, the reward from the finishing move
will trigger down to the next to last finishing move, then to the next to last
finishing move, and so forth.

10

2.2.4 SARSA

SARSA is an On-Policy variation of the Q-learning algorithm. The
difference between SARSA and Q-learning, is that the maximum reward
for the next state is not always used for the updating the Q-values. Instead
of selecting the max-value, SARSA chooses a new action a′ for state s′ using
the same policy as for s, a. The name SARSA comes from the representation
of the experience quintuple < s, a, r, s′, a′ >. In simpler words, SARSA
chooses the next state based on what it expects to be the best move, given
its current policy. Q-learning chooses the next state based on what could be
the best move, if the current policy is perfect. More information on SARSA
can be found here [31].

SARSAs Q-learning rule:

Q(s, a) = (1− a)Q(s, a) + a(r + y(Q(s′, a′)) (2.2)

As described above, s′ and a′ is selected with the same policy as s and a.

2.2.5 Value function approximation

A big challenge with reinforcement learning is handling the amount of
states [22]. A problem like Backgammon has so many possible states that
it would not be feasible for a reinforcement learning algorithm to evalu-
ate every state and action. The alternative to reasoning explicitly in terms
of states is to reason in terms of features. With feature value function ap-
proximation we look to train a value function which can calculate the best
action for each state. A set of weights W which will indicate which action
is best for state s.

Features are functions of from state-action pairs to real numeric values that
capture important properties about the state. Example of features could be
the distance from obstacles or a distance to objectives. Using a feature rep-
resentation we can write a value function (Q-function) for any state using
a few weights.

Qw(s, a) = w0 + w1F1(s, a) + ... + wnFn(s, a) (2.3)

Advantages are that each state-action pair can be summed up in a simple
value.

2.3 Pathfinding

In its most basic form, path planning in robotics is about finding a route
from a to b while avoiding collisions. Pathfinding will not be the main
focus of this thesis, however a good algorithm fitted for the task will be
vital for the project to work. In order to find a suiting algorithm, state of
the art path finding algorithms will be researched.

11

2.3.1 Theta*

Due to its simplicity, A* is the most common algorithm used for graph
traversial of a roadmap. This is because the algorithm is guaranteed to find
a shortest path on the graph. The problem with A* and many other graph
traversial algorithms is that a shortest path on the graph is not equivalent
to a shortest path in the continous environment. The algorithm is limited
by the propagated information in the graph. Theta* builds upon A* first
presented by Koenig in this article [26]. The main difference between
Theta* and A* is that the former allows the parent of a vertex to be any
vertex in the graph. By allowing any-angle paths, Theta* can heavily
optimize a path found by A*. Considering a A*-path from (qi, qa), (qa, qb).
If there exists a line of sight from qi to qb without obstacles, qa can be
dropped from the path. While Theta* is not guaranteed to find shortest
paths in the continous environment, it does find the shortest paths a large
percentage of the time.

2.3.2 Potential fields

Potential field methods (PFM) falls under local path planning methods and
the idea behind it is taken from nature. Consider a small ball rolling down a
hill. The idea is that depending on the slope of the hill, the ball will always
move down into the valley. In robotics we can simulate the same effect by
creating artificial potential field that will attract the robot to the goal.

In a simple environment without obstacles we would only need to
create a single attractive potential field inside the goal position qg [12]. The
potential field is defined across the entire cfree, and over time calculating
the force applied to the robot, the robot will move against the goal. To
avoid obstacles, we place negative potential fields over every obstacle.
While being forced against the goal, the robot will simultanously be pushed
around obstacles. In mathematical terms, the overall potential field is:

U(q) = Ugoal(q) + SUM(obstacles(q)) (2.4)

and the induced force is:

F = −U(q) = (U/x, U/y) (2.5)

PFMs were originally used for collision avoidance and has a problem with
being stuck in local minima when used for global path planning [38]. An
example is a robot being trapped in a U-shaped obstacle. Several methods
has been suggested to deal with this problem. One of the most common
solutions is to use PFM in combination with a global planner. Another is
to let the robot get trapped in a local minima and use backtracking or ran-
dom movements to help it escape. All this approaches are based on that
the robot can discover that its trapped.

12

2.3.3 Probabilistic roadmap

Probabilistic roadmap methods (hereby noted as PRM-) work in two
phases. A learning phase and a query phase. In the learning phase, the
algorithm constructs a map over all collision-free configurations in the
configuration space. These configurations form the vertices in a graph
called a roadmap. A simple local planner is used to look for connections
between connected vertices. If a connection is found, an edge is added to
the graph. On completion the roadmap will give a sufficient representation
of the collision-free map.

In the query phase, the initial configuration qi and the goal configur-
ation qg are connected to the graph using the same local planner as was
used in the learning phase. Finding a path from qi to qg is reduced to a
simple graph search in the roadmap.

The learning phase of PRM is the cost heavy operation, and must
be taken into consideration when deciding to use this algorithm. For
robots working in a static environment, the roadmap can be preloaded and
efficiently calculate paths.

2.4 Related Problems

In order to find previous related work on the type of algorithm that was
to be implemented, it was necessary to find similar problems that have
been successfully solved with learning strategies. In this section, two
well known algorithms are described, the Traveling Salesman Problem
and Vehicle Routing Problem. None of them matches the Eurobot task
completely, however ideas and previously used techniques might be useful
for the implementation of the algorithm discussed in this thesis.

2.4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most researched and
famous algorithmic problems to date. A travelling salesman has to travel
around to nearby cities in order to sell cargo from his car. Being a business-
man, the salesman doesn’t want to waste time on the road and therefore
want to find the most time efficient route that allows him to visit all the
nearby cities. So the salesman asks for the shortest route to visit a collec-
tion of cities and return to the starting point.

Definition
Given a set of towns and the distances between them, determine the
shortest path starting from a given town, passing through all the other
towns and returning to the first town.

Common solutions A general overview of solutions to the TSP problem
can be found here [15] Below i will give a brief overview of some of the
more common learning strategies used for solving TSP.

13

Genetic Algorithms
Genetic algorithms(GA) is an evolutionary algorithm inspired by biological
evolution. GAs uses the principles of nature selection to solve complex al-
gorithmic problems. Starting with a population of proposed solutions for
the problem, the GA uses mutation and crossover between individuals to
improve their fitness. The algorithm continues this evolution until a ter-
minal condition is met. A detailed introduction to GA is given in [1]. [9]
gives a good overview of different GA approaches for solving TSP.

Ant Colony Optimization (ACO)
Ant Colony Optimization is a heuristic search method for solving difficult
problems in combinatorial optimization. The method is inspired by the
biological behaviour of real ant colonies. When ants try to find the shortest
path between their nest and a food source, they drop pheromones on the
ground creating a track. Over time the pheromone will evaporate, and the
more time it takes the ant to walk the track, the more the pheromone will
evaporate. However a shorter track will be walked faster and the pher-
omone will decay slower. Other ants will tend to follow tracks with strong
pheromone, and therefore prefer the shortest path. The idea of ACO is to
mimic this behaviour with simulated ants walking around the graph. More
information about solving TSP with ACO can be found here [37].

Q-Learning
Some recent studies have been done using Q-Learning approaches to solve
TSP. An overview of Q-learning was given in section 2.2.3. A variation of
ACO with Q-learing has shown promising results [4]. In [7] an implement-
ation of SARSA for solving TSP is proposed.

Relevance The Eurobot task of collecting objects has similarities to the TSP,
however the task is more complexe. In the Eurobot task we also have to
consider the capacity of the robot.

2.4.2 Vehicle Routing Problem

The vehicle routing problem (VRP) is a combinatorial optimization prob-
lem seeking to service a number of customers with one or multiple vehicles.
VHP is a generalization of TSP. A thorough review of VHP can be found
here [34].

Definition
The objective is to optimize the path for a delivery truck that has to visit
a certain number of customers in a city. The vehicle has a limited capacity
and will need to return to one or multiple depots to offload goods.

A general review of algorithm for solving VRP can be found here [16].
The learning based approaches are usually variants of the approaches ex-
plained under the previous section where capacities are added to the prob-
lem.

14

Relevance The vehicle routing problem is very similar to the Eurobot task
and work done on learning approaches will be researched for this thesis.

2.5 Previous Work

This section presents some of the previous work done on learning strategies
for problems similar to the Eurobot task. Implemented systems will be
briefly discussed, along with thoughts on how the can benefit this project.

Training Pacman with advanced reinforcement learning

In [35] the author presents an agent traind with reinforcement learning that
learns to play the classic arcade game Ms. Pacman.

Overview:
In Ms Pacman, the goal of the agent is to eat all the food on a map in a
maze like environment, while avoiding ghosts. In the article the author im-
plements a SARSA reinforcement learning algorithm that will train pacman
by simulation. This implementation differs from regular grid-based RL im-
plementations in the representation of states. A common approach is to see
every grid as a state, and calculate which grid to move to next depending
on threat and value of the grid. Here, the author has chosen states repres-
ented as a 10-dimensional feature-vector. The features holds information
about the adjacent grids and threat indicators. With a complete state-space
4 ∗ 29 = 2048, the problem can be solved with on-policy learning.
The implementation shows good results in simulation, and the agent is able
to learn a good policy that can be used on different environments.

Usefulness:
The Ms. Pacman environment is quite different to the Eurobot problem,
however there are some similarities that are worth noting. The agent was
able to learn how to avoid ghosts, by preferring actions in areas where there
are no threats. This indicates that a similar solution could work for the
Eurobot agent, preferring tasks away from the opponent robot. However,
the Eurobot agent and environment is more complex than the envorion-
ment discussed in this article. The Eurobot agent has free motion, while
pacman is limited to four different moves. Finding a small enough state
representation that allows an exact value function for the Eurobot task is
not very likely. An approximated value function will allow for a more de-
tailed state representation and a larger state-space, however the perform-
ance is not guaranteed to be as good.

Hybrid genetic algorithm solving Vehicle routing problem

This master thesis [5] presents an implementation of a dynamic schedulerer
solving a variation of VRP using genetic algorithms.

15

Overview: This article is based on a previous Eurobot task from 2010. The
task has many similarities to this years task, and the problem can be re-
duced to a dynamic vehicle routing problem. A planner was implemented
for a harvesting robot, gathering boxes from a playing field and delivering
them to a depot. The robot had a limited capacity and had to return to the
depot multiple times. The author describes a hybrid genetic algorithm that
was optimized as a schedule generator for the robot.

Usefulness:
The proposed genetic algorithm showed good result in finding a static solu-
tion for a problem very similar to this years Eurobot task. The thesis also
describes difficulties involved with building a robot for the Eurobot com-
petition. It highlights the importance of a simulator.

Playing Atari with Deep Reinforcement Learning

This article [24] presents an agent trained with Deep Reinforcement Learn-
ing that plays classical arcade games at a world class level. Overview: [34]
demonstrates that a convolutional neural netowrk can learn control policies
from raw video data in complex RL environments. The network is trained
with an implementation of the Q-learning algorithm, with stochastic gradi-
ent descent to update weights. Using a Atari console simulator, the RL-
agent is trained using a video stream as input and a reward function dir-
ectly from the games. The agent was not fed any information about the
rules or concepts of the games. Using different image transformation al-
gorithms as input, the agent was able to learn and play the games at a
world class level. The algorithm outperformed all previous approaches on
six of the games and outperformed a human expert on three of the thirty
seven games.

Usefulness: The proposed algorithm in this article has shown great results,
and has been a inspiration for selecting reinforcement learning strategies
for this thesis. However, the approach taken in this article requires complex
image recognition algorithms and might not be suitable for this project.

2.6 Discussion

There were two main considerations that had to be taken when selecting
an implementation for this thesis. An AI had to be implemented for
the Eurobot competition, and also allow for testing with reinforcement
learning. A Goal Oriented Action Planner was chosen as the planning
algorithm for the robot. The GOAP-planner was flexible enough so that
a trained decision making policy could be incorporated. If the robot was
completed early, the decision making policy could easily be replaced with a
static solution for testing. SARSA was chosen as the reinforcement learning
algorithm in combination with a value function approximation strategy,

16

due to the complexity of the state-space in the Eurobot task. The GOAP-
planner will use the value function of the learned policy when comparing
the value of actions while creating plans.

17

18

Chapter 3

Robot

Building a robot for the Eurobot competition is a main part of this master
project. This section is intended to give the reader a better understanding
of the robot the AI was implemented for.

3.1 Design

Figure 3.1: A model of the robot

The design and building of the robot was completed a few weeks before
the competition. Running on a low budget, the robot was built by using a
robot kit as base layer. The parts of the kit are the orange plates on figure
3.3. The other parts were 3d-printed at the university lab. The size of the
robot was mainly decided by the Eurobot rules [6].

The robot is 30 centimeters high and has an oval shape. The IR-
tower module is located on the top of the robot. Using Infrared the tower
communicates with 3 beacons around the playing field. With triangulation
the module can keep track of the robots position. The distance sensors are
also placed on the top level. A ultrasound sensor is used in the front where
a greater distance is needed. Two infrared distance sensors are located on

19

Figure 3.2: The robot seen from an angle.

the back.
One arm on each side of the robot is used for flipping the flip-boards.

From here on the arms will be referenced to as shutter left and right. The
two grippers in front will be used for collecting stands and popcorn glasses.

The third level contains a laptop and two arduinos. One arduino drives
the IR-tower and the other drives the distance sensors. The laptop will run
the AI, motor controller and the navigation system. The different software
modules will communicate asynchronously through sockets.

3.2 Modules

Being a team consisting of 3 members working on the project, we decided
to modelize the robot. The robot was separated into 4 indiviudal models,
Motor Controller, Localization, Vision and the A.I. The modules were built
as indiviudal systems and communicated through socket messaging on the
computer located on the robot. The A.I is discussed further in section A.I.
Below i will give a brief introduction to the other modules.

3.2.1 MotorController

The MotorController module is the controller system that handles actuat-
ors and the movement for robot. The MotorController has an API which
allows the AI to queue commands. States of the different motors can also
be retrieved from the API.

Driving
The motor controller has an internal grid system of the Eurobot playing
field. In order to move the robot around the map the AI requests a move
with Position(x, y) to the MotorController API. During a driving phase,
the AI can poll updated information about the current position and driv-
ing state. The MotorController does not handle obstacle avoidance or any

20

other game based state. It is the AIs job to find a path around obstacles and
queue positions that forfill such a path.

Actuators
The gripper and flippers seen in figure 3.5 are used for performing actions
to score points in the competition. As with the driving system, the actu-
ators can be steered directly through the API by sending a request for a
transition to a new angle.

3.2.2 Localization

A rotating IR-tower is located at the top of the robot, as seen in figure
3.5. A global positioning system is built around the system. By using
three beacons located on the side of the playing field, the IR-tower uses
triangulation in order to determin the global position of the system.

3.2.3 Vision

Unfortunetaly we were not able to build a functional vision system for the
robot, and had to fall back on distance sensors located on the top of the
robot. Without a global positioning system, the AI could not determine the
position of the opponent.

3.3 Module communication

Building a complete autonomous robot requires a complex system of
controllers, sensors and actuators. For the robot discussed in this thesis, we
decided to seperate the system into individual modules. As mentioned in
3.2 the A.I and MotorCotroller will run on a intel computer with linux. All
the modules will run on separate processes. For communication between
the modules, a socket library named zeroMQ (zmq) was chosen.

3.3.1 ZeroMQ

ZeroMQ is a high-performance asynchronous messaging library. Using
sockets the library allows for fast communication between applications
both locally and over network. A typical setup is that one application acts
as a threaded server and the other application connect as a client. ZMQ
is cross platform and available for multiple languages. More information
about ZMQ can be found here [10]

In our project we have multiple applications written in different
programming languages. Using zmq we can send messages almost
instantly between the A.I written in Java and the MotorController written
in C++.

21

Figure 3.3: The robot built for the Eurobot competition.

Figure 3.4: The robot’s grippers, used for gathering boxes.

Figure 3.5: A replica of the original Eurobot playing field was built for
testing.

22

Chapter 4

Implementation

4.1 AI

The main controller system for the robot described in chapter 3 will be
referred to as the AI. The AI can be seen as the brain of the robot. Its job is
to plan, calculate and perform actions for a robot competing in the Eurobot
competition.

4.1.1 Controller system

The top level controller system was implemented as a finite-state-machine
shown in figure 4.1. A control loop updates the FSM in 60ms intervals. Be-
low is a description of the different states.

Ready
Following the Eurobot rules [6] the robot must be started manually with
a start cord. In this state the AI will listen to a trigger on the start sensor.
When the thread is pulled the AI will transist to the next state.

Calculate plan
In this state, the AI would request a plan from the GOAP-planner.

Perform plan
In this state the AI would execute actions until the current goal was com-
pleted.

Emergency stop
In order to avoid crashes, the AI had an emergency stop system. Using
distance sensors, the AI could continously check for threats. If a threat was
detected, the robot would shut down, and ask the GOAP-planner for a new
updated plan.

Done
A Eurobot match lasts for a total of 90 seconds. If a robot continues to
move after the time limit, the team risks disqualification from the contest.

23

Ready

Calculate plan

Perform plan

Emergency stop

Done

Warning from threat sensor

Reset

Game timer

Done

Threat information
Start signal

Figure 4.1: Overview of the main controller system AI.

Therefore it is very important that the robot shutdowns in time. A timer is
implemented in the AI, and updated every iteration. If the timer reaches
the limit, a kill-signal is sent to the driving system and all actuators.

4.1.2 Planner

A Goal Oriented Action Planning algorithm was implemented as the
planner, and is described in detail in section 4.2. The planner was used
in two of the states of the controller system. During the

4.2 Goal Oriented Action Planning

A implementation of a Goal Oriented Action Planner was implemented
as the planner for the AI. The GOAP-planner will us a trained decision
making policy in order to evaluate different actions for a given state. This
section will give a brief overview of the GOAP implementation.

24

4.2.1 States

A GOAP state is a collection of state variables derived from the current
board state of the game. The state is used when the planner derives
available actions and to see which actions can be executed, depending on
their precondition. The state must capture all the important infromation
from the environment. Most of the variables are the conditions of game
objectives and the current status of the robot.

4.2.2 Actions

For this implementation of GOAP it was decided that the responsibility
of movement would be removed from the planner and therefore not con-
sidered as a GOAP action. The planner should only decide which objective
to do next, and the actions themselves will be responsible for the movement
while performing the task. However, travel distance and positioning will
still be considered when the actions are evaluated. As discussed in section
2.1.5 every goap-action has preconditions and effects.

PickBoxAction (PBA): The action of collecting a box from the game board.
Collecting boxes is one of the main objectives of the Eurobot task this year
to score points. The PBA will control the whole movement of opening grip-
pers in a feasible distance from the box, positioning the box and closing the
grippers. In order to perform this action there must be available boxes on
the playing field, and the robot must have the additional capacity

PickPopcornAction (PPA): This action is very similar to the PBA, however
the preconditions and effects are replaced with states related to popcorn
stands. There is also a small difference in the movement performed while
collecting.

DeliverGoodsAction (DGA): In order to score points, all collected objects
must be delivered to a depot. The DGA handles the movement and re-
leasing the objects inside a valid depot. In order to perform this action the
robot must be carrying cargo and a open depot must be available. Collec-
ted cargo that is not delivered to a valid depot before the time limit will not
gain the robot any point.

FlipClapperAction (FCA): The action of flipping a movie clapper located
on the sides of the board. Two triggers located on each side of the robot
will be used to perform the action. The FBA is responsible for the opening
and closing of the trigger and positioning correctly next to a move clipper
in order for the action to be performed succesfully.

4.2.3 Goals

A goal is a state configuration that satisfies a certain goal predicament.
GOAP is a goal driven planning algorithm, and will therefore search the

25

action space for a valid sequence that leads to a goal state. For goals that
need a large number of actions, the amount of possible permutations of the
action sequence can grow infinitely. It is therefore recommended to use a
heurestic to speed up the search. With multiple goals, either a priority rank
or a most valued first approach can be taken. Below i will give a short in-
troduction to the goals used for the Eurobot task.

BuildTowerGoal: The build tower goal requires the robot to gather boxes
around the playing field and delivering them to a valid depot. This goal
can only be reached from the deliverGoodsAction. This goal can be com-
pleted multiple times, as long as there are open depots and available boxes
on the playing field.

DeliverPopcornGoal: This goal is similar to the buildTowerGoal, but for
gathering and delivering popcorn cups.

FlipClipBordGoal: This goal is for flipping the ClipBoards located on the
side of the playing field. This goal is only completed when there are no
unflipped ClipBoards left.

4.2.4 Creating Plans

As discussed earlier a plan is created by searching for a valid action
sequence that leads to a goal. Given the current state and a goal, the
algorithm will build a graph over possible actions and state-space. In this
implementation A* is used to search the state graph. The algorithm starts
off by identifying the available actions in the current state. It then chooses
the most valuable action given by a heuristic that will be discussed later
in this section. The action is then applied to the state and new state s′. If
s′ is a valid goal state, we have a new valid plan. If not, s′ will be added
to a queue of possible states, and traversed for possible actions in s′. This
will be done for every action available in the state-space until a valid plan
is found, or none exists.

4.2.5 Evaluating Plans

A good heuristic is the foundation for a succesfull A* algorithm. A common
heuristic in A* for GOAP is to calculate a distance between current state
and goal state. For example if the goal Sg is to collect 5 boxes and you
currently in S1 have 2 boxes, you have the distance 3 to the goal state. This
means that a state S2 with 3 boxes would be “closer” to the goal state than
S1. All though this heuristic might work excellent for simpler problems,
it has its faults when the problem becomes more complex. Given the
earlier example, if there are more than 5 available boxes, you would like
the heuristic to also choose the route with the shortest driving path. For
this years Eurobot task we are also working with a changing environment.
This means that a plan that was optimal at t1, might not be possible to do at
t1 + n. It would therefore be preferable if the heuristic could also consider

26

the likelihood of future states happening and prioritize safe plans. In order
to forfill all these requirements it was decided that an decision making
policy trained with reinforcement learning should be used as a heuristic
for the planner. This algorithm will be discussed in the next section.

4.3 Value Function Approximation

The decision making policy consisted of an implementation of SARSA with
value function approximation. The goal is to find a decision making policy
that can help the GOAP-planner choose the best actions at any moment of
the game. With the Eurobot task being a dynamic game, the value function
would have to consider both the current state of a game and changes that
may possibly happen in the feature. In order to achieve such a value
function, experiments will be done for different learning strategies and
feature extractors. The policy will always choose the action with the highest
score given from the Q-value function:

Qw(s, a) = w0 + w1F1(s, a) + ... + wnFn(s, a) (4.1)

The weights are values learned from training. A high valued weight
indicates that the specific feature will be impactful if the feature value also
is high. For example if the weight for the feature DistanceFromOpponent
is set to 100, the policy will prioritize actions that maximizes the distance.
If the weight DistanceToObjective is set to -100, the policy will prioritize
actions where the feature value is low.

4.3.1 Weights

In this implementation the weights are represented by a vector of floats. As
by the learning rule equation 2.2 the weights will be updated during the
learning phase with the goal of forming a good policy. The weights can be
seen as the memory or brain of the algorithm. The weights are update by a
combination of the reward recivied for performing an action in a state. The
planner will choose the action that returns the highest value from a action
state pair using the value function.

4.3.2 Features

Feature selection is one of big difficulties with value function approxima-
tion. Experiments on different combinations of features was done and can
be reviewed in [Experiments features]

In a SARSA implementation each feature is calculated from a state and
an action. Therefore it will also hold information on the objective of the ac-
tion, for example a box or a popcorn cup. Below follows a brief discussion
on the features used in this implementation.

Robot position: The robots position is represented in 5 features. 1-4 is
distance from north, west, east and south border of the game board. The

27

fifth is the rotation of the robot.

Opponent position: The opponent robots position is only relevant in re-
lative distance to our robot and the distance to objectives. Therefore there
is two features f5 distanceToOpponent and f6 distanceToObject. Distance
to object will be 0 if we currently do not have a object.

Time: In order to prioritize plans that finish in the time range of a match,
features for time is a must. Feature fx is time from beginning in the range
[0, 90] and fx is time left [90, 0].

Object value: While optimizing the performance of the static solver and
selecting the most valuable route, features with action target specific in-
formation was added. This includes for example distance to nearby objects.

4.3.3 Learning parameters

The learning rule described in 4.2 has three parameters that highly effects
the performance of the algorithm. A brief introduction to the parameters is
given below.

Alpha (a) - The Learning rate The learning rate, a value from [0, 1], con-
trols how much influence the current feedback value has over the previ-
ously learned Q-value. A high learning rate would give more credit to new
experiences and a low learning rate would value previous learned rules
higher. The learning rate can also change over time. In the initial part of
the learning process the value can be relatively high since the stored q-
values have confidence. As the learning process evolve, we can rely more
and more on our past experiences and the learning rate decreases.

Gamma (g) - The discount Rate The discount rate controls how much a
<State, Action> pairs Q-value depends on the q-value at the state it leads
to. A value of zero would disregard all future stats and only consider the
immediate reward of the action. A value of one will value them equally.
Higher values favor longer sequences of actions, but requires a longer
learning process. In the Eurobot task, we have multiple actions that are
necessary but redeem no immediate reward, like collecting boxes or pop-
corn cups. Therefore a gamma > 0 is required.

Rho (r.) - Randomness for Exploration All reinforcement learning al-
gorithms require a degree of randomness in order to learn. Without it you
would constantly be stuck in local maximums, and learning would not be
possible. Rho controls how often the algorithm will take a random action,
rather than the best action based on previous learning. Rho is a value from
[0, 1].

The learning parameters for this implementation will have to be found by
testing, as the optimal parameters are problem specific.

28

4.4 Simulator

As the goal of the project stated, a simulator had to be implemented in or-
der to test the A.I. while the robot was under construction. A simulator
that could simulate a complete Eurobot game was built from scratch. In
addition to a score and fitness evaluator, a 2d-graphical visualization of the
simulator was also implemented. The Eurobot Simulator (EuroSim) was
constructed with two different modes. A simulation mode where the mo-
tor controller and all sensors where simulated, and a Live-mode where the
EuroSim used real values from the robot to display the state of the game.

Live-mode: In Live-mode the EuroSim used the actual position and sensor
values retrieved from the robot in action. This was particularly helpful dur-
ing the test face of the robot. A socket communication was used to commu-
nicate between the robot, this is discussed further in section 3.3

Simulation-mode: The simulation mode was used to develop and test the
A.I. Since the robot was still under construction, adjustable parameters and
variables where used to represent speed, rotation, speed of grippers and
other physical attributes. These parameters were updated when we were
able to obtain real value data from testing the actual robot. Below some of
the calculations used for simulating the robot will be discussed.

4.4.1 Driving

Since the robot would spend most of its time driving around the map, the
simulation of movement was very important. It was determined early in
the robot building process that a movement involving a change of direction
would be separated into two steps. So any movement that required a
rotation would first rotate, and then move in the targeted direction. This
strategy was reproduced in the simulator.

RotationTime(phi, phi2) = r/Vr + a ∗ Pr) (4.2)

Here phi is the initial rotation of the robot, and phi2 is the goal rotation.
Vr is the rotational velocity of the robot and Pr is translational velocity of
the robot.

DrivingTime(p1, p2) = D/Vt + a ∗ pa (4.3)

Time(P1, P2) = RotationTime(P1phi, P2phi) + DrivingTime(P1, P2) (4.4)

4.4.2 Obstacles

In this section we will only consider moveable game objects as obstacles.
All other static features of the game environment that could be seen as
obstacles are handled by the pathfinding algorithm [Section Pathfinding
obstacles]. Collisions with obstacles are calculated with vector distances
and intersections.

29

4.5 Path Planning

The path planning algorithm implemented was based on PRM described in
section 2.3.3. The PRM operates on a NavMesh, a mapping of the collision-
free areas of the map.

4.5.1 Constructing the NavMesh

The NavMesh is initialized and constructed from a tile representation of the
static map. The static map was modelled after the board game described
in [6]. For each tile a space is added to the NavMesh if the tile is clear of
obstacles. The fewer spaces a navmesh consists of, the more efficient the
pathfinding is. The list of spaces are therefore reduced by merging them
into larger rectangles. Finding a path between two points in a navMesh
can be reduced to finding a path between two spaces.

4.5.2 Obstacle Avoidance

Since the robot’s size is vastly bigger than a tile, we have to make an
additional effort to ensure that the robot can travel without colliding. If
we consider the center of the robot as the coordinate position, there will an
area around the point with the radius of the robot as distance that also can
collide with obstacles. This problem can be handled directly during each
pathfinding process. However, a far more efficient and simpler approach
is to build it into the NavMesh. Each obstacle in the static map is extended
with r + e, where r is the radius of the robot and e is an error margin
optimized during testing. Including this in the static map means that we
know can use navMesh to find a path between two points that guarantee a
clear path for the entire robot.

4.5.3 Optimizing

As discussed earlier, finding a path between two points in different spaces
include traversing the links of spaces until a valid path is found. However,
there are cases where this path can be optimized. Using a line of sight
algorithm, we can check for unnecessary points in a path. Consider the
path a -> b -> c where each point is in a different space. If there exists a line
of sight between a and c where every point of the line is in a valid space,
b can be removed from the path. The difference in travel distance gained
might not be the greatest, however a smoother path with fewer points will
increase the travel speed for the robot discussed in this thesis immensely,
since each separate rotation is a heavy time consumer.

4.6 The Opposing Robot

In the Eurobot competition there is always two robots competing against
each other increasing the complexity of the original vehicle routing

30

problem drastically. Avoiding collisions with the opponent will be one of
the greater challenges for the AIs strategy.

4.6.1 Long-term avoidance

The long term avoidance will mainly be handled by the GOAP strategy and
the decision making strategy. All objects are weighted with a distance from
opponent factor, and the aim is to get a value function that will deevaluate
objects close to the opponent.

4.6.2 Short-term avoidance

Avoiding collisions is a high priority, and a seperate emergency stop system
is on top of the strategy system. The emergency system uses distance
sensors in front and at the back of the robot. If the sensors report a
threat higher than v, the robot will go into a emergency stop state. From
an emergency state, the robot must calculate a new plan, including the
opponent robot in the NavMesh.

31

32

Chapter 5

Experiments and Results

5.1 Overview

The main focus of this thesis is to investigate how reinforcement learning
as a decision making strategy can be applied to a mobile robot. The goal
for the experiments conducted in this section is to find a decision making
policy that the GOAP-planner described in section 4.2 can utilize. The
policy will be used as a value function, ranking different actions against
each other in order to find the optimal plan. The policy will be trained with
an implementation of SARSA described in section 2.2.4 with value function
approximation.

The decision making policy will always choose the action highest
scored by the trained Q-value function as described in 4.3. The experiments
will involve simulating different scenarios and evaluate how different
learning environments affect the performance of the decision making
policies.

In the first experiments we will investigate how the decision making
policy can perform on a static playing field. There are no opponents, and
no time limits. In the second part we will introduce situations that can
occur during a match with a changing environment.

5.2 Experimental Setup

For the Eurobot task there are multiple game objects that the robot needs
to gather. For simplicity we will only consider the problem of collecting
boxes and delivering them to the stand areas on the playing field. This can
easily be extended to include other game objects on the final implementa-
tion since the experiments will mainly involve planning driving routes. A
simplified version of the simulator described in section 4.4 was used to run
the experiments.

33

5.2.1 Experiments on the simulator

The EuroSim simulator from section 4.4 was designed to show the perform-
ance of the robot live and simulate in real time. During the experimental
phase the simulator was simplified in order to run fast simulations. Instead
of a driving system based on time, a grid based movement system was im-
plemented, where the robot would move up to one grid per update.

5.2.2 Robot configurations

For these experiments the capacity of the robot was set to 5 boxes. It was
also limited to only make one delivery per stand. This limitation does not
exists in the real competition, however during the planning phases of this
project the plan was to build a tower of 5 boxes, and therefore the algorithm
should be optimized for this setup.

5.2.3 Eurobot playing fields:

In order to investigate the performance of the algorithm, multiple permuta-
tions of the original Eurobot playing field setup was used for the experi-
ments. Only using one playing field could lead to misleading results. The
different size used for the experiments can be found in table 5.1. Multiple
variants of the different sizes were used. The boxes were randomly placed
for each configuration.

Name Number of Boxes Number of Stands Size
Small 6 1 10x10
Medium 14 2 30x20
Large 50 7 60x40

Table 5.1: Playing field configurations

5.2.4 Simulations

In all simulations a policy was trained over 30 000 episodes. An episode
is a complete game from start to finish. The number of runs vary between
simulations.

5.2.5 Learning parameters

As described in 4.3.3 the learning parameters for the SARSA algorithm are
case specific and had to be found with testing. Two different variants were
used as seen in table 5.1

34

Name Learning rate Discount rate Rho
Normal 0.1 0.6 0.05
Multiple features 0.3 0.6 0.05

Table 5.2: Learning Parameters

5.2.6 Rating policies

Two different rating values are used for these experiements. The first one,
performance, is based on the rewards that the SARSA implementation uses
to update weights.

P f = 30 ∗ Sb1 + 30 ∗ Sb2...30 ∗ Sbn + 10 ∗ B− 0.5s (5.1)

Where Sb is the count of boxes at a given stand, B is the total count of boxes
gathered and M is the total count of steps.

The second rating is called Game score and is based on the scoring sys-
tem of a Eurobot match. There are no points given for boxes not delivered,
and there is no step penalty.

Gs = 30 ∗ Sb1 + 30 ∗ Sb2..30 ∗ Sbn (5.2)

5.2.7 Analyzing results and policies

Policies
In order to analyze the different policies learned by the robot, a pcolor
plot as seen in figure 5.1 will be used. Each column is a trained policy
learned over multiple episodes of training. Yellow boxes indicates a weight
with high value, a blue bloxes indicate a negative value. A learning
configuration that produces stable policies are indicated by a weight being
consistent for all runs.

5.3 Static planning

In this section we will try to find a good static policy for the eurobot task
with value function approximation. We will use a simplified version of the
playing field, where only target is to gather and deliver boxes to the stands.
All solutions will be measured in the performance evaluation from section
5.2.6. The goal is to create a policy that will select effective paths based
on the information given from environment. We will also investigate if a
general policy can be found for multiple playing fields. It is not likely that
we will find a policy better than proven dynamic and genetic algorithms
for similar problems, however a good static algorithm will be the ground
layer for our dynamic planning algorithm.

5.3.1 Feature extraction

The first experiments conducted involved comparing different variants of
feature extractors against each other. A RL algorithm can only learn from

35

Runs
2 4 6 8 10

Weight1

Weight2

Weight3

Weight4

Weight5

Weight6

-40

-20

0

20

40

60

80

Figure 5.1: Example plot of trained policies. Each column represents policy.

the information represented in state. In value function approximation, the
features represents the state of the environment. In order to find the op-
timal feature extraction, multiple experiments were done with different
combinations. The feature extractions were tested on multiple playing
fields of different size as described in section 5.2.3. Below is a short de-
scription of the different variations. It was expected that the ActionStates
varation would have the best performance, because it contained most in-
formation about the environment.

PosBoard: Uses a combination of position and board state. Features 1..4
for position and 5..8 for board state.

ActionStates: Expanding PosBoard with details about the next action. Ex-
tracts distances to nearby objectives of the current action.

NoPosition: Removes position features 1-4 and only focus on board state
and action states.

Parameters The parameters for the Q-value update rule explained in
section 4.3.3 can change the outcome of a value function approximation
drastically. Based on experiences from other projects the parameters were
initially set with a learning rate of 0.7, discount rate of 0.3 and rho of
0.2. These parameters achieved good results on smaller maps. When the
complexity of the problem increased with larger maps, the feature vector

36

Feature extractor Small 1 Small 2 Medium 1 Medium 2 Large 1 Large 2
PosBoard avg 111 117 172 150 458 405
ActionStates avg 100 117 143 161 523 444
NoPosition avg 92 117 171 155 487 366

Table 5.3: Performance average of feature extractors

Feature extractor Small 1 Small 2 Medium 1 Medium 2 Large 1 Large 2
PosBoard max 111.0 117 176 159 510 522
ActionState max 111 117 176 175 610 482
NoPosition max 111 117 176 175 578 400

Table 5.4: Best performance of feature extractors

weights would tend to grow indefinitely. By decreasing the learning rate
to 0,1 the weights stabilized. By decreasing the learning rate, earlier exper-
iences have less value. This resulted in policies that found a good solution
halfway through the learning period and at the end changed course and
ended up with a worse policy. To make up for the low learning rate, the
rho was reduced to 0,05.

Results:
As table 5.3 and 5.4 shows, the assumption that ActionState would have the
best performance hold up. The variation achieved the best overall perform-
ance on average and on top performance. On the smaller playing fields, all
extractors found a decent policy, and was able to find the optimal solution
on at least one of it runs. When the complexity of the problem increased,
the ActionValue was able to use the extra information it contained in or-
der to find a better policy. As seen on Figure 5.2, the ActionState and No-
Position had similar results, which was the case for all small and medium
problems. However on Figure 5.3 ActionState is clearly able to find a bet-
ter policy than the other variations when the complexity of the problem
increases.

Analysis
As described in section 5.2.7, the columns in figure 5.4 are learned policies
and rows are the values of weights. In figures 5.4 and 5.5 we can see that
the policies are consistent for all runs. We can also see that the two differ-
ent variations have found the same policy. Both have given a high value to
BoxesCarrying and AvailableBoxes, and a negative value to TimeAction-
Complete and DistanceToBox1. From this we can conduct that the policy
will prioritize boxes and stands that are close to other boxes, and choose
boxes it can reach quickly. It is interesting to note that AvailableBoxes has
such a high value. Since a low amount of available boxes indicates that the
robot has been able to collect more boxes and thus score more points, you
would assume that this weight would be negative. A possible reasoning
for this could be the high discount factor. In the beginning of a round, the
count of available boxes is high, and the potential future value for the robot

37

Feature extractors
PosBoard ActionStates NoPosition

20

40

60

80

100

120

140

160

180

200

Figure 5.2: Box plot of performance on Medium 2

Feature extractors
PosBoard ActionStates NoPosition

340

360

380

400

420

440

460

480

500

520

Figure 5.3: Box plot of performance on Large 2

to score is also high. Therefore the policy could take this as an indication
that a high value for AvailableBoxes is the sign of a good policy. Distan-

38

Runs
2 4 6 8 10 12 14 16 18 20

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceToAction

-50

0

50

100

150

Figure 5.4: Weight distribution for policies with a ActionStates feature
extractor over multiple runs.

Runs
5 10 15 20

TimeActionComplete

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceToAction

0

50

100

150

200

Figure 5.5: Weight distribution policies with a NoPosition feature extractor
over multiple runs.

ceToBox2 and DistanceToBox3 are mainly ignored, which indicates that the
policy is not able to utilize this information. It is interesting to note how
big of a difference it is between the ActionStates and NoPosition extract-
ors. The policy is able to utilize the positioning of the robot on the different
playing field in order to find better routes. In figure 5.4 we can see that pos-
South and posWest have a higher value than posNorth and posEast, which

39

indicates that there is a higher value of being in the North-East corner on
that map.

5.3.2 Training on multiple maps

The second investigatory experiment involved testing policies trained on a
single map vs policies trained on multiple maps. This was done in order
to examine if a policy trained on multiple maps was able to find a gen-
eral policy, and how this policy would hold up against the other variations.
Based on previous results the ActionPos feature extractor will be used for
all variants. The smallest maps showed no interesting results in the previ-
ous experiment, and have been replaced with two new mediums. It is not
necessarily the goal of this experiment to find a policy that works well on
all map configurations. However it is interesting to see if the assumption
that a policy trained on a single map is able to use the positioning features
to its advantage. A general overview of the different variants is given be-
low.

Trained on single perform multiple:
The agent is trained on a single map and will perform on all. The goal of
this experiment is to see if the agent is able to find a map specific policy
that is better than a generalized policy.

Trained on multiple, perform multiple:
This agent is trained on all map configurations. During training, a random
map is drawn from the pool of map configurations.

Trained on Medium 1 Medium 2 Medium 3 Medium 4 Large 1 Large 2
Medium 1 119.5 165.0 165.0 124.5 565.8 517.5
Medium 2 176.0 155.4 201.0 169.0 610.0 554.0
Medium 3 172.0 119.0 158.4 98.0 610.0 523.0
Medium 4 176.0 152.6 197.7 162.2 610.0 554.0
Large 1 9.0 21.0 17.0 17.0 516.1 404.1
Large 2 9.0 21.0 17.0 28.2 574.0 450
Multiple 60k 135.5 139.8 170.4 140.5 365.4 343.3
Multiple 20k 112.0 152.2 192.2 165.0 610.0 554.0

Table 5.5: Trained on single map vs multiple maps average

Results From table 5.5 and 5.6 we can see that in general the variations
trained on multiple maps have a fairly similar score to the variations
trained on single medium maps. This indicates that a general policy might
works just as good as any map specific information learned by variants
training on a single map. However it is interesting to note how poorly the
variations trained on large maps perform on medium maps. As the mul-
tiple variation is also trained on the large map, this indicates that it is better
at finding a general policy for all problems than the map specific variations.

40

Trained on Medium 1 Medium 2 Medium 3 Medium 4 Large 1 Large 2
Medium 1 176 175 201 169 610 554
Medium 2 176 175 201 169 610 554
Medium 3 176 119 179 107 610 554
Medium 4 176 167 201 169 610 554
Large 1 9 21 17 17 610 482.4
Large 2 63 47 17 45 610 482
multiple 60k 176 168 196 186 610 554
multiple 20k 145 165 201 165 610 554

Table 5.6: Trained on on single map vs multiple map best performance

Analysis: In figure 5.6 we can see the weights for the variation trained on
multiple maps. The policy is mainly based on finding boxes that are close
to other boxes and in short distance from the robot. This can be seen on
the negative weights for DistanceToBox1 and TimeToCompletion. Avail-
ableBoxes is the most positive weight. A possible reason for this might be
that in the early phases of a game, there are a lot of potential points to score
and the available boxes feature is high. Therefore the algorithm believes
that this is a sign of a good policy. However since the weight for Deliver-
Box actions, this can lead to early deliveries which would be a bad policy.
This is a common problem when operating with a single weight vector for
a value function approximator. In the next section we will experiment with
separating weights for actions to resolve this problem. Overall we can see
that training on multiple maps does not lead to a drop in performance for
the static solver.

Runs
2 4 6 8 10 12 14 16

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceToAction
-50

0

50

100

150

200

250

Figure 5.6: Weights after training on multiple maps

41

5.3.3 Train with multiple feature weights

In previous experiments we were only using a single feature weight vector
for all actions. In this investigatory experiment we will test the perform-
ance of policies with multiple weight vectors. A common approach is to
create a sepearate feature weight for each action. A feature that is very im-
portant for one action, might not be relevant for another.

The multiple feature weights variants will be tested by both training on
a single map and multiple maps.

Trained on Medium 1 Medium 2 Medium 3 Medium 4 Large 1 Large 2
Medium 1 147.0 165.9 151.8 154.0 504.5 482.5
Medium 2 147.9 163.9 145.3 141.2 441.0 415.6
Medium 3 151.5 165.7 144.7 143.6 486.4 429.9
Multiple 147.5 161.9 153.5 144.4 414.2 396.8

Table 5.7: Trained with multiple feature weights performance average

Trained on Medium 1 Medium 2 Medium 3 Medium 4 Large 1 Large 2
Medium 1 166.0 187.0 201.0 169.0 610.0 554.0
Medium 2 166.0 187.0 155.0 161.0 480.0 451.0
Medium 3 166.0 187.0 155.0 161.0 514.0 465.0
Multiple 167.0 187.0 196.0 186.0 530.0 498.0

Table 5.8: Trained with multiple feature weights highest performance

Parameters: In order to change from a single weight vector to a weight
per action implementation, changes had to be made to the parameters. On
early runs with the parameters from previous experiments the weight val-
ues would grow indefinetly. In particular, the weights for DeliverAction
would with the current reward system only get bonuses, and grow indef-
initely. In order to stabilize the weight vectors, the algorithm was tested
with new parameters. After testing with different values it was found that
increasing the learning rate to 0,3 yielded the most stable weights.

Results
Comparing table 5.7 and 5.5 we can see that separating weights for actions
did not lead to a improvement of performance from the previous experi-
ment.

Anaysis: However, it is interesting to note the stability of policies over
multiple maps. In the last experiment we could see that policies trained
on a single map had huge variances. For example Medium 1 in table 5.5,
the policy did not perform well on the map it was actually trained on, but
on Medium 2 and Medium 3 the performance was good. In this experi-
ment we can see from 5.7 that the performance for all policies did not vary

42

significantly, and did not have a drop for certain maps.
The learned policies can be seen in figure 5.9 and figure 5.10. We can

clearly see that the policy has weighted the actions differently. The pickBox
weights seen in figure 5.9 have given a high value to boxesCarrying and
availableBoxes, and a negative value to distanceBox1. The values are very
similar to previous policies with a single weight vector. On the other hand,
DeliversBoxAction has weighted towersBuilt as high and AvailableBoxes
low. We can here see that seperating the weights has allowed the policy to
find a customized weights vector for PickBoxAction that fits better. With
AvailableBoxes weighted as a negative, the policy will prioritize gathering
more boxes before choosing to deliver the boxes. However this has not
affected the overall performance significantly.

Training set
Medium1 Medium2 Medium3 All maps

250

300

350

400

450

500

550

600

Figure 5.7: Weights for PickBoxAction when training with multiple features

5.3.4 Performance

In the previous experiments we have tested four different training vari-
ations. In this section I will give an overview and discuss the results
found. Table 5.9 is an overview over all the different setups. The differ-
ent variations are described below. The variations marked as single are
both trained on the first map, Medium 1.

SingleMapSingleFeature (SMSF):
Trained on one map with one feature table.

MultipleMapSingleFeature (MMSF):

43

Training set
Medium1 Medium2 Medium3 All maps

120

130

140

150

160

170

180

190

200

Figure 5.8: Weights for DeliverBoxAction when training with multiple
features

Runs
5 10 15 20 25 30

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceToAction
-40

-20

0

20

40

60

80

Figure 5.9: Weights for PickBoxAction when training with multiple features

44

Runs
5 10 15 20 25 30

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceToAction

-100

-50

0

50

100

150

Figure 5.10: Weights for DeliverBoxAction when training with multiple
features

Trained on multiple map with one feature table.

SingleMapMultipleFeatures (SMMF):
Trained on one map with multiple features, one for each action.

MultipleMapMultipleFeature (MMMF):
Trained on multiple map with multiple features.

Variation Medium 1 Medium 2 Medium 3 Medium 4 Large 1 Large 2 Total
SMSF M1 119.5 165.0 165.0 124.5 565.8 517.6 1657.4
SMSF M2 176.0 155.4 201.0 169.0 610.0 554.0 1865.4
MMSF 112.5 152.2 192.2 165 610.0 554.0 1785.9
SMMF 147 165.9 151.8 154 504 504.5 1627.2
MMMF 147.5 161.9 153.5 144.4 414.2 396.9 1418.4

Table 5.9: Overview of performance for the different variations used for the
static solver.

Discussion Based on the results from the experiments conducted, none
of the variants has had a significantly better performance than the other.
As we can see in table 5.9 the average performance of SMSF trained on
the Medium2 has overall the best performance for a general policy that
works for multiple map configurations. However, the same SMSF vari-
ation trained on a different map Medium1, does not achieve the same level
of performance. We have seen that all variants have been able to find stable
and reasonable policies. The variant with multiple features developed the
most advanced policy. However, this did not reflect in a significant increas

45

of performance.

5.4 Experiments on a changing environment

In this section we will build up on the different learning variants from the
previous experiments and introduce challenges that comes with a changing
environment. We will introduce a time limit and an opponent to see how
the different variations adapt. The configurations from 5.3.4 will be the
foundation for the next experiments, and a few new variants will also be
introduced. In the last experiment, the policies will be test on specific cases
related to the Eurobot task.

5.4.1 Delivery on time

The robot will only get points for the boxes that are delivered to a stand.
During a game there are endless possible situations that can occur where
the robot ends up being stuck or blocked by the opponent robot, making
the optimal plan impossible to execute in time. Therefore it is important
that it learns to prioritizing delivery before the time runs out. However we
do not want a policy that misses points by delivering early just to be on the
safe side. In this experiment we will test on maps with time limits. Two
different medium maps will be used with three different time limits; 70,
120 and 160.

Bonus
Variations marked as bonus are given a higher performance reward for
building maximum stands. This was introduced in order to see if it would
help the algorithm perform at maximum when it had time. This is not re-
flected in the table, as the game score is not effected by this.

Table 5.10: Early delivery average

Setup M1 70s M1 120s M1 160s M2 70s m2 120s m2 160s
SM-SF 112.4 85.8 71.4 180 97.8 64.2
SM-MF 126 190.2 198 142.8 205.8 214.2
SM-SF-Bonus 129.6 97.8 111 168 118.8 106.2
SM-MF-Bonus 118.8 183 209.4 143.4 211.2 207.6
MM-SF 117.6 169.8 236.4 178.8 184.8 203.4
MM-MF 127.8 155.4 181.8 127.2 220.8 241.8

Result The average result of this experiment can be seen in table 5.10 and
best policy achieved in 5.11. As mentioned in the description, results for
this experiment are measured in goal score 5.2.6 and not in performance as
previous experiments. From table 5.10 we can see that the SMSF variants
had a significant drop in performance.

Analysis A problem with the variants training on a single map, is that the

46

Table 5.11: Early delivery best run

Setup M1 70s M1 120s M1 160s M2 70s m2 120s m2 160s
SM-SF 180 210 240 180 180 180
SM-MF 150 270 300 180 300 300
SM-SF-Bonus 210 270 300 210 180 300
SM-MF-Bonus 150 300 300 180 300 300
MM-SF 150 300 300 180 300 300
MM-MF 150 270 300 210 300 300

playing field has to reflect all the challenges in order for the policy to learn.
A possible reason for the drop in performance could be that the training
map for SM had a time limit that was too low, and that the policies were too
focused on delivering early. The performance drop is significantly lower
compared to other policies on the 120s and 160s maps. For future experi-
ments the time limit of the training map should be set higher.

Variations
SM-SF SM-MF SMSF-B SM-MF-B MM-SF MM-MF

0

50

100

150

200

Figure 5.11: Results with maximum time 70

5.4.2 Avoiding the opponent

Avoiding collisions is one of the main objectives for the A.I, and therefore
this should be considered during the planning face. By choosing boxes far
from the opponent, we are less likely to avoid collisions. In this investigat-
ory experiment we will try out different strategies for avoiding boxes that
can lead to collisions. The playing fields are in this experiment set up with
an opponent next to one of the boxes. If the robot picks this box, it will

47

Variations
SM-SF SM-MF SMSF-B SM-MF-B MM-SF MM-MF

0

50

100

150

200

250

300

Figure 5.12: Results with maximum time 160

crash and the game is over. In order for the robot to reason about the pos-
ition of the opponent, we must add information about this to the state and
feature representation. Two different implementations are tested in this ex-
periment. A short description follows below.

StaticThreat If the opponent is within x range of a box, this feature will
be set to 1, indicating that a threat is near.

DynamicThreat This feature consists of the distance to the opponent ro-
bot. In order to stabilize it a maximum distance of l is set.

NoDetect Does not have any information about the opponent.

The different feature representations are tested on three different maps with
two different robot positions. Four different training techniques are used,
similar to previous experiments.

Results From table 5.12 we can see that the NoDetect variation without in-
formation about the opponents position is not able to adapt its policy and
avoid crashes. The variants with a feature representing information about
the opponent were all able to adapt and find a policy where crashing was
avoided. However, seen in 5.13 and 5.14, all variants had some policies that
lead to a crash.

Analysis In figure 5.16 and 5.15 we can see an overview of the different

48

Variation map1_1 map1_2 map2_1 map2_2 map3_1 map3_2
SMSF-NoDetect 111 48 133.2 78 181.8 1.2
SMSF 208.2 242.4 144.6 127.8 179.4 210.6
SMSF-static 214.2 220.8 214.8 216.6 231.6 138
MMSF 197.4 197.4 186.6 154.2 238.8 220.2
MMSF-static 172.2 188.4 205.8 223.2 213.6 135.6
SMMF-static 198.6 196.2 195.6 198 198.6 130.8
MMMF 204.6 178.8 205.2 205.8 208.2 218.4
MMMF-static 199.2 186.6 208.2 206.4 163.2 115

Table 5.12: Avoiding opponent average

Variation map1_1 map1_2 map2_1 map2_2 map3_1 map3_2
NoDetect 210 150 240 300 300 30
SMSF 270 270 270 150 210 270
SMSF-static 300 300 300 300 300 270
MMSF 240 300 300 300 300 300
MMSF-static 300 300 300 300 300 270
SMMF-static 300 300 300 300 300 270
MMMF 300 300 300 300 300 300
MMMF-static 300 300 300 300 300 300

Table 5.13: Avoiding opponent best run

weights for policies trained with SFSM for both variations. We can see that
the general strategy is quite similar, represented by the positive weghted
features. The DynamicThreat feature is weighted high, which means that
boxes far away will be valued higher than boxes close to the opponent.
The StaticThreat feature is negativly valued and will punish boxes close to
the opponent. All though figure 5.12 show that the different implementa-
tions have a similar performance, it does effect the strategy when the robots
are competing. The dynamic implementation will imply a very defensive
strategy where you will always pick boxes far away from the robot, and
allowing the opponent to go for his optimal strategy. With the static threat
feature you will still avoid going for objectives that may lead to a crash, but
it doesnt hinder the robot from staying agressive and challenge the space
around the opponent. With this in mind, the static threat feature

49

Variations
NoDetect SM-SF SM-SF-stat MM-SF MM-SF-stat SM-MF-stat MM-MF MM-MF-stat

0

50

100

150

200

250

300

Figure 5.13: Avoiding the opponent first map second configuration

Variations
NoDetect SM-SF SM-SF-stat MM-SF MM-SF-stat SM-MF-stat MM-MF MM-MF-stat

0

50

100

150

200

250

300

Figure 5.14: Avoiding the opponent second map first configuration

Runs
10 20 30 40 50

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

TimeLeft

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceOpponent

-150

-100

-50

0

50

100

Figure 5.15: Weights when trained vs opponent with a static threat feature

50

Runs
10 20 30 40 50

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

TimeLeft

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceOpponent

-50

0

50

100

150

Figure 5.16: Weights when trained vs opponent with a dynamic distance to
opponent feature

5.4.3 Eurobot edge cases

In previous experiments we have tested learning variations for different
challenges with a changing environment. In all cases they were specifically
trained to solve the challenge, by learning on playing fields focused on the
task. In order to perform well on the Eurobot task we need to combine the
problems and find a policy that can handle all of them. In this experiment
we will train four policies and test them on four different edge cases in-
volving a difficulties with a changing environment. We will also run the
policy on a static map in order to check performance in comparison with
previous results. The first two edge cases will test the policy for delivering
on time. As discussed earlier the robot will only receive points for boxes in
delivering areas when the time runs out. Case three and four will test the
policy for avoiding boxes near the opponent that can lead to crashes. At
last we will test the policy for a static solution in order to investigate how
the dynamic additions has effected the static solution.

Experiment setup
From the two feature differen feature variations from 5.4.2 we will use the
static threat feature. For variations training on multiple maps, a combina-
tion of playing field from ?? and 5.4.1 will be used. Variations training on
a single map will train on a playing field with a medium time limit and
an opponent. All cases will be explained below with an illustration and a
short description.

Evaluation
A performance score will be calculated for each policy. For each case there
are multiple choises the policy can take, and only one is considere bad.

51

Choosing a bad action will yield 0 points, all other 100. The goal score from
static solution will also be added to the performance score.

Box B Box C

Robot

Stand

Box A

Figure 5.17: Illustration of case A: With limited time, the robot must choose
between delivering or pick another box

Case A:
In this edge case the robot is standing next to a delivery area with only
5 seconds left on the clock. The robot is currently carrying 3 boxes, and
now have to choose between delivery or going for another box. If the robot
chooses to go for another box, it will not have enough time to deliver, and
loose all points for the boxes already gathered. Illustration of the problem
can be seen in figure 5.17.

Case B
This problem is a variation of the previous edge case. As seen in previous
experiments, policies tend to value boxes that are grouped together. In this
test one of the boxes is moved closer to the nearest box, which should make
it harder for the policy to decide. An illustration can be seen in figure 5.18

Case C
Here we will test to see if the policy can avoid dangerous boxes. The robot
is searching for a new box, and has three options. Box B is currently being
picked up by the opponent. If the policy chooses Box B it will crash. All
other boxes are valid. Illustration can be seen in 5.19

Case D
This is a variation of case C where one box is moved closer to the danger-
ous box. It is not within threat distance for the static feature AVOIDOPP.
As in case B, moving box A closer to B should also make B more popular

52

Box C

Box B

Robot

Stand

Box A

Figure 5.18: Illustration of case B: With limited time, the robot must choose
between deliver or gathering another box. With two boxes close together,
this decision should be harder than case A.

Box B

Box A

Robot

Opponent

Box C

Figure 5.19: Illustration of case C: The robot must choose which box to
gather next. Choosing Box B will lead to a crash with the Opponent.

with the policies.

Case E:
The last case is to find a static solution to the Eurobot task. This is to check
that the policy is still able to find a good solution to the original problem
while adapting to the dynamic problems. The playing field used in this ex-

53

Variation Box A Box B Box C Deliver
SMSF 0 0 0 100%
MMSF 27% 0 0 73%
SMMF 69% 0 0 31%
MMMF 29% 0 0 71%

Table 5.14: Results from edge case A

Variation Box A Box B Box C Deliver
SMSF 0 0 0 100%
MMSF 0 70% 0 30%
SMMF 0 70% 0 30%
MMMF 0 74% 0 26%

Table 5.15: Results for policies tested on Case B

Variation Box A Box B Box C
SMSF 13% 8% 79%
MMSF 53% 2% 45%
SMMF 33% 15% 52%
MMMF 48% 7% 45%

Table 5.16: Results for policies tested on case C

Variation Box A Box B Box C
SMSF 85 7 8
MMSF 97 3 0
SMMF 12 18 70
MMMF 91 7 2

Table 5.17: Results for policies tested on case D

54

Box B

Box A

Robot

Opponent

Box C

Figure 5.20: Illustration of case D: The robot must choose which box to
gather next. Choosing Box B will lead to a crash with the Opponent.

periment is a replica of this years Eurobot task. There is no opponent, and
no time limit on this experiment.

Results From table 5.22 and graph 5.22 we can clearly see that the SMSF
variaton achieved the best performance, withith an average of 630 out of a
maximum 700. SFSM was able to choose the correct solution 100% of the
times on the two time limit tests in case A and B. It was also consistently
avoiding the opponent by choosing the right box over 90% of the times on
case C and D. It also had the highest average performance for the static
tast as seen in figure 5.21. MMSF and MMMF were both able to obtain a
good average on case A, with choosing to deliver 70% of the times. How-
ever, when the two boxes were grouped up for Case B, the performance
dropped to 30%.

Analysis
The policies learned over multiple runs for the winner SMSF can be seen in
figure 5.23. We can see that with the current learning setup, the algorithm
was able to find a very reasonable policy. The policy has weighted Time-
ActionCoplete low and TimeLeft high, which indicates that it will pun-
ish actions that are time consuming. BoxesCarrying is weighted high amd
AvailableBoxes is weighted low which indicates that the policy will try to
gather as many boxes as possible before it delivers. From the case tests, the
policy showed that it would prioritize delivering when there was little time
left, while still being able to complete a full run if there were time. It was
also able to avoid boxes that lead to a crash, while still being agressive by
going for boxes close to the opponent.

55

Variations
SMSF SMMF MMSF MMMF

0

50

100

150

200

250

300

Figure 5.21: Results for static solutions on case E.

Variations
SMSF SMMF MMSF MMMF

0

100

200

300

400

500

600

700

Figure 5.22: Overall performance on edge cases

Runs
20 40 60 80 100

PosEast

PosNorth

PosSouth

PosWest

TimeActionComplete

TimeLeft

BoxesCarrying

TowersBuilt

AvailableBoxes

DistanceToBox1

DistanceToBox2

DistanceToBox3

DistanceOpponent

-150

-100

-50

0

50

100

150

Figure 5.23: Weights for the SFSM policy.

56

Chapter 6

Discussion

6.1 Discussion

The main goal for this thesis was to investigate Reinforcement Learning as
a decision making strategy for an mobile robot, competing in the Eurobot
2015 competition. For this purpose, a Goal Oriented Action Planner was
implemented and extended with reinforcement learning in order to handle
a changing environment.

The GOAP-planner used a trained decision making policy in order
to rate the value of an action depending on the state of the game. The
results from experiments in section 5.3 and 5.4 show that the SARSA
implementation with feature value function approximation was able to
create good policies for the planner on a Eurobot task. On experiments
related to changing environments, the trained policy was able to adapt
its strategy in order to avoid objects near the opponent and to change its
strategy based on time limits. During experiments for edge cases on the
eurobot task, the policy trained on a single map with a single feature weight
vector achieved the best results.

A weak area of the value function approximation was the variance.
Even though the final policy had a good average performance, there were
some learned policies that failed completely. This indicates that we were
not able to find a combination of parameters and reward structure for the
value function approximation that would always lead to a good result.
However, using simulation a good decision making policy could be found
over multiple runs.

Unfortunetaly, because of faults with the final robot, we were not able
to utilize the trained policy in the competition. Without results from the
actual robot it is impossible to conclude that the trained policy would have
worked.

The last subgoal stated the need for a real-time simulator. This turned
out to be of singificant importance for the AI, as the robot was not finished
until a few weeks before the competition. The simulator was also used for
monitoring live test runs by reading the state of the real robot.

57

6.2 Conclusion

An AI with a decision making policy trained with reinforcement learning
was presented in this thesis. The algorithm consists of a policy for action
picking based on a approximated value function learned from training. The
algorithm was tested in simulation with different parameters and learning
configurations. The results show that the decision making policy was able
to adapt its strategy to a changing environment. Unfortunetaly the AI
could not be used and tested on the intended robot.

The Eurobot team was able to build a robot and compete in the Eurobot
2015 competition in Switzerland. This was the first time a team from the
University of Oslo attended the competion. The robot qualified for the
main tournament, and won two out of four matches played. As the main
objective was to qualify, this was perceived as a good result for the team.

6.3 Future Work

6.3.1 RL-policy

Even though the decision making policies trained with reinforcement
learning showed promising results in the experiments conducted, we were
not able to find parameters and training configurations where a good policy
was guaranteed. A possible reason for this could be the simplicity of
the weight representation. The value function approximation operating
with a float vector gives the policy limited possibility for adaption.
Neural networks has shown promising results for similar problems, and
implementing a weight representation with this could improve the stability
and the performance of the system drastically.

6.3.2 Eurobot project

As expected, building the robot was a difficult and time consuming task.
For teams taking over the project I would recommend that this years robot
should be used as a base. With experience from the competition I would
also recommend that building the second robot should be prioritized. The
smaller robot does not have to be very complex and can increase the score
potential drastically. Experience from the competition show that the global
positioning system was time consuming, and not really needed. None of
the other teams at the competition utilized such a system.

58

Bibliography

[1] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford univer-
sity press, 1996.

[2] Mark Boddy and Thomas L Dean. ‘Deliberation scheduling for
problem solving in time-constrained environments’. In: Artificial
Intelligence 67.2 (1994), pp. 245–285.

[3] Rodney Brooks et al. ‘A robust layered control system for a mobile
robot’. In: Robotics and Automation, IEEE Journal of 2.1 (1986), pp. 14–
23.

[4] Marco Dorigo and LM Gambardella. ‘Ant-Q: A reinforcement learn-
ing approach to the traveling salesman problem’. In: Proceedings of
ML-95, Twelfth Intern. Conf. on Machine Learning. 2014, pp. 252–260.

[5] Kai Olav Ellefsen. ‘Dynamic Scheduling for Autonomous Robotics’.
In: (2010).

[6] Eurobot. Robomovies. http://www.eurobot.org/attachments/article/31/
E2015_Rules_EU_EN_final.pdf. Accessed on 2015-7-10. 2015.

[7] Camelia-Mihale Pintea Gabriela Erban. Heuristics and Learning Ap-
proaches for Solving The Travelling Salesman Problem. http://www.cs.
ubbcluj . ro/~studia- i/2004- 2/3- SerbanPintea.pdf. [Online; accessed
19-July-2015]. 2004.

[8] Alain Girault, Bilung Lee, Edward Lee et al. ‘Hierarchical finite state
machines with multiple concurrency models’. In: Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 18.6
(1999), pp. 742–760.

[9] John Grefenstette et al. ‘Genetic algorithms for the traveling salesman
problem’. In: Proceedings of the first International Conference on Genetic
Algorithms and their Applications. Lawrence Erlbaum, New Jersey
(160-168). 1985, pp. 160–168.

[10] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. " O’Reilly
Media, Inc.", 2013.

[11] Peter Hohnloser. ‘Design of a general framework for synchronizing
behaviors in a complex robot’. In: (2012).

[12] Yong K Hwang and Narendra Ahuja. ‘A potential field approach to
path planning’. In: Robotics and Automation, IEEE Transactions on 8.1
(1992), pp. 23–32.

59

[13] Leslie Pack Kaelbling, Michael L Littman and Anthony R Cassandra.
‘Planning and acting in partially observable stochastic domains’. In:
Artificial intelligence 101.1 (1998), pp. 99–134.

[14] Leslie Pack Kaelbling, Michael L Littman and Andrew W Moore.
‘Reinforcement learning: A survey’. In: Journal of artificial intelligence
research (1996), pp. 237–285.

[15] Gilbert Laporte. ‘The traveling salesman problem: An overview of
exact and approximate algorithms’. In: European Journal of Operational
Research 59.2 (1992), pp. 231–247.

[16] Gilbert Laporte. ‘The vehicle routing problem: An overview of exact
and approximate algorithms’. In: European Journal of Operational
Research 59.3 (1992), pp. 345–358.

[17] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[18] David Lee and Mihalis Yannakakis. ‘Principles and methods of
testing finite state machines-a survey’. In: Proceedings of the IEEE 84.8
(1996), pp. 1090–1123.

[19] William S Lovejoy. ‘A survey of algorithmic methods for partially ob-
served Markov decision processes’. In: Annals of Operations Research
28.1 (1991), pp. 47–65.

[20] George F Luger. Artificial intelligence: structures and strategies for
complex problem solving. Pearson education, 2005.

[21] Sridhar Mahadevan and Jonathan Connell. ‘Automatic program-
ming of behavior-based robots using reinforcement learning’. In: Ar-
tificial intelligence 55.2 (1992), pp. 311–365.

[22] Francisco S Melo, Sean P Meyn and M Isabel Ribeiro. ‘An analysis of
reinforcement learning with function approximation’. In: Proceedings
of the 25th international conference on Machine learning. ACM. 2008,
pp. 664–671.

[23] Ian Millington and John Funge. Artificial intelligence for games. CRC
Press, 2012.

[24] Volodymyr Mnih et al. ‘Playing atari with deep reinforcement
learning’. In: arXiv preprint arXiv:1312.5602 (2013).

[25] Robin Murphy. Introduction to AI robotics. MIT press, 2000.

[26] Alex Nash et al. ‘Thetaˆ*: Any-Angle Path Planning on Grids’. In:
Proceedings of the National Conference on Artificial Intelligence. Vol. 22.
2. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999. 2007, p. 1177.

[27] Jeff Orkin. ‘Applying goal-oriented action planning to games’. In: AI
Game Programming Wisdom 2.2004 (2004), pp. 217–227.

[28] Andre Kramer Orten. ‘Navigation system’. MA thesis. Norway:
University of Oslo, 2015.

60

[29] David L Poole and Alan K Mackworth. Artificial Intelligence: founda-
tions of computational agents. Cambridge University Press, 2010.

[30] William D Smart and Leslie Pack Kaelbling. ‘Effective reinforcement
learning for mobile robots’. In: Robotics and Automation, 2002. Pro-
ceedings. ICRA’02. IEEE International Conference on. Vol. 4. IEEE. 2002,
pp. 3404–3410.

[31] Peter Stone, Richard S Sutton and Gregory Kuhlmann. ‘Reinforce-
ment learning for robocup soccer keepaway’. In: Adaptive Behavior
13.3 (2005), pp. 165–188.

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. Vol. 1. 1. MIT press Cambridge, 1998.

[33] Gerald Tesauro. ‘Temporal difference learning and TD-Gammon’. In:
Communications of the ACM 38.3 (1995), pp. 58–68.

[34] Paolo Toth and Daniele Vigo. The vehicle routing problem. Society for
Industrial and Applied Mathematics, 2001.

[35] Nikolaos Tziortziotis, Konstantinos Tziortziotis and Konstantinos
Blekas. ‘Play Ms. Pac-Man using an advanced reinforcement learning
agent’. In: Artificial Intelligence: Methods and Applications. Springer,
2014, pp. 71–83.

[36] Christopher JCH Watkins and Peter Dayan. ‘Q-learning’. In: Machine
learning 8.3-4 (1992), pp. 279–292.

[37] H Xuan et al. ‘Solving the Traveling Salesman Problem with Ant
Colony Optimization: A Revisit and New Efficient Algorithms’. In:
REV Journal on Electronics and Communications 2.3-4 (2012), pp. 121–
129.

[38] Xiaoping Yun and Ko-Cheng Tan. ‘A wall-following method for
escaping local minima in potential field based motion planning’.
In: Advanced Robotics, 1997. ICAR’97. Proceedings., 8th International
Conference on. IEEE. 1997, pp. 421–426.

61

