
Threat analysis of mobile
banking platforms

Henrik Andre Stene
Master’s Thesis Autumn 2015

Threat analysis of mobile banking platforms

Henrik Stene - henriast@ifi.uio.no

August 3, 2015

Abstract

Online banking solutions have existed for two decades already, and the
industry now has a relatively good understanding of security threats
and risks against traditional online banking. Mobile banking solutions
are more recent, so that the industry has relatively less experience with
analysing threats and risks. This Master’s thesis focuses on analysing
threats against mobile banking. More specifically, in this Master’s project
we have applied well known threat modelling methodologies. Our goal
has been to compare mobile banking applications with the more tradi-
tional online banking service. We studied two threat modelling method-
ologies in order to determine which threat modelling method is best
suited to do threat analysis in general and which is best suited for
analysing threats against mobile banking in particular. Finally, a threat
analysis of mobile banking was undertaken. The main conclusion is
that mobile banking has less exposure to threats than traditional mo-
bile banking based in desktop computers.

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Goal . 4
1.3 Approach and Research Method 4
1.4 Work Done . 5
1.5 Results . 5
1.6 Conclusion . 6
1.7 Outline . 6

2 Introduction to Threat Modelling 9
2.1 Threat Modelling . 9
2.2 Threat, Risk and Mitigation 10
2.3 The Four-Step Framework 10

2.3.1 What are you building? 11
2.3.2 What can go wrong with it once it’s built? 11
2.3.3 What should you do about those things that can go

wrong? . 11
2.3.4 Did you do a decent job of analysis? 12

2.4 Discussion . 12
2.5 Summary . 13

II Background 15

3 Methods for threat modeling 17
3.1 STRIDE . 17

3.1.1 Violation of Authentication 19
3.1.2 Violation of Integrity 19
3.1.3 Violation of Non-repudiation 20
3.1.4 Violation of Confidentiality 20
3.1.5 Violation of Availability 21
3.1.6 Violation of Authorization 21

i

ii CONTENTS

3.1.7 Using STRIDE on Data Flow Diagrams 21
3.1.8 STRIDE-per-element 22
3.1.9 STRIDE-per-interaction 23
3.1.10 Summary . 23

3.2 Attack Libraries . 23
3.2.1 Level Of Detail in Attack Libraries 24
3.2.2 Summary . 25

3.3 Attack Trees . 25
3.3.1 Attack Tree Components 26
3.3.2 Creating new Attack Trees 27
3.3.3 Summary . 28

3.4 Discussion . 28
3.5 Summary . 29

4 Mobile Operating Systems 31
4.1 Introduction . 31
4.2 Security Features . 31

4.2.1 Secure Boot . 32
4.2.2 Encryption and Data Access 32
4.2.3 Application Security 33
4.2.4 Device Security . 33

4.3 Android . 33
4.3.1 Secure Boot . 34
4.3.2 Encryption and Data Access 34
4.3.3 Application Security 35
4.3.4 Device Security . 36

4.4 Windows Phone . 37
4.4.1 Secure Boot . 37
4.4.2 Encryption and Data Access 37
4.4.3 Application Security 38
4.4.4 Device Security . 38

4.5 iOS . 38
4.5.1 Secure Boot . 38
4.5.2 Encryption and Data Access 39
4.5.3 Application Security 39
4.5.4 Device Security . 40

4.6 Dicussion . 40
4.7 Summary . 44

5 BankID 47
5.1 Introduction . 47
5.2 Technology . 47

5.2.1 PKI . 48
5.3 Infrastructure . 48

CONTENTS iii

5.3.1 Felles Operasjonell Intrastruktur 49
5.3.2 Bank RA and OTP 49
5.3.3 BankID Server . 50
5.3.4 BankID Client . 50

5.4 Certificates . 51
5.4.1 Certificate Format and Security 52

5.5 Encryption . 52
5.6 Process . 52

5.6.1 Bank Stored BankID 53
5.6.2 BankID on Mobile . 53

5.7 Discussion . 53
5.8 Summary . 54

6 Mobile Banking Software 57
6.1 Banks . 57
6.2 Technology . 59

6.2.1 Native Applications vs Web Applications 59
6.2.2 Mobile Banking Software Technology 59
6.2.3 Authentication Service 60

6.3 Discussion . 60
6.4 Summary . 61

III Threat Model 63

7 Threat Modelling using STRIDE 65
7.1 Data Flow Diagrams . 65

7.1.1 Platform . 65
7.1.2 BankID . 66
7.1.3 Application . 66

7.2 Platforms . 66
7.2.1 STRIDE-per-element 66

7.3 BankID . 69
7.3.1 STRIDE-per-element 70

7.4 Application . 73
7.4.1 STRIDE-per-element 73

7.5 Discussion . 74
7.6 Summary . 75

8 Threat Modelling using CAPEC 79
8.1 Attack Patterns . 79
8.2 Scoring . 80
8.3 Current Threats . 80

8.3.1 JSON Hijacking (aka JavaScript Hijacking) 80

iv CONTENTS

8.3.2 Probe Application Screenshots 81
8.3.3 Probe Application Error Reporting 81
8.3.4 Probe Application Queries 82
8.3.5 Malware-Directed Internal Reconnaissance 82
8.3.6 OS Fingerprinting . 82
8.3.7 Application Fingerprinting 83
8.3.8 Social Information Gathering via Research 83
8.3.9 HTTP DoS . 84
8.3.10 Checksum Spoofing 84
8.3.11 Intent Spoof . 85
8.3.12 Principal Spoof . 85
8.3.13 Signature Spoof . 86
8.3.14 Pharming . 86
8.3.15 Phishing . 87
8.3.16 Clickjacking . 87
8.3.17 Manipulating User State 88
8.3.18 Inducing Account Lockout 88
8.3.19 Authentication Abuse 89
8.3.20 Create Malicious Client 89
8.3.21 Man-in-the-Middle Attack 90
8.3.22 Abuse of Transaction Data Structure 90
8.3.23 Contaminate Resource 91
8.3.24 Infrastructure Manipulation 91
8.3.25 Protocol Reverse Engineering 92
8.3.26 Lifting Sensitive Data from the Client 92
8.3.27 Reverse Engineer an Executable to Expose Assumed

Hidden Functionality or Content 93
8.3.28 Physical Theft . 93
8.3.29 Bypassing Electronic Locks and Access Controls . . 94
8.3.30 Bypassing Physical Locks 94
8.3.31 Physical Destruction of Device or Component 94
8.3.32 Malicious Software Download 95
8.3.33 Malicious Software Update 95
8.3.34 Target Influence via Social Engineering 95

8.4 Discussion . 96
8.5 Summary . 97

IV Conclusion 99

9 Conclusion 101
9.1 Discussion . 101

9.1.1 Platforms . 101
9.1.2 Threat Modelling Methods 102

CONTENTS v

9.1.3 Current Threats . 103
9.2 Conclusion . 104
9.3 Contributions . 104

Appendices 105

A CAPEC list 107
A.1 Gathering Information . 107

A.1.1 Excavation . 107
A.1.2 Interception . 108
A.1.3 Footprinting . 109
A.1.4 Fingerprinting . 109
A.1.5 Social Information Gathering Attacks 110

A.2 Deplete Resources . 111
A.2.1 Excessive Allocation 111
A.2.2 Resource Leak Exposure 112
A.2.3 Sustained Client Engagement 113
A.2.4 Amplification . 113

A.3 Injection . 113
A.3.1 Parameter Injection 113
A.3.2 Code Inclusion . 114
A.3.3 Resource Injection . 114
A.3.4 Code Injection . 114
A.3.5 Command Injection 115

A.4 Deceptive Interactions . 116
A.4.1 Path Traversal . 116
A.4.2 Content Spoofing . 117
A.4.3 Identity Spoofing . 117
A.4.4 Resource Location Spoofing 118
A.4.5 Action Spoofing . 118

A.5 Manipulate Timing and State 119
A.6 Abuse of Functionality . 119

A.6.1 Functionality Misuse 121
A.6.2 (. 121

A.7 Probabilistic Techniques . 122
A.7.1 Brute Force . 122

A.8 Exploitation of Authentication 122
A.9 Privilege Escalation . 123
A.10 Exploitation of Authorization 124

A.10.1 Privilege Abuse . 124
A.10.2 Exploiting Trust in Client (aka Make the Client In-

visible) . 125
A.11 Manipulate Data Structures 126

A.11.1 Buffer Manipulation 126

vi CONTENTS

A.12 Manipulate Resources . 127
A.12.1 File Manipulation . 127
A.12.2 Configuration/Environment manipulation 128
A.12.3 Audit Log Manipulation 129
A.12.4 Schema Poisoning . 129
A.12.5 Protocol Manipulation 129
A.12.6 Web Services Protocol Manipulation 130

A.13 Analyze Target . 130
A.13.1 Reverse Engineering 130
A.13.2 Software Reverse Engineering 130
A.13.3 Cryptanalysis . 131

A.14 Gain Physical Access . 131
A.14.1 Bypassing Physical Security 131

A.15 Malicious Code Execution 131
A.16 Alter System Components 131

A.16.1 Software Integrity Attacks 132
A.16.2 Hacking Hardware Devices or Components 132
A.16.3 Malicious Logic Inserted Into to Product 132

A.17 Manipulate System Users 133

List of Figures

2.1 The four questions used in the four-step framework 11
2.2 The four-step framework . 12

3.1 List of the 16 categories found in CAPEC[11] 25
3.2 A theoretical attack tree using OR-nodes 26
3.3 A theoretical attack tree using AND-nodes 27
3.4 A simple attack tree on a customer database 27

4.1 An example of the Chain-of-trust mechanism (dm-verity)
in Android.[5] . 34

5.1 Inter bank agreement . 48
5.2 Functionality provided by FOI 49
5.3 Certificate issuing tree . 51
5.4 BankID Bank Stored Data Flow Diagram 55
5.5 BankID on Mobile Data Flow Diagram 56

7.1 Platform data flow diagram 76
7.2 BankID data flow diagram 77

vii

List of Tables

3.1 The STRIDE Threats, with examples by Adam Shostack.[34] 18
3.2 STRIDE-per-Element[38] 22

4.1 Distribution of Android devices that accessed the Google
Play Store.[4] . 41

4.2 A visual comparison between systems 44

6.1 Distributions of banks market share per 2014 57
6.2 Mobile banking software functionality for each major bank. 58
6.3 Mobile banking software solution per bank 60

7.1 STRIDE-per-element table over mobile operating systems 67
7.2 STRIDE-per-element table over BankID 70
7.3 STRIDE-per-element table over mobile banking applica-

tions . 74

ix

Part I

Introduction

1

Chapter 1

Introduction

The motivation behind this project is to see how well the banking in-
dustry has made the transition from traditional online banking using
desktop computer systems and technology, to more modern computer
systems like smartphones and tablets. These devices use newer and
simpler operating systems than used in traditional computers and it
is therefore important to analyze and investigate if there are security
defects that might put customers or financial institutions at risk. We
consider the three major mobile operating systems, BankID and six dif-
ferent mobile banking applications when creating this threat model.

1.1 Motivation

Online banking has existed in Norway since 1996, when Sparebanken
Hedmark[27] released the first online banking service. Since then the
online banking industry has grown into more than 3,7 million users na-
tionwide.[15] This makes online banking a very important service with
regard to availability at all times. Online banking is shifting towards
the use of mobile devices, together with the rest of the computer indus-
try. Finance Norway states in an article that mobile banking is becom-
ing more and more popular, and that there are more than 1,9 million
users accessing their bank accounts through mobile banking services.

The seemingly rapid growth of mobile banking services is concern-
ing The Financial Supervisory Authority of Norway.[30] This statement
makes it important to take a closer look at the security of mobile bank-
ing services.

Another important aspect is that we keep more and more informa-
tion located in these mobile devices, and mobile devices has become the
primary tool for accessing the Internet. We keep personal information,
biometric data, passwords, credit card information, private emails, and
we access bank accounts using these devices. This means that if these

3

4 CHAPTER 1. INTRODUCTION

devices were to be controlled or accessed by an unauthorized person,
that person could do anything from accessing online user accounts, to
access bank accounts or steal credit card information stored on the de-
vice.

It is the combination of rapid growth in usage of mobile devices, and
that we store so much private and sensitive information on these de-
vices that is the foundation of this thesis.

1.2 Goal

The goal of this project is to assess the security assurance of mobile
banking software, and to identify the most relevant threats to its soft-
ware and infrastructure. Our research questions are as follows:

1. What is the level of security of mobile operating systems compared
to desktop operating systems?

2. What is the best fit between threat analysis methodology and the
type of system to be analyzed?

3. Which threat analysis method is best to use while analyzing mo-
bile banking security?

4. What are currently the most relevant threats against mobile bank-
ing in the Norwegian market?

1.3 Approach and Research Method

In this project we use existing threat analysis methods and frameworks
in order to analyze the security and build a threat model. First we
go through the most common threat analysis methods, and then de-
cide upon which method or methods we want to use to analyze mobile
banking systems. We answer our research questions by performing four
different operations.

1. Analyze the security of the mobile platform, mobile authentication
service and mobile banking application, and see how it compares
to the security of the online banking service on desktop operating
systems.

2. Analyze threat modelling methods in order to find the best fit be-
tween threat analysis methodology and the type of system to be
analyzed.

1.4. WORK DONE 5

3. Use the results from the analysis of threat modelling methods to
decide which threat modelling method is best suited for analyzing
mobile banking security.

4. Apply one or more threat modelling methodologies to identify the
most relevant threats against the mobile banking infrastructure
in the Norwegian market.

This is done by performing a comparative study between three dif-
ferent threat analysis methods. We compare differences between them,
and take a look at the tradeoffs. Then we do a pilot case, where we apply
two different threat analysis methods to the case of mobile banking, and
create a threat model using the results from each method. At the end
of the thesis, we apply the same comparative methods used to compare
threat analysis methodologies, to compare the results from each threat
model and we present relevant threats.

1.4 Work Done

We have done research on the three major mobile operating systems us-
ing available documentation and other data that is public information.
We have also done similar research on BankID, which is the primary
authentication service used by both online banking and mobile banking
services. We have used this information, in addition to gathering pub-
lic information about six major mobile banking platforms, to create a
threat model using two different threat modelling methods.

1.5 Results

Platform security on mobile devices are ahead of desktop operating sys-
tems, much due to the fact thay mobile systems are restricted and that
they were initially designed with focus on different important security
features.

Looking at the results of using STRIDE, it is clear that it does not
produce or discover any concrete threats, unless the threat modeller
is experienced and already knows about them. The result of using
STRIDE did not provide any attacks or threats that could be used as
a foundation for further threat modelling. Therefore, we had to start
from scratch using CAPEC.

CAPEC does provide a thorough threat model due to the fact that
the attack library is very extensive. The result from using CAPEC as
the threat modelling tool shows 34 different threats that public docu-
mentation does not account for. This does not prove that all of these

6 CHAPTER 1. INTRODUCTION

threats are relevant, but it does prove that either the documentation is
flawed, or that these attack patterns have not been mitigated.

There are currently some relevant threats against mobile banking
applications in Norway. Most attack patterns from CAPEC seems to be
mitigated, but some are still possible threats.

1.6 Conclusion

Mobile banking application software is in no way less secure than tradi-
tional online banking services using desktop computers. However, there
are pros and cons with both services. The risk of theft is much higher
with smaller mobile devices that end users brings around wherever they
go, than with the larger desktop computer that usually resides at the
end users home. Mobile operating systems provides much stricter secu-
rity than their older siblings running on desktop computers. Many mo-
bile devices are strongly protected against malware or other malicous
code, due to strict data management systems and application controls
provided by the different operating systems. Mobile banking services
does also utilize the same user authentication services as traditional
online banking. This gives us no reason to believe a priori that mobile
banking services are any less secure than traditional online banking.

The different threat analysis methodologies provides different fea-
tures that can be utilized by the threat modeller. An experienced threat
modeller might be able to utilize both abstract methodologies like STRIDE
or attack trees, and more detailed tools like an attack library. A be-
ginner will most likely not find many relevant threats using abstract
methodologies, but utilizing CAPEC should produce many relevant threats
even when used by a novice. While creating a threat model of mobile
banking software, we found that an attack library (CAPEC) did pro-
duce more relevant threats. Since mobile banking applications handles
sensitive data, it is recommended to use an attack library to reach an
acceptable level of completeness for the threat model.

1.7 Outline

The thesis is divided into chapters and at the end there is an appendix.
The first six chapters provides more background we should know for this
thesis, and in the last three chapters we create two different threat mod-
els using two different threat analysis methods and discuss our findings.

Chapter 1: Introduction - Gives a brief introduction of what we
have done.

Chapter 2: Introduction to Threat Modelling - Gives an intro-
duction to threat modelling, and the steps that we perform in this thesis.

1.7. OUTLINE 7

Chapter 3: Methods for threat modeling - This chapter gives an
introduction to some of the most popular threat modelling methods, and
the methods used in this thesis.

Chapter 4: Mobile Operating Systems - In this chapter, we take
a brief look at the three major mobile operating systems, and the most
important security features implemented by these operating systems.

Chapter 5: BankID - This chapter gives an introduction to BankID,
which is the primary authernitcation service used by financial institu-
tions in Norway. We also take a look at how BankID authenticates en-
tities and the technology used to make sure that BankID can provide
trusted communication between two parties without a current relation-
ship.

Chapter 6: Mobile Banking Software - This chapter gives a brief
introduction to mobile banking applications and the technologies used
by the 6 biggest banks in Norway.

Chapter 7: Threat Modelling using STRIDE - In this chapter
we try to create a threat model using the threat modelling tool called
STRIDE.

Chapter 8: Threat Modelling using CAPEC - In this chapter
we try to create a threat model using the threat modelling tool called
CAPEC.

Chapter 9: Conclusion - This Chapter is the conclusion of the
project.

Chapter 2

Introduction to Threat
Modelling

This chapter describes threat modelling and defines important termi-
nology that is needed to perform threat modelling accurately. We briefly
discuss risk analysis and risk assessment to clearify what is and what is
not included in a threat model, and we discuss the four-step framework
for threat modelling.

2.1 Threat Modelling

Threat modelling is a really important aspect of software engineering.
It is a convenient way of finding security bugs and security errors in
a program or a system and, if applied correctly, it will help you to de-
sign and implement programs and systems that are more secure from
attacks. Every major computer program or computer system needs a
threat model in order to make sure that it meets the specified security
requirements.

It is a natural thing for humans to create threat models. Subcon-
sciously we threat model every time we make a decision and therefore
one might say that we already do know how to threat model. When we
leave the house in the morning we address the threat of getting all of our
possessions stolen and most of us decides to lock the door before leaving.
This is a basic threat model on our belongings and our house. Some con-
sider the threat of things being stolen might so big in this neighborhood
that they decide to lock the door even while being at home. Since the
door now is locked all the time, we might consider the risk of this attack
being executed as mitigated.

In information security, threat modelling is a systematic approach
used to discover threats and understand the security requirements of a
computer program or computer system. By threat modelling, the devel-

9

10 CHAPTER 2. INTRODUCTION TO THREAT MODELLING

opers may understand how different threats could be realized and then
how to avoid these kinds of attacks.

2.2 Threat, Risk and Mitigation

In order to introduce the reader to threat modelling, we also have to
define what a specified threat is. A threat is a: potential cause of an
unwanted incident, which may result in harm to a system or organiza-
tion.[18]. To emphasize, an attack is only a threat if the cause of that
attack may result in harm on the system. From the example above we
may say that someone stealing our possessions is a threat that leads to
the unwanted incident of no longer having our possessions. Using this
definition of the word threat makes it possible for us to define the word
mitigation which is stopping the possibility of a threat being executed.
We carefully lock the door to the house before leaving and this represent
a mitigation technique against this threat.

The last definition we need to know about is of the word risk. We
will not be doing a risk analysis in this thesis, but it is important to
understand that this would be the next step. Risk is the effect of uncer-
tainty on objectives[19] and the level of risk is measured as a component
between the consequence of a threat being executed and the likelihood
of the threat being executed.

Threat modelling will help us mitigate threats, removing the possi-
bility of an attack being executed on the system, by lowering the likely-
hood of the threat being executed.

2.3 The Four-Step Framework

In the recent book Threat Modelling - Designing for security[22], the
author Adam Shostack introduces an idea that threat modellers should
look at threat modelling as four steps that each accomplishes subgoals
and that by completing all four steps should make sure that a system is
adequately safe. This is of course with the assumption that the threat
modeller has done his job carefully.

The four-step framework consits of four questions that the threat
modellers and developers need to ask themselves, and these questions
can be seen in Figure 2.1 Shostack does suggest that by answering all
these questions, step by step, the threat modelling team should be able
to create a solid threat model of their system

2.3. THE FOUR-STEP FRAMEWORK 11

1. What are you building?

2. What can go wrong with it once it’s built?

3. What should you do about those things that can go wrong?

4. Did you do a decent job of analysis?

Figure 2.1: The four questions used in the four-step framework
[22]

2.3.1 What are you building?

All software development project consists of different types of docu-
ments and specifications. Some will be heavily modelled, some will
mostly consist of a written description of system requirements and cus-
tomer wishes. In the first step in the four-step framework, the threat
modeller should get to know what they are building. One of the eas-
iest ways of getting an overview is by creating data flow diagrams, or
other visual models of the system.1 By looking at such diagrams, the
threat modelling team should be able to get a grasp of how extensive
the system really is.

2.3.2 What can go wrong with it once it’s built?

Step two in the four-step framework is the creation of the threat model.
By looking at different models or diagrams of the system, the threat
modeller or threat modelling team should be able to find one or more
possible attack patterns that may be threats against the system. For
this step, it is recommended to utilize one or more threat modelling
methods to find threats.

2.3.3 What should you do about those things that can go
wrong?

After the threat modellers have found every possible threat they could
think of, then it is time for step three. Step three consists of deciding
what to do with every threat, and how to possibly mitigate the differ-
ent threats. Many software development projects might have limited
resources, time or money, and it is in this step that the threat mod-
ellers need to decide which attacks to mitigate, and which attacks are
so obscure, hard to execute, or just not that damaging to the system if

1More about data flow diagrams later

12 CHAPTER 2. INTRODUCTION TO THREAT MODELLING

executed, that they can be ignored. This part of the four-step framework
is where we need to address threats.

2.3.4 Did you do a decent job of analysis?

After all possible threats have been removed or been considered as not
damaging, it is time to re-evaluate the system design and implemen-
tation. Threat modelling is considered to be an iterative process, and
if the validation of the system fails, then the threat modelling process
needs to jump back to step one or step two.

1. Model System

2. Find Threats

3. Address Threats

4. Validate

Figure 2.2: The four-step framework

2.4 Discussion

Threat modelling is a much needed exercise to perform while developing
software. This is however something that often is being neglected by not
assigning enough resources to be able to really dive deep into a system
to discover threats. There is however no doubt that threat modelling
is important, especially in applications using sensitive information like
mobile banking services.

In his book, Adam Shostack postulates a four-step framework for
threat modelling. This framework should help most threat modellers to
make solid threat models of their system.

In this thesis, we look at three different systems needed to use bank-
ing services on a mobile platform. Since we are analyzing these sys-
tems from an outsider’s point-of-view, we will not be able to perform
step three (Address Threats) or step four (Validate). We will therefore
focus on step one, by analyzing the different systems, and step two, by
finding threats using different threat modelling methods.

2.5. SUMMARY 13

2.5 Summary

Threat modelling is an important part of software development. It can
be a great tool to make sure that the system is safe to use for the end
user, and that the system is not susceptible to common attacks. Threats
are described as the cause of an unwanted incident, that can result in
harm to a system or organization.

The four-step framework is a great way to divide the complete task of
threat modelling into four smaller tasks. The four tasks are model sys-
tem, find threats, address threats, and validate. By making four smaller
steps, it makes the iterative process of threat modelling much easier as
one could always go one or more steps back in the process.

Part II

Background

15

Chapter 3

Methods for threat
modeling

In this chapter we discuss different approaches to threat modeling. We
discuss the use of Microsofts STRIDE method and how to execute the
task of creating a good threat model using this mnemonic. We also take
a look at two alternative ways of modeling threats. One using attack
trees to visualize and display threats, and one using attack libraries to
be able to control check that it covers all well known threats. We will
also compare the three different methods and try to define strengths
and weaknesses.

3.1 STRIDE

STRIDE is an approach to threat modeling that was introduced in 1999
by Loren Kohnfelder and Praerit Garg.[22] It is a framework that is
developed to help information security personnel model their systems
and discover threats. Information security personnel may include soft-
ware developers or any other person that is involved in the development
process of software and computer systems.

The mnemonic STRIDE stands for Spoofing, Tampering (of data),
Repudiation, Information Disclosure, Denial of Service and Elevation
of privilege. All of these words account for a whole group, or category,
of threats. This categorization of threats makes it easier to discover
threats against certain aspects of a computer system.

To understand STRIDE as an approach to discovering threats we
need to see what each letter in the mnemonic is an example of and what
it is supposed to represent in our software. First of all, every part of
the STRIDE mnemonic is an attribute that we do not want our program
or system to have. As seen in Table 3.1 we can see that Spoofing is
a breach in the authentication of users and this is not something that

17

18 CHAPTER 3. METHODS FOR THREAT MODELING

Threat Property Definition Example
Spoofing Authentication Impersonating

something or
someone else.

Pretending to be
any of billg, mi-
crosoft.com or nt-
dll.dll

Tampering Integrity Modifying data or
code.

Modifying a DLL
on disk or DVD, or
a packet as it tra-
verses the LAN.

Repudiation Non-repudiation Claiming to have
not performed an
action.

“I didn’t send that
email,” “I didn’t
modify that file,”
“I certainly didn’t
visit that web site,
dear!”

Information
Disclosure

Confidentiality Exposing in-
formation to
someone not au-
thorized to see
it.

Allowing someone
to read the Win-
dows source code;
publishing a list
of customers to a
web site.

Denial of
Service

Availability Deny or degrade
service to users.

Crashing Win-
dows or a web
site, sending a
packet and ab-
sorbing seconds
of CPU time, or
routing packets
into a black hole.

Elevation of
Privilege

Authorization Gain capabilities
without proper
authorization.

Allowing a remote
internet user to
run commands
is the classic ex-
ample, but going
from a limited
user to admin is
also EoP.

Table 3.1: The STRIDE Threats, with examples by Adam Shostack.[34]

we would like to have in our programs or systems. Each element in
STRIDE is actually presenting a possible breach or a property that is
being violated. The other properties that might be violated is: Integrity,
Non-repudiation, Confidentiality, Availability and Authorization.

Now that we know what kind of properties we need to handle in our
threat model, we can look at very basic example. A financial institution
has a database containing all necessary information about customers.

3.1. STRIDE 19

This data is highly private and a security breach of a database will
have serious consequences for the financial institution. Some example
threats against a database might be:

• Someone pretends to be a customer service representative, to gain
access to the database.

• A disgruntled employee with malicious intent decides to change
all the phone numbers to the financial institutions customers in
the database.

• The same disgruntled employee denies having changed phone num-
bers to all customers.

• Some undisclosed files containing the institutions future employee
termination plan is made available to all employees.

• The database is made unavailable due to high load.

• Customers are given rights to read documents not meant for them.

3.1.1 Violation of Authentication

It might seem obvious to many that a violation of authentication might
be a person using another colleague’s username and password to access
files or information that he or she is not eligible to access, but authenti-
cation problems might be much more than just this. Spoofing in general
is when someone is claiming to be someone they are not. This might
range from accessing files using your coworkers password, to claiming
you are the lawyer of a recently deceased member of british nobility
with no heir. In both cases someone is trying to hide their true identity,
while performing, or claiming to perform, tasks that they are not really
authenticated to do.

3.1.2 Violation of Integrity

It is common knowledge that you should never trust what you read and
that you should always check sources before accepting something as a
fact. This is similar to the property of integrity. The question: “Is this
file the real file, or has it been modified, changed or placed there for
me to find?” is a valid question when it comes to information security.
Tampering of data is a serious problem for all kinds of businesses. If
our disgruntled employee successfully modifies all phone numbers reg-
istered to all the customers in the financial institutions database, then
the whole database is useless since it contains false data and we can no
longer trust this database anymore.

20 CHAPTER 3. METHODS FOR THREAT MODELING

Usually, tampering is modifying data residing on disk, but it is also
possible to have modifying of data on the network or in memory. While
tampering of data on disk might be achieved by editing an already ex-
isting file, it is also possible to maliciously create files on the disk. This
is a typical tampering attack where an attacker creates a file that a pro-
gram is supposed to create by itself, just to enter false data in it before
the program can put a lock on the file. In either case, the goal is to
falsify data to make them lose value and usability.

3.1.3 Violation of Non-repudiation

“I didn’t do it” is a common phrase to hear when something has gone
wrong. Non-repudiation, or accountability, is a state where it is not pos-
sible to dispute an act, like claiming it was not you who tampered with
all the phone numbers in the customer database. This is a crucial part
of information security, to be able to ensure accountability in a system.
For all users, administrators or other people with access, it should be
possible for them to prove they did or did not do something. The easiest
way to ensure that it is possible to have non-repudiation in a system
is to have, retain and analyze logs for every action. As with the dis-
gruntled employee who denies having changed all the phone numbers
in the database, by logging who did actually commit the changes in the
database logs, the financial institution should have enough proof to dis-
prove the statement made by the employee.

3.1.4 Violation of Confidentiality

In most cases, information disclosure is percieved as person A disclos-
ing something to person B, that he or she should not know or does not
have the authorization to know, but it is also possible to unintentionally
disclose information to a person wihtout the correct authorizations. An
example of a common mistake is by logging too much. Even though we
need to log things happening in our system we also have to carefully se-
lect what we need to log and what data we can omitt from each log entry.
Information disclosure might happen by accidently writing secret data
to log files containing lower authorization levels than the original file.
If the boss of the financial institution tries to save a file to his backup
server named Termination Letter for Alice.docx[22] but it fails and a log
entry is placed in the logs saying ERROR: Could not save “Termina-
tion Letter for Alice.docx”, the disk is full, then there is an information
leak. The file name itself is data that was supposed to be sensitive and
only accessible from the boss’ computer or user account, but it is now
accessible to anyone who has permissions to see the backup disks error
logs.

3.1. STRIDE 21

These examples might seem pretty farfetched, but this is actually
common problems that might not have been discovered while imple-
menting the system or during the development of the computer pro-
gram.

3.1.5 Violation of Availability

Businesses can only make money while their services are operational.
If the customer database is unavailable, customers will not be able to
buy services from the website. To financial institutions this might be
services such as loan applications, opening accounts and selling insur-
ance policies. Denial of service is a very serious threat to businesses,
and might happen both intentionally and unintentionally. It is there-
fore important that we implement safeguards that will protect the sys-
tem against these types of threats. One of the more commong threats
are Distributed Denial of Service (DDOS) attacks and they can be pre-
vented by using a load balancer system.

3.1.6 Violation of Authorization

This is the most important threat that we need to discover and mitigate.
Elevation of Privelige is allowing someone to do something that they are
not authorized to do. This might be a user running code on a computer
as an administrator, or someone paying bills from an account they do
not own. There are two different types of privelige related violations.
It can be achieved by corrupting a process on a computer, but this will
only work presuming that a potential attacker already has some control
of the computer or the system. The second type of elevation of privelige
threats is because the system has buggy access control checks or it may
not have any access control checks all together.

3.1.7 Using STRIDE on Data Flow Diagrams

STRIDE is a threat modeling tool that is excellent to use on Data Flow
Diagrams (DFDs). DFDs are diagrams portraying which parts of a sys-
tem or a computer program that communcates with each other and in
which directions the communication is going. In many cases there are
only one way communications from parts requiring lower privilege lev-
els to parts requiring higher. Data is then passed between parts and
might be subject to threats, but in this case it is not important since the
data is passed on to parts of the system which have higher privilege.1

1Authorization levels might not be as simple as in this example.

22 CHAPTER 3. METHODS FOR THREAT MODELING

The basic principle here is to decompose the system or the computer pro-
gram into parts and check that each part is not susceptible to relevant
threats.

A normal DFD uses four different elements used in modeling a sys-
tem: data flows, data stores, processes, and interactors. When we are
supposed to threat model a system we will have to add another element
called a trust boundary. Trust boundaries are represented with dotted
lines covering a certain part, or parts, of a system. Trust boundaries
represent bounderies between trusted and untrusted parts of the sys-
tem. Untrusted parts might be something with a lower privilege level
than another part, or might also be parts that are completely public. For
financial institutions this might be that a customer should not be able
to gain access to their account balance directly from the institutions
mobile banking application, but should have to authorize themselves
before accessing private data. Displaying trust boundaries in a DFD
makes it easier to isolate fragile parts of a given system.

3.1.8 STRIDE-per-element

STRIDE is a very easy tool to use while looking for threats, and there
are different variants of STRIDE that may be important suplements to
the traditional STRIDE model. One of these can we see in Table 3.2.
STRIDE-per-element is a tool that is supposed to make STRIDE more
effective when it comes to finding threats. It does so by acknowledging
that certain elements are more likely to be vulnerable to certain types
of threats than others.For example, a data store is unlikely to spoof
another data store (although running code can be confused as to which
data store it is accessing.)[22]

Element

Spoofing

Tam
pering

R
epudiation

Inform
ation

D
isclosure

D
enial of

Service

E
levation

of

P
rivilege

Data Flows X X X
Data Stores X X X
Processes X X X X X X
Interactors2 X X

Table 3.2: STRIDE-per-Element[38]

2External entities

3.2. ATTACK LIBRARIES 23

When using the STRIDE-per-element approach we use the table that
we see in Table 3.2. We choose one of the parts from the DFD and
see which category it fits into. If we are threat modeling a customer
database we know that it fits into both the Data Flow and the Data
Stores category. Using the table we can limit our analysis to threats by
Tampering, Information disclosure and Denial of Service. STRIDE-per-
element to focus on a specific element at a time while looking for threats
will make it easier to find threats.

3.1.9 STRIDE-per-interaction

STRIDE-per-interaction is a similar variant of the STRIDE model which
is a simplified approach that will make it easier to understand how
to identify threats. The STRIDE-per-interaction method is centered
around each interaction that can happen to a specified part within the
computer system. STRIDE-per-interaction will most likely produce the
same results as STRIDE-per-element, but the benefit of STRIDE-per-
interaction is that it might be easier to understand each threat with
this approach.

3.1.10 Summary

STRIDE is a useful set of approaches for finding threats against com-
puter systems or computer programs. Using STRIDE, or one of its vari-
ants, should make it easy to categorize and discover threats that nor-
mally would not see. STRIDE-per-element makes it easier to choose
which types of threats to prioritize an certain parts of a computer sys-
tem or computer program, while STRIDE-per-interaction helps us anal-
yse each possible interaction on a specified part of a system.

Even though STRIDE is a useful tool, the problem of actually dis-
covering a threat is still present. A tool like STRIDE is not very useful
if the person doing the threat modeling is not familiar with the system
in question.

3.2 Attack Libraries

STRIDE as a threat modeling tool may be seen as too high level and
that it should be replaced with something more detailed.[22] An exam-
ple could be a detailed list of common threats to computer systems or
other thing that might go wrong. Such detailed lists of threats are called
reference tables or Attack Libraries. Having lists of attacks or threats
can be a very useful tool during threat modeling as it gives concrete ex-
amples of the most common problems and might make the threat model
more complete. We discuss different types of attack libraries and try

24 CHAPTER 3. METHODS FOR THREAT MODELING

to highlight strengths and weaknesses with different attack library ap-
proaches.

3.2.1 Level Of Detail in Attack Libraries

Critics of STRIDE has argued that STRIDE is too abstract and that it
might make it an inefficient tool to use while threat modeling. This
is measured over a scale between abstract, or maybe too abstract, and
fully detailed. A fully detailed list is, in this case, a theoretical list
containing every possible threat to every possible information system
present and in the future. That list would not in any way be practical
as it would contain an unlimited number of possible threats, however
there are existing attack libraries that are closing in on a “practical
limit” on how user friendly and effective it is.

While creating an attack library it is very important to both consider
the scope of the list, and its audience. In short, do not create a list where
you explain every little detail if your audience are security experts, and
do not create a list containing hardware security threats if the scope is
communications threats.

One of the problems with attack libraries is that they are very time
consuming to create. “Developing a new library requires a very large
time investment, which is probably part of why there are so few of them”[22]
There does however exist one very extensive community created list
called Common Attack Pattern Enumeration and Classification. (Here-
inafter referred to as CAPEC) This is a very detailed and highly struc-
tured list that seems to close in on the “practical limit” for how large
and extensive an attack library can get and still be efficient.

Common Attack Pattern Enumeration and Classification

CAPEC is an attack library created by MITRE (http://www.mitre.org)
which is an not-for-profit organization working on different aspects of
security.[23] This list is, as of this writing, composed of 463 different
Attack Patterns which is organized in 16 different Attack Categories.

Adam Shostack makes an interesting note about CAPEC on how ex-
tensive this list actually is: “Reveiwing [a system part] against the indi-
vidual entries is a large task, however; if a reviewer averages five minutes
for each of the 475 entries, that’s a full 40 hours of work.”. 3 It is in most
situations, unfortunately, not possible to create such extensive threat
models every time since computer programs and computer systems con-
sists of multiple parts which each would need roughly 40 hours of work
each.

3CAPEC has reduced the number of threats from 475 to 463, but the quote does still
illustrate the amount of work necessary to complete a full CAPEC analysis.

3.3. ATTACK TREES 25

• Gather Information

• Deplete Resources

• Injection

• Deceptive Interactions

• Manipulate Timing and State

• Abuse of Functionality

• Probabilistic Techniques

• Exploitation of Authentication

• Exploitation of Authorization

• Manipulate Data Structures

• Manipulate Resources

• Analyze Target

• Gain Physical Access

• Malicious Code Execution

• Alter System Components

• Manipulate System Users

Figure 3.1: List of the 16 categories found in CAPEC[11]

3.2.2 Summary

Even though attack libraries is not the blueprint on how to threat model,
it gives a whole other perspective to threat modeling compared to STRIDE.
Using abstract approaches like STRIDE, we need to think about and
discover each threat ourselves and this might be very time consuming.
Detailed attack libraries makes it much easier to find threats by listing
them one by one, and using a tool like CAPEC which is a very structured
and comprehensive list, makes it easy even for beginners to the art of
threat modeling. However, using CAPEC we see that his approach is
also very time consuming due to the level of detail in the list.

3.3 Attack Trees

Both STRIDE and attack libraries are theoretical approaches on how to
discover threats. Attack trees is a graphical way of discovering threats.
Using attack trees we get a visual representation of a threat and ways
of executing the threat on a given computer system. It is also possible
to create general attack tree patterns that can be applied to multiple

26 CHAPTER 3. METHODS FOR THREAT MODELING

systems or system parts. Attack trees can be used to threat model in
different ways. The two most common ways of using attack trees are
either by using already existing attack trees on your system, or creat-
ing specific trees to a system. It is usually recommended to use already
existing trees and perhaps build upon them to make them fit your com-
puter system.

The general way of using attack trees are similar to that of STRIDE.
We take a look at the DFD of a computer system and isolating specific
parts of the system. Then we iterate over each node in the attack tree
and see if that node is a threat against your system and then repeat this
for all parts of the system and all the trees relevant to your system.

3.3.1 Attack Tree Components

Bruce Schneier wrote in 1999 an article about attack trees where he ex-
plains them in an easy way. “Attack trees provide a formal, methodical
way of describing the security of systems, based on varying attacks. Ba-
sically, you represent attacks against a system in a tree structure, with
the goal as the root node and different ways of achieving that goal as leaf
nodes.”[31]

For each threat, or goal as Schneier puts it, we create a root node
in a new tree. This root node represent the threat we are trying to
execute and for each child in the tree it represents a subthreat or a way
of executing the threat. In an attack tree we have two types of nodes.
We have AND-nodes and OR-nodes. When a node is an OR-node we
have the possibility to choose either one of them to achieve our goal or
subgoal. However when we have AND-nodes we have to accomplish all
of them together for achieve our goal or subgoal. If we return to the
database example we might consider the threat that “The database gets
deleted” we can create a simple attack tree to model this threat.

As we can see in Figure 3.4 we have two ways of achieving our goal.
We can either Break into the data center or we can Use remote access.
Both of these are just as good to execute our threat, but as we can see on
the right side of the tree it might be a longer way doing it from a remote
location. We can also see the difference between OR-children and AND-

The threat

Way of executing threat Another way of executing threat

Figure 3.2: A theoretical attack tree using OR-nodes

3.3. ATTACK TREES 27

The threat

Second step of executing threatFirst step of executing threat

Figure 3.3: A theoretical attack tree using AND-nodes

The database gets deleted

Use remote access

Hack the databaseUse admin password

Steal password from employeeCrack password

Acquire passwd fileAcquire shadow file

Break into the data center

Steal key cardCut the lock

Figure 3.4: A simple attack tree on a customer database

children in this example. From the node Crack password we see that
we need to accomplis both Acquire shadow file and Acquire passwd file
in order to be able to crack the admin password.

Using an attack tree like this we can easily discover if our computer
program og system has any security flaws against this threat. The prob-
lem with attack trees is however that creating new trees may be a te-
dious and time consuming task.

3.3.2 Creating new Attack Trees

While creating new attack trees we need to consider what kind of tree
it is supposed to be. We can create AND-trees or OR-trees. The type of
tree decides its representation. In most cases we will create OR-trees.
Figure 3.4 is an OR-tree because the root node is an OR-node with two
children that both is a possible way to achieve the goal and that they
do not rely on each other. The theoretical tree that we can see in Fig-
ure 3.3 is an AND-tree because both children to the root node has to be
completed in order to achieve the goal. Most attack trees will be OR-
trees since it often is possible to execute a threat in many different and
independent ways.

After we have decided on a representation we need to choose a root
node. The root node will contain the threat that we want to model.
In Figure 3.4 the root node contains the threat “The database gets deleted”.
In this example we have a database that we are afraid that might get
deleted. We then continue to add subnodes for each way that we can

28 CHAPTER 3. METHODS FOR THREAT MODELING

execute the threat.
One of the harder things with creating attack trees is the same prob-

lem that we have with attack libraries. When creating an attack library
we need to keep it short enough so that it will be practical to use, but
long enough so that i cover every probable threat. It is very important
to keep the attack tree within a practical length, while also covering the
threat. This problem is called completeness and there is no blueprint
on when an attack tree is complete.

3.3.3 Summary

Attack trees are useful to visualize threats. By choosing the right repre-
senation and the right root node, it should be easy to find weaknesses in
a system using this approach. Creating new attack trees is a very time
consuming task if we try to keep every attack tree close to the “practical
limit” of usability.

3.4 Discussion

There are many different tools available to use while threat modeling.
The three methods I have chosen here each represent a different way of
visualizing and approaching the difficult task of creating a threat model
for a computer system. STRIDE seems like a very straight forward tool
to use. It consist of 6 categories and you try to find one or more threats
that fits into each category. It has two alternate versions which simpli-
fies things even more and this makes it a great tool for categorizing and
listing threats.

There is however a great problem for beginners to threat modeling.
It is not always very intuitive what types of threats we need to look for
in each category. Luckily we have other approaches to threat model-
ing which helps us with this task. Using an attack library helps us to
check for the most important threats in each category. When using at-
tack libraries we should consider both the scope and the audience of the
threat model and we should consider using an attack library that is not
too abstract nor should it be too detailed.

When looking at both STRIDE and attack libraries we see that they
are tools with flaws that if we combine them, eliminate each others flaws
and should make for a very strong and useful tool. STRIDE is a very
abstract tool that makes looking for threats a task with infinite solu-
tions, while an attack library might limits the number of threats. An
attack library like CAPEC might be too detailed and contain too many
entries that it is not possible, time wise or money wise, to be able to
consider them all. The combination of using STRIDE-per-element (Ta-

3.5. SUMMARY 29

ble 3.2) and a detailed attack library like CAPEC could make threat
modeling easier as it solves the problem of having to check every part of
the system for all the entries in the CAPEC library.

Attack trees might be a great tool for presenting threats, it does not
present itself as the most efficient approach when trying to discover new
possible threats. Attack trees suffers from the same problem as STRIDE
does since it is a very abstract tool. We could, like with STRIDE, use it
in combination with an attack library but it takes a long time to create
the trees. Attack trees appear to be a tool that is more suited to help
during the threat mitigation process than discoring them. An attack
tree is very suitable to present threats to an uneducated audience and
should therefore be considered as supplementary tool.

3.5 Summary

In this chapter we have given a brief overview of three very different
approaches to threat modeling. Two abstract methods and one detailed.
STRIDE is an abstract method of threat modeling using a table with 6
headlines, or categories, which should help the threat modeling team
to start finding threats against a certaing part of the system. STRIDE
have also two simplified modifications that will help removing unneces-
sary work from the threat modeling process. STRIDE-per-element is a
modification where the type of system or type of part of a system decides
which of the six STRIDE categories we should consider. This will nar-
row the search for threats down and make the task easier. STRIDE-per-
interaction uses STRIDE-per-element to narrow down the set of possible
threats, but instead of using it on the system part, it does so on the dif-
ferent interaction that part does. This makes STRIDE-per-interaction
a little more time consuming than STRIDE-per-element, but makes it
easier for the beginner to understand by also listing all the different
interaction a system and this might prevent mistakes.

Attack libraries are lists or a set of common threats that one should
consider. There is no blueprint of how an attack library should be, so
the variety ranges from short lists to lists containg several hundreds of
threats. Shorter lists are defined as more abstract since they contain
little specific information about threats while longer lists are defined
as detailed. CAPEC is an open source attack library that contains 463
different threats categorized in 16 different categories. This is a very
detailed list and is a great place to start. Critics of this attack library
has stated that it is too detailed, making it impossible to consider each
and every threat to every part of a computer system.

An attack tree is another abstract way of doing a threat analysis.
Attack trees consists of a root node containg a specific threat and subn-

30 CHAPTER 3. METHODS FOR THREAT MODELING

odes containg ways of executing the threat. There are two types of at-
tack trees: AND-trees and OR-trees. In an OR-tree (Figure 3.2) we can
achieve to execute the threat with only successfully achieving one of the
subnodes, while in an AND-tree (Figure 3.3) we need to complete all of
the tasks in the subnodes.

Chapter 4

Mobile Operating Systems

In this chapter we discuss the current state of mobile operating systems,
how they work and how they differ from traditional desktop operating
systems. This chapter is supposed to be a brief introduction to the major
mobile operating systems and we will present the three most common
mobile operating systems on the market: Android, Windows Phone and
iOS. We also do a comparison of them to see if there are any differences
in the security design.

4.1 Introduction

Mobile operating systems are a relatively new branch of operating sys-
tems. Real smartphones have only existed for 7 years and after the re-
lease of Apple’s iPhone, several other mobile operating system projects
were established. This makes mobile operating systems relatively young
compared to traditional desktop operating systems like Windows.

Since the initial release of the iPhone, smartphones and tablets have
really taken over the role of the traditional computer, and 80 % of the
Norwegian population had access to a smartphone i 2014.[36] This makes
smartphones one of the major platforms used to access the internet and
it is also one of the major platforms for users to acces their bank ac-
counts.[15]

4.2 Security Features

To be able to analyze and compare the different mobile operating sys-
tems we need to take a look at the different parts of the smartphone.
We will separate operting system security into four different categories:

• Secure Boot.

• Encryption and Data Access.

31

32 CHAPTER 4. MOBILE OPERATING SYSTEMS

• Application Security.

• Device Security.

4.2.1 Secure Boot

The first step to ensure that a mobile operating system is secure, is by
having a booting mechanism that is secure. It is important to ensure
the integrity of the operating system between every reboot, so that we
know that no one has tampered with the operating system while it was
shut down. One type of threats that can attack an operating system in
this way is “root kits”. A root kit is a tool that gives a user or a process
an unauthorized level of access to system resources. It is important that
the device boot mechanism prevents that unauthorized code gets loaded
before or during the operating system boot.

In Figure 4.1 we can see an example of a mechanism for secure boot.
This kind of secure boot is called chain-of-trust. Chain-of-trust is when
there is a hierarchy of code signing while booting the device. The booting
mechanism starts with the device hardware being coded to only start
code that is signed with the correct certificate. This feature prevents
the hardware from loading unauthorized code. After the hardware boots
valid code a chain of signed code is started with each level checking the
next making this a chain-of-trust that prevents any unauthorized code
from being executed while the operating system is loading.

4.2.2 Encryption and Data Access

After the operating system is done booting it needs to be able to make
sure that the user has secure access to its files. This is achieved using
encryption on user data and other system files on the device.

While encrypting files sound like an easy task, it is also important
that the operating system can guarantee for three properties: Confi-
dentiality, Integrity and Availability. (Hereafter referred to as CIA.)
Confidentiality is the property of keeping private data private. This
is not only limited to unauthorized users reading private data, but it
is more generally referred to as unauthorized users learning sensitive
information. Intregity is the property of keeping data valid. If a file
containing the password hash for a user has been tampered with it is
no longer valid and there is a data integrity breach. The last property of
CIA is to make sure that system resources and user files are available
when the user needs it. In ISO 7498-2[16]: “Availability - The property
of being accessible and usable upon demand by an aouthorized entity”.
You (the entity) having the key to your apartment (the resource) door is
not helpful if the door is stuck (not accessible) due to a flaw in the door

4.3. ANDROID 33

design. It is important that the operating system maintains full access
to resources and data to keep the property of availability.

All of these properties makes an argument for having data encryp-
tion built in to the operating system. By having all files encrypted by
the operating system it should be possible to guarantee that user data is
kept confidential to unauthorized users, data integrity is ensured since
the data hash could reveal if the file has been tampered with and the en-
cryption locks the file to prevent tampering from happening and avail-
ability is ensured since unauthorized users should not be able to put a
lock on unauthorized files.

4.2.3 Application Security

Almost every smartphone is running, or is able to run, third-party ap-
plications today. These third-party applications are applications that
the user has downloaded through an integrated downloading service or
by downloding it directly from the internet. These applications creates
some insecurities if they have access to critical parts of the operating
system or system services. third-party applications that creates insecu-
rities like this are called “Malware”. Malware is a computer program
that either infects systems and uses them maliciously or a program
that tries to breach one of the CIA properties and the operating system
should implement protection mechanisms against such applications.

4.2.4 Device Security

Every device is in danger of being lost or getting stolen. This poses a
threat to the device and every device should have device security func-
tionality. Normal security functions could be PIN codes or password
protection. Device passwords or PIN codes should be manageable by
a Mobile Device Manager (MDM) and the MDM should be able to en-
force different security policies such as enforcing a password length of
minimum 8 digits or forcing the user to use characters and digits in the
password.

4.3 Android

Android has the largest install base of any mobile operating system to
date. It has been on the market since 2008 and has since then had
8 major releases.[4]. The developers behind Android have focused on
strengthening Android security features during the last major updates
to make sure that this platform is one of the more secure mobile oper-
ating systems available on the market.

34 CHAPTER 4. MOBILE OPERATING SYSTEMS

Figure 4.1: An example of the Chain-of-trust mechanism (dm-verity) in
Android.[5]

4.3.1 Secure Boot

Later releases of Android have secure boot as a built-in user optional
security feature. This service is called device-mapper-verity (dm-verity)
and is implemented as a measure to prevent root kits from being able
to take advantage of vulnerabilites during boot. This security feature
is implemented in the kernel that Android uses, and if malware is suc-
cessfully loaded before the kernel starts its boot process, it will still be
able to pose a threat to system integrity.

4.3.2 Encryption and Data Access

Android uses the Linux-kernel as the fundament for the operating sys-
tem. This means that Android can use all the security features that the
Linux-kernel offers. The Linux-kernel is used by millions of desktop
computers worldvide. Due to the kernel’s age and long service life, it is
believeable that the it is stable and secure to use.

The Linux-kernel is open source. This implies that the kernel is sub-
ject to research, that i gets tested and attacked, and that vulnerabilites
gets mitigated by anyone that show interest in Linux security. Since
there are no secrets to the code, this also guarantees that anyone fix-
ing vulnerabilites can not intentionally hide any possible vulnerabilites
without people being able to reveiw his code. The Linux-kernel is still
under development and all major vulnerabilities that gets discovered
is handled and the kernel is getting updated with new releases of the
Android operating system.

4.3. ANDROID 35

Since Android is using the Linux-kernel it kan benefit from the se-
curity functionality that is already built in. One of these features is the
user administration functionality. The Linux-kernel is designed so it
can manage to have multiple users on the same device. One of the fun-
damental security features is to isolate different users resources from
one another. It does this by:

• Preventing user A from reading user B’s files

• Ensuring that user A does not exhaust user B’s memory

• Ensuring that user A does not exhaust user B’s CPU resources

• Ensuring that user A does not exhaust user B’s devices (e.g. tele-
phony, GPS, bluetooth)

All encryption on Android is done using 128-bits AES with cipher-
block chaining (CBC) and ESSIV:SHA256. All new devices need to have
a built inn security module to be eligable to ship with Android 5.0 or
newer preinstalled.

4.3.3 Application Security

Android utilizes the user administration security functionality when it
installs and runs both standard applications and third-party applica-
tions. Each new application is assigned its own unique user id (UID)
and each application runs as a new process with this UID. This process
of isolating each application is near perfect since it forces each applica-
tion to run in its own little sandbox. We can see in subsection 4.3.2 that
two different users are not able to access each others memory space,
CPU resources or data files. The application runs as if there are no other
applications present on the device.1 By running applications in its own
sandbox we also potentially prevent memory errors from compromising
the system. Other applications or the operating system cannot use the
physical memory that is allocated for the application sandbox. By us-
ing this kind of isolation we can assume that the application security in
Android is more than sturdy enough.

One of the weaknesses on how Android manages third-party appli-
cations is how the application can request access to sensitive APIs. By
default, Android will protect its users by limiting access to a range of
APIs. An application will not have access to the GPS sensor without the
direct consent by the user. The user will have to explicitily grant access
to the API in question and this is usually done during the installation

1There are possibilites of having applications knowing about each other, but we will
not discuss them here. This is merely a simplification to clearify how it works.

36 CHAPTER 4. MOBILE OPERATING SYSTEMS

process. When installing the application, the user is presented with a
list of APIs that it will have to grant access to in order for the applica-
tion to work properly. If the user denies the application access to one
or more of the APIs, then the installation will be cancelled. This puts
the user in charge of what type of data each application can access, but
there are some weaknesses here as well.

Some applications can share data through Inter Process Communi-
cation (IPC). Malware can through this kind of process communication
send sensitive data to each other. Application A requests access to the
GPS sensor, while application B requests access to the network. Now
these two applications poses a threat to the system since one applica-
tion can acquire the users position and the other can send that through
the network.

The Android marketplace is the web shop where users can buy and
download third-party applications for their device. A developer must
digitally sign its code for the application and the developer must pay a
standard fee of $ 25.[5] This fee is put there to prevent developers from
publishing malicious applications to their web shop, Google Play. There
is however some weaknesses to this security method. The only require-
ment to pay the fee is a credit card, by using anonymous credit cards
like Visa Spendon[40], a developer can anonymously pay the registra-
tion fee. There is also a lack of source code control before the application
gets launched to the web shop. There is also a weakness to the code
signing since anyone can generate the sertificates needed to sign code.

Android has since Jelly Bean 4.2 had an optional service called Ver-
ify Apps. This services helps the user make smart decisions when in-
stalling third-party applications on their system. On Android, users
can manually download Android Application Packages (APKs) and in-
stall them without having to use the Google Play store. This means that
developers can create applications and distribute them by forged emails
or a fraudulent website. Verify apps can be a great countermeasure to
these kind of threats but this service is optional and is deactivated by
default. Since the user needs to manually activate the service, it can
not count as a core security functionality.

4.3.4 Device Security

Android’s latest release, offers 4 types of device security. Default/Open,
PIN, Password or Pattern. The operating system does encrypt all files
on the device using the PIN, password or pattern provided as a key.
This ensures that data files can not be accessed without having the key
generated by the type of security on the device. If the user chooses not
to use the default security option, all files are still encrypted using a
standard password.

4.4. WINDOWS PHONE 37

4.4 Windows Phone

Windows Phone is the mobile operating system developed by Microsoft.
It was initially released in 2010 under the name fWindows Phone 7.
Windows Phone is the youngest of the three mobile operating systems
that we will be investigating in this chapter. Windows Phone has been
developed with focus on meeting business requirements, and security
has therefore been a primary focus during the development. This in-
cludes the integration of the Exchange protocol which is used by many
businesses today.

4.4.1 Secure Boot

The latest release of Windows Phone uses the well known Windows NT-
kernel. Windows Phone uses the same kernel as is used in the desktop
versions of Windows and Windows Phone can therefore utilize the same
security functions. Earlier versions of Windows Phone, namely 7.0 and
7.5, did use the simpler Windows CE-kernel which limits operating sys-
tem functionality. Microsoft switched to the NT-kernel from Windows
Phone 8 and the future Windows 10 will also use the NT-kernel.

Windows Phone uses UEFI instead of BIOS, and UEFI has built in
secure boot functionality. UEFI boots the hardware boot code which in
turn will try to load the Windows Phone bootloader. UEFI also validates
the boot loader which then should guarantee that the system integrity
is maintained. This functionality is called Secure Boot.

After UEFI has initialized the boot process and validated the Win-
dows bootloader, Windows starts its own secure booting mechanism.
This mechanism is called Trusted Boot and is executing the same chain-
of-trust-measures which verifies the code on each new step. This is
similar to Android’s service, dm-verity, that can be seen in Figure 4.1.
Trusted Boot veriefies each segment in the booting process and ensures
that the system has not been tampered with while being switched off.

4.4.2 Encryption and Data Access

Windows Phone protects its users against information theft by encrypt-
ing the whole device using 128-bit AES encryption. The encryption key
is managed by a dedicated encryption module called a Trusted Platform
Module (TPM) which is a standardized encryption engine which helps
the operating system to securely store keys and encrypt user data.

To ensure that native applications and third-party applications can
not access each others data files, memory, or important system files,
each application runs in its own sandbox. This sandboxing is named an
AppContainer. Each AppContainer has its own dedicated memory space

38 CHAPTER 4. MOBILE OPERATING SYSTEMS

which is protected with Address Space Layout Randomization (ASLR)
and individual rights and access to system resources like the GPS sen-
sor.

4.4.3 Application Security

All applications that can run on a Windows Phone need to be signed
with a Microsoft issued certificate. If any part of an application, or a
whole application does not comply with these restrictions it will not be
able to run on the device. This kind of security measures is an important
part of reducing the possibility of malicious code to run on the device. To
get approved, any application code must be signed by the developer and
then signed by a Microsoft employee. This means that all applications
that are available through the Windows Phone Store is pre-approved
and controlled by a Microsoft employee and should be considered se-
cure. This creates an extra layer of security for a malicious developer to
breach. A developer can not simply hide malicious code in his binaries,
since he needs to disclose his code to a Microsoft employee.

4.4.4 Device Security

Windows Phone supports the ability to limit device access by the usage
of passcodes. Passcodes might be simple four-digit PIN codes or they
might be more complex alphanumeric passwords. Using mobile device
managers like Microsoft Exchange, Windows Phone supports the addi-
tion of password security policies on the device. Enforcing the use of
stronger passwords make the data on the device secure.

4.5 iOS

Apple announced and released its first smartphone in 2007. The iPhone
became the first phone in a whole new generation of smartphones. With
the release of the first iPhone OS2, Apple also changed how phones were
designed since it used a modified version of the OS X desktop kernel.

4.5.1 Secure Boot

The foundation for iOS is the OS X kernel which is also used in Apple’s
desktop operating system. The first OS X operating system was released
in 2001 and this implies that the kernel has been used and tested for
almost 15 years. Apple have made the kernel code publicly available
to ensure that there will be security through transparency. If anyone

2iPhone OS is now renamed to iOS since it supports iPods, iPads and iPhones

4.5. IOS 39

wants to discover vulnerabilities in the kernel, they are allowed and
able to do so.

iOS implements a secure booting mechanism. For each part of the
boot chain the system checks if the next code module is signed by Apple,
and that it has not been tampered with. This is done to ensure system
integrity even if the system has been switched off. If any code in the
boot mechanism has been tampered with, the device will not start since
the chain-of-trust is then broken. Elements that are included in the
chain-of-trust are bootloaders, kernel, kernel extensions and firmware.

The booting mechanism in iOS starts off with a hardware root-of-
trust. This is a low level bootloader on a read-only memory (ROM) chip.
It is assumed that the boot code on this chip is secure from tampering
since it is a ROM-chip that is installed during production of the device.
From this root-of-trust the next code in the boot mechanism is validated
and then and only then executed.

4.5.2 Encryption and Data Access

All new iOS devices have a built-in encryption engine. This is a ded-
icated 256 bit AES engine which encrypts all files on disk. iOS uses
two main keys. One hardware key which encrypts file meta data and
one separate key which together with the hardware key encrypts the
file content. The hardware key is generated when the operating system
is installed on the device, and to access data this key is needed. The
MDM service from Apple is called iCloud, and iCloud gives the user the
possibility of remotely deleting the hardware key from the device. This
will result in all data files on the device being made inaccessible.

Every application installed on the device runs in total isolation from
one another. Every application is allocated its own home folder on disk
and its own memory space. The memory space is protected using ASLR
and each home folder is locked to a specific UID like in Android. Bea-
cause of this sandboxing every application is secure from other appli-
cations running on the same device. The majority of iOS runs as the
non-privileged user “mobile”, as do all third-party apps.[20] This makes
third-party applications not able to access data files owned by root.

4.5.3 Application Security

Apple have focused on application security while designing the iOS op-
erating system. They have implemented a range of different barriers
which a developer must pass to be able to develop and distribute appli-
cations.

To make an application runnable on an iOS device the developer

40 CHAPTER 4. MOBILE OPERATING SYSTEMS

must submit its code for review by an Apple employee.3 The code must
be signed by both the developer using a private certificate and it needs
to be signed by the Apple employee. This actually extends the chain-of-
trust from the operating system all the way to any application running
on the device.[20] Developers who wish to create and sell applications
through Apple’s web store, App Store, have to register themselves with
the iOS Developer program and they need to pay a yearly fee of $ 99.
This creates a payment barrier which helps identifying developers who
deliberately try to add malware to the App Store. When the application
is complete the developer submits code for review and if it gets approved
the application is made available to the end user thorugh App Store.

4.5.4 Device Security

iOS offers the possibility of password protecting devices. The operating
system prompts the user during installation asking the user to set a
four-digit PIN code. The user can explicitly request that the passcode
should be a longer alphanumeric password instead of a four-digit PIN.
iOS does offer password policies through an MDM, which makes it pos-
sible to enforce stronger passwords. Together with the device security
that the operating system offers while installed, iOS also offers an Ac-
tivation Lock feature. The device itself gets linked to an iCloud account
and it is not possible to reinstall the operating system unless the de-
vice us unlinked from the iCloud account. This makes iOS devices less
desireable targets for theft since the orignial owner will have to unlock
the device.

4.6 Dicussion

All the different mobile operating systems that we have presented in
this chapters started out very differently. iOS was the first operating
system and was released in 2007, followed by Android in 2008 and Win-
dows Phone in 2010. The starting points for these systems were quite
different, but they have during the last few years been adopting tech-
nology from each other, which makes all platforms look quite secure on
paper.

All of the mobile operating systems have the possibility to restrict
access to the device by using passcodes. Passcodes are on all the dif-
ferent operating systems an optional feature to prevent unauthorized
user from accessing the device. All operating systems also provide the
possibility of enforcing password policies on a device using an MDM.

3This is similar to the approach Microsoft is using, but it is worth mentioning that
this was first done by Apple.

4.6. DICUSSION 41

An example policy is to require the user to use an alphanumeric pass-
word instead of a four-digit pin. The possibility of enforcing the use of
more complex passcodes does hovewer not apply for private consumers
as they are usually not a part of a business controlled MDM.

All of the different operating systems support one form of secure
booting mechanism. iOS is however the only system which has sup-
ported this feature since the first version. Windows Phone did not have
secure boot in Windows Phone 7 or 7.5/7.8 but from 8.0 this is an obliga-
tory feature. Windows Phone is not the same operating system between
7.X versions and 8.X versions since they changed the kernel between
these major releases. This makes devices running 7.X unsecure due to
the lack of secure boot functionality.

Android has since version 4.4 (KitKat) had secure boot as an optional
function. The user had to manually activate it and it is not guaranteed
that all users running KitKat have activated this functionality. If we
take a look at Table 4.1 we can see that there is more than 50 % of the
Android user base using versions older than KitKat. This infers that
more than 50 % of all Android devices are not protected against root
kits.

Version Codename Distribution
2.2 Froyo 0.4%

2.3.3 -
2.3.7 Gingerbread 7.4%

4.0.3 -
4.0.4 Ice Cream Sandwich 6.4%

4.1.x 18.4%
4.2.x 19.8%
4.3

Jelly Bean
6.3%

4.4 KitKat 39.7%
5.0 Lollipop 1.6%

Table 4.1: Distribution of Android devices that accessed the Google Play
Store.[4]

There is also one minor detail about dm-verity that is worth notic-
ing. dm-verity is optional for users running KitKat, and it is activated
by default for users running version 5.0 or newer. But if the user had
4.4 installed on the device with dm-verity disabled and then upgraded
to 5.0, the user is still susceptible to root kits since if an attacker man-
ages to downgrade the Android version back to KitKat, dm-verity will
be disabled. This is a minor security breach that is worth further inves-
tigation.

Android, Windows Phone (8.0 and newer) and iOS all use renown

42 CHAPTER 4. MOBILE OPERATING SYSTEMS

and well tested kernels. There are only two security aspects that we
need to highlight. The first is that devices running Windows Phone 7
are using the simpler Windows CE kernel. Newer versions do however
use the more widespread Windows NT kernel which provide more secu-
rity features than Windows CE. The other aspect that needs attention is
that older versions of Android not necessarily uses Security Enhanced
Linux (SELinux). SELinux is the kernel used by Android Version 4.3
(Jelly Bean) or newer. This means that more than 50 % of all Android
devices in use are not protected by the enhanced SELinux kernel. “Un-
fortunately, existing mainstream operating systems lack the critical se-
curity feature required for enforcing separation: mandatory access con-
trol. As a consequence, application security mechanisms are vulnerable
to tampering and bypass, and malicious or flawed applications can eas-
ily cause failures in system security.”[3]

One of the biggest differences between the more common desktop op-
erating systems and mobile operating systems is how applications run
in their own isolated sandboxes. All of the operating systems isolate
each application by giving them private memory space and a private
home folder on disk. iOS and Android does this by creating a new user
on the operating system for each user which limits what the application
can do outside its own disk and memory space. subsection 4.3.2 shows
how assigning a unique UID per application can restrict applicaiton ac-
cess to the system. Windows Phone does not describe how this feature
is implemented, but it is probable that it uses a similar kind of user
restriction feature.

All of the mobile operating systems also use ASLR to protect each
applications memory space and they all use the Execute Never (XN) flag
that is accessible on every ARM processor. ASLR is a memory protec-
tion mechanism which randomizes the physical addresses used by dif-
ferent components of a process. This should technique makes it harder
for an attacker to exploit specific memory vulnerabilities.[14]. XN, is
a flag that mey be used upon memory regions to tag that this region
does not contain executable code. Using the XN flag makes it harder for
an attacker to execute code using memory vulnerabilities. This makes
it difficult to attack an applications by hacking memory segments and
this does prevent someone from injecting code to memory and executing
it. All memory segments that are writeable can not execute any code.

iOS and Windows Phone have chosen a security model where every
third-party applicaton which is sold through each platforms application
store must be signed by both the developer and Apple/Microsoft. After
the developer has signed the code it will have to be sumbitted for review
before being able to sell it in the application store. Android does deviate
from this security model. Android let users download and install appli-
cation binaries from anywhere on the internet. Windows Phone and iOS

4.6. DICUSSION 43

does primarily let the user install applications bought, or downloaded
from free, from each platform’s application store. Android does not pre-
check applications that are being sold via the Google Play marketplace.
Since there is no approval needed to sell applications on Google Play it
is most likely multiple applications available on Google Play that would
fall into the category of malware. Android does from version 4.2 (Jelly
Bean) provide an optional function called Verify Apps which in turn will
verify that the application is secure before letting the user install it on
their system. This functionality is comparable to the pre-approval strat-
egy from Apple and Microsoft, but it its only user optional and it is in
no way a preventive security measure like pre-approving applications.

All developers who wish to sell applications using the built-in appli-
cation store on Windows Phone or iOS have to register their personal
information with their applications. By registering this information
and having a registration fee it is a way of filtering out developers that
have malicious intentions. Android does have a registration fee, but
they do not require personal information. It is possible that there might
be a correlation between the security model used by iOS and Windows
Phone (register, pay, sign, approval, publish), the security model used
on Android (pay, sign, publish) and the number of malicious applications
available for each system.

Isolation of applications in Android, Windows Phone and iOS is usu-
ally very strong. There is however an exception where applications
signed by the same developer often can share resources. This might
pose a threat if application A has access to GPS sensor data and appli-
cation B has access to the network. This isolation technique used in all
the different mobile operting systems seems to be a very efficient way of
protecting the system.

All of the operating systems supports the usage of a dedicated en-
cryption module. All systems encrypts all data files on disk, either by
including the passcode as an encryption key or using a standard pass-
word. iOS has by default the strongest encryption with a 256-bit key,
Windows Phone uses 128-bit and Android uses 128-bit by default but
has the option to use 256-bit if the user request it. There is however not
a big practical difference between the 128-bit or 256-bit and all systems
are deemed to be secure by todays standard.

As we can see the in Table 4.2, there are no major differences be-
tween any of the major mobile operating systems. The only real dif-
ference is during application development. Android does not have any
pre-approval of applications before they are availble for the end-user.

4No pre-approval of applications available
5Equivalent functionality
6Android 5.0 and newer
7Windows Phone 8.0 and newer

44 CHAPTER 4. MOBILE OPERATING SYSTEMS

Android iOS Windows Phone
Secure Boot Yes4 Yes Yes
Network Security - - -
SSL Yes Yes Yes
TLS Yes Yes Yes
VPN Yes Yes Yes
Data Encryption 128-bit 256-bit 128-bit
Device Passcode Yes4 Yes4 Yes4

Application Security - - -
Application Process Isolation Yes Yes Yes
ASLR No5 Yes Yes
Resource Management Yes No Yes
TPM Yes6 Yes Yes7

Application Verification No4 Yes Yes

Table 4.2: A visual comparison between systems

If Android would implement this feature, then there are no differences
between these systems.

As long as the chain-of-trust is not breached, every system can be
deemed secure. We know that it is possible to breach the chain-of-trust
in all systems. Both Microsoft and Google have included the possibility
to “root” devices for developers to get test applications, and there exist
similar, but unofficial, rooting kits for iOS called jailbreaks. Systems
which are rooted or jailbroken can not be considered as secure due to
the fact that the chain-of-trust is broken.

4.7 Summary

There are three major mobile operating systems available on the market
today. Android, Windows Phone and iOS. Even though modern mobile
operating systems represent a young branch of operating systems, the
technology has already come far. Every system uses a desktop quality
kernel with all the security features those include. Older versions of
Windows Phone OS have less security due to the Windows CE kernel,
but all new phones uses the Windows NT kernel.

All mobile operating systems are designed with focus on security,
and the adaptation of the application isolation feature should be con-
sidered a success. By isolating every application from one another, the
system can ensure that there is little-to-no unauthorized communica-
tion between third-party applications and between applications and the
system. All systems use industury standard protection of memory and

4.7. SUMMARY 45

encryption technologies. All operating systems are by default secure,
but devices that are rooted or jailbroken could pose a security threat for
sensitive applications.

There is no major difference between each system except for the de-
veloping process. Apple and Microsoft have strict guidelines for how an
application should be created and very strict policies that must be fol-
lowed to make an application runnable on a non-rooted device. The code
signing and code reviewing practices from Apple and Microsoft makes
their systems a bit more secure than Android.

Chapter 5

BankID

This chapter is a brief introduction to the history, technology and adap-
tation of BankID, the prime authentication service used by Norwegian
financial institutions.

5.1 Introduction

BankID is a collaborative project to create a common system for user au-
thentication between all financial institutions in Norway. This project
is a collaboration between Norwegian banks, Bankenes Standardiser-
ingskontor (BSK), BankID Norge and Finansnæringens Fellesorganisas-
jon (FNO). Each of these institutions have a certain role in the research
and development of BankID. The BankID project was started back in
2000 and the first customers were using BankID in 2004. Since then,
the user base has grown to more than 3,1 million customers. This makes
BankID the leading authentication service in Norway and it is used by
both private institutions and the Norwegian government.

5.2 Technology

The technology used in BankID authentication is based on Public Key
Infrastructure (PKI), which is an ISO framework using public key cryp-
tography and the X.509 standard.[14] PKI is based on asymmetrical
cryptography which makes it possible for two parties which does not
have an existing relationship to communicate securely using the open
internet. Public Key Infrastructure consists of programs, data formats,
procedures, communication protocols, security policies, and public key
cryptography mechanisms working in a comprehensive manner to en-
able a wide range of dispersed people to communicate in a secure and
predictable fashion.[14] In short: PKI establishes a level of trust for
BankID customers to communicate securely using the internet.

47

48 CHAPTER 5. BANKID

5.2.1 PKI

Figure 5.1: Inter bank agreement

PKI enables customers to trust each other by letting each party of
the communication have a trusted relationship with a mutual third-
party. This third-party is also known as the Certificate Authority. (Here-
inafter known as CA.) In BankID there are two types of third parties.
Usually the third-party would be the two original parties’ local bank
but all customers do not share the same bank. In that case it exists an
inter bank agreement to create a chain of trust between banks as well.
These inter bank agreements are regulated by BankID. Each entity that
wants to take part of a PKI needs to get a digitcal certificate from one
of the CAs. To be able to get a certificate from the CA each entity will
need request a certificate from a Registration Authority. (RA) The RA
confirms the entity’s identity and initiates the certification process with
a CA on behalf of the entity.

PKI supplies security services such as: Confidentiality, Integrity, Au-
thentication, Nonrepudiation and Access control.[14]

5.3 Infrastructure

BankID consists of several major components:

• Felles Operasjonell Intrastruktur

• Bank RA

• Bank OTP

• BankID Server

• BankID Client

5.3. INFRASTRUCTURE 49

• BankID on Mobile Client

Felles Operasjonell Intrastruktur is a centralized package of multiple
subcomponents which binds all other components together. All other
components are either hosted by the bank itself or is at the hand of the
customer.

5.3.1 Felles Operasjonell Intrastruktur

Felles Operasjonell Intrastruktur (Hereafter referred to as FOI.) is the
back end part of the BankID system that is being operated by a service
provider. FOI consists of APIs which are necessary for the rest of the
BankID components to communicate with each other. FOI provides a
range of functional components that can bee seen in Figure 5.2.

• Ordering Certificates

• Issuing Certificates

• Distribution of information of the current state for certificates to the
bank RA

• Revoking Certificates

• Suspending Certificates

• Reinstating Certificates

• Renewing Certificates

• Validating Certificates

• OTP1 routing for validation using the banks own system

• Central storage and usage of private keys

• Central storage and distribution of certificates and public keys

• All cryptographic operations on behalf of the customer

• Carrier communications to activate and use BankID on Mobile

• Certificate and information administration

Figure 5.2: Functionality provided by FOI

The central infrastructure (FOI) is developed, administrated and
hosted by Nets Norway (Nets).

5.3.2 Bank RA and OTP

Two of the main components of BankID are services that are hosted
by the financial institutions. These components are the registration au-
thority and the One Time Password (OTP) mechanism. BankID requires

50 CHAPTER 5. BANKID

that the RA confirms the identity of a customer by having the customer
show up in person and provides valid identification. An example of valid
identification is a passport. The RA then request a certificate from the
CA on behalf of the customer.

Each bank may chose their own OTP mechanism as long as it is
approved by Bankenes Standardiseringskontor (BSK). “The bank will
administrate the one time password mechanism and will have function-
ality which approves the code. Central servers for Bank stored BankID
will recieve the code from the BankID Client and send the code by a pri-
vate network to the banks service for approval of one time passwords.”[9]

5.3.3 BankID Server

The BankID server is the software that is implemented at a merchant
with an agreement with its bank to accept end users BankID certificates
used for identification or signing.

5.3.4 BankID Client

The BankID client is either a Java-applet or a Javascript and HTML5
application2 that is automatically downloaded to the end users local
computer whenever the end user wants to authenticate him- or herself
or sign a document. The client is downloaded from the central infras-
tructure (FOI) every time the user wants to perform an action, and the
client is unique every time. This means that the end user has to re-
download the client application every time.

BankID on Mobile Client

The BankID on Mobile client is a mobile application that is provided for
all users with a compatible phone, compatible carrier and compatible
sim card. Every carrier that wants to offer this kind of service needs to
hook themself up to BankID FOI. BankID on Mobile differs from normal
BankID authentication by storing private keys on the sim card, instead
of being centrally stored at FOI.

5.4 Certificates

Since BankID is based on the PKI framework, all entities using the ser-
vice are being issued certificates. Issuing of certificates starts with a

2There is also an iOS application that the user can download to his own iPhone, iPod
or iPad, and an Android application for Android phones and tablets. However, since the
release of the Javascript and HTML5 application, there is no longer any need to use
these native applications when wanting to authenticate or sign something.

5.4. CERTIFICATES 51

Root-CA (Owned by the bank unions)

Level 1-CA (Owned by individual institutions)

End user certificate

Figure 5.3: Certificate issuing tree

Root-CA3 which is owned and hosted in collatboration by the two bank
unions in Norway, Sparebankens Servicekontor and Finansnæringens
Servicekontor. This CA is used to issue one or more Level 1-CA’s. A
Level 1-CA is owned by each bank, financial instution or other insti-
tution which are supposed to be Registration Authorities (RA). A Level
1-CA provides three key functions:

• Issuing Certificates

• Revoking or suspending Certificates

• Generation and ditribution of CRLs4

When an institution has their Level 1-CA they can act as an RA to
issue BankID certificates to customers. There are four different types of
end user certaificates in use by BankID today. Person-BankID, Employee-
BankID, Mobile-BankID, Merchant-BankID. Person- and Mobile-BankID
are used by private citizens, and these two differs only in the matter of
where private keys are stored. In Person-BankID the private keys are
stored by the issuing institution and for Mobile-BankID the private keys
are stored on the SIM-card. Merchant-BankID is used by websites/com-
panies and the Employee-BankID is used by individuals whom are act-
ing on behalf of an organization or business. The certificate tree can be
seen in Figure 5.3.

5.4.1 Certificate Format and Security

All BankID end user certificates are formatted to the X.509 standard.
X.509 is a PKI certificate standard published by the ITU-T.[21] The
X.509 specification profiles the format and semantics of certificates. It

3Certificate Authority
4Certificate Revokation List

52 CHAPTER 5. BANKID

also profiles the CRLs for the Internet PKI. It contains procedures for
processing certification paths in the internet environment.

To protect communication between the RA of the institution holding
a Level-1 CA and the Certificate Ordering (also known as: ODS) sys-
tem in FOI, there is issued an SSL client certificate on the CA that the
institution is issuing certificates from, and there is issued a signing cer-
tificate on the same CA. This protects the communication between the
institutions systems and the systems that are a part of FOI by making
the communication secured with two-way SSL over a closed network. It
also protects data integrity using the signing certificate since all mes-
sages sent from the institution’s RA are signed with this certificate and
all responses from the ODS is signed in the same way.

5.5 Encryption

Key encryption is one important aspect of BankID. BankID differs from
X.509 PKI by using a third-party to perform all cryptographic opera-
tions. Since all private keys (except for Mobile-BankID) are stored in a
central storage, the user is required to request access to its own private
keys from this entity.[25] When a customer wants to perform a cryp-
tographic operation it will be done by the central infrastructure called
FOI.

All keys used in FOI are protected using strong encryption technolo-
gies. For all private keys stored for the customer at FOI the crypto-
graphic key size is no less than 1024 bits for both signing keys and
identification keys. All private keys 2048 bits large and hashed using
SHA256 algorithm. BankID on Mobile uses a smaller, undefined key
length, but BankID is currently working to upgrade this key length to
the same as for bank stored keys.

All keys are stored using a Hardware Security Module (HSM) which
is an external physical device attached to the system. This HSM module
is the one doing all cryptograhic operations for customers together with
storing private keys.

5.6 Process

In this section we will describe the different processes of identification
using BankID.

5.6.1 Bank Stored BankID

The signing process using bank stored BankID is, as shown in Fig-
ure 5.4, very complicated. First, the client verifys if the merchant is

5.7. DISCUSSION 53

legitimate, then both the client and the merchant challenges each other
and the client sends the challenge to the central infrastructure. FOI
then validate the merchant certificate, validate the OTP, gets the pri-
vate key and returns a signed challenge to the client. The client for-
wards the signed challenge to the merchant, which then validates the
client certificate using the BankID VA. This process is used on what is
described as a secured connection.

5.6.2 BankID on Mobile

The signing process using BankID on Mobile is similar to the signing
process of bank stored BankID. However, instead of accessing private
keys stored with FOI the challenge is transmitted to the device and the
private key is accessed from the sim card. Then the signed challenge is
sent through FOI back to the merchant which validates the signature
with the CA. This can be seen in Figure 5.5.

5.7 Discussion

BankID is providing state of the art encryption and signing services
using PKI infrastructure. All the different parts of the infrastructure
communicates using the open internet, but with secured connections.
The data that is being sent over these secure connections are encrypted
using SSL session keys which in turn makes the communication secure.
There is however something with the design, that makes BankID differ
from a traditional PKI. When using bank stored BankID, the private
key is not held directly by the user. The private key is stored in cen-
tralized servers, which makes this an artificial form of PKI. The Nor-
wegian government have security guidelines regarding secure commu-
nication over the internet. These guidlines divides security into four
levels. Level four, which is the highest, demands that there is made use
of a PKI. BankID does not directly fulfill these security requirements,
because the private key is not directly stored at the customers location,
and it was not until 2012 that BankID became an accepted method of
authentication while using public services.

The different BankID keys, public key and private key, are stored
using very high key sizes. All bank stored private keys using 2048 bit
key size and all signing keys and identification keys are using 1024
bit key size. This key size is the NIST recommended size.[12] There is
however a weakness to BankID on Mobile, because of the limited key
size. BankID are working on getting this key size bigger, but until then
this might be a security threat. All certificates issued with BankID are
following the X.509 standard.

54 CHAPTER 5. BANKID

The BankID central infrastructure handles all signing requests. This
makes the central infrastructure a very important component, and if
this component should fail, then all BankID services will be unavail-
able. This makes FOI a great target for potential attackers that would
like to harm the banking industry.

5.8 Summary

BankID is using technology that is considered to be state of the art. Pub-
lic key cryptography and PKI is a great solution to make parties that do
not already have an existing relationship to trust each other. Using PKI,
BankID makes it possible for merchants and clients/customers to trust
each other using their bank as a trusted source. BankID does differ
from traditional PKI because the two parties do not necessarily share
the same bank. The inter bank agreement is a solution to this problem,
making banks trust each other as well. All keys and certificates follows
industry standards and recommendations by both NIST and ISO.

5.8. SUMMARY 55

F
ig

ur
e

5.
4:

B
an

kI
D

B
an

k
St

or
ed

D
at

a
F

lo
w

D
ia

gr
am

56 CHAPTER 5. BANKID

F
igure

5.5:B
ankID

on
M

obile
D

ata
F

low
D

iagram

Chapter 6

Mobile Banking Software

Mobile banking software has grown to be one of the more popular bank-
ing services of all time. No banking service has ever had such growth as
mobile banking.[28] This makes mobile banking software an interesting
piece of software to analyze. In this chapter we give a brief introduction
into different mobile banking software available for end users.

6.1 Banks

Mobile banking software is usually not standard off-the-shelf software.
Most banks have made special software to let customers access their
bank accounts and other banking services. There are currently 5 major
Norwegian banks that control almost 70 % of the market. These banks
are: Den norske bank (DNB), Sparebank 1 (SB1), Nordea, Danske Bank
(DB), and Skandiabanken. The market shares for these banks can be
seen in Table 6.1.

Bank name Marketshare
DNB 33 %
SB1 18 %
Nordea 8 %
Skandiabanken 7 %
Danske Bank 3 %
Local savings banks 13 %
Other banks 17 %

Table 6.1: Distributions of banks market share per 2014

As we can see in Table 6.1, 30 % of the market is split between
smaller national and international banks. A portion of these are grouped
together under the name Eika Gruppen AS which will be considered in

57

58 CHAPTER 6. MOBILE BANKING SOFTWARE

this threat analysis. The rest of the banks will not be a part of this
threat analysis.

At the time of writing, all of the major banks offers mobile banking
software for iOS and Android. DNB offers a mobile application that is
designed for iPhone, Android Phones and Windows Phone. Sparebank
1 offers a mobile banking applicaton that is designed for the iPhone
and for Android phones, and they support both Windows Phone 7.5 and
Windows Phone 8 and newer. Nordea offers mobile banking services to
customers owning an iPhone or Android Phone but it does not support
any versions of the Windows Phone operating system. Danske Bank
provides its customers with mobile banking software that is designed
for iPhone, Android Phone and Windows Phone. It is also providing
a specially design application for iPad, Android Tablets and Windows
Tablets, and DB is currently the only bank to offer a native applica-
tion designed for tablets. Skandiabanken offers both an applications for
iPhone and Android Phones and iPads and Android Tablets, but it does
not offer any native applications for Windows Phone users. Skandia-
banken does however claim that their online banking services offered
through a web browser is compatible with all platforms. (PC, Tablets
and Smartphones). A list of all functionality can be seen in Table 6.2.
Local savings banks that are affiliated with Eika Gruppen AS do sup-
port iPhone and Android phones and phones using Windows Phone can
access the online bank through the mobile web browser. It is noteworthy
that some banks provide applications for Windows Phone 7.5.

Bank name iOS Android Windows Browser
DNB Phone Phone Phone1 Full
SB1 Phone Phone Phone1 Full2

Nordea Phone Phone No3 Full
Skandiabanken Phone Phone No3 Full
Danske Bank Phone,

Tablet
Phone,
Tablet

Phone,
Tablet1

Full

Eika Phone Phone No3 Full

Table 6.2: Mobile banking software functionality for each major bank.

6.2 Technology

In this section, we discuss some of the technological aspects of mo-
bile applicaton development. Unfortunately, we will not get many facts

1Version 7.5, 8.0 and 8.1.
2The normal online banking page
3Online banking services are supported through the web browser.

6.2. TECHNOLOGY 59

about the development process, techonolgies used during development
or potential weaknesses that the banks are aware of. I made several
inquiries to all of the major banks regarding information about their
application development process, but no one responded, or wanted to
give usefull responses to my inquiries. This is unfortunate, but very
understandable as such information is highly sensitive. We will make
assumptions based on observations from each application and from the
few responses obtained from inquiries to customer service.

6.2.1 Native Applications vs Web Applications

Every platform supports the development of both native applications
and embedded web applications. The latter is more of a web site dis-
guised as a native application running on the device. There is a debate
on whether or not to develop web apps, that can be embedded into appli-
cations for each platform using a web view or if one should create native
applications. We will not go in depth in this discussions, but there are
some points that we need to discuss. First of all, a native application
can access all available APIs on each platform. This could make for
both faster, but also more secure applications. However, web applica-
tions makes it easier to qucikly deploy apps across different platforms.
Since a web application is only a native app containing a web view that
displays a website, it is very easy to create a simple native app for each
platform and make that app display the website.

A web application brings both advantages and disadvantages, due
to the fact that security breaches discovered on one platform possibly
could be utilized on all platforms, but the discovery of such breach will
let developers create one patch that works across all platforms.

There is also a third option, called hybrid applications where parts
of the application is made with native tools, and parts of the application
is using a web view to display a web application.

6.2.2 Mobile Banking Software Technology

All major banks’ mobile banking software applications are developed
using hybrid applications or web applications. This implicates that all
web related threats needs to be considered for these kinds of applica-
tions. The different solutions per bank can be seen in Table 6.3.

Even though there are differences in how the differnt banks chooses
to display their mobile banking software, there is no actual difference
between using a dedicated web view and displaying the mobile bank in
the default mobile browser application.

4Not confirmed

60 CHAPTER 6. MOBILE BANKING SOFTWARE

Bank name Application Technology
DNB The application loads a website in the browser
SB1 The application uses a dedicated web view
Nordea The application uses native code
Danske Bank The application uses a dedicated web view4

Skandiabanken The application uses a dedicated web view
Eika Gruppen AS The application uses native code4

Table 6.3: Mobile banking software solution per bank

6.2.3 Authentication Service

All major banks are utilizing the BankID authentication service, but
all banks accept lesser secure authentication services if the customer
wishes to only do non-critical operations. There are different authen-
tications services used, but most utilize a form of access control using
PIN codes. Critical operations are considered to be when moving money
to another customer. Transferring money between accounts within the
same customer or getting account balance statemens are considered to
be non-critical.

6.3 Discussion

There are only five (5) major banks in Norway, which in turn control 70
% of the user base. This leaves 30 % of the market divided on the rest of
the banks. 71 of these smaller banks, are grouped under the name Eika
Gruppen AS and they collaborate on giving their customers services like
online and mobile banking.[35] The five major banks and Eika have all
developed their own mobile banking service to offer their customers.
Nationwide, there are approximately 1.9 million users of mobile bank-
ing services, which is about half of all online banking users.[15] This is
again a testimony to how popular mobile banking services have become
in a very short time frame. This means that developers have not have
much time to develop these services relative to the traditional online
banking service. This might therefore pose as a security threat.

All major banks provides applications to iOS and Android devices,
and some of the banks provide an application for Windows Phone. The
fact that not all major banks offers an application for the Windows
Phone platform is not that alarming, since all of the banks’ online bank-
ing service is supported by mobile browsers.

The technology used in all applications are web technologies. The
reason for this might be to more easily be able to integrate a mobile
banking service to existing APIs since all banks already have existing

6.4. SUMMARY 61

online banking services for desktops that uses web technology. This does
however make all mobile banking applicatons susceptible to browser-
related and similar attacks. This must be considered in the threat
model.

All mobile banking services utilize the BankID authentication ser-
vice, but also provide the possibility of using less secure authentications
methods for non-critical operations. Skandiabanken is the only one that
does not offer the possibility of authentication through BankID every
time you want to log into the banking service. They do however let you
authenticate yourself with BankID once and then keeps you authenti-
cated as long as you provide a PIN code. Since all critical operations
need to be authenticated with BankID we can deem this feature to be
secure.

6.4 Summary

All major banks offers both online and mobile banking services that
are compatible with smartphones and tablets. Four of six banks dis-
cussed in this chapter disguise their mobile banking applications as na-
tive apps that contain a web view with the actually banking service.
All major platforms are accepted and all applications utilizes one of the
most secure authentication methods available in Norway, BankID.

Part III

Threat Model

63

Chapter 7

Threat Modelling using
STRIDE

In this chapter, we create a threat model using the abstract method
STRIDE. To create this threat model, we utilize the STRIDE variant
STRIDE-per-element. Every threat is assigned on of the three following
levels.

1. Not applicable - This threat is either completely mitigated or is
not possible due to other factors.

2. Possibly mitigated - This threat is either very hard to execute,
or not possible to execute, and can be deemed harmless.

3. Current threat - This threat is most likely possible to execute.

7.1 Data Flow Diagrams

To be able to perfrom a valid threat model of the different systems, we
need to analyze each system into a data flow diagram (DFD). In this sec-
tion we create DFDs for the platform, for the different parts of BankID
and for the application.

7.1.1 Platform

As we can see in Figure 7.1 on 76, there is data flowing everywhere.
The kernel is the communication-center between applications, storage
mediums, memory and communication components. If the application
wants to send data to an external entity then the data need to cross
three trust boundaries. The first trust boundary is within the applica-
tion source code, the next is within local storage media, and the last is

65

66 CHAPTER 7. THREAT MODELLING USING STRIDE

when communication with external entities.1

7.1.2 BankID

As we can see, the BankID DFD is a little bit more complicated. The
reason for this is because we have four different agents. We have com-
ponents hosted by the bank, hosted by a merchant, running on customer
device or hosted by Nets. There is data flowing from all entities to FOI,
and we see that there are seperate trust boundaries between what is
hosted by the bank, merchant, customer or Nets. This is because the
data is flowing through open networks. This DFD can be seen on 77.

7.1.3 Application

It is difficult to create a data flow diagram to model application be-
haviour. What we do know is that data is flowing from the application to
the hardware components, and that the application might transfer data
over communication components. Therefore we can just use the same
diagram as we see used for the platform.

7.2 Platforms

In chapter 4 we discussed how the different mobile operating systems
handles different security measures. We concluded that there is no ma-
jor difference between each operating system except for the pre-approval
process for applications in the offical application store on each platform.
Microsoft and Apple both have a pre-approval process. Android does not
offer such service, but rather an automated service to verify application
source code after it has been downloaded. Now, we need to divide mo-
bile operating systems in general and see which parts of the STRIDE
mnemonic that applies to each element in the operating system.

7.2.1 STRIDE-per-element

Using STRIDE-per-element on a whole system, might be difficult due to
the extensiveness of a whole system. There are millions of lines of code
to analyze and several different parts to analyze. In section 4.2 we listed
4 major security features that is important for both the system and data
integrity. These features were kernel security through secure boot, data
security through encryption and data Access, the general security of

1One could argue that the trust boundary around the kernel/disk/memory is not
needed. This boundary separates different storage media and communication compo-
nents and applications. It is added to make it perfectly clear that data is being made
available to a communication protocols or to an application

7.2. PLATFORMS 67

both native and third-party applications, and the general security of
the device itself. In this threat model, we will therefore focus on these
four key aspects of the mobile operating system.

Element

Spoofing

Tam
pering

R
epudiation

Inform
ation

D
isclosure

D
enial of

Service

E
levation

of

P
rivilege

Kernel security X
Data security X X X
Application security X X X X X
Device security X X X

Table 7.1: STRIDE-per-element table over mobile operating systems

As we can see in Table 7.1, none of the four components activates
the Repudiation-part of the STRIDE mnemonic. This is done per-choice
because none of the three mobile operating systems in questions provide
log files that are accessible to the end user. Without any log files, there
is no possibility for the end user to confirm or deny any action using the
mobile operating system. “Again, if you don’t have logs, don’t retain logs,
or can’t analyze logs, repudiation actions are hard to dispute.”[22]

If we compare Table 7.1 to Figure 7.1 we see that the DFD includes
Kernel security, Data Security and Application security. Device security
is not a part of the DFD, but we will still analyse this security aspect.

Kernel Security

The kernel is only susceptible to tampering. If the kernel is tampered
with, this could then lead to Spoofing, Information Disclosure, Denial of
Service and Eleveation of Privelige, but these are all secondary threats
because of this dependency.

Tampering of the kernel is a threat which will be classified as Pos-
sibly mitigated. Both Android and iOS uses open source kernels, which
have been developed, tested and patched for about a decade each. Win-
dows Phone uses the NT-kernel which have been through the same de-
velopment process and has been used for over a decade.

The Kernel has data flow between all components, but trust bound-
aries are only breached when giving data to an application or when
sending or receiveing data from an external entity through communica-
tion components.

68 CHAPTER 7. THREAT MODELLING USING STRIDE

Data secruity

The data security aspect of the operating system is susceptible to tam-
pering, information disclosure and denial of service. Tampering is most
likely not a problem with any of the major mobile operating systems.
All systems uses automatic encryption when saving date to storage me-
dia. There is one known exception and that is data files stored on a
removable storage medium on Android. There is also process specific
authorization levels provided by each operating system. Application A
cannot access Application B’s files due to the fact that they do not share
the same user identification number. This makes all operating systems
protected from data tampering. The threat status of data tampering is
therefore possibly mititgated.

Since each application can only access its own files on disk, there is
no imminent threat against information disclosure between application
with different authorization levels.2 The threat status of information
disclosure is therefore possibly mitigated.

Denial of service is unfortunately very tricky to analyze. Data cor-
ruption, which would be the same as tampering with data, is most likely
not a problem with most mobile operating systems. However, there
might be ways of destroying keys used to access the data. If the hard-
ware key (iOS) or another similar key is destroyed, then file access is
denied. Denial of service is therefore a current threat.

Application security

Application security is one of the more important aspects on all plat-
forms. Third-party applications are the main source of unauthorized
code on a system, and it is therefore very important to have strict ap-
plication control. Fortunately, this has been one of the primary features
in all mobile operating systems. Since all systems run applications in
seperate sandboxes, the threat of anyone accessing data belonging to
another application is virtually non-existent. Application security trig-
gers all aspects of STRIDE, except for repudiation. Spoofing between
applications are only a threat if there is inter-process communication
present on the system. As far as we know, its only Android that of-
fers inter-process communication by utilizing intents or remote process
calls. This makes information disclosure possible during inter-process
communication, but only for Android systems. This threat is therefore
possibly mitigated for iOS and Windows Phone, but a current threat on
Android.

2We specify the fact that applications can have different authorization levels, since
there would not be any reason to hide data between them if they were authorized to see
the same data

7.3. BANKID 69

Denial of service using applications is most likely only possible by
having applications that executes resource depletion by flooding the sys-
tem with function calls. This can be done by accessing the disk or other
components too frequent, and therefore blocking calls needed for nor-
mal operation. There is only one system that accepts unvalidated third-
party applications, and that is Android. Due to the lack of pre-approval
routines before applications are made available on the Android Market-
place, and the fact that Android phones can install applications down-
loaded from other websites or application stores, this problem will only
be able to affect Android phones. However, there is no reason to believe
that the process scheduler would allow processes to flood the system.
The threat status of denial of service attacks is possibly mitigated.

All applications run with the same privelige level on all systems.
This implies that elevation of privelige threats are not applicable. Data
tampering and information disclosure has already been analyzed in ear-
lier sections.

Device security

Device security deals with the security of the physical device. The phys-
ical device is in most cases protected by a passcode. All systems provides
this feature, but is not necessarily activated by default on all devices. As
long as the user activates this feature, then the physical device is pro-
tected against tampering and immediate information disclosure. Tam-
pering threats are possibly mitigated.

Denial of service would be if someone lost the device, or it gets stolen.
This is not something that can be mitigaited and is therefore a current
threat on all systems.

Information disclosure could happen even if someone have not ac-
tivated passcode protection mechanisms. The passcode on the system
protects files by encrypting data on disk. If the device is stolen, an
attacker can perfrom an offline brute force attack to test every key pos-
sible and brake open the system. This threat can be mitigated by using
an MDM. Using MDM software to delete another key from the system
will make it unbreakable during a realistic time frame. It is therefore
recommended that all devices connects to an MDM service to mitigate
this threat.

7.3 BankID

In this section we try to split the different parts of the BankID authenti-
cation service that we read about in chapter 5. BankID is a very complex
system composed of many different components. Central infrastructure,

70 CHAPTER 7. THREAT MODELLING USING STRIDE

distribute infrastructure, and client side applications or functionality.

7.3.1 STRIDE-per-element

BankID can be divided into four different parts. Central infrastruc-
ture, Bank provided distributed infrastructure, Merchant provided dis-
tributed infrastructure, and client side infrastructure. Bank provided
distributed infrastructure can further be divided into Bank RA and
Bank provided OTP mechnaism. The Bank RA is hosted by the bank,
but the Bank OTP is given to the customer. Central infrastructure is
what we referred to as FOI in section 7.3.1. FOI contains all systems
hosted by Nets and is where the customers private keys are stored.
There are three types of distributed infrastructure. Bank provided in-
frastructure is the RA and the OTP mechanism. Merchant provided
infrastructure is the BankID server that communicates with FOI to au-
thenticate an end users certificate. The last type of distributed infras-
tructure are the BankID clients. There are two types of clients: BankID
client and BankID on mobile client. We can see these different parts in
the DFD in Figure 7.2.

Element

Spoofing

Tam
pering

R
epudiation

Inform
ation

D
isclosure

D
enial of

Service

E
levation

of

P
rivilege

FOI3 X X X X X X
Bank RA X X X X X X
Bank OTP X X
BankID Server X X X X X X
BankID clients4 X X X X X X

Table 7.2: STRIDE-per-element table over BankID

As we can see from Table 7.2, using STRIDE-per-element does not
really help us to eliminate many types of threats. FOI is the term used
for many different services as we can see in Figure 5.2. FOI consists
of data flows, data stores, processes, and interactors. Bank provided
services utilizes data flows, processes and interactors. BankID server is
a process, and BankID clients are processes. This means that every key
aspect of the BankID infrastructure is sceptible for all kinds of attack
suggested by the STRIDE mnemonic.

3FOI consists of many services
4BankID client and BankID on mobile client

7.3. BANKID 71

FOI

To be able to analyze FOI we need to break FOI into to its key compo-
nents. It is composed of: Data servers that store keys, certificates, CAs
and more. API interfaces for BankID clients, BankID servers and Bank
RAs/OTPs to communicate with, and processes that provides function-
ality to APIs. This means that we have both data stores, data flows
and processes that operates within this single entity. All of these are
susceptible to different attacks that needs to be mitigated.

Data stores are susceptible to all types of threats that we can see
in Table 3.2. Data stores might be tampered with to corrupt data, data
might be disclosed to unauthorized entities or the data might be made
unreadable which would deny service to auhtorized entities. We can
presume that the data centers hosted by Nets have sufficient physical
protection layers and that they have implemented redundancy for all
stored files. These types of threat are therefore possibly mitigated.5

Data flows are vulnerable to the same type of threats as data stores.
Tampering of data flows should not be possible due to the fact that all
inbound and outbound data flows are encrypted using SSL. Regarding
the fact that no encryption is totally safe we scale this threat to be pos-
sibly mitigated.

Processes are the hardest part to analyze. There is no documen-
tation that tells us what types of processes that are running, which
privelige levels they are running with and so on. It is therefore not
possible to give a detailed list of threats, but still we need to address
some threats. We need to assume that the whole central infrastructure
is properly physically guarded. As we talked about with data stores, we
presume that the data center has sufficient access control mechnanisms,
locks, and other protection layers needed. We also need to presume that
they have strong firewalls implemented to stop unauthorized commu-
nication from external entities. The last, but alsot he most important
part, will be how the servers are programmed. Assuming they are using
normal server operating systems, we need to make sure that processes
with different authorization does not share information through leak-
ages, that they do not tamper with files by accident, that they do not
share information between processes, that they do not exhaust the sys-
tem denying other processes access to system resources, and that they
do not provide access to priveliged functionality to unauthorized enti-
ties. There is not sufficient information to determine the likelihood of
these threats being mitigated.

There are no unknown interactors that communicates with FOI.
All communication with FOI comes from either the Bank RA, BankID

5But these kinds of threats are almost impossible to completely mitigate as a strong
enough bomb or other extreme measure still would be able to knock out a system.

72 CHAPTER 7. THREAT MODELLING USING STRIDE

clients or BankID servers.[9] This type of threat is therefore not appli-
cable.

Bank RA

The Bank Registration Authority is the system used by each individual
bank to register new customers and request certificates to this customer.
This functionality is usually integrated in the customer administration
system used by the bank.[9] This means that it is up to each bank to en-
sure the security of its RA from all possible threats. We can assume that
the security is adequate and that these threats are possibly mitigated.

Bank OTP

Each bank chooses its own one time password generation method, as
long as it is accepted by BSK. The threat of tampering with these de-
vices/mechanisms are possibly mitigated, but it is in most cases not pro-
tected from theft or misplacement. Denial of service is therefore a cur-
rent threat.

BankID Server

The BankID server handles all necessary communications between the
merchant, BankID central infrastructure and the customer, to be able
to perform a transaction. The server uses data flows and processes.
All data flow between the server and BankID central infrastructure is
encrypted. This is done using PKI and we can assume that the threat of
tampering with data, and information disclosure is possibly mitigated.
Denial of service is however a threat if an attacker manages to re-route
data to a fake host, or by depleteing the server of resources. The threat
of denial of service is possibly mitigated.

The server runs on a process on the BankID server computer. This
makes all threats from the process row in Table 3.2 applicable. Other
processes on the server may try to spoof the server process, tamper with
server process data, disclose information, deny the process access to
system resources or gain privelige. The process security is dependent on
the server which it is installed on, and since there are no guidelines on
how to secure the server itself, we must consider this a current threat.

BankID Client

The BankID client, or the BankID on Mobile client handles all neces-
sary communication from the customer to BankID central infrastruc-
ture and from the customer to the merchant. The client uses data flows
and a process on the client computer. All data flow between the client

7.4. APPLICATION 73

and central infrastructure is encrypted. This is done using PKI and we
can assume that the threat of tampering of data is possibly mitigated.

The BankID client runs on a process on the customers computer
which in most cases are open to install third-party applications from
any source. This makes customer computers a great target for attack-
ing BankID, since there are a wide range of operating systems and lots
of malware attacking these systems. We must therefore consider this as
a current threat.

7.4 Application

In this section we try to analyze the different components of mobile
banking applications of the six major bank groups. There are three
types of applications used by these banks. DNB, which has the largest
market share, uses a browser level application which runs through the
mobile web browser on the system.6 Sparebank 1, Skandiabanken and
Danske Bank uses a hybrid application. Some critical elements run in
native code, but some runs as a web application inside a web view in
the application. The applications used by Eika and Nordea are written
using native code. Eika provide mobile banking applications for iOS
and Android, but supports Windows Phone through the normal online
banking website. Nordea also provide applications for iOS and Android,
but not Windows Phone. Windows users must access their accounts
through the web browser. Since there are no major differences between
using browser applications, embedded web applications or native appli-
cations, we do not differenciate between them.

7.4.1 STRIDE-per-element

We divide the mobile banking application into the same four parts used
in Table 3.2. We use the DFD on 76, but we focus on the aplication
communication with the device/kernel.

Data flow

Data flow from the application and to the system kernel could become
offer for tampering, disclosure and denial of service. The kernel does
protect application data while residing on disk and in memory, but there
is no documentation for how it protects data while reading and writing.
With that being said, it is not likely that any application will be able

6DNB has an app available for all platforms, but when clicking the link to start the
mobile bank the user gets transferred to the mobile web browser.

74 CHAPTER 7. THREAT MODELLING USING STRIDE

Element

Spoofing

Tam
pering

R
epudiation

Inform
ation

D
isclosure

D
enial of

Service

E
levation

of

P
rivilege

Data flow X X X
Data store X X X
Process X X X X X
Interactors X X

Table 7.3: STRIDE-per-element table over mobile banking applications

to intercept the data while it is being transferred and this threat is
therefore possibly mitigated.

Data store

Storing of data is handled by the platform. Since all data is encrypted on
disk, applications are limited to using their own private memory space
and disk space, and since physical memory is protected, we can assume
that most threats are mitigated. For more information, see section 7.2.1.

Process

Process management is handled by the platform. It is possible to install
malicious applications on Android that could potentially be a threat to
mobile banking applications running on the device. For more informa-
tion, see section 7.2.1.

Interactors

An interactor is the entity which is using the application. This can
potentially be an unauthorized entity which has gained access to the
device and is using the application. This can only be mitigated using
physical security and passcodes and this threat is therefore possibly
mitigated. See section 7.2.1 for more about device security.

7.5 Discussion

STRIDE as a tool for threat modelling, is not the best tool for beginners.
The threat model that was produced in this chapter using STRIDE-per-
element is far from a complete threat model. We have barely scraped

7.6. SUMMARY 75

the top of the ice-berg of possible attacks on these three system compo-
nents. The main weakness here would be time and experience. While
using STRIDE-per-element, it seems that one would need an extreme
amount of time to be able to create an adequate threat model. When
using STRIDE, experience would be a key factor. An experienced threat
modeller should be able to add possible threats to the threat model, due
to his knowledge about the subject. This however, implies that the ex-
perienced threat modeller uses his own attack library that resides in his
own brain. After using STRIDE-per-element on three different systems,
I would recommend using this tool as a group excercise to try and dis-
cover new threats that an experienced threat modeller has not already
discovered. It is also very important to mention that this threat model
was done without the possibility to test any attacks to see if they pose
a threat to one of the systems. All threats are based on information
that is publicly available through documentation from every platform,
from BankID and from simple application testing. We also had to cre-
ate DFDs from the information provided by documentation, there is no
guarantee that these DFDs are 100 % correct since much documenta-
tion is missing or not publicly available.7 STRIDE could possibly help
to find more threats if we had a test environment to test all the parts of
the different systems.

7.6 Summary

Using STRIDE to discover threats is not very efficient if the threat mod-
eller is a novice to the art of threat modelling. In this chapter we created
simple data flow diagrams and used STRIDE-per-element on these di-
agrams to see if we could discover any threats. By using STRIDE we
did not manage to produce many relevant threats, and a threat model
done purely by DFDs and STRIDE will either take a very long time to
complete, or not be satisfactory.

7There are obviously no data flow model that is 100 % accurate. Therefore, it is never
a guarantee that the DFD will be relevant.

76 CHAPTER 7. THREAT MODELLING USING STRIDE

F
igure

7.1:P
latform

data
flow

diagram

7.6. SUMMARY 77

F
ig

ur
e

7.
2:

B
an

kI
D

da
ta

flo
w

di
ag

ra
m

Chapter 8

Threat Modelling using
CAPEC

In this chapter, we create a threat model using the detailed attack li-
brary CAPEC. CAPEC is an attack library that is very close to the limit
of practicality, and in this chapter we consider many attack patterns
from this library. As we can see in Appendix A, we have processed 169
different attack patterns. In this chapter, we discuss why we chose these
patterns, how we scored them and we present an analysis of our find-
ings.

8.1 Attack Patterns

We chose to use the CAPEC view that was sorted by mechanism of at-
tack. This is the same view as described in section 3.2.1 and it contains
16 different categories. We included all of the catogries in this threat
model, but I have omitted some of the attack patterns, due to the level of
detail in each pattern.1 In most cases we included the category and the
following attack patterns. This includes all meta, standard and detailed
attack patterns. All first generation meta attack patterns are included,
but some meta attack patterns have children that was omitted. I have
also decided to not include children from a standard attack patterns.
Children of standard attack patterns are more detailed versions of the
standard attack pattern and there is in very few cases possible for us
to decide with certainty if an attack pattern is mitigated or not. Some
children of meta attacks were omitted due to the same reasoning as
children of standard attack patterns. An example here is CAPEC-416:
Target Influence via Social Engineering which has 9 children which are

1Many attack patterns are very similar to one another. In those cases, I have ana-
lyzed the meta attack pattern which is the parent of these similar attacks.

79

80 CHAPTER 8. THREAT MODELLING USING CAPEC

different ways of persuading the victim. Two examples of children who
are very similar are CAPEC-423: Target Influence via Perception of Lik-
ing and CAPEC-422: Target Influence via Perception of Commitment
and Consistency.

8.2 Scoring

We use the same scoring system as in chapter 7.

1. Not applicable - This threat is either completely mitigated or is
not possible due to other factors.

2. Possibly mitigated - This threat is either very hard to execute,
or not possible to execute, and can be deemed harmless.

3. Current threat - This threat is most likely possible to execute.

All scoring is done using the knowledge we have from chapters in
this thesis and from additional documentation and white papers on
these different subjects. We used this scoring system to see if we believe
that it is possible to mitigate a threat or if the threat is un-mitigable.

One problem with this kind of general threat analysis is getting help
from people in the business. After contacting several of the major banks,
only one wanted to give a short statement about their development se-
curity details. This is no surprise, as we would assume that information
about development processes and security details are company secrets.
This means that we have no information that is not already made pub-
licly available and these public documents are the foundation that the
resulting threat model is built on.

8.3 Current Threats

In this section, we analyze every attack pattern from Appendix A and
see why we need to consider that attack pattern as a threat that is still
not completely mitigated or not mitigable at all.

8.3.1 JSON Hijacking (aka JavaScript Hijacking)

JSON hijacking or JavaScript hijacking is when an attacker utilizes
weaknesses or flaws in the parsing of JSON requests given to a server.
Systems that uses JavaScript Object Notation (JSON) as a transport
mechanism between the target server and a client are susceptible to this
attack. Since BankID utilizes JSON objects to transfer certain types of

8.3. CURRENT THREATS 81

data between a client/server and the central infrastructure, there is a
potential threat in attackers using these kinds of attacks.

Since there is no available documentation for how the BankID sys-
tem parses JSON objects, we need to consider this as a current threat
that will need mitigation.

Possible mitigations include making sure that the server actually
can differenciate between legitimate JSON requests and being able to
deny forged requests, and making the URLs that the system uses to
accept JSON request dynamic so that they are unique for each user
session.

8.3.2 Probe Application Screenshots

The iOS operating system uses a graphic task manager. This task
manager, also called multitask switcher, is using screenshots of all run-
ning applications to aid the user when switching between applications.
These screenshots are stored on the user device and the attacker might
either gain access to these screenshots by jailbraking the unit, or by
physically accessing the phone and using the multitask switcher. In
both scenarios, the attacker need physical access to the device. By uti-
lizing these screenshots, an attacker might get unauthorized access to
valuable information.

This attack is a threat both to the mobile operating system (iOS) and
the mobile banking application that runs on the system. The operating
system should not store these screenshots over a longer period There
are possibilities to mitigate this threat, but most of the major banks
have not mitigated this threat.

Possible mitigations include hiding elements that display sensitive
data upon changing the active application. The operating system pro-
vide two methods applicationWillResignActive() and
applicationDidEnterBackground(), and developers should hide sen-
sitive information in these two.

8.3.3 Probe Application Error Reporting

All platforms, BankID and applications can provide error logging ser-
vices. An attacker might try to access and utilize the fact that applica-
tions are reporting errors by repeatedly probing the system and analyz-
ing how the system reacts to errors.

This attack might be a threat to the application. If the application
saves log files on the device and the log information is in plain text, then
an attacker might use these log files to analyze the system.

This attack can be mitigated by creating coded log files. A coded log
file will never display an error in plain text, but rather use an error code

82 CHAPTER 8. THREAT MODELLING USING CAPEC

system to protect information. This will hovewere only mitigate threats
as long as the code book is kept a secret. Other mitigation techniques
will be to not log error files on the device, but rather send all errors
(preferrably encrypted error codes) to the server.

8.3.4 Probe Application Queries

This attack is feasible if an attacker has auhtorization to query an ap-
plication. By sendig modified but authorized request to the system, an
attacker might trick the system into returning more information than
it is supposed to do.

Both BankID and mobile banking applications are available to the
public and this makes this attack a possible threat for both the BankID
authentication system and the application.

This attack has no recommended mitigation method from CAPEC,
but making sure that servers will not accept modified requests or re-
quests that does not comply with the expected format is recommended.

8.3.5 Malware-Directed Internal Reconnaissance

This attack is executed by installing malware on a computer within the
organizational perimeter where the attacker want to perfrom reconnais-
sance. By having an application on the inside of the system, the attacker
can bypass most security measures (firewalls) and makes it harder to
detect the attack.

This attack affects all systems that use servers in this threat model.
Both BankID and the mobile banking application have server side func-
tionality that is used to communicate with the end user. By installing
malware inside the FOI perimiter or at the bank’s server center, an
attacker might gain valuable information about configuration, composi-
tion, and security mechanisms.

This attack has no recommended mitigation method from CAPEC.
These types of attacks are very hard to mitigate. All machines that
connects to the same network as the application servers, should have
limited capabilities.

8.3.6 OS Fingerprinting

An attacker might try to gain valuable information about the operating
system (OS) running on system servers, by performing fingerprinting
attacks. By getting knowledge about the OS that is running on system
servers, an attacker can plan more detailed attacks based on the OS
verson on the system.

8.3. CURRENT THREATS 83

This kind of attack affects all systems in this threat model. An at-
tacker may look for devices with older mobile operating systems to try
and utilize these devices. This is especially a problem with devices us-
ing the Android operating system. In Table 4.1, we see that about 50 %
of all Android devices currently in use, run Android version 4.3 or older.
These versions are not powered by Security Enhanced Linux and lack
other security features provided by newer versions. This makes them
more susceptible to some attack patterns. OS fingerprinting may also
be done on BankID servers and FOI, and on the mobile banking appli-
cation servers. By using the knowledge of which operating systems the
servers are running, the adversary might find weaknesses and leverage
them to gain unauthorized access.

This attack has no recommended mitigation method from CAPEC,
and it is very diffictult to mask which OS a system is running. Miti-
gation can be temporarily achieved by keeping all systems patched and
updated with the latest security releases.

8.3.7 Application Fingerprinting

An attacker might try to gain valuable information about the applica-
tion version running on a system. This can be done by performing fin-
gerprinting activities. By getting knowledge about application version
installed on a target server the attacker gains valuable knowledge be-
fore planning more detailed attacks against the system.

This kind of attack affects BankID systems and mobile banking ap-
plications. Even though all mobile operating systems have built inn
software update mechanisms, not all users utilizes this functionality. If
an application gets released with a security flaw and the attacker gains
knowledge about this flaw, he can then execute this attack on devices
that run this version of the application. This also applies to BankID
releases. If either a BankID server, BankID client or a version of the
FOI infrastructure is flawed, an attacker might want to get a finger-
print from merchants or clients, or try to fingerprint which version FOI
utilizes.

This attack has no recommended mitigation method from CAPEC,
but it might be recommended to enforce customers to use the application
version with the latest security updates and forcing merchants and FOI
to keep BankID servers and BankID clients up-to-date. By doing so,
this threat might possible be mitigated.

8.3.8 Social Information Gathering via Research

Research is a very powerful tool. An attacker might try and gather valu-
able information by employing various methods of research. There exist

84 CHAPTER 8. THREAT MODELLING USING CAPEC

no particular way for an attacker to do this kind of research, because the
research method is dependant on what the attacker is trying to achieve.

This kind of attack might affect all systems. Since there is no limit
to how much time and resources an attacker might use on researching
a system, there is no guarantee that any system is safe. This includes
all system parts that have public documentation or where the attacker
might gain access to system software so that they can create local test
environments.

This attack has no recommended mitigation method from CAPEC.
However, by making sure to change the system architecture, communi-
cation protocols or other parts of the system regularly, the manpower
(cost) needed to perform research within the limited time window will
be greater than the profits.

8.3.9 HTTP DoS

An attacker performs flooding using HTTP requests on a target server.
This is done to bring down a specified web application instead of whole
systems. This type of denial of service attack requires less traffic and is
therefore harder to detect.

This kind of attack might affect BankID servers/FOI, and it might
affect mobile banking applicatons that uses a web view. Since this at-
tack is using the HTTP protocol, all mobile banking applications that
uses HTTP request to get information from web servers are possibly
vulnerable to these kind of attacks.

This attack may be partially or completely mitigated by configuring
web servers to limit the waiting period on HTTP sessions, and by im-
plementing load balancing systems. Load balancing systems does not
completely mitigate an infinetely large HTTP DoS attack, but it might
mitigate smaller attacks.

8.3.10 Checksum Spoofing

Checksum spoofing is when an attacker spoofs a checksum message sent
to a client or a server with the purpose of making a payload seem to be
valid. These kinds of checksums are used to verify the integrity of a
message between the client and the server. When the attacker inter-
cepts a message, he changes the message body and also changes the
corresponding checksum to match that of the message body. By doing
this the attacker spoofs the system into believing that the message is
valid.

This kind of attack could affect BankID and the mobile banking ap-
plication. BankID messages are encrypted and protected by PKI tech-
nology, we can assume that this threat is mitigated for this system.

8.3. CURRENT THREATS 85

However, we have no information on how data from the different mobile
banking applications are transmitted between the host bank and the
customer. This makes checksum spoofing a current threat for mobile
banking applications.

This attack has no recommended mitigation method from CAPEC.
This threat might be mitigated by encrypting all data that should be
transmitted using encryption technologies like PKI. If the application
utilizes HTTPS, then this threat might be mitigated.

8.3.11 Intent Spoof

An attacker may use a previously installed malicious application, issue
intents that are directed at a target application’s trusted component.
The goal of this attack is to achieve different objectives such as modifi-
cation of data, data injection or infortmation disclosure. Intent spoofing
is only an issue on Android device and this makes iOS and Windows
Phone users safe from this attack.

This kind of attack will only affect platforms running Android, and
it will only affect mobile banking applications that are listening to un-
trusted intents. Since we do not know if the different mobile banking
applications utilizes intents, we need to list this as a current threat.

This attack may be mitigated by avoiding to export components un-
less they are meant to handle intent requests from untrusted applica-
tions. Developers should limit application component exposure to par-
tially or completely mitigate this threat.

8.3.12 Principal Spoof

An adversary might pretend to be som other person than the one he
truly is. By pretending to be some other person in an interaction, the
attacker can try to trick the threat victim into performing a task or dis-
closing valuable information to the attacker. These kind of attacks are
often used as a part of phishing and pharming attacks. A principal spoof
does not rely on falsified, spoofed or stolen authentication credentials,
but rather letting the appearance and content of the message make the
illusion of authenticity. The attacker is hoping that the message looks so
real that the victim gets tricked into disclosing information or perform
tasks on behalf of the attacker.

This kind of attack has the possibility of affecting all systems. Phish-
ing attacks are common and both banks, and BankID are susceptible
and vulnerable to such attacks. As an example, many BankID users re-
ceived phishing emails that tried to phish information from customers
in June, 2015.[8] This attack may also be targeted against customers
from one specific bank.

86 CHAPTER 8. THREAT MODELLING USING CAPEC

This attack has no recommended mitigation method from CAPEC.
Even though banks, BankID and other institutions have advertised and
done public service announcements about never revealing sensitive in-
formation over email unless they have contacted the bank directly them-
selves, this still happens. As long as the user base is still susceptible to
believeing that they need to provide sensitive information when asked,
then these attacks cannot be completely mitigated. By keep doing pub-
lic service announcements about this subject, this attack pattern might
be partially, but never completely mitigated.

8.3.13 Signature Spoof

By generating messages or data that fool the recipient to believe that
the data block or message was generated and signed cryptographically
by a reputable source, the attacker might trick the victim (person, ap-
plication or system) into executing malcious actions.

This kind of attack can potentially affect both BankID and the mo-
bile banking application. Both of these systems rely on transporting
data between a client and a server and if an attacker is able to create
signatures that appear to be valid, it will put the whole system in dan-
ger.

This attack has no recommended mitigation method from CAPEC,
but it is likely that using a PKI with large enough keys should be suf-
ficient to partially mitigate this threat. Since BankID uses very large
keys, we may assume that they are sufficiently protected, but this at-
tack pattern is still a potential threat. We do not know how the different
mobile banking applications protect data during data transmission, but
we must assume that they use some sort of cryptography that is similar
in strength as BankID.

8.3.14 Pharming

A pharming attack is when a targeted victim is tricked into entering
sensitive data into a site that the user believes to be trusted. This is
normally done by copying the layout and design from a website, then
sending emails with a link to the fake website where the user is in-
structed to enter sensitive data.

These kind of attacks are a subset of the principal spoof attack pat-
tern. Both the BankID service and the mobile banking application are
susceptible to these kind of attacks.

The suggested mitigation technique is to make sure that all sensitive
data is transmitted over a secure connection. End users must ensure
that they provide sensitive information only to websites that they trust,
over a secure connection with a valid certificate issued by a well-known

8.3. CURRENT THREATS 87

certificate authority.[10] A big problem with this mitigation technique
is that knowledge of security is not widespread and a typical end user
does not know what a valid certificate issued by a well-known certificate
authority is.

8.3.15 Phishing

A phishing attack is when a targeted victim is tricked into revealing
confidential information to an attacker who masqeuerades as a legiti-
mate entity. This is normally done by masquerading as customer service
representatives or other authoritative entity from a business or institu-
tion that the attacker wants to access.

These kind of attacks are a subset of the princibal spoof attack pat-
tern. Both the BankID service and mobile banking applications are
susceptible to these kind of attacks.

The suggested mititgation technique is to make sure that the end
user knows that it is not supposed to follow any links you receive in
emails, give away sensitive information to anyone who calls, or in gen-
eral provide information to an entity that is initiating contact without
getting their details verified. The problem with this mitigation tech-
nique is that this is purely a public service announcement problem.
There is no way of getting such information to every customer. How-
ever, by doing public service announcements one can partially mitigate
this problem, but it is not possible to do a complete mitigation.

8.3.16 Clickjacking

A clickjacking attack is when an attacker hijacks a users web session by
overlaying buttons over the user interface that the user want to interact
with. If a user loads the mobile banking application through a web
view, and if the attacker manages to put buttons overlaying the buttons
on the website, he can then be able to gather sensitive information by
tricking the victim into interacting with his malicious site, while the
user believes he is visiting a safe site.

These kind of attacks can potentially affect all applications and sys-
tems that allow JavaScript, flash or other similar browser extensions.
BankID (2.0 and newer) requires the user to have JavaScript activated
to be able to authenticate himself, and most mobile banking applica-
tions use web views to display a website containing the banking service.
This makes both these systems susceptible to this attack pattern.

The suggested mitigation technique consists of deactivating JavaScript,
Flash and CSS. It is also recommended that the end user does not use
the same browser to navigate to unfamilliar sites while using a sensi-
tive service. This mitigation technique is not possible due to the fact

88 CHAPTER 8. THREAT MODELLING USING CAPEC

that JavaScript is required to use BankID.

8.3.17 Manipulating User State

An attacker may modify user state information that is maintained by
the target site or system. The attacker might be able to access previ-
ously unaccessible parts of the site or system by granting himself autho-
rization. Typical state information maintained by a site or application
can include names, payment information, history etc.

This attack pattern can target all services that maintains user state
information. BankID is an authentication service that maintain state
information about which user is logged in. The same happens with most
mobile banking applications, since they are websites represented by the
mobile web browser or embedded in an application.

The suggested mitigation technique is to never rely on state infor-
mation that is stored in user-controllable locations. Since BankID relies
usage of certificates, we can assume that this threat is potentially miti-
gated. However, we have no information about how mobile banking web
applications stores session information and we need to consider this as
a current threat.

8.3.18 Inducing Account Lockout

An attacker may try to block legitimate users from accessing their ac-
counts by locking accounts. This denial of service attack may be ex-
ecuted by repeatedly tryingto access the account using a wrong pass-
word. The intersting thing about these kinds of attacks are that most
websites and web services will have account lockout activated as a secu-
rity feature to make sure that attackers cannot execute attack pattern
CAPEC-49.2 The very mitigation technique vs CAPEC-49 is one of the
prerequisites of this attack pattern.

This attack pattern can be executed on mobile operating systems
and BankID. Every mobile operating system has restrictions on how
often one can try to guess the password, which makes locking a user out
from its own phone very easy if the attacker has physical access. The
same attack is possible on BankID since it is the authentication system
used to access the mobile banking application.

The suggested solutions from CAPEC is actually not applicable in
this scenario. CAPEC suggests that developers should take the IP ad-
dress of the entity trying to authenticate itself into account in addition
to the log in name/user name. The problem with this is that the IP
address of cellular devices changes often. However, a possible partial

2CAPEC-49: Password Brute Forcing

8.3. CURRENT THREATS 89

mitigation technique for BankID would be to include the device id, but
this would not solve this problem entirely. If an attacker then gains
physical access of a device that is white listed, then the attacker can
try an unlimited amount of passwords until he gains access. Account
lockout on the mobile operating system is also a problem. There is no
suggested mitigation technique for physical devices.

8.3.19 Authentication Abuse

An attacker attacker may gain unauthorized access to an application,
device or a system through knowledge of a weakness in the authenti-
cation mechanism or by exploiting flaws in the authentication imple-
mentation. This attack is executed by tricking the application, device
or system to give access by a carefully controlled sequence of events.
This attack allows the attacker to be certified as a valid user through
illegitimate means.

This attack pattern can be executed on mobile operating systems
and BankID. The documentation about the implementation process for
BankID authenticated user sessions, is not sufficient. Therefore, we
need to consider this as a threat to BankID.

This attack has no recommended mitigation method from CAPEC.
Even though we should trust the BankID authentication system, we
still need to consider authentication abuse as a possible attack pattern.

8.3.20 Create Malicious Client

An attacker creates an application which is made to interface with a tar-
get service. This client is created to violate assumptions that the service
makes about clients. For example, servers may make assumptions that
clients will send correct messages etc. By creating a malicious client,
the adversary might be able to utilize these assumption into making
the service perform actions on behalf on the unauthorized user.

This attack pattern can be executed in two different ways. It can
either be done by creating a malicious application that the attacker in-
stalls on his device using developer tools, so he can try an execute the
attack pattern by himself. The other way to execute the attack is by cre-
ating a malicious application and tricking legitimate users to perform it.
The latter is only possible on Android devices, since iOS and Windows
Phone do not allow end users to install applications from other sources
than their official application store.

This attack pattern has no recommended mitigation method from
CAPEC. This threat is currently partially mitigated due to the fact that
iOS and Windows Phone have control over the dirstribution process of

90 CHAPTER 8. THREAT MODELLING USING CAPEC

applications. Android has implemented an application verification sys-
tem that is supposed to verify source code, but this system does not
mitigate this threat.

8.3.21 Man-in-the-Middle Attack

An attacker targets communication between a client and a server by
placing a component in the communication channel. This component
intercepts all communication between the client and the server and this
gives the attacker the opportunity to both read and alter data before it is
sent to the real recipients without leaving any traces of data being read
or altered. A man-in-the-middle attack gives an attacker the possibil-
ity of corrupting data, disclosing information and maybe even gaining
elevated privelige.

This kind of attack can be applied to BankID and the mobile banking
application. An attacker might try to intercept data sent between the
BankID client and the server, intercept authentication challenges or
intercept data that is sent to and from the mobile banking application.

This attack needs a special mention, because this pattern has ac-
tually been proven to work. In 2007, the NoWires reasearch group at
the University of Bergen, performed a man-in-the-middle attack against
BankID using a controlled environment. The conclusion was that BankID
was vulnerable to man-in-the-middle attacks that enabled a potential
attacker to hijack a user session.[2] Since then, BankID has mitigated
this exact threat so the man-in-the-middle attack performed by NoWires
is no longer possible to perform.

The suggested solutions from CAPEC is to make sure to get pub-
lic keys signed by a CA, to encrypt communication between the client
and server, applications to use strong mutual authentication and to
exchange public keys using a secure channel. BankID implements all
these things, but they were still susceptible to a man-in-the-middle at-
tack. The same attack is no longer possible, but the threat of other
man-in-the-middle attacks is still present. We do not have any informa-
tion about the security of the communication between the mobile bank-
ing application and the banking service. We need to assume that there
might exist flaws in the security that can be utilized by an attacker.

8.3.22 Abuse of Transaction Data Structure

An attacker may be able to abuse the transaction data structure used
when two componenets communicate. By abusing weaknesses in the
parsing logic, and attacker can manipulate the data structure and make
applications behave in an unexpected manner.

8.3. CURRENT THREATS 91

This kind of attack can be applied to both BankID and the mobile
banking application. An attacker might change the transaction data
between the BankID client and a server/FOI. The attacker might also
try to change the transaction data between the mobile banking applica-
tion and the back end servers.

This attack pattern has no recommended mitigation method from
CAPEC. Both BankID and mobile banking applications should encrypt
all transaction data, and make sure that all data is signed. We do know
that BankID signs data, so the threat is possibly mitigated, but we do
not know whether or not the mobile banking application does the same
and we need to consider this as a current threat.

8.3.23 Contaminate Resource

An attacker may contaminate the resource information system or device
by causing them to handle sensitive information in a malicious way. By
doing so, the attacker may gain access to information that he is not
authorized to see.

This kind of attack can be applied to all systems. An attacker may
contaminate the resource of the mobile operating system, either by mak-
ing sure that the OS image file is contaminated. The attacker can con-
taminate all the different parts of the BankID infrastructure, or it can
contaminate the mobile banking application.

This attack pattern has no recommended mitigation method from
CAPEC. This attack is not easily mitigated, because the source of con-
tamination may be a disgruntled employee with malicious intentions,
it may be malware that an unaware employee might have installed by
a mistake, or an attacker may break into secure areas to perform the
attack. With so many different ways of executing an attack, complete
mitigation might not be possible, and this is therefore a current threat
to all systems.

8.3.24 Infrastructure Manipulation

An attacker may exploit the infrastructure used by a network entity in
order to manipulate data. The attacker will do so by gathering network
data and either read or modify data in order to control the information
flow between system components.

This kind of attack can be applied to BankID and the mobile banking
application. BankID consists of two major parts, central infrastructure
(FOI) and distributed infrastructure. The latter is all system compo-
nents that are located outside of the security of Nets’ data centers, and
these components communicate using the open Internet. All traffic be-
tween the central infrastructure and the distributed parts, is encrypted

92 CHAPTER 8. THREAT MODELLING USING CAPEC

and should be considered to be reasonably safe. However, we do not
know how data flows between the different components of the central
infrastructure. Since we also lack information about how data between
the mobile banking application and the back end servers is protected,
then this attack pattern might be possible to execute on the application
as well.

This attack pattern has no recommended mitigation method from
CAPEC. All communication should be encrypted, even when it is not
using the open Internet. Even if data is only passing through local net-
works it should be secured in case of anyone listening in on the commu-
nication.

8.3.25 Protocol Reverse Engineering

An attacker may try to analyze and decode information about the pro-
tocol used by network applications. By deciphering the protocol, an at-
tacker may be able to gain an advantage and to access unauthorized
information.

This type of attack can be applied to both BankID and mobile bank-
ing applications. Most mobile banking applications uses HTTP protocol
to transmit data due to the fact that they are using websites to display
the banking service. There are however applications that run using na-
tive code.3 These applications might use other protocols that also can be
reverse engineered. BankID transmits all data between the client and
the server, and central infrastructure using HTTP, but we do not know
wheteher or not they use HTTP or other protocols to communicate be-
tween the internal components of the central infrastructure.

This attack pattern has no recommended mitigation method from
CAPEC. There is generally very little one can do to stop someone from
reverse engineering. By obfuscating the communication protocol and by
encrypting data it is possible to lengthen the process, but the attacker
will be able to reverse engineer it at some point. By rewriting the pro-
tocol and updating security measures regularly, it should be possible to
lengthen the reverse enginerring process indefinitely.

8.3.26 Lifting Sensitive Data from the Client

An attacker may try to gather sensitive data from an application. Sen-
sitive data might be stored in configuration files, temporary files saved
by the application or in the application itself.

This attack pattern can be applied to the mobile banking application.
By looking at temporary files an attacker might find sensitive informa-
tion. Both Windows Phone and iOS uses file encryption on disk, which

3Eika Gruppen AS and Nordea

8.3. CURRENT THREATS 93

makes this attack pattern very hard to perform on these systems. An-
droid does not encrypt all files on older versions of the operating system,
and these system versions makes this attack a current threat.

This attack pattern has no recommended mitigation method from
CAPEC. By making sure that all files, including configuration files and
temporary files, are encrypted we can mitigate this attack pattern, but
since not all mobile operating system versions do this we have to con-
sider this as a current threat.

8.3.27 Reverse Engineer an Executable to Expose Assumed
Hidden Functionality or Content

An attacker may analyze binaries or executables to an application in
order to discover data structures, functions and source-code. This can
be achieved by utilizing many different techniques, like black box and
white box. By reverse engineering the applications and looking at the
source code, an attacker may be able to find flaws in the application
design that can be utilized to perform unauthorized activity.

This type of attack can be applied to BankID and the mobile banking
application. Both the BankID server and client is downloadable, and
should be able to be analyzed by reverse engineering. The same applies
for the mobile banking application which is downloadable through the
application store on each platform.

This attack pattern has no recommended mitigation method from
CAPEC. There is generally very little one can do to stop someone from
reverse engineering executables, and a we must therefore consider this
a current threat.

8.3.28 Physical Theft

An attacker may gain unauthorized physical access to a system in order
to perform one or more attacks on the system. This includes information
theft, tampering and denial of service.

This type of attack can be applied to the mobile operating system (de-
vice) and the BankID infrastructure. By stealing a phone, an attacker
my try to perform any attack pattern while also denying the legitimate
user access to the service. An attacker may also gain access to either the
distributed infrastructure that is hosted by the bank (Bank RA) or the
central infrastructure (FOI) and perform a variety of attacks by having
physical access.

The suggested mitigation techniques recommended by CAPEC is to
have physical security. This includes locks, alarms, access restriction
and monitoring. It is easier to physically steal a mobile phone than to
steal servers from the data centers that hosts FOI, but we must consider

94 CHAPTER 8. THREAT MODELLING USING CAPEC

theft to be a current threat for both parts of the BankID infrastructure
and the mobile operating systems (device).

8.3.29 Bypassing Electronic Locks and Access Controls

An attacker might bypass electronic security, by exploiting security as-
sumptions to bypass access control systems. By tricking the access con-
trol system, an attacker may gain unauthorized physical access to in-
frastructure, and by doing so he might be able to perform a variety of
other attacks.

This type of attack might be applied to the BankID infrastructure. If
Nets utilizes electronic access control systems to be able to give employ-
ees access to their data centers, then we need to consider that someone
may try to bypass electronic locks and the access control system. We
can assume it is likely that they use electronic access controll to certain
parts of their data centers.

This attack pattern has no recommended mitigation method from
CAPEC. It is not possible to be able to completely mitigate this threat,
but upgrading the access control systems regularly to prevent attack-
ers from analyzing the system could be a good technique to partially
mitigate this attack pattern.

8.3.30 Bypassing Physical Locks

An attacker might bypass physical security in order to access a building
or a facility. Physical locks may range from padlocks, traditional lock an
key mechanisms and more. Physical locks can be bypassed by bumping
the lock, snapping the lock, cutting the lock, or picking the lock. Snap-
ping and picking a lock may destroy the lock, making it obvious that
there has been a security breach.

This kind of attack can be applied to the BankID infrastructure.
Nets uses physical locks to secure their facilities, and there is no guar-
antee that these security measures cannot be breached.

This attack pattern has no recommended mititgation method from
CAPEC. Using guards to patrol the facilities and watch security cam-
eras, one could partially mitigate this attack pattern.

8.3.31 Physical Destruction of Device or Component

An attacker could physically destroy a device or a component in order
to destroy data or deny service.

This kind of attack can be applied to BankID and the different mo-
bile operating systems (device). The device could be stolen and de-
stroyed in a variety of different ways, and there are no good mitiga-

8.3. CURRENT THREATS 95

tion techniques. The BankID infrastructure could be attacked by either
targeting the bank that hosts the RA, or by attacking the central infras-
tructure (FOI).

This attack pattern has no recommended mitigation method from
CAPEC, and there is always a possibility of physical devices getting
destroyed.

8.3.32 Malicious Software Download

An attacker may use deceptive methods to trick a user or a service into
downloading and install a malicious application. This application con-
tains dangerous code which enables the attacker to control, tamper with
or destroy the device.

This kind of attack can be applied to the BankID infrastructure and
to the different mobile operating systems. Mobile operating systems
are mostly safe, but Android allows users to download and install ap-
plications from unauthorized sources, which exposes the system to such
attack patterns. All BankID servers, located at FOI or at a bank, could
be susceptible to malicious software downloads.

This attack pattern has no recommended mitigation mehod from
CAPEC. By limiting users from downloading applications from untrusted
sources, the operating system or BankID servers would be more secure,
but this will only be a partial mitigation and not a complete mitigation.

8.3.33 Malicious Software Update

An attacker may use deceptive methods to trick a user or a service into
downloading and installing a malicious software update. The software
update contains dangerous code which enables the attacker to control,
tamper with or destroy the device.

This kind of attack can be applied to the BankID infrastructure and
to the different mobile opera gting systems. All operating systems have
security patches and software updates, and the same applies for BankID
servers. An attacker may use several different methods to perform this
attack pattern, but all of them require the attacker to deceive the device
into downloading code from an untrusted source.

This attack pattern has no recommended mitigation method from
CAPEC. This attack might not be completely mitigable, but using code
signing might help the autmated service or the end user into being sure
that the software update comes from the correct source.

96 CHAPTER 8. THREAT MODELLING USING CAPEC

8.3.34 Target Influence via Social Engineering

An attacker may use social engineering techniques and try to decieve
authorized users into sharing information with the attacker or perform-
ing malicious actions on behalf of the attacker. This can be done in many
different ways. Examples includes: Posing as persons with authority, by
manipulating the target, by staying committed to the task, or by being
liked.

This kind of attack can be applied to all the different systems. The
device may be broken into if the end user willingly, and maybe unknow-
ingly, shares the secret access code needed to use the device, or by un-
locking it on request of the attacker. The BankID infrastructure has
many employees, and any of these employees are potential targets for
such attacks. The mobile banking application cannot be directly at-
tacked by social engineering, but by tricking the device owner into giv-
ing away valuable and secret information, an attacker may be able to
use this to access the bank accounts without the account owners con-
sent.

This attack pattern has no recommended mitigation method from
CAPEC. Social engineering could possible threaten all the different sys-
tems in this threat model, and there are no concrete mitigation tech-
niques. Customers, customer service representatives, technicians or
other personell may be decieved, and even though proper training might
partially mitigate this attack pattern, there is nothing that can com-
pletely mitigate it.

8.4 Discussion

Attack libraries is an exellent tool to use while threat modelling. In this
chapter, we used the CAPEC attack library to identify attack patterns
that might be applied to the three different parts of mobile banking
services in Norway. Using CAPEC was easy due to the fact that this
library is very detailed and includes a variety of tools to help the threat
modeller to perform his task.

There are however some flaws with the CAPEC attack library. As
we mentioned in chapter 3, attack libraries are closing in on the bor-
der of practicality. The complete CAPEC attack library consists of 463
different attack patterns. In this thesis we have analyzed 169 of the
available attack patterns, and the remaining 294 attack patterns are
all just more detailed attacks than the previous patterns. Analyzing
and reflecting upon 169 attacks took about 7 work days for me to com-
plete. This was then done by spending an average of 20 minutes per
attack pattern, which in a business setting might not even be enough
to complete a full security test. This might stop CAPEC from being the

8.5. SUMMARY 97

saviour of all security experts, since most businesses will not pay for
the extensive work needed to perform a complete threat model using
CAPEC. The 7 work days neede on 169 patterns, is just another exam-
ple of the extensiveness of the CAPEC attack library.

Since attack libraries need to grow in size in order be complete enough
to trust, they will always be close to the limit of practicality. This
makes threat modelling using attack libraries very inefficient and in
most cases too time consuming to be completed. In this thesis, we have
tried to create a threat model using only public documentation or re-
sources, which even limits testing capabilities. Some of the threats men-
tioned in this chapter might have already been mitigated, but since no
documentation proves it then it is up to the banks themselves to test it.

In most projects, using CAPEC might even be so time consuming
that it is not feasible to create a full threat model using CAPEC ev-
ery time the system changes. In most cases, when a system is built
from scratch, there should definitely be made a complete CAPEC threat
model. For each major update, all parts that are affected by the update,
should be re-evaluated using CAPEC.

8.5 Summary

Out of the 169 CAPEC threats that we analyzed in this threat model,
we found that 34 of the threats could be defined as a level 3 threat
(Current threat). A level 3 threat are attacks that might not have been
mitigatet or not even be mitigable at all. CAPEC is a great tool even
for beginners in the art of threat modelling to utilize, but it is unfor-
tunately very time consuming. An attack library must necessarily be
large in order to reach a certain degree of completeness. There might
not be enough available resources to create a complete threat model us-
ing CAPEC every time a system gets an update, but all new systems
should be modelled using CAPEC and all affected parts of an updated
system should be re-evaluated.

Part IV

Conclusion

99

Chapter 9

Conclusion

9.1 Discussion

Mobile banking has had an incredible growth in the market and, at the
time of writing, does account for roughly 40 % of all online banking us-
age. This makes mobile banking security a relevant issue to investigate.

9.1.1 Platforms

Comparing mobile banking software to traditional online banking soft-
ware show us that there is little to no difference between the web appli-
cations and the BankID identification and signing service, on each plat-
form. The major difference is the operating system running the banking
application and BankID application. Mobile devices offer a higher level
of security out-of-the-box than desktop operating systems. All mobile
operating systems uses desktop level kernels, but the utilization of the
kernel is more optimized for security than on desktops.

One of the key security features is the way mobile operating sys-
tems protects applicaton data. Both data on disk and data residing in
memory is protected by different security measures. The use of virtual
memory and ASLR protects memory segments from being accessed by
unauthorized applications. Data on disk is protected by the user ac-
count protection mechanism in the kernel as we can see in section 4.3
and subsection 4.3.2, and all systems encrypt data stored on disk.

The latest versions of all of the three major operating systems in-
cludes strict boot security and application verification functionality, which
should make sure that there is no malware or other malicious applica-
tions running on the system, and that the integrity of mobile banking
application is maintained.

The fact that mobile operating systems offer a higher level of se-
curity out-of-the-box is very interesting. This might be caused by the

101

102 CHAPTER 9. CONCLUSION

attitude consumers have towards the different devices. The operating
system running on iPhones have been restricted since its initial launch
in 2007. Apple provides both the hardware and the software, and by
doing this they can implement security features that has previously
not been possible. This includes secure booting mechanisms and re-
stricting where users can download third-party applications. Doing this
on a traditional computer, might not be possible because of end users
mentality. Many consumers believe that computers should be open and
unrestricted, and adding restrictions to these devices might cause con-
sumers to boicott the manufacturers. This is however not the case with
mobile devices. All mobile devices from Apple and Microsoft are com-
pletely or partially locked to a certain operating system, and this would
not be possible to do with computers due to how consumers percieve
these devices. Because of this, mobile operating systems are actually
ahead when it comes to platform security.

9.1.2 Threat Modelling Methods

The various methods for threat modelling we have presented in this
project provide very different ways of analyzing systems. Attack trees
are, together with STRIDE, a very abstract method for threat modelling.
Attack trees seem to be a good tool to use while working in teams, since
it gives a good visual representation of threats and the different attack
patterns that might result in this threat. It also looks like a good tool to
present attack patterns to individuals who are not skilled in the art of
threat modelling. In this project, we used STRIDE instead of creating
attack trees. The choice behind this was that without any prior experi-
ence, STRIDE did provide a better foundation by categorising different
threats. With that being said, STRIDE did not produce many concrete
threats that we were not already aware of.

The two abstract threat modelling methods seems to be better suited
for more experienced threat modelleres, because of the need to know
how a system can be attacked in order to be able to consider whether or
not the attack pose a threat to the system.

Threat modelling using CAPEC was much easier since this attack
library consist several hundred different attack patterns. By first an-
alyzing the composition of every system, we could just consider each
attack pattern, and see if it was a threat to one of the systems or not.
One of the negative sides of using a very detailed attack library like
CAPEC is that it is very time consuming. Not only is it necessary with
in depth knowledge of the systems you are analyzing, but you need to
consider between 150 and 463 different attack patterns in order to cover
the whole range of attacks. In this project, we only considered 169 out
of 463 attacks. This was done because there are so many attacks that

9.1. DISCUSSION 103

were so similar to other attack patterns that we could cover both by
analyzing the parent attack.

By looking at the two threat modelling methods we utilized in this
project, we see that STRIDE did produce few concrete threats, while
using CAPEC we found 34. This does however not imply that this will
be the case for every system or every person creating a threat model.
A more experienced threat modeller will undoubtedly be able to utilize
STRIDE more than a beginner, and experienced threat modelling teams
might do even better. Still, it seems to be a lot safer to use an attack
library while creating a threat model.

Mobile banking applications handles highly sensitive data ranging
from account numbers and balance, to private passwords and social se-
curity numbers (SSN). During the initial development of such applica-
tion, the developers need to realize that they are handling sensitive data
and take necessary security measures such as doing a really thorough
threat analysis of the system. Using STRIDE, the developers might
have problems reaching a satisfying level of completeness, since it is
very hard to know if the threat model is good enough or not. By using
an attack library like CAPEC as a reference to see if every threat has
been mitigated, developers might be able to reach a level of completness
which will allow them to ship their product. Since banking applications
handles highly sensitive data, it is recommended that a threat model
using the complete CAPEC library is created before shipping the appli-
cations. Using CAPEC did produce more thorough results than using
STRIDE, and it seems to be the better method to use while creating a
threat model of such an extensive system like mobile banking applica-
tions.

9.1.3 Current Threats

It seems that mobile banking applications provides a high level of secu-
rity against technological attacks. There are however some threats that
will never be completely mitigated. Attacks that may deny the end user
service are hard to completely mitigate. This includes physical theft
or destruction, locking the user out of their account and using flooding
attacks like DDoS to choke backend servers from providing service.

We also need to consider social engineering, and phishing or pharm-
ing attacks. The latter two are being executed multiple times every year
against Norwegian banks, and social engineering is always a threat
against systems handling sensitive information. This set of threats is
really relevant, because gathering enough information may result in the
attacker gaining full control of an account.

Data modification attacks, like man-in-the-middle or transaction data
structure abuses, does also pose a threat against these systems, and de-

104 CHAPTER 9. CONCLUSION

velopers should make special note of such threats.

9.2 Conclusion

Mobile banking software does seem to be secure from an outsiders point-
of-view, and mobile operating systems seem to provide higher level of se-
curity than desktop operating systems.Most technologies used are state-
of-the-art and follow recommendations from both NIST and ISO. This
includes all the different components of mobile operating systems, all
parts of the BankID infrastructure and the different mobile applica-
tions.

CAPEC is a better threat modelling tool for beginners, but more ex-
perienced threat modellers could also benefit from using CAPEC instead
of more abstract methods like STRIDE or attack trees. Mobile banking
applications handles sensitive data, and it is recommended to use an at-
tack library while analysing the system in order to reach an acceptable
level of completeness.

The most relevant threats to mobile banking services in Norway are
social engineering attacks, denial of service attacks like DDoS and other
data modification attacks.

9.3 Contributions

Here is what I consider to be my contributions.

• Created a threat model using STRIDE

• Created a threat model using CAPEC

Appendices

105

Appendix A

CAPEC list

A.1 Gathering Information

A.1.1 Excavation

CAPEC-111: JSON Hijacking (aka JavaScript Hijacking)
Platforms Not applicable
BankID Current threat
Application Not applicable

CAPEC-127: Directory Indexing
Platforms Not applicable
BankID Possibly mitigated
Application Not applicable

CAPEC-150: Common Resource Location Exploration
Platforms Not applicable
BankID Possibly mitigated
Application Not applicable

CAPEC-462: Cross-Domain Search Timing
Platforms Not applicable
BankID Not applicable
Application Not applicable

107

108 APPENDIX A. CAPEC LIST

CAPEC-468: Generic Cross-Browser Cross-Domain Theft
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-498: Probe Application Screenshots
Platforms Current threat
BankID Not applicable
Application Current threat

CAPEC-54: Probe Application Error Reporting
Platforms Possibly mitigated
BankID Possibly mitigated
Application Current threat

CAPEC-545: Probe Application Queries
Platforms Not applicable
BankID Current threat
Application Current threat

CAPEC-546: Probe Application Memory
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.1.2 Interception

CAPEC-158: Sniffing Network Traffic
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-31: Accessing/Intercepting/Modifying HTTP Cookies
Platforms Not applicable
BankID Not applicable
Application Possibly mitigated

A.1. GATHERING INFORMATION 109

CAPEC-383: Harvesting Usernames or UserIDs via Applica-
tion API Event Monitoring
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-499: Intent Intercept
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.1.3 Footprinting

CAPEC-292: Host Discovery
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-300: Port Scanning
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-309: Network Topology Mapping
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-529: Malware-Directed Internal Reconnaissance
Platforms Not applicable
BankID Current threat
Application Current threat

A.1.4 Fingerprinting

CAPEC-311: OS Fingerprinting
Platforms Current threat
BankID Current threat
Application Current threat

110 APPENDIX A. CAPEC LIST

CAPEC-541: Application Fingerprinting
Platforms Not applicable
BankID Current threat
Application Current threat

A.1.5 Social Information Gathering Attacks

CAPEC-405: Social Information Gathering via Research
Platforms Current threat
BankID Current threat
Application Current threat

CAPEC-406: Social Information Gathering via Dumpster Div-
ing
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-407: Social Information Gathering via Pretexting
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-408: Information Gathering from Traditional Sources
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-409: Information Gathering from Non-Traditional
Sources
Platforms Not applicable
BankID Not applicable
Application Not applicable

A.2. DEPLETE RESOURCES 111

A.2 Deplete Resources

CAPEC-482: TCP Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-486: UDP Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-487: ICMP Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-488: HTTP Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-489: SSL Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-528: XML Flood
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.2.1 Excessive Allocation

CAPEC-230: XML Nested Payloads
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

112 APPENDIX A. CAPEC LIST

CAPEC-231: XML Oversized Payloads
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-492: Regular Expression Exponential Blowup
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-493: SOAP Array Blowup
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-494: TCP Fragmentation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-495: UDP Fragmentation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-496: ICMP Fragmentation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.2.2 Resource Leak Exposure

CAPEC-131: Resource Leak Exposure
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.3. INJECTION 113

A.2.3 Sustained Client Engagement

CAPEC-469: HTTP DoS
Platforms Not applicable
BankID Current threat
Application Current threat

A.2.4 Amplification

CAPEC-490: Amplification
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.3 Injection

A.3.1 Parameter Injection

CAPEC-134: Email Injection
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-135: Format String Injection
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-138: Reflection Injection
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-15: Command Delimiters
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

114 APPENDIX A. CAPEC LIST

CAPEC-174: Flash Parameter Injection
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-6: Argument Injection
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-76: Manipulating Input to File System Calls
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.3.2 Code Inclusion

CAPEC-251: Local Code Inclusion
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-253: Remote Code Inclusion
Platforms Not applicable
BankID Not applicable
Application Possibly mitigated

A.3.3 Resource Injection

CAPEC-23: File System Function Injection, Content Based
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.3.4 Code Injection

CAPEC-18: Embedding Scripts in Non-Script Elements
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.3. INJECTION 115

CAPEC-19: Embedding Scripts within Scripts
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-41: Using Meta-characters in E-mail Headers to Inject
Malicious Payloads
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-63: Simple Script Injection
Platforms Possibly mitigated
BankID Not applicable
Application Possibly mitigated

A.3.5 Command Injection

CAPEC-136: LDAP Injection
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-182: Flash Injection
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-183: IMAP/SMTP Command Injection
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-249: Linux Terminal Injection
Platforms Not applicable
BankID Not applicable
Application Not applicable

116 APPENDIX A. CAPEC LIST

CAPEC-250: XML Injection
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-66: SQL Injection
Platforms Not applicable
BankID Possibly mitigated
Application Not applicable

CAPEC-88: OS Command Injection
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.4 Deceptive Interactions

A.4.1 Path Traversal

CAPEC-139: Relative Path Traversal
Platforms Possibly mitigated
BankID Not applicable
Application Possibly mitigated

CAPEC-64: Using Slashes and URL Encoding Combined to By-
pass Validation Logic
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-78: Using Escaped Slashes in Alternate Encoding
Platforms Not applicable
BankID Not applicable
Application Possibly mitigated

CAPEC-79: Using Slashes in Alternate Encoding
Platforms Not applicable
BankID Not applicable
Application Possibly mitigated

A.4. DECEPTIVE INTERACTIONS 117

A.4.2 Content Spoofing

CAPEC-145: Checksum Spoofing
Platforms Possibly mitigated
BankID Possibly mitigated
Application Current threat

CAPEC-218: Spoofing of UDDI/ebXML Messages
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-502: Intent Spoof
Platforms Current threat
BankID Not applicable
Application Current threat

A.4.3 Identity Spoofing

CAPEC-194: Fake the Source of Data
Platforms Not applicable
BankID Not applicable
Application Possibly mitigated

CAPEC-195: Principal Spoof
Platforms Possibly mitigated
BankID Current threat
Application Current threat

CAPEC-473: Signature Spoof
Platforms Not applicable
BankID Current threat
Application Current threat

CAPEC-89: Pharming
Platforms Not applicable
BankID Current threat
Application Current threat

118 APPENDIX A. CAPEC LIST

CAPEC-98: Phishing
Platforms Not applicable
BankID Current threat
Application Current threat

A.4.4 Resource Location Spoofing

CAPEC-159: Redirect Access to Libraries
Platforms Possibly mitigated
BankID Not applicable
Application Possibly mitigated

A.4.5 Action Spoofing

CAPEC-103: Clickjacking
Platforms Not applicable
BankID Current threat
Application Possibly mitigated

CAPEC-501: Activity Hijack
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-504: Task Impersonation
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-505: Scheme Squatting
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-506: Tapjacking
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.5. MANIPULATE TIMING AND STATE 119

A.5 Manipulate Timing and State

CAPEC-25: Forced Deadlock
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-26: Leveraging Race Conditions
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-29: Leveraging Time-of-Check and Time-of-Use (TOC-
TOU) Race Conditions
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-462: Cross-Domain Search Timing
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-74: Manipulating User State
Platforms Not applicable
BankID Possibly mitigated
Application Current threat

A.6 Abuse of Functionality

CAPEC-113: API Abuse/Misuse
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

120 APPENDIX A. CAPEC LIST

CAPEC-133: Try All Common Application Switches and Op-
tions
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-141: Cache Poisoning
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-213: Directory Traversal
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-465: Socket Capable Browser Plugins Result In
Transparent Proxy Abuse
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-48: Passing Local Filenames to Functions That Expect
a URL
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-87: Forceful Browsing
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-95: WSDL Scanning
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.6. ABUSE OF FUNCTIONALITY 121

A.6.1 Functionality Misuse

CAPEC-162: Manipulating hidden fields to change the normal
flow of transactions (eShoplifting)
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-2: Inducing Account Lockout
Platforms Current threat
BankID Current threat
Application Not applicable

CAPEC-464: Evercookie
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-50: Password Recovery Exploitation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.6.2 (

Abuse of Communication Channels)

CAPEC-12: Choosing a Message/Channel Identifier on a Pub-
lic/Multicast Channel
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

APEC-217: Exploiting Incorrectly Configured SSL Security
Levels
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

122 APPENDIX A. CAPEC LIST

A.7 Probabilistic Techniques

CAPEC-155: Screen Temporary Files for Sensitive Informa-
tion
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-28: Fuzzing
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-39: Manipulating Opaque Client-based Data Tokens
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.7.1 Brute Force

CAPEC-20: Encryption Brute Forcing
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-49: Password Brute Forcing
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

A.8 Exploitation of Authentication

CAPEC-114: Authentication Abuse
Platforms Current threat
BankID Current threat
Application Current threat

A.9. PRIVILEGE ESCALATION 123

CAPEC-115: Authentication Bypass
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-21: Exploitation of Session Variables, Resource IDs
and other Trusted Credentials
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.9 Privilege Escalation

CAPEC-104: Cross Zone Scripting
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-17: Accessing, Modifying or Executing Executable
Files
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-58: Restful Privilege Elevation
Platforms Not applicable
BankID Not applicable
Application Not applicable

CAPEC-75: Manipulating Writeable Configuration Files
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

124 APPENDIX A. CAPEC LIST

A.10 Exploitation of Authorization

CAPEC-234: Hijacking a privileged process
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-236: Catching exception throw/signal from privileged
block
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-30: Hijacking a Privileged Thread of Execution
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-30: Hijacking a Privileged Thread of Execution
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-69: Target Programs with Elevated Privileges
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.10.1 Privilege Abuse

CAPEC-1: Accessing Functionality Not Properly Constrained
by ACLs
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.10. EXPLOITATION OF AUTHORIZATION 125

CAPEC-180: Exploiting Incorrectly Configured Access Con-
trol Security Levels
Platforms Possibly mitigated
BankID Not applicable
Application Possibly mitigated

CAPEC-221: XML External Entities
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-503: WebView Exposure
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.10.2 Exploiting Trust in Client (aka Make the Client In-
visible)

CAPEC-202: Create Malicious Client
Platforms Current threat
BankID Not applicable
Application Not applicable

CAPEC-207: Removing Important Functionality from the
Client
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-39: Manipulating Opaque Client-based Data Tokens
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-77: Manipulating User-Controlled Variables
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

126 APPENDIX A. CAPEC LIST

CAPEC-94: Man in the Middle Attack
Platforms Not applicable
BankID Current threat
Application Current threat

A.11 Manipulate Data Structures

CAPEC-124: Attack through Shared Data
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-128: Integer Attacks
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-129: Pointer Attack
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.11.1 Buffer Manipulation

CAPEC-100: Overflow Buffers
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-540: Overread Buffers
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.12. MANIPULATE RESOURCES 127

A.12 Manipulate Resources

CAPEC-257: Abuse of Transaction Data Structure
Platforms Not applicable
BankID Possibly mitigated
Application Current threat

CAPEC-548: Contaminate Resource
Platforms Current threat
BankID Current threat
Application Current threat

CAPEC-153: Input Data Manipulation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-161: Infrastructure Manipulation
Platforms Possibly mitigated
BankID Current threat
Application Current threat

CAPEC-171: Variable Manipulation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.12.1 File Manipulation

CAPEC-11: Cause Web Server Misclassification
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-177: Create files with the same name as files protected
with a higher classification
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

128 APPENDIX A. CAPEC LIST

CAPEC-263: Force Use of Corrupted Files
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-35: Leverage Executable Code in Non-Executable
Files
Platforms
BankID
Application

CAPEC-35: Leverage Executable Code in Non-Executable
Files
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-44: Overflow Binary Resource File
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-73: User-Controlled Filename
Platforms Not applicable
BankID Not applicable
Application Not applicable

A.12.2 Configuration/Environment manipulation

CAPEC-203: Manipulate Application Registry Values
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-96: Block Access to Libraries
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.12. MANIPULATE RESOURCES 129

A.12.3 Audit Log Manipulation

CAPEC-81: Web Logs Tampering
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-93: Log Injection-Tampering-Forging
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.12.4 Schema Poisoning

CAPEC-146: XML Schema Poisoning
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.12.5 Protocol Manipulation

CAPEC-168: Windows ::DATA Alternate Data Stream
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-220: Client-Server Protocol Manipulation
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

CAPEC-275: DNS Rebinding
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

130 APPENDIX A. CAPEC LIST

CAPEC-276: Inter-component Protocol Manipulation
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

CAPEC-277: Data Interchange Protocol Manipulation
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.12.6 Web Services Protocol Manipulation

CAPEC-279: Soap Manipulation
Platforms Not applicable
BankID Possibly mitigated
Application Possibly mitigated

A.13 Analyze Target

A.13.1 Reverse Engineering

CAPEC-192: Protocol Reverse Engineering
Platforms Not applicable
BankID Current threat
Application Current threat

A.13.2 Software Reverse Engineering

CAPEC-167: Lifting Sensitive Data from the Client
Platforms Possibly mitigated
BankID Not applicable
Application Current threat

CAPEC-190: Reverse Engineer an Executable to Expose As-
sumed Hidden Functionality or Content
Platforms Not applicable
BankID Current threat
Application Current threat

A.14. GAIN PHYSICAL ACCESS 131

A.13.3 Cryptanalysis

CAPEC-463: Padding Oracle Crypto Attack
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.14 Gain Physical Access

CAPEC-507: Physical Theft
Platforms Current threat
BankID Current threat
Application Not applicable

A.14.1 Bypassing Physical Security

CAPEC-395: Bypassing Electronic Locks and Access Controls
Platforms Not applicable
BankID Current threat
Application Not applicable

CAPEC-391: Bypassing Physical Locks
Platforms Not applicable
BankID Current threat
Application Not applicable

A.15 Malicious Code Execution

CAPEC-542: Targeted Malware
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.16 Alter System Components

CAPEC-547: Physical Destruction of Device or Component
Platforms Current threat
BankID Current threat
Application Not applicable

132 APPENDIX A. CAPEC LIST

A.16.1 Software Integrity Attacks

CAPEC-185: Malicious Software Download
Platforms Current threat
BankID Current threat
Application Not applicable

CAPEC-186: Malicious Software Update
Platforms Current threat
BankID Current threat
Application Not applicable

A.16.2 Hacking Hardware Devices or Components

CAPEC-402: Bypassing ATA Password Security
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.16.3 Malicious Logic Inserted Into to Product

CAPEC-452: Malicious Logic Insertion into Product Hard-
ware
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-456: Malicious Logic Insertion into Product Memory
Platforms Possibly mitigated
BankID Possibly mitigated
Application Not applicable

CAPEC-538: Open Source Libraries Altered
Platforms Possibly mitigated
BankID Not applicable
Application Not applicable

A.17. MANIPULATE SYSTEM USERS 133

CAPEC-539: ASIC With Malicious Functionality
Platforms Possibly mitigated
BankID Possibly mitigated
Application Possibly mitigated

A.17 Manipulate System Users

CAPEC-416: Target Influence via Social Engineering
Platforms Current threat
BankID Current threat
Application Current threat

Bibliography

[1] A Brief Guide to Android Security. URL: http://www.acumin.
co.uk/download%5C_files/WhitePaper/android%5C_
white%5C_paper%5C_2.pdf (visited on 02/10/2015).

[2] A Proof of Concept Attack against Norwegian Internet Banking
Systems. Tech. rep. NoWires Research Group Department of In-
formatics University of Bergen, Norway, 2008.

[3] National Security Agency. Security Enhanced Linux. URL: https:
//www.nsa.gov/research/selinux/index.shtml (visited
on 05/28/2015).

[4] Android Platform Versions. URL: https://developer.android.
com/about/dashboards/index.html (visited on 02/10/2015).

[5] Android Security Overview. URL: https://source.android.
com/devices/tech/security/ (visited on 02/10/2015).

[6] App Store Distribution. URL: https://developer.apple.com/
support/appstore/ (visited on 02/16/2015).

[7] Apple Security Updates. URL: http://support.apple.com/
en-us/HT1222 (visited on 02/10/2015).

[8] Tone Hoddø Bakås. Svindel e-post med logo fra BankID. URL:
https://norsis.no/2015/06/svindel- e- post- med-
logo-fra-bankid/ (visited on 07/18/2015).

[9] Nets Norway BankID Norge and Knowit. BankID COI White Pa-
per. Tech. rep. BankID Norge, 2015.

[10] CAPEC-89: Pharming. URL: http://capec.mitre.org/data/
definitions/89.html (visited on 07/18/2015).

[11] Common Attack Pattern Enumeration and Classification. URL: http:
//capec.mitre.org (visited on 05/20/2015).

[12] Quynh Dang Elaine Barker. Recommendation for Key Manage-
ment Part 3: Application-Specific Key Management Guidance. Tech.
rep. National Institute of Standards and Technology, 2014.

[13] Dieter Gollmann. Computer Security. Third Edition. WILEY, 2011.

135

http://www.acumin.co.uk/download%5C_files/WhitePaper/android%5C_white%5C_paper%5C_2.pdf
http://www.acumin.co.uk/download%5C_files/WhitePaper/android%5C_white%5C_paper%5C_2.pdf
http://www.acumin.co.uk/download%5C_files/WhitePaper/android%5C_white%5C_paper%5C_2.pdf
https://www.nsa.gov/research/selinux/index.shtml
https://www.nsa.gov/research/selinux/index.shtml
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://source.android.com/devices/tech/security/
https://source.android.com/devices/tech/security/
https://developer.apple.com/support/appstore/
https://developer.apple.com/support/appstore/
http://support.apple.com/en-us/HT1222
http://support.apple.com/en-us/HT1222
https://norsis.no/2015/06/svindel-e-post-med-logo-fra-bankid/
https://norsis.no/2015/06/svindel-e-post-med-logo-fra-bankid/
http://capec.mitre.org/data/definitions/89.html
http://capec.mitre.org/data/definitions/89.html
http://capec.mitre.org
http://capec.mitre.org

136 BIBLIOGRAPHY

[14] Shon Harris. Cissp All-In-One Exam Guide. McGraw-Hill/Osborne
Media; 6 Har/Cdr edition (October 18, 2012), 2013.

[15] Ann Håkonsen. Mobilbanken - den nye hverdagsbanken? URL: https:
//www.fno.no/aktuelt/sporreundersokelser/dagligbankundersokelsen1/
dagligbankundersokelsen-2015/mobilbanken--den-nye-
hverdagsbanken/ (visited on 05/25/2015).

[16] Information processing systems - Open Systems Interconnection -
Basic Reference Model - Part 2 Security Architecture. Tech. rep.
International Orginazation for Standardization, 1989.

[17] Information technology - Security techniques - Entity authentica-
tion assurance framework. Tech. rep. International Orginazation
for Standardization, 2012.

[18] Information technology - Security techniques - Information secu-
rity management systems - Overview and vocabulary. Tech. rep.
International Orginazation for Standardization, 2014.

[19] Information technology - Security techniques - Information secu-
rity risk management. Tech. rep. International Orginazation for
Standardization, 2010.

[20] iOS Security Overview. URL: http://images.apple.com/
business/docs/iOS%5C_Security%5C_Guide%5C_Oct%
5C_2014.pdf (visited on 02/10/2015).

[21] ITU Telecommunication Standardization Sector. URL: http://
www.itu.int/en/ITU-T/Pages/default.aspx (visited on
07/09/2015).

[22] Adam Shostack/Carol Long. Threat Modeling - designing for secu-
rity. Wiley, 2014.

[23] MITRE. URL: http://www.mitre.org (visited on 05/20/2015).

[24] Mobile/Tablet Operating System Market Share. URL: https://
www.netmarketshare.com/operating- system- market-
share.aspx?qprid=10%5C&qpcustomd=1 (visited on 02/25/2015).

[25] Vebjørn Moen. “Risk Assessment of a National Security Infras-
tructure”. In: IEEE Security & Privacy (2009).

[26] Carey Nachenberg. A Window Into Mobile Device Security. Exam-
ining the security approaches employed in Apple’s iOS and Google’s
Android. Tech. rep. Symantec, 2011.

[27] Nettbank. URL: https://snl.no/nettbank (visited on 07/23/2015).

[28] The Financial Supervisory Authority of Norway. Risiko- Og Sår-
barhetsanalyse (ROS). Tech. rep. The Financial Supervisory Au-
thority of Norway, 2013.

https://www.fno.no/aktuelt/sporreundersokelser/dagligbankundersokelsen1/dagligbankundersokelsen-2015/mobilbanken--den-nye-hverdagsbanken/
https://www.fno.no/aktuelt/sporreundersokelser/dagligbankundersokelsen1/dagligbankundersokelsen-2015/mobilbanken--den-nye-hverdagsbanken/
https://www.fno.no/aktuelt/sporreundersokelser/dagligbankundersokelsen1/dagligbankundersokelsen-2015/mobilbanken--den-nye-hverdagsbanken/
https://www.fno.no/aktuelt/sporreundersokelser/dagligbankundersokelsen1/dagligbankundersokelsen-2015/mobilbanken--den-nye-hverdagsbanken/
http://images.apple.com/business/docs/iOS%5C_Security%5C_Guide%5C_Oct%5C_2014.pdf
http://images.apple.com/business/docs/iOS%5C_Security%5C_Guide%5C_Oct%5C_2014.pdf
http://images.apple.com/business/docs/iOS%5C_Security%5C_Guide%5C_Oct%5C_2014.pdf
http://www.itu.int/en/ITU-T/Pages/default.aspx
http://www.itu.int/en/ITU-T/Pages/default.aspx
http://www.mitre.org
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10%5C&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10%5C&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10%5C&qpcustomd=1
https://snl.no/nettbank

BIBLIOGRAPHY 137

[29] The Financial Supervisory Authority of Norway. Risiko- Og Sår-
barhetsanalyse (ROS). Tech. rep. The Financial Supervisory Au-
thority of Norway, 2014.

[30] Michael Oreld. Mobilbank bekymrer Finanstilsynet. URL: http:
//www.cw.no/artikkel/sikkerhet/mobilbank-bekymrer-
finanstilsynet (visited on 07/09/2015).

[31] Bruce Schneier. “Attack Trees”. In: Dr. Dobb’s Journal 24.12 (Dec.
1999).

[32] Bruce Schneier. Schneier on Security. URL: https://www.schneier.
com (visited on 05/20/2015).

[33] Adam Shostack. Experiences Threat Modeling at Microsoft. Tech.
rep. Microsoft, 2008.

[34] Adam Shostack. Microsoft Cyber Trust Blog. URL: http://blogs.
microsoft.com/cybertrust/2007/09/11/stride-chart/
(visited on 05/13/2015).

[35] Sparebankgrupperinger. URL: http://www.sparebankforeningen.
no/id/1493 (visited on 07/09/2015).

[36] SSB. Media Statistics for 2014. URL: https://www.ssb.no/
statistikkbanken/SelectVarVal/saveselections.asp (vis-
ited on 05/25/2015).

[37] James Trew. Microsoft confirms no upgrade path to Windows Phone
8, unveils 7.8 for legacy devices. URL: http://www.engadget.
com/2012/06/20/microsoft-unveils-windows-phone-7-
8-for-legacy-devices/ (visited on 02/25/2015).

[38] Uncover Security Design Flaws Using The STRIDE Approach. Tech.
rep. Microsoft, 2006.

[39] Unified Extensible Firmware Interface. URL: http://en.wikipedia.
org/wiki/Unified%5C_Extensible%5C_Firmware%5C_
Interface (visited on 02/12/2015).

[40] VISA Spendon. URL: https://spendon.com/nb-no/ (visited
on 05/27/2015).

[41] Windows CE. URL: http://en.wikipedia.org/wiki/Windows%
5C_CE (visited on 02/12/2015).

[42] Windows NT. URL: http://en.wikipedia.org/wiki/Windows%
5C_NT (visited on 02/12/2015).

[43] Windows Phone 7. URL: http://en.wikipedia.org/wiki/
Windows%5C_Phone%5C_7 (visited on 02/12/2015).

[44] Windows Phone 8.0 Security Overview. URL: http://www.microsoft.
com/en-us/download/details.aspx?id=36173 (visited on
02/10/2015).

http://www.cw.no/artikkel/sikkerhet/mobilbank-bekymrer-finanstilsynet
http://www.cw.no/artikkel/sikkerhet/mobilbank-bekymrer-finanstilsynet
http://www.cw.no/artikkel/sikkerhet/mobilbank-bekymrer-finanstilsynet
https://www.schneier.com
https://www.schneier.com
http://blogs.microsoft.com/cybertrust/2007/09/11/stride-chart/
http://blogs.microsoft.com/cybertrust/2007/09/11/stride-chart/
http://www.sparebankforeningen.no/id/1493
http://www.sparebankforeningen.no/id/1493
https://www.ssb.no/statistikkbanken/SelectVarVal/saveselections.asp
https://www.ssb.no/statistikkbanken/SelectVarVal/saveselections.asp
http://www.engadget.com/2012/06/20/microsoft-unveils-windows-phone-7-8-for-legacy-devices/
http://www.engadget.com/2012/06/20/microsoft-unveils-windows-phone-7-8-for-legacy-devices/
http://www.engadget.com/2012/06/20/microsoft-unveils-windows-phone-7-8-for-legacy-devices/
http://en.wikipedia.org/wiki/Unified%5C_Extensible%5C_Firmware%5C_Interface
http://en.wikipedia.org/wiki/Unified%5C_Extensible%5C_Firmware%5C_Interface
http://en.wikipedia.org/wiki/Unified%5C_Extensible%5C_Firmware%5C_Interface
https://spendon.com/nb-no/
http://en.wikipedia.org/wiki/Windows%5C_CE
http://en.wikipedia.org/wiki/Windows%5C_CE
http://en.wikipedia.org/wiki/Windows%5C_NT
http://en.wikipedia.org/wiki/Windows%5C_NT
http://en.wikipedia.org/wiki/Windows%5C_Phone%5C_7
http://en.wikipedia.org/wiki/Windows%5C_Phone%5C_7
http://www.microsoft.com/en-us/download/details.aspx?id=36173
http://www.microsoft.com/en-us/download/details.aspx?id=36173

138 BIBLIOGRAPHY

[45] Windows Phone 8.1 Security Overview. URL: http://www.microsoft.
com/en-us/download/confirmation.aspx?id=42509 (vis-
ited on 02/12/2015).

http://www.microsoft.com/en-us/download/confirmation.aspx?id=42509
http://www.microsoft.com/en-us/download/confirmation.aspx?id=42509

	I Introduction
	Introduction
	Motivation
	Goal
	Approach and Research Method
	Work Done
	Results
	Conclusion
	Outline

	Introduction to Threat Modelling
	Threat Modelling
	Threat, Risk and Mitigation
	The Four-Step Framework
	What are you building?
	What can go wrong with it once it's built?
	What should you do about those things that can go wrong?
	Did you do a decent job of analysis?

	Discussion
	Summary

	II Background
	Methods for threat modeling
	STRIDE
	Violation of Authentication
	Violation of Integrity
	Violation of Non-repudiation
	Violation of Confidentiality
	Violation of Availability
	Violation of Authorization
	Using STRIDE on Data Flow Diagrams
	STRIDE-per-element
	STRIDE-per-interaction
	Summary

	Attack Libraries
	Level Of Detail in Attack Libraries
	Summary

	Attack Trees
	Attack Tree Components
	Creating new Attack Trees
	Summary

	Discussion
	Summary

	Mobile Operating Systems
	Introduction
	Security Features
	Secure Boot
	Encryption and Data Access
	Application Security
	Device Security

	Android
	Secure Boot
	Encryption and Data Access
	Application Security
	Device Security

	Windows Phone
	Secure Boot
	Encryption and Data Access
	Application Security
	Device Security

	iOS
	Secure Boot
	Encryption and Data Access
	Application Security
	Device Security

	Dicussion
	Summary

	BankID
	Introduction
	Technology
	PKI

	Infrastructure
	Felles Operasjonell Intrastruktur
	Bank RA and OTP
	BankID Server
	BankID Client

	Certificates
	Certificate Format and Security

	Encryption
	Process
	Bank Stored BankID
	BankID on Mobile

	Discussion
	Summary

	Mobile Banking Software
	Banks
	Technology
	Native Applications vs Web Applications
	Mobile Banking Software Technology
	Authentication Service

	Discussion
	Summary

	III Threat Model
	Threat Modelling using STRIDE
	Data Flow Diagrams
	Platform
	BankID
	Application

	Platforms
	STRIDE-per-element

	BankID
	STRIDE-per-element

	Application
	STRIDE-per-element

	Discussion
	Summary

	Threat Modelling using CAPEC
	Attack Patterns
	Scoring
	Current Threats
	JSON Hijacking (aka JavaScript Hijacking)
	Probe Application Screenshots
	Probe Application Error Reporting
	Probe Application Queries
	Malware-Directed Internal Reconnaissance
	OS Fingerprinting
	Application Fingerprinting
	Social Information Gathering via Research
	HTTP DoS
	Checksum Spoofing
	Intent Spoof
	Principal Spoof
	Signature Spoof
	Pharming
	Phishing
	Clickjacking
	Manipulating User State
	Inducing Account Lockout
	Authentication Abuse
	Create Malicious Client
	Man-in-the-Middle Attack
	Abuse of Transaction Data Structure
	Contaminate Resource
	Infrastructure Manipulation
	Protocol Reverse Engineering
	Lifting Sensitive Data from the Client
	Reverse Engineer an Executable to Expose Assumed Hidden Functionality or Content
	Physical Theft
	Bypassing Electronic Locks and Access Controls
	Bypassing Physical Locks
	Physical Destruction of Device or Component
	Malicious Software Download
	Malicious Software Update
	Target Influence via Social Engineering

	Discussion
	Summary

	IV Conclusion
	Conclusion
	Discussion
	Platforms
	Threat Modelling Methods
	Current Threats

	Conclusion
	Contributions

	Appendices
	CAPEC list
	Gathering Information
	Excavation
	Interception
	Footprinting
	Fingerprinting
	Social Information Gathering Attacks

	Deplete Resources
	Excessive Allocation
	Resource Leak Exposure
	Sustained Client Engagement
	Amplification

	Injection
	Parameter Injection
	Code Inclusion
	Resource Injection
	Code Injection
	Command Injection

	Deceptive Interactions
	Path Traversal
	Content Spoofing
	Identity Spoofing
	Resource Location Spoofing
	Action Spoofing

	Manipulate Timing and State
	Abuse of Functionality
	Functionality Misuse
	(

	Probabilistic Techniques
	Brute Force

	Exploitation of Authentication
	Privilege Escalation
	Exploitation of Authorization
	Privilege Abuse
	Exploiting Trust in Client (aka Make the Client Invisible)

	Manipulate Data Structures
	Buffer Manipulation

	Manipulate Resources
	File Manipulation
	Configuration/Environment manipulation
	Audit Log Manipulation
	Schema Poisoning
	Protocol Manipulation
	Web Services Protocol Manipulation

	Analyze Target
	Reverse Engineering
	Software Reverse Engineering
	Cryptanalysis

	Gain Physical Access
	Bypassing Physical Security

	Malicious Code Execution
	Alter System Components
	Software Integrity Attacks
	Hacking Hardware Devices or Components
	Malicious Logic Inserted Into to Product

	Manipulate System Users

