UiO ¢ Department of Informatics
University of Oslo

Computer-Aided Screening of
Capsule Endoscopy Videos

Zeno Albisser
Master’s Thesis Autumn 2015

Computer-Aided Screening of Capsule Endoscopy Videos

Zeno Albisser

August, 2015

Acknowledgements

I would like to express my gratitude to my supervisors, Pal Halvorsen and Michael Riegler, for the op-
portunity of working on this research topic, for all the valuable advice I have received and for reviewing
my work.

Further, I would like to say thank you to my fiancée Olga, my parents Beatrice & Urs and my sister
Brigitte, who always support and encourage me.

Abstract

Colon cancer accounts for almost 10% of all cancer cases worldwide. It is also the fourth most com-
mon cause of death from cancer globally. However, many cases of colon cancer could be prevented by
early screening and removal of colon polyps - a common precursor of colon cancer. In this respect, cap-
sule endoscopy is a non-invasive screening method with the potential to significantly reduce the cost of
screening as well as the discomfort caused for the patient using traditional endoscopy examination. The
financial cost of evaluating the recorded video footage, as well as the availability of specialists, currently
prevents the deployment of capsule endoscopy for mass screening.

With this work, we research solutions for automating the evaluation of capsule endoscopy video se-
quences using machine learning, image recognition and extraction of global image features. Rather than
focusing on a single approach, we build tools that can be used for conducting further experiments with
different methods and algorithms. We present the prototype of an integrated software solution that can be
used for collecting videos from hospitals, annotating videos, tracking objects in video sequences, build-
ing training and testing datasets, training classifiers and eventually, testing and evaluating the generated
classifiers.

We evaluate our software by training classifiers that are based on three different image recognition
approaches. We also test the generated classifiers with different datasets and thereby evaluate the differ-
ent approaches for their feasibility of being used to recognize colon polyps.

Our main conclusion is that state of the art image recognition methods, such as the use of Haar-
features or Histogram of oriented Gradients based detectors, are not suitable for detecting lesions in
the intestine because of the enormous variety of possible appearances and orientations of such lesions.
Global image features such as Joint Composite Descriptor on the other hand, lead to very promising
results. Performing leave-one-out-cross-validation with all 20 videos of the ASU-Mayo Clinic polyp
database, our system achieves a weighted average precision of 93.9% and a weighted average recall of
98.5%.

Contents

(L__Introduction|

M1

Background|

[1.1.1 ~ Screening Methods|

[1.1.2° Computer Aided Diagnosis|.

[2.3.1 Geometrical Analysis|.

[2.3.2 Machine Learning|
[2.3.3 Index of Global Image Features|
[2.3.4 Virtual Colonoscopy|

4 sumima

3 Object Tagging|

B

Design and Implementation|.

[3.1.1 Prototype 1: Object Tagging and Manual Tracking]|

[3.1.2 Prototype 2: Web-Based Object Tagging|.

[4 Object Tracking|

i

Design and Implementation|.

|4.1.1 Object Tracking in JavaScript|
|4.1.2 Object Tracking in Google Native Client]
|4.1.3 Object Tracking on the Server Side|
|4.1.4 A Native Tool for Object Tracking|

iii

11
13
14
15
15
17
21
21
22

25
26
26
27
30
30

[S Preprocessing and Image Filtering|

5.1 Design and Implementation|. 0L

5

1.2 Edge Detection]

[5

1.3 Shape Detection|

5

1.4 Sepecular Highlight Filtering|.

5

2.2 EdgeDetection|

[5

2.3 Shape Detection|

5

2.4 Specular Highhght Filtermg|

. SUMIMATY| . . . v v v e e e e e e e e e e e e e e e e

[6 Machine Learning|

[6.1 Design and Implementation| oL

(6

1.1~ Cascade Classifier Tramning|

|6.1.1.1 Exporting Positive Samples from TagAndTrackl
|6.1.1.2 Exporting Negative Samples|
|6.1.1.3 Exporting Metadata for the Samples|
|6.1.1.4 Using opencv_traincascade to Train a Classifieff
[6.1.1.5 Bulding an OpenCV based Detector Tool|

[6.1.1.5.1 Use a Separate Thread for Decoding|

[6.1.1.5.2 Introduce Multiple Threads|

6

.1.2 Histogram of Oriented Gradients Detector{.

[6.1.2.1 Adding HOG-training to TagAndTrack|
[6.1.2.2 Visualizing the training result for a HOG detector]
[6.1.2.3 Implementing a separate HOG-Trainery
|6.1.2.4 Exporting data from TagAndTrack to HOGTrainer|

(6

.1.3 Index of Global Image Features|

|6.1.3.1 Global Image Feature Indexer{
|6.1.3.2 Global Image Feature Classifier]

(6

2.1 Cascade Classifier Traimning|

6.2.1.1 Expernrment 1|
6.2.1.2 Expertment?2]
6.2.1.3 Expertbment3|

6

2.2 Histogram of Oriented Gradients Detector]

(6

2.3 Index of Global Image Features|

[6.2.3.1 Benchmarking single Image Features|
[6.2.3.2 Finding an optimal Image Feature Subset|

Acronyms

37
37
37
39
40
41
43
43
44
44
44
46

47
47
49
50
51
52
53
54
56
57
60
60
61
63
65
66
67
69
77
78
78
79
80
80
82
82
82
83
85
86

87
87
88
88

91

93

101

List of Figures

1.1 An overview of the terms used to describe the digestive system.|. 2
|1.2 Equipment currently used for screening.| L. 2
|1.3 Images of a capsule with a singlecamera.| 3
|1.4 Images taken with a cameracapsule.| 3
[3.1 The dataset creation process 1s a prerequisite for training an algorithm and eventually |
| building a fully automated detectiontool.| oo, 25
[3.2 User Interface of the prototype written in Python using Qt and OpenCV| 26
[3.3 The user interface of the HITMLS based video tagging tool.| 28
.1 The user interface of the tracking software implemented in C++ using Qt and OpenCV/| . 34
4.2 Time comparison of processing 100 video frames, using manual or automatic tracking.| . 35
[5.1 Original video frame and masked video frame after border detection.|. 38
[5.2 A video frame 1n the original form, and with two different edge detection thresholds.| . . 39
I5.3 Shape detection 1n the learning and detectionphase.|. 41
5.4 Specular Highlight Reduction by Gaussian Filtering,| 42
5.5 Specular Highlight Reduction by using Gradients and randomized Kernels.| 43
[5.6 Shape detection of stars on the american flag.| 45
[5.7 Haar-based polyp detection on the same frame, with and without Specular Highlight |
| Filtering|. 45
|6.1 An inconclusive list of irregularities that can be diagnosed using colonoscopy.| 48
|6.2 Uncorrected rotation of |[Region of Interest (RODY 51
|6.3 Calculated geometries for roatating and exporting positive samples.| 52
|6.4 Processing Times for Multi Threaded Cascade Classifier Detection, processing 2,025 |
[frames at a resolution of 768x576. 59
[6.5 Visualizations of HOG detectors for faces and for polyps with a window size of 80x80.| . 62
|6.6 Visualizations of HOG detectors for faces and for polyps with a window size of 30x30.| . 62
6.7 The structure and basic elements of a lucene index.] 67
|6.8 The overall architecture of our global 1mage features based approach, consisting of |
| Indexer and Classifier as separate tools.,| 67
[6.9 Console output of the classifier using the features JCD and Tamura.| 69
[6.10 HTML output of the classifier using the features JCD and Tamura.| 70
|6.11 TagAndTrack showing the results from the global image features classifier| 72
|6.12" Visualizations of a HOG detector that was trained with rotations of multiple pictures of |
| multiple polyps.| 81

List of Tables

[2.1 Performance comparison of polyp detection approaches discussed in this chapter| 22
|6.1 Processing Times for Multi Threaded Cascade Classifier Detection, processing 2,025 |
[frames at a resolution of 768x576J Lo Lo 59
|6.2 Performance of a simple HOG detector with different window sizes.| 63
|6.3 Training Time for a Haar-based Cascading Classifier] 78
[6.4 Performance of a classifier using the same dataset for training and detecting.| 79
[6.5 Performance of a classifier trained with a subset (50 positive frames) of the testing dataset.| 79
[6.6 Detector performance of HOG-based classifiers trained in TagAndTrack,. 81
|67 Time consumption for training classifiers with HOGTrainer| 82
|6.8 Leave-one-out cross-testing combined for all supported image features| 83
|6.9 Top combinations of 2 1image features for video wp_68, sorted by F-score.| 84
|6.10 Top combinations of 2 image features for video wp_61, sorted by F-score.| 84
|6.11 Performance evaluation by leave-one-out cross-validation for all available videos, using |
[JCD and Tamura features.. 85

vii

Chapter 1

Introduction

1.1 Background

Colorectal cancer is the third most common type of cancer diagnosed for men and the second most
diagnosed type for women according to the International Agency for Research on Cancer [1f]. With
a mortality rate of 10 for men and 6.9 for women per 100,000, colorectal cancer is also among the
three most lethal types of cancer. Typically, more than 65% of the new cases occur in countries with
a high development standard, especially central Europe, despite available health care and high nutrition
standard. An increase of colorectal cancer incidence and mortality can be observed in many countries
transitioning towards higher levels of human development, according to the previously cited report. The
reasons for this are beyond the scope of this thesis, but considering that the numbers provided are age-
standardized, potential reasons might be higher intake of fat or red meat, obesity, diabetes and lack of
physical exercise.

Colorectal polyps are a common precursor to and if found and removed in early stages,
colorectal cancer could often be prevented. According to Stryker et al. [2]], if a[polyp|is not removed, the
cumulative risk of cancer being diagnosed at afpolyp|site is 2.5% at 5 years, 8% at 10 years and 24% at 20
years after the was diagnosed. Just the ability of reliable [polyp| detection would therefore already
be very valuable. Consequently, screening rates for polyps and colorectal cancer using
have increased in the recent years [3]]. The U.S. Preventive Services Task Force (USPSTF) recommends
screening of people between 50 and 75 years every 10 years [4]. The requirements for a screening
program in Norway are similar [5]]. However, the cost of this screening process is very high. In the US,
a single [colonoscopy| based screening costs about $1100, and with an annual cost of $10 billion, it is the
most expensive cancer screening process currently in use [6]. The screening procedure is usually rather
uncomfortable for the patient [[7,8]], and it also requires a lot of valuable time from medical personnel [9].

1.1.1 Screening Methods

The usual method of screening with an enables an expert to examine both ends of a patient’s |

[gastrointestinal tract| This in particular includes the foodpipe, stomach, colon and

(for details, see Figure [T1.T). However, a wired does have several limitations. It is,
for example, not possible to examine the with this method. It is also a rather expensive

screening method, as it requires specialists to prepare and possibly sedate the patient and to conduct
the actual examination. Further, the procedure is usually rather uncomfortable for the patient [7].

Figure shows a typical colonoscope.

Another method, which is less invasive than conventional [colonoscopy] is [Computed Tomography]
This method uses special x-ray equipment, as shown in Figure to produce images
of the colon. The data that is collected can then either be visualized as two-dimensional images, or as a
three-dimensional model that can be traversed virtually. The main disadvantages of this method are: it
is hard to identify polyps with a diameter smaller than one centimeter, it is not possible to collect any
tissue samples during the procedure and there is only calculated imaging data and no optical one. While
the direct discomfort using this method is smaller and, in many cases, it might be a more safe method,

2 Computer-Aided Screening of Capsule Endoscopy Videos

the patient is exposed to a significant amount of radiation during the procedure [10]. The method also
requires the availability of computed tomography|equipment and specialists who can operate it [11]].

Oral cavity

Esophagus
(foodpipe)

Duodenum Stomach

Colon
Transverse colon
Ascending colon
Descending colon

lleum
(small intestine)

Cecum
Appendix

Terminal lleum
Anus

Figure 1.1: An overview of the terms used to describe the digestive systemﬂ

(a) A typical video colonoscope. The controls are visible (b) A computed tomography scannerEl
on the top left, and the flexible tube with camera are
rolled up

Figure 1.2: Equipment currently used for screening.

I"The figure is derived from a diagram created by Mariana Ruiz and Joaquim Alves Gaspar.
The original has been released into the public domain by the author. http://en.wikipedia.org/wiki/File:Digestive_system_diagram_edit.svg

3The figure is a modified version of an image created by Wikimedia User Gilo1969.
CC BY-SA 3.0/ Attribution to Gilo1969 at English Wikipedia; http://commons.wikimedia.org/wiki/File:Colonoscope.jpg
4This image has been released into the public domain by the Wikimedia author Nithin Rao.
http://commons.wikimedia.org/wiki/File:Ct-scan.jpg

Computer-Aided Screening of Capsule Endoscopy Videos 3

[Wireless Capsule Endoscopy (WCE)| has the potential to overcome several of the issues listed pre-
viously. It is conducted using a small swallowable capsule (Figure [I.3). The size of such a capsule is
similar to the size of a large vitamine pill. Also, the capsule is equiped with one or two miniature cam-
eras, a battery and a wireless transmitter. When the capsule is swallowed, it passes through the entire |
[gastrointestinal tract] continuously generating images and transmitting those to a receiving device, which
is usually worn by the patient on a belt. Thereby, wireless [capsule endoscopy| already overcomes two
limitations, which apply to the conventional It allows to examine the [12],
and the procedure can in theory be conducted independently by the patient. In future, a patient could
then buy a kit containing a capsule and instructions in a pharmaceutical store. They could record the
video data on a mobile device and upload it to a screening service.

The quality of camera capsules|has steadily improved in the recent years and will continue to do so.
The production cost would now allow for mass screening as well. However, the amount of data produced
by [capsule endoscopy|and the processing requirements are already challenging. A capsule completes the
journey through the whole digestive system in between 5 and 8 hours. Examining such a video sequence
that is several hours long exeeds the time of a manual examination. It is a tiring and expensive piece of
work and a questionable use of human resource [13]. To meet the needed efficiency in future health care
systems, it is therefore necessary to develop tools to automate as much of the screening as possible.

(a) Side (b) Front

Figure 1.3: Images of a capsule with a single cameraEl

(a) Small Intestine (b) Colon

Figure 1.4: Images taken with a camera capsule

A [camera capsule]usually takes thousands of images during this procedure. Two examples of images
acquired with ajcamera capsule|are presented in Figure[T.4] Currently, capsules with a variable frame rate
between 2 and 6 [frames per second (FPS)|and a resolution of up to 512x512 pixels are available. Only 5

5 Both images have been released by the author into the public domain;
https://commons.wikimedia.org/wiki/File:CapsuleEndoscope.jpg
https://commons.wikimedia.org/wiki/File:CapsuleEndoscopeEnd.jpg

6CC BY-SA 3.0/ Attribution to Dr.HH.Krause at English Wikipedia;
https://commons.wikimedia.org/wiki/File:Normales_Colon.PNG
https://commons.wikimedia.org/wiki/File:Diinndarm. PNG

4 Computer-Aided Screening of Capsule Endoscopy Videos

hours of video at this resolution with the minimum frame rate of 2 already equates to about 28 GB
of uncompressed video data. According to Deligiannis et al. [[14], contemporary video capsules employ
conventional coding schemes operating in a low-complexity, intra-frame mode like Motion JPEG, or do
not even use compression at all. Given the technological progress, both frame rate and resolution are
very likely to increase in the near future. To allow mass screenings, it is therefore necessary to design a
system which is reliable as well as scalable.

1.1.2 Computer Aided Diagnosis

[Computer Aided Diagnosis (CAD)| are computer-based systems in medicine, which help doctors with
the interpretation of medical imaging data. Commonly, the term is used in radiology for systems that
process data from X-ray or [Magnetic Resonance Imaging (MRI)| As the use of camera capsules|spreads
and becomes more and more common, it is also used for systems, which process [capsule endoscopy]
videos and images. For there is already a range of systems available, developed by various
universities and hospitals, which yield results close to a 100% detection rate for polyps greater than 1 cm
in diameter [[15H18|]. Most of these systems are based on the reconstruction of theisotropic volume|from
the axial images, which were recorded by [Computed Tomography (CT)| and the detection of geometric
features. For the final classification, artificial jneural networks| or [Support Vector Machine (SVM)s| are
commonly used [19]]. Artificial [neural networks| are statistical learning algorithms, which are inspired
by natural neural networks| such as the human brain. They consist of a usually large number of simple
processing units, which are simulating and weighted connections in between those units [20].
are machine learning methods, searching for a function that defines a separating the
different classes of data points with a maximal margin. The concept of [SVMs|is discussed in more detail
in [21]]. Similar solutions for processing videos are currently being researched [22}23]],
but the data collected by |capsule endoscopy|is significantly different from the one collected by
While[CTC|provides images of cross-sectional area, containing strong geometrical features and[accuracy]
[capsule endoscopy| provides two-dimensional photos, which show a projection of three-dimensional
space. In addition, the images are usually subject to perspective distortion and variable focal sharpness
due to the wide-angle fixed-focus lens. These conditions make it significantly more difficult to implement
a[CAD]solution for [capsule endoscopy] videos.

Currently, there are several research prototypes, which show promising results. Most of these systems
use [feature extraction|and [SVMs| for detecting polyps. In this thesis, we will show that despite promising
results, the problem of automatic detection has not yet been solved. Also, several of these proposed
solutions have undergone only minimal testing, most likely due to the lack of enough test and training
data. Therefore, the first issue we address is the collecting of data.

1.1.3 Collecting Data for Training and Testing

Collecting data for training and testing is a difficult task due to numerous issues, including the sensitive
context of patient information and the lack of appropriate tools. A test dataset does not only contain
the video sequence created by the it must also contain information on what is visible in
each video frame. The video must therefore be precisely annotated frame by frame, and regions must
be selected where a is visible. To make sure that the dataset is correct, this annotation needs to
be done by a specialist. If done completely manually, this is a lot of tiresome work. Ideally, a specialist
would only mark a[lesion| once and a [tracking| software would then generate the complete dataset. There
are several annotation tools available, for example, Arthemis [24]], VATIC [25] or Anvil [26], but they
are either not easy to use or not easy to deploy. Therefore, related to the data collection task, we aim for
a tool, which is exceptionally easy and time saving to use for the end user, and is easily deployable in a
restrictive medical environment.

Computer-Aided Screening of Capsule Endoscopy Videos 5

1.2 Problem Definition / Statement

A video sequence acquired by alcamera capsule|can last for several hours. A specialist must then evaluate
the entire video manually to detect any lesions. As shown before, this procedure does not scale very well,
because specialists and their time are a very limited and expensive resource. If we manage to further
automate this process with the help of computers and limit the time a specialist has to spend, it might be
possible to screen larger groups of the population and diagnose any conditions early on. Assuming, that
an algorithm is reliable, it can potentially also reduce human-error imposed by watching and evaluating
long video sequences of capsule endoscopies. This could eventually lead to earlier and more effective
treatment of conditions and, therefore, decrease the loss of life, due to digestive diseases such as
[Canceql

Some research has been done to find specific methods or algorithms for detecting lesions on
lendoscopy|images. This research is, however, still in its infancy. Also, there is no well adopted standard
solution for the machine processing of |capsule endoscopy| videos. To allow for further experiments with
different methods and algorithms, we aim for a prototype of an integrated solution that can be used for
the following tasks:

* Collecting and Annotating of Data

— Collecting video sequences from hospitals (collecting data).
— Tagging of lesions / irregularities by a specialist (manual classification).

— Tracking of tagged lesions in the same video sequence (semi-automated dataset creation).

* Machine Learning

Applying filters and preprocessing steps to the video sequence (video pre-processing).

Machine learning based on the previously created dataset (training a classifier).

Automated detection of lesions by previously trained classifier (automated classification).

Visualizing and evaluating the detected lesions in the video on screen (data visualization).

For testing our proposed solution, we also experiment with different types of Most of
the methods that have already been researched by others are either based on extraction of geometric
features or on[Local Binary Pattern (LBP)s|forwarded to a[SVM| We test different state-of-the-art image
recognition and retrieval methods that are already available and used for other purposes, such as face
recognition or [Content Based Image Retrieval (BRIR)|

1.3 Limitations

With this thesis, we research the process of building an integrated solution for automatic detection of
lesions using [capsule endoscopy| videos. In this early research stage, it is mostly a process of gathering
knowledge about the subject and implementing the required building blocks. Designing, prototyping and
implementing solutions for collecting the required data is part of the thesis. The goal is to develop a
prototype of the entire system to prove the basic concept of using machine learning for the detection of
lesions and to allow further experiments with various detection methods. The deliverables do, however,
not include a production ready system or

1.4 Research Method

For this thesis, we follow the design paradigm described by the |Association for Computing Machinery)
Task Force on the Core of Computer Science [27)]. We design, implement and evaluate a prototype
solution for the automatic processing of capsule endoscopy| videos. To achieve the desired outcome, we
first study literature that focuses on machine processing of video data and on machine learning
for object detection. We then prototype tools for acquiring video data and creating a complete dataset

6 Computer-Aided Screening of Capsule Endoscopy Videos

based on the acquired data. These tools are evaluated by presenting and discussing the prototypes with
physicians, who are supposed to use the developed software. In the next step, we implement software
for training with the acquired dataset. We experiment with three different methods for object
detection and implement the visualization of the resulting detector output. Eventually, we evaluate the
three methods using well known machine learning metrics and measuring the time needed for training
and running the respective [classifiers|

1.5 Main Contributions

In this work, we present methods that address the problem of detecting polyps or other lesions in
videos. Since the issue of collecting video sequences and creating complete datasets
from these videos, as well as the thorough testing and comparing of different approaches, has not been
sufficiently addressed previously, we have put our focus on implementing a solution to facilitate this.

We have therefore developed an HTML5-based web application, which can be used by physicians
to upload videos and do an initial of lesions. Further, we have developed a portable application,
which can be used to create complete datasets from the initially tagged videos by using automated object-
and manual correction. We have built different filtering and detection mechanisms into the same
tool. The developed software is a prototype of an integrated machine learning and detection pipeline and
can be used for conducting further experiments with different[classifiers|and detection methods. We have
also conducted experiments with different machine learning approaches. Specifically, we have evaluated
if a based [cascading classifier] a [Histogram of Oriented Gradients (HOG)}{classified or a
search based global-image-feature-classifier can be used for detecting lesions in[colonoscopy| videos. An
important conclusion of these experiments is that state of the art Haar-based and [HOG}based object-
recognition approaches are not suitable for detecting lesions in the [intestines| This is mostly because of
the unknown orientation of the objects to detect, but also because of the huge variety of appearances such
lesions can have.

However, our experiments with a search-based approach using [global image features| are very
promising. Doing a(leave-one-out cross-validation|on the whole dataset of the ASU-Mayo Clinic polyp
databaseﬂ we achieve a weighted average [Erecision of 93.9% and a weighted average of 98.5%.
The measures [precision} [recalll [accuracy|and the process for[leave-one-out cross-validation|are explained
in Section [6.2] For this search-based approach, we have implemented separate tools for indexing and
classifying, which can also be used beyond the use case of detecting lesions in the We have
implemented all our with the requirement to minimize the processing-time. All our [classifiers|
achieve a processing-time which would allow for mass-screenings. However, the poor of our
Haar-based and [HOG}based methods for detecting lesions clearly disqualifies those methods for our use
case. A further problem with particularly the OpenCV-traincascade based approach is the time required
for training the Depending on the number of samples, this process can take several weeks and
it does not allow for incremental training to refine a[classifierj over time.

A part of the software that we have developed has already been presented at the Multimedia
Systems 2015 conference in Portland [28]]. We have received positive feedback, and we have also
received requests for providing the code of our implementations under an license, to allow
others to reuse it for further research.

All the software developed for this thesis is available under the terms of the [GNU General Public
License| version 3. The source code can be obtained from Bitbucket, and all the repositories are listed in

Appendix [A]

Thttp://www.polyp2015.com/wp/?page_id=164

http://www.polyp2015.com/wp/?page_id=164

Computer-Aided Screening of Capsule Endoscopy Videos 7

1.6

Outline

This thesis is subsequently structured as follows:

In Chapter [2| we discuss literature that focuses on topics related to the automated detection of
lesions in the colon. This particularly includes image recognition, existing screening methods,
machine learning and dataset creation.

Chapter [3] presents the details of designing, implementing and evaluating the tools, needed for

collecting from physicians and hospitals.

In Chapter 4} we present the experiments we have conducted and the tools we have implemented
for creating complete datasets, by tracking previously tagged regions of interest. We further
evaluate our proposed tool, by measuring the time that can potentially be saved using it.

Chapter [5] presents the design, the implementation and the evaluation of several filtering
mechanisms as preprocessing steps for our toolchain.

Chapter [0] presents our research with regards to three different machine learning approaches for
detecting lesions in colonoscopy videos. The chapter contains in-depth information on the design
and implementation, the classifier training processes and the evaluation of all three approaches.

In Chapter [/, we provide a short summary of our work, list our main contributions and give an
outlook on future work.

Computer-Aided Screening of Capsule Endoscopy Videos

Chapter 2

Related Work

With this thesis, we are researching potential solutions for automating the detection of lesions in|capsule
videos. We are building the tools needed to test and evaluate different algorithms and
approaches for such aclassifier] This involves a variety of sub-tasks, such as collecting video sequences,
preprocessing them, annotating them and training a[classifier] using machine learning or global features
indexing. In this chapter, we present samples of the most interesting and relevant existing work that is
related to these tasks. We collect and analyze information that we can use to create an integrated solution
for detecting or its precursors. The chapter is organized as follows. In the first section, we
discuss work related to building a that can be used for machine learning. In the second
section, we analyze an article that proposes an approach for reducing the amount of frames that need to
be reviewed. In the subsequent section, we analyze different approaches for the automatic detection of
and publications related to this topic. Finally, we summarize the results and evaluate them
against our own requirements.

2.1 Building a Training Dataset for Machine Learning

Typically, the first problem one has to solve for training a using machine learning is building
an appropriate This dataset has to fullfill several requirements. It must be big and
diverse enough to allow generalization and avoid [overfitting] but it must also be specific enough to avoid
learning random data due to the correllation between the samples being too small. In machine learning,
is the phenomenon of a encoding random noise, caused by training with too few
training samples or too long training cycles. In such cases, it can happen that the learner encodes random
features, which are common among the few available training samples, but do not abstract the relation
between the samples [29]. This is why it is crucial to collect a big amount of high quality training
data. We therefore also look into related work about collecting and segmenting of video sequences, and

annotating and of regions of interest.

2.1.1 Video Segmentation

[Capsule endoscopy|usually produces a video sequence with about 60,000 frames. Due to the time con-
sumption for screening all these frames, it may be necessary to split such a video into smaller segments.
The goal of [video segmentation|is, to divide a video into smaller meaningful sections. These sections
can then be processed separately and different processing can be applied depending on the content of the
section.

Li et al. [12] research the feasibility of applying motion analysis to video sequences as a preliminary
step for automatic video analysis. A study of the two approaches - Adaptive rood pattern search (ARPS)
and Bayesian multi-scale differential (BMSD) optical flow - is presented. These approaches are typically
used for general motion analysis. To test the feasibility, the article focuses only on motion analysis
and ignores other features such, as color and texture. A basic problem of motion analysis with
videos is the variability of the content captured on frames. This variability is caused by the

10 Computer-Aided Screening of Capsule Endoscopy Videos

chaotic movement of the capsule itself, as well as the peristalis of the [intestine] Further, the[mucosalis a
non-rigid body which also undergoes complicated motion patterns.

ARPS is a simple fast block-matching algorithm: A video frame is partitioned into blocks of a pre-
defined size, and then these blocks are compared to blocks in the subsequent frames, searching a specific
range for the purpose of extracting a motion vector for each block. BMSD is a combination of differ-
ential constraints in local spatial regions. It is described in more detail by Simoncelli et al. [30]. Both
algorithms eventually produce a motion vector field per frame and a motion intensity curve per video se-
quence. A peak value along the motion vector curve respresents a big motion activity. A global threshold
can then be used to decide whether a value along the curve is a change of content. Comparing the two
algorithms and their respective motion vector fields, it seems at first sight that BMSD would be more
suitable for accurate description of motion patterns for [capsule endoscopy| In contrast to ARPS, BMSD
does not assume that each block in a frame undergoes only translation without scaling and rotating. How-
ever, an experiment, conducted in [12]], evaluating 10 short video segments with 200 frames each and a
resolution of 512x512 pixels shows that the best average performance for using ARPS (71.89%)
is higher than for BMSD (55.8%). Thus, while BMSD can describe the motion better, it causes inferior
performance for capsule video endoscopy segmentation. The article concludes that motion analysis may
not be sufficient to describe the scene change in acapsule endoscopy| video and that additional features,
such as color and texture, should be considered as well. This might allow increasing both and

precCision;

Primus et al. [31] propose a method for segmentation of endoscopic videos, based on spatial and
temporal differences of motion in subsequent video frames. This paper is aming at providing a method for
automated segmentation of videos to allow for content based analysis and search of big video
archives. The proposed segmentation approach is based on temporal and spatial differnces of motion
patterns caused by camera movement or the movement of endoscopic instruments. Feature points are
defined and traced in subsequent video frames. These results are then spatially grouped and a single
motion value per group is calculated. If all the groups provide similar and high values, the movement
is caused by the camera. If the values are similar and low, there is no relevant movement. If the values
of the groups are significantly different, then this is most likely caused by movement of endoscopic
instruments. This approach is specifically researched for, but not necessarily limited to the usage with

endoscopy| video sequences.

The approach is split into three steps. The first step is motion detection, using matching point features
in consecutive frames. These point features must be spread eavenly to detect various kinds of motion.
The second step area motion estimation is conducted by dividing the frame into smaller rectangular areas
and combining the motion vectors within these areas into a single agregated motion vector. In a third
step, all the aggregated motion vectors are compared. If no relevant motion happened, all the agregated
vectors are similar to each other and are close to zero. If the camera was moved, all the motion vectors
should be similar to each other and should be above a certain threshold. In case equipment
appears on the frame, the motion vectors of the different groups should be significantly different. The
areas where the object appears, should then have a high value for the motion vector and all the others
should have a value close to zero. This procedure is repeated with several different settings for window
size and threshold in order to find the best fitting border frame.

This approach was evaluated with 20 distinct videos of and endoscopic surg-

eries, recorded in HD resolution. The transition from one segment to another cannot always be exactly
defined, as the transition might span across 25 frames or more. Therefore, a detected segment transition
within 25 frames of the actual transition is considered a true positive. An average presision and [recall of
86% was reached with this approach on the testing data.

We consider this article interesting in particular for the idea of detecting motion in spatial sub-regions
of different sizes and combining the respective results. However, motion analysis is not a specific focus
point for this thesis. This research is related, but mostly as a preprocessing step for the automatic pro-
cessing and detection of lesions.

Computer-Aided Screening of Capsule Endoscopy Videos 11

Del Fabro and Boszormenyi [32] provide a chronologically sorted overview of several previously
published approaches for|video segmentationl All the given approaches are classified into seven different
groups based on their usage of low level features: visual-based, audio-based, text-based, audio-visual-
based, visual-textual-based, audio-textual-based and hybrid. These class names describe the features
which are used for the segmentation. Where visual features are the optical content of the video frames,
textual data is meta data coming with the video, audio data is the audio track of the video. Hybrid
approaches are essentially combinations of the other previously mentioned approaches. The challenge
of [video segmentation|is described as segmenting a video into several separate semantically meaningful
scenes. A scene thereby may consist of multiple and a shot is described as sequence of
frames limited by two shot boundaries or end of the video sequence. A shot boundary is defined as
the physical boundary, where camera changes happen. The initial step of most the scene segmentation
approaches is to perform shot detection. Detecting scene boundaries based on keyframes of the shots,
then allows to reduce the computational complexity for the scene detection. The fundamental task of the
scene detection is then to identify semantically coherent shots, which are temporally close. There are
three basic methods for scene segmentation:

* Rule-Based Methods were proposed which consider for example film-editing rules or film
grammar. These film grammar describe rules for the production of movies. For example, that
all cameras showing the same scene should be on the same side to preserve the background, or that
the direction of motion should be preserved in consecutive shots of the same scene. These rules
can be leveraged for the detection of scenes.

* Graph-Based Methods transform the scene detection into a graph partitioning problem, where
shots are clustered based on similarity and sometimes also temporal closeness.

* Stochastic-Based Methods use stochastic models for the boundary detection. This turns boundary
detection into an optimization problem for maximizing the probability of correct placement of the
scene boundaries.

The paper also provides an overview of how the different approaches were evaluated, and what kind of
video data has been used. It further contains a section on different strategies for the segmentation of dif-
ferent types of video genres. The video genres that have been used are Movies, TV series, News, Sport
Videos, Documentaries, Home Videos, Cartoons and TV shows. For evaluating the quality of a method,
the measures [Precision| & [Recall|and [F-score| are most commonly used. These measures are explained in
Section[6.2] The paper concludes that it is not possible to provide an accurate quantitative comparison
of the different algorithms presented in the paper, due to non-unified datasets and evaluation methods.
It is further mentioned that all the different approaches have their respective strengths and weaknesses.
The paper can therefore be used as a guide for finding the right approach to start with for a given problem.

We consider this survey only remotely relevant to our work. Partially this is the case, because we
cannot rely on any audio or textual information, which already reduces the applicable approaches signifi-
cantly. Also, at the current early stage of our research, we expect to receive already short video segments,
which will not require further segmentation at this point. While the topic of segmenting videos is clearly
related as a preprocessing step of an automatic endoscopy| video processing pipeline, it is only of a rather
remote interest for our current research.

2.1.2 Video Annotation

To build a ground truth dataset, it is necessary to collect video sequences with frames that show an object
to be detected (positive frames), as well as frames where no such object is present (negative frames). It is
then necessary to select the region on the positive frames where such an object is visible. Such selection
builds a dataset containing both positive and negative samples. To create such a dataset, the appropriate
tools ar required.

12 Computer-Aided Screening of Capsule Endoscopy Videos

Liu et al. [24] describe a very advanced annotation tool called Arthemis. Arthemis is part of an
integrated capturing and analysis system for called Endoscopic Multimedia Information
System (EMIS). EMIS provides functionality for collecting and archiving videos, uploading
videos to a storage server, removing redundant video frames, separating or merging video sequences,
segmentation based on audio features (speech recognition), post-processing and analysis of colonoscopic
procedures. Arthemis was designed to facilitate the process of reviewing videos, locating and
annotating important content, and exporting annotated content for research, teaching and training
purposes. This tool supports annotation according to the Minimal Standard Terminology (MST).
MST is an internaltionally accepted terminology standard for digestive proposed by the
European Society of Gastrointestinal Endoscopy (ESGE) in collaboration with the American Society
for Gastrointestinal Endoscopy (ASGE) and the World Organization of Digestive Endoscopy (OMED).

Arthemis supports annotation by ellipse selection and free-hand-drawing. It is written in Java and C,
and uses a third-party MPEG encoding/decoding—libraryﬂ for an extra fast playback mode, as Microsoft’s
multimedia toolkit DirectShow was considered not to provide the needed performance. A special
feature of Arthemis is that it provides the ability to view automatically detected segments of
videos. Annotated figures are stored in a proprietary format based on [Extensible Markup Language]
The software has been designed to be easy to use by physicians, allow fast playback, and be
efficient, robust and extensible.

According to the article, the software starts to become a useful tool for endoscopic research and edu-
cation. It is proposed to be used by Medical students, residents and fellows, for learning to recognize the
common endoscopic anomalities and the therapeutic modalities, used by experienced endoscopists. The
user-interface of Arthemis is considered to be intuitive and easy to use. The component-based design of
the software is listed as a strength, since it allows multiple developers to develop new components at the
same time, without worrying about losing the control of the code.

We consider this article very significant, as it describes an existing, complete implementation of an
integrated solution for collecting, archiving, processing, annotating and visualizing videos.
A potential weakness of the implementation is the use of proprietary components. The deployment re-
quires both a server system and installation on the client side, making the entire solution hard to obtain
and distribute. Also, the number of supported features seems rather large. Generally, a large number of
features can be considered a strength, it usually also makes a tool less intuitive to use.

Riegler et al. [33] present a web based annotation tool, supporting several different kinds of anno-
tations. The tool is not specifically designed for medical usage. The article researches the benefits of
different video annotation features in communicating general concepts of a video game based on cap-
tured game sessions. Game play recordings were selected as a domain, because it specifically requires
the software to cope with fast camera movements. The tool provides simple and easy to use controls
for annotating with temporal and spatial information and functionality to enrich the content of the video
with added information. Annotations can be done by free hand drawing on top of the video, either dur-
ing playback or alternatively, when the video is paused. The annotations will be replayed during video
playback; if an annotation was added when the video was paused, the playback pauses for replaying
the annotation. An additional feature is the possibility to zoom into the video; annotations created in
zoomed-in mode will automatically be replayed in zoomed-in mode. For simple temporal annotations
the tool further provides LikeLines [34]] - a bar below the video, displaying a one-dimensional heatmap.
The heatmap displays which parts of the video received explicit likes”. The tool is written entirely in
HTMLS5 and JavaScript, using the HTMLS video element for playback and HTML canvas for drawing.

The tool presented in this article is of particular interest for us, because it provides a straight forward
approach for collecting video sequences and creating annotations, which we can potentially reuse for
collecting videos from hospitals; we can provide similar functionality to receive basic an-
notations from physicians. As mentioned in the conclusion for this article, users, who tested the software,
still considered it too complicated and considered training necessary for creating good annotations. It is

"http://www.mainconcept .com

http://www.mainconcept.com

Computer-Aided Screening of Capsule Endoscopy Videos 13

also stated that the ability to slow down the playback when creating an annotation is important and that
users want text based annotation in addition to the hand drawn one. The zooming function was not con-
sidered important, unless the video sequence to be annotated is of high resolution and high level of detail.

The use of an annotation tool for endoscopy| videos is further researched by Lux and Riegler [35].
This demo paper focuses on common interaction methods for experts to annotate videos by recording
speech and drawing onto the video. The paper aims at gathering information about the recorded videos
in an easy and simple way, so that the annotation effort is minimally invasive for the daily routine of the
experts. A tool for an Android tablet computer is presented, which uses the touch screen, motion sensor
and speech recognition for user interaction. This tool is required to be easily integratable into existing
business processes in medical information systems. Hence, complicated installation and hardware re-
quirements were not acceptable. A low cost off-the-shelf tablet computer, however, is considered a good
choice. The following features are integrated into the software: The video can be manually segmented
into non-overlapping pieces, selected segments can be annotated using speech, text annotations can be
added by using the integrated google speech-to-text web service, sketch-like drawings can be added on
top of the video, and shaking the device is used for annotating important events in the video sequence.
All the annotation information is kept and stored separately from the video file. Audio recording is
stored in a compressed form, and the drawings are stored as path information. As a technical challenge,
the paper mentions the drawings which have to be drawn on top of the video overlay. The replay is not
accurate in terms of frames, but is considered good enough in terms of and excellent in terms
of robustness and performance.

We conclude that it is crucial to integrate in a minimally invasive way with the environment of the
experts, who we want to collect information for us. It seems very important to provide them with a
solution which is very easy to use and, at the same time, very easy to deploy in a restricitve medical
environment.

2.1.3 Object Tracking

Screening a complete video and marking any lesions using [rubber-band-selection| on every
single frame is a very tedious and time consuming task. Instead of doing this manually, it might be
possible to use software for [tracking] of regions that were previously selected. Ideally, a[lesion|then only
needs to be selected a single time.

Hare et al. [36] present a framework called Struck, which implements adaptive visual object[tracking]
The method that the paper describes in detail is based on structured output predition. It makes use of
a kernelized structure output which is trained and updated during the It can therefore
adapt to the tracked object, changing appearence or perspective over time. Struck uses a budgeting
mechanism, that prevents from unbounded growth of support vectors. While the Haar-like feature
representation has almost become a standard for by detection, the paper presents a novel
approach on integrating the adaptive learning directly with the Using this approach, there
is more information available for the learning task than only a binary classification of the previously
detected data. This avoids an artificial binarization step, which is common for other state-of-the-art
trackers, and the relative relationships between different samples can be taken into account for learning
and updating the tracker. The paper also describes the budgeting mechanism for the support vectors.
Basically, whenever the budget is consumed, the support vector resulting in the smallest change to the
weight vector is removed. According to the authors it is also a strength of the design, that it is easy to
incoroprate new image features and [kernels|into the presented[SVM]learning framework.

For performance experiments, 6 different types of Haar-like features were used at 2 scales on a 4x4
grid, resulting in a total of only 192 features. A radius of 30 pixels was used for searching and 60 pixels
for updating the clasifier. The results of these experiments show that Struck outperforms state-of-the-art
trackers in malmost every test sequence.

14 Computer-Aided Screening of Capsule Endoscopy Videos

A very advanced approach for object is presented by Kalal et al. [37]]. This paper aims at
enabling of objects in video streams taken by hand-held cameras, where various objects move
in and out of the scene and the camera itself is moving as well. It is also the goal to allow this type
of in realtime. For this purpose, the paper describes a framework called
[Learning-Detection (TLD), which decomposes long-term into the three separate components
learning, and detecting. The component estimates the motion of an object in consecu-
tive frames. The detector performs a full scanning of the image and localizes appearances of previously
learned objects. The learning component monitors the performance of the tracker and the detector and
generates training samples to learn from previous errors. The learning mechanism uses the out-
put to verify the output of the detector and updates the detector accordingly. The learning method is
using a pair of separate “experts”. The P-expert estimates the object location in the current frame using
a frame-to-frame trackier. It identifies false negatives and generates positive samples for subsequent up-
dating of the The N-expert analyzes all the responses of the detector, matches those against
the data, reinitializes the tracker with the maximally confident patch and generates negative
samples for updating the The P-expert thereby increases the the generality and the N-expert
increases the discriminability of the This a semi-supervised learning paradigm and it is called
P-N learning. The learning method is able to deal with arbitrarily complex video streams with frequent
failures and it does not degrade the detector in case there is no relevant information contained
in subsequent video frames. The paper also provides a performance evaluation, where is compared
with competing methods by calculating [precision} recalll and [F-scorel The evaluation was done
with 10 different video sequences and various different objects were tracked. scores best in 9 out of
these 10 video sequences and therefore clearly shows superiour overal performance.

We consider this paper highly relevant because of the very good tracking|performance that is achieved
with this approach. The ability to do in real-time and to continuously adjust and improve the
detector and thereby reliably track a non-rigid object is very interesting. Another interesting feature of
this method is the built-in functionality to detect when an object is no longer present in a new frame.

2.2 Frame Reduction

As mentioned before, one of the main goals for researching automatic detection of lesions in |capsule]
lendoscopy| videos is to reduce the amount of time a human specialist has to spend evaluating the video.

Tsevas et al. [38] present a different approach to this problem. The paper proposes an [unsupervised
method to reduce the number of frames that must be evaluated manually. The approach is based on
clustering and non-negative matrix factorization (NMF). A video is thereby summarized in a smaller
representative subset of video frames. Those video frames then still need to be evaluated by a human.
The approach has shown promising results, however, it was tested on a controlled dataset consisting
of a single video sequence only. The method consists of three steps. First, dimensionality reduction
of the initial dataset is applied using a square non-negative similarity matrix. This matrix is then used
as input for the next step, which creates a predefined number of clusters of video frames by applying
fuzzy c-means (FCM) clustering. Finally, the two NMF algorithms symmetric NMF and non-negative
lagrangian relaxation are applied on the clusters to extract representative frames. The number of clusters
must be chosen manually. According to the article, the number of clusters did not drastically affect the
summarization result. A larger number of clusters results in more smooth results for the summarization,
but also in an increase of computation time needed.

The article concludes that a significant reduction of the total number of frames was achieved, which
should lead to a smaller inspection time and, therefore, an increase in the productivity of the experts.
The summary that was created from a single video sequence contained representative frames from every
frame neighbourhood present in the video with close similarity of the neighbouring frames.

We conclude that this approach might be valid for reducing the number of frames that need to be
further inspected by a detection tool or by a specialist. It is a viable option as a preprocessing step.

Computer-Aided Screening of Capsule Endoscopy Videos 15

However, the severity of dropping any significant frames of a video sequence must be considered.
Especially, when taking into account that there has only been very little testing of the method and the
only results presented originate from a single video sequence of a single patient.

2.3 Methods for Automatic Detection of Colon Cancer

We identified two different approaches for the automatic detection of These approaches
are Geometrical Analysis and Machine learning. They can be used for imaging data that was recorded
with a conventional colonoscope or with afcamera capsule] It is also possible to use these methods with
data from a |Virtual Colonoscopyl However, such data is significantly different from camera recorded
data, as it is acquired using a[CT|scanner. We will therefore discuss this approach in a separate section.

2.3.1 Geometrical Analysis

Analysis of geometrical features can be used as a method for detecting polyps in [capsule endoscopy]
video frames. The approach is usually based on a set of rules derived from empiric data, such as size,
curvature or texture of a[polypl

Mamonov et al. [39] present an efficient algorithm for a[binary classifier]to detect colon polyps. The
method is called binary classification with pre-selection, and it aims at reducing the amount of frames
that need to be manually inspected. The algorithm operates on separate input frames and labels each
frame as either containing a[polyp|or not. It is based on the assumption that polyps can be generalized
as protrusions that are mostly round in shape and was tested on a dataset created from frames of video
sequences of five different patients.

The algorithm converts video frames to grayscale and applies pre-processing to reduce vignettingE];
the image is circularly extrapolated to remove any border regions caused by the lense of the camera.
Texture information is used as a source of information for mid-pass filtering. Frames with too little tex-
ture are discarded because polyps ususally have a highly textured surface. If there is very little texture
this means that there either is no or the whole picture is blury and a could therefore not
be detected anyway. Frames with too much texture are discarded as well, because strong texture is an
indication of the frame containing either trash or bubbles, and a[polyp|can therefore not be detected. This
straight-forward discarding of pictures is a potential weakness of this approach. However, even at low
frame rates it is statistically likely that a[polyp|is visible in multiple video frames. Once a frame has been
pre-processed and if it was not discarded by the texture analysis, mid-pass filtering is applied to isolate
protrusions within certain size limits. This filters out folds of the as well as very small artifacts.
Then, the binary image is segmented and decomposed into separate components that represent features
in the frame. The [tensor of inertialis calculated for every feature to remove any features that are stretched
beyond a certain treshold, because protrusions which have a very stretched oval shape usually belong to
a fold of the Finally, a best fit ball radius per feature is used as an input parameter to the
If the decision parameter is above a certain threshold, then the frame is classified as containing
alpolyp} In addition to the video frame, the algorithm also accepts certain numerical parameters as input.
These numerical parameters have to be chosen in advance. The manuscript specifically discusses the
robustnes of the algorithm with resprect to these input parameters.

When tested with video data of five different patients, the algorithm reached a of 81.25%
per and at a level of 90%. However, the of the algorithm with regards to
single input frames is significantly lower and only reaches 47%. The length of an input sequence varied
between 2 and 32 frames and a total of 16 sequences were tested. The false positive rate on the total of
18,738 frames not containing afpolyp|was 9.8%. Assuming that it is usual to have multiple frames avail-
able for a single these numbers seem quite promising. Basically, it means that time a specialist
spends on evaluationg video data could be reduced by about 90%.

ZReduction of brightness or saturation at the periphery of the image, compared to the center

16 Computer-Aided Screening of Capsule Endoscopy Videos

A similar approach is presented by Hwang et al. [23]. This approach also focuses on shape, in
particular on ellipses, which is a common shape for a Using this method, a frame is first
segmented into regions by a wathershed-based image segmentation algorithm. This algorithm is based
on the observation that polyps are spherical or hemispherical geometric elevations on the surrounding
Ellipses are then fitted into the segments by constructing a binary edge map for each segmented
region and using a least square fitting method. A threshold-function is used for the creation of the edge
map. Regions with too little edge information in their respective edge map are discarded. These ellipses
are then further evaluated for matching of curve direction, curvature, edge distance and intensity. The
direction of the parabola from any part of the ellipse must be matching the direction of the corresponding
part of edges for the ellipse to be considered a [polypl This assures that the detected edges build an
ellipse-like shape instead of, for example, a parallel one. The curvature of the ellipse is split into six
parts. At least two adjacent parts must have a strong edge pattern, otherwise, the ellipse is discarded.
Lumen areas are filtered out by applying a threshold on the intensity of the ellipse.

The speciality of the approach presented in this paper is that after the first frame a potential [polyp| was
detected, subsequent frames are also searched for the same characteristics using a mutual-information-
based image registration technique. This allows to apply a threshold in number of frames for the detection
to reduce the number of false positives.

The paper also provides the results of an experiment, where a video sequence with a frame rate of
15 was processed. Out of 27 available “’polyp shots” 26 were detected correctly with a total of 5
false-positives. Identically to [|39], the authors assume that there are multiple frames available of the
same [polyp|and a certain number of false-negatives is accepted in order to balance the number of false
negatives. Obviously, the correctness of this assumption depends heavily on the frame rate of the camera
that is used for recording the video.

A different method that is not directly connected to the automated detection of but
might still be valuable is presented by Hong et al. [40]. The article describes a method for fully
automated 3D reconstruction of colon segments from individual images. This method does
not require a prior [CT]|scan or any other positioning information. The paper mentions several possible
applications for the method. Among those applications are post-procedure quality control to determine
the percentage of the inspected areas of the colon during withdrawal of the real-time quality
assistance by creating a 3D map of the uninspected areas, and [colonoscopy|education. The method takes
advantage of the tubular nature of the colon. The reconstruction is conducted in the following steps.
First, the colon fold contours are derived. Then, reverse projection is performed, to place fold contours
in 3D space and correct distortion caused by the camera lense. In the next step, the distance of the folds
from the camera is estimated, based on the intensity of the contours. Finally, the folds are used as a frame
for the virtual colon structure, and the surface and wall between neighboring folds are augmented.

The paper also proposes a method for brightness intensity calibration. The calibration is used to
compensate for uneven intensity levels caused by characteristics of the camera and its light source. The
calibration should be done before pixel intensity is used to estimate distance.

A number of difficulties for creating a 3D reconstruction are mentioned. Only partial edges of colon
folds can be visible, because parts of fold surface can be hidden behind another fold. Strong light
reflection, blood vessels, stool or other obstacles can appear on images and cause strong edges. The
colon shape is not always circular; in certain sections it can be triangular as well. Further, there is no
ground truth information available, except for synthetic colon models, because a colon is not a rigid
object. Even when comparing CT acquired data with images of the same patient’s colon, the
results would be different due to body movement or variable inflation of the colon.

The method, presented in the article, was tested with images of a synthetic colon model, and the
tests have revealed encouraging results with only small average reconstruction errors. The method has
also been tested with 38 images from different segments of real colon from 6 procedures,
to show that it also works with images of a real colon. As mentioned before, it is, however, not possible
to compare the results from the reconstruction of a real colon to any ground truth information, because it
is impossible to obtain ground truth information.

Computer-Aided Screening of Capsule Endoscopy Videos 17

While not explicitly mentioned in this paper, a good reconstruction of a colon should also allow the
automatic detection of protrusions, as the underlying geometric information is available in the model.
However, it is unclear if a 3D reconstruction, as described in this paper, is also possible with imaging
data recorded by a When conducting a conventional the colon is usually
inflated with CO,, but this is not the case for a|capsule endoscopyl The images recorded by a
will therefore not provide a nice tunnel view of the colon and, thereby, also contain less intensity
information that can be used to reconstruct the depth.

2.3.2 Machine Learning

Machine learning has many different use cases. A common one is detecting objects on images.
Nowadays, there is also research for using machine learning to detect lesions, like tumors, ulcer,
polyps or bleeding in [capsule endoscopy| video sequences. In particular, the use of is com-
mon [11}[13}41-43]].

Li and Meng [43] describe a computerized tumor detection system for [capsule endoscopyl The
system is based on LIBSVM [44] with radial basis function LIBSVM is a an
machine learning library, developed by the National Taiwan University and written in C++. Rather
than focusing on the shape, this article focuses on textural patterns for detecting tumors. The article
describes two feature selection approaches: sequential forward floating selection (SFFS) and recursive
feature elimination (RFE) for refining features and thereby increasing the of the detection.
The proposed system achieves an of 92.4% in recognizing tumors on test data. The features
proposed for detection in the article are robust to illumination change. They are extracted by a
combination of [LBP|and [wavelet transform| for multiresolution analysis. is a type of feature vector,
used for machine learning. It is based on the concept of splitting the image into cells and comparing each
pixel within a cell to it’s neighbors in a predefined order. If the neighbor pixel’s value is bigger than the
one of the center pixel, a ’0” is written, otherwise a ’1”, generating an 8-bit binary value for every pixel.
The histogram of these generated values over the cell is then used as the feature vector. This is just the
most basic concept, and there exist various adaptations of the algorithm.

[Wavelet transform|is a concept, similar to fourier transform, but instead of decomposing a signal into
sine and cosine waves, [wavelet transform|decomposes a signal into multiple non-overlapping wave-like
oscillations, which begin and end at zero, and are therefore limited in time. Applied to image processing,
this can be used to filter out noise, perform compression or to create a feature vector for machine learning.

[Capsule endoscopy|images are usually color images. Thelfeature extraction|is therefore applied in the
three separate color spaces RGB, HSI and Lab space, and each channel of the respective color space is
handled separately. The concatenation of the features from these three color spaces is used as a candidate
to represent an image. The extracted features are used as an input for feature selection with a
Comparing the two feature selection approaches SFFS and RFE; both approaches have their respective
advantages and problems. Both approaches led to an improvement in detection SVM-RFE
shows better overall detection performance than SFM-SFFS, potentially due to the built-in regularization
mechanism to avoid which might be relevant in particular due to the redundancy of data,
caused by analysing multiple color spaces of the same image. An advantage of SVM-SFES is that it
uses the weight of support vectors to determine the significance of a candidate feature. It can thereby
implicitly compensate for redundancy within different features and choose a nearly optimal set of
features. For SVM-RFE, on the other hand, the performance greatly depends on the amount of features,
which must be chosen manually. The best detection rate with RFE was achieved by using a total of 90
features. A disadvantage of SFFS is that it is very time consuming.

The proposed features are also compared to several other common feature selection methods, and
they do show superior performance. However, common problems also with this approach are false pos-
itives or obstruction of view, due to the precense of bubbles, caused by turbid fluids, foods, and faecal
materials in the colon.

18 Computer-Aided Screening of Capsule Endoscopy Videos

There are several other sources, which discuss the use of for classification. Héfner et al. [45]]
present a method to describe local texture properties within color images, based on[LBP} This article does
not focus on detecting lesions, but rather classifying images of previously detected lesions, based on the
pattern on the surface. Most[LBP|based methods either process grayscale images, or process every color
channel separately. The method described in this article builds a color vector field from an image. A
new operator called Local Color Vector Patterns operator (LCVP) is used to build a 1D-histogram based
on the color vector field. This LCVP operator is the main contribution of the article. It was designed to
achieve better performance while maintaining good classification results. The 1D-histogram is used for
classification using the k-nearest-neighbors algorithm. This is a rather simple algorithm, where k denotes
the amount of nearest neighbors to the data point to be classified. The data point is then classified by a
majority vote of its neighbors, where each neighbor votes for the class itself belongs to. This algorithm
might not be the most powerful [cassifier] but it is suitable for presenting the discriminative power of the
features used.

LCVP compares pixel block intensity averages instead of pixel values as it is done in regular [LBP}
For the examples provided with the article, a block size of 3x3 pixels is used. Changing the block size
allows to apply LCVP at different scales. Experiments using this method were conducted with a total of
716 color images from 40 different patients. The resolution of an image was 256x256 pixels. The results
are compared to other LBP| based methods. While a different operator, described by Hifner et al [46],
generally shows better classification results, LCVP outperforms this one and several other based
methods, when it comes to computational demand. LCVP is up to 7.5 times faster than the methods it
was compared with in the article. The imaging data used for testing the LCVP was recorded using a 150-
fold magnifying The images therefore contain a very high level of detail. Further advantages
of multi-scale LCVP are the small amount of parameters the operator requires and that the operator is
generic and may also be applicable to different scenarios than the one presented in the article.

While this operator seems to show very good results, it might not be suitable for the needs of this
thesis, as it requires a fairly high amount of detail. The video material that we have available was mostly

recorded with regular non-magnifying equipment.

Another approach for detecting polyps on[capsule endoscopy| video frames using a[SVM]is proposed
by Zhou et al. [13]. The described method is based on the observation that a usually reflects
more light than the regular tissue of the due to its protruding shape. A video frame is being
processed as follows. First, the average value for each RGB channel is calculated. Every channel value
for a pixel below a certain threshold is then lifted to the average value for the respective channel. After
having removed any dark regions in the frame, the variance of RGB channels is calculated. The variance
is then applied to the image as a threshold, and pixels above that threshold are changed to white color.
A statistical region merging (SRM) algorithm is applied to merge separate pixels of similar color into
connected areas. Based on the assumption that a[polyp|reflects significantly more light than the remaining
tissue, it should then be clearly visible as a white area in the image. An iterative method, radially
searching the surroundings of any white pixel, is then used to calculate the radius of the white marked
areas. Finally, a with 2 linear classifiers, accepting the variance of the frame and the radius of a
region, is used to decide on the region being afpolyp|or not. The paper further describes a mechanism for
calculating the real size of a[polyp| based on the focal distance and the radius of apolyp|

For detection, the method achieved an overall of 90.77% on the testing data. The
dataset contained a total of 359 video |capsule endoscopy|images from different video clips, where 294
of the images were used for training and 65 for evaluation. Using this testing data the was
75% and the 95.92%. The error ratio of the radius calculation is expected to be about 9.77%,
however this cannot be verified as the real sizes for the polyps are unknown.

Alexandre et al. [11]] present a method for detecting polyps in endoscopic video using The
method described in this article is intended to indicate which parts of a video must be evaluated more
closely by a physician. Experiments with the described method yielded a result of 93.16 +/- 0.09% of
the area under the [Receiver Operating Characteristic (ROC)|curve.

Computer-Aided Screening of Capsule Endoscopy Videos 19

The [ROC]| curve is a graphical representation that describes the performance of a [binary classifier}
The curve plots the true positive rate (sensitivity|or recall) on the ordinate against the false positive rate
(1- on the abscissa. The best possible classification would be characterized as a point in the
top left corner of the graph with no false negatives and no false positives. Completely random guessing
would lead to a point on the diagnoal. Therefore, the bigger the area under the curve, the better is the

quality of the

The method described in this article is based on a rather simple [feature extraction| method. After
preprocessing an image is subdivided into pieces of 40x40 pixels. The only input data for the
is the RGB components and the coordinates for each pixel in the sub-image. This is a total of 5
features per pixel or 8,000 features per sub-image. Considering the simplicity of the [feature extraction|
the performance of this approach is certainly remarkable. An interesting part of this article is the
preprocessing of the data for the training process. The dataset used for training contains the video
frames as well as a binary mask for each frame where polyps are marked black and the rest of the image
is plain white. A video frame is first cropped to remove any black borders and get a proper rectangular
shape. The image is then subdivided into 40x40 pixel sub-images, exactly as it is done for the detection,
and each of these sub-images is processed separately. The binary mask for the respective video frame
is then projected onto the sub-image and the black pixels within the sub-image are counted. Based on
a threshold, it is decided if the sub-image shows a [polyp| or not. The value of this treshold can vary
between 1 and 1600. For further experiments, a value of 1300 was selected. The influence of the value
is studied and the results are presented in the paper.

The contained 35 video frames, which were obtained by a video system.

After preprocessing, each frame was subdivided into 132 sub-images, leading to a total of 4, 620 images
of 40x40 pixels. As a[classifier], LIBSVM was used with a radial basis function Two-fold cross-
validation on the 4, 620 sub-images was used to evaluate the error.

While this experiment shows good performance results, it is unclear how well the system would work
on a completely different dataset. Only a total of 35 different video frames were used, and it is unclear
how many different polyps are visible on these frames, or how many different patients were involved.
Further, it seems problematic that the 2-fold cross-validation was used on the sub-images instead of the
full video frames. It is therefore very likely that neighboring sub-images of the very same frame ended
up in the and in the during the same testing round. A sub-image does
usually not contain a complete and the contour information does therefore not play a significant
role. The therefore mostly detects the actual color patterns, which are very similar on neighboring
sub-images. Considering these factors, we conclude that the resulting value must be interpreted with
extreme caution.

Another promising approach for object detection is presented by Dalal and Triggs [47]. The spe-
cific detector presented in this paper uses a linear SVM| with grids of [HOG|descriptors to detect humans
on images. The implementation is benchmarked with a pedestrian database provided by
[Institute of Technology (MIT)| as well as with a more challenging dataset of 1,800 individual images
containing a wide range of poses and backgrounds. Detecting humans is considered especially challeng-
ing, because there are numerous of appearances and poses a human can adopt. The presented HOG}based
descriptors provide significantly better performance than other existing feature sets, such as wavelets. On
the database provided by the detector yields essentially perfect results. The presented method is
based on the evaluation of normalized local histograms of image gradient orientations. These gradients
are located in a dense grid, and do partially overlap. For this purpose, the detector window is tiled and
the cells, where feature vectors are extracted overlap. The combined vectors are then forwarded
to a linear for classification. The detection window is run over the image in all possible positions
with various scales, to detect objects of variable size. A strength of [HOG|representation is the ability to
capture edge or gradient structure that is a characteristic feature of shape rather than just color patterns.
For color images, a separate gradient is calculated for each color channel. Out of these, the one with the
largest norm is selected. A gradient is calculated using a predefined size for every single pixel in
a cell. The pixel then provides a weighted “vote” for the orientation. The votes are then accumulated

20 Computer-Aided Screening of Capsule Endoscopy Videos

into orientation bins for the local cell. Local contrast normalization is essential for good performance
of the algorithm. Smoothing the image before calculating gradients significantly reduces the quality of
detection. This emphasizes that a good amount of the image information is extracted from abrupt edges
at fine scale. Blurring the image to reduce is therefore considered a mistake.

In this article, is presented as an exceptionally strong solution for object detection. We con-
clude that it is an approach that is worth trying with colon polyps as well. However, considering that
is in particular suitable for detection based on strong edges and less on more subtile color dif-
ferences, it is questionable if the approach is suitable for our purpose. The main problem that is not
adressed in this article is rotation of objects. Humans usually stand on their feet, but polyps can be
rotated in any possible direction. Another problem might be the quality of images. Not all
pictures from fendoscopy| videos are always totally crisp and in focus, due to the very short focal distance.
Also, there is plenty of fluid, which might stick to the lense, obstruct the view and lead to less clear edges.

Giritharan et al. [42] present an interesting method for the detection of bleeding in
videos. The method uses an ”"SVM Ensemble”, an approach that makes a classifying decision
based on multiple separate classifiers. In the described experiment, the video is preprocessed by re-
moving the bounding black region, applying an averaging filter to remove random noise and dropping
poorly illuminated or over-exposed frames. After that, three features are extracted. The first one is the
histogram of hue, saturation and value. The second feature is the dominant color, and the third one is
the co-occurrence matrix of the dominant colors with a window of 5x5 pixels. Each of these features is
then handled by a separate[SVM] and the final classification outcome is computed from the results of the

using a decision function.

This color-based approach seems to be a very good fit for the detection of blood. However, we expect
that the sole relying on colors for classification is also preventing this approach from being applicable
in a more generic way. Nevertheless, we consider this approach very interesting, in particular for using
multiple separate, rather simple[SVM]classifiers simultaneously and applying a decision function on their
result to do the final classification.

In the subsequent chapters, we will repeatedly come across Haar-like features. Those are digital
image features that were first described by Viola and Jones [48] as a machine learning approach for
visual object detection, capable of processing images extremely rapidly and achieving high detection
rates. The name is derived from “Haar Basis function”, which was proposed by Alfréd Haar. The article
descries the implementation of a highly performant face recognition system, including an integral image
representation and a learning algorithm, capable of selecting a small number of critical visual features
and yielding a very efficient The integral image representation, can be calculated with a few
instructions per pixel. Once it is available, Haar-like features can be computed in constant time for any
location or scale. The is built by selecting a small number of important features through a
modified version of AdaBoost [49].

Further, the concept of a ”cascade” is introduced as an object specific focus-of-attention mechanism,
which allows to quickly determine where in an image an object might occur and reserve more complex
processing for these regions only. According to the article, the proposed algorithm is roughly 15 times
faster than any previously introduced approach.

We consider this article very interesting because of the performance gain that was achieved by
applying variable processing effort to selected subregions through a cascade. The expected efficiency
makes the approach in particular interesting for a screening usecase that is meant to scale to a big number
of video sequences.

Computer-Aided Screening of Capsule Endoscopy Videos 21

2.3.3 Index of Global Image Features

Most the related work that we have evaluated is focusing on detecting the exact position and shape or
color of a However, [global image features|are one more possibility to approach the problem in a
potentially more efficient way. Global image features can be used as descriptors for images. This allows
to compare the descriptors and to apply a distance measures.

Lux and Chatzichristofis [S0] present a library called |Lucene Image Retrieval (LIRe), which is
written in Java and can be used for content based image retrieval. The library contains implementations
for the indexing and storing of state of the art [global image features] The implementation is based
on the text search engine Lucene. The library is intendend for developers and researches, to integrate
content based image retrieval into existing applications. can be used to extract image features and
store them in an Lucene index for later search and retrieval. This implies finding and retrieving images
independent from only relying on the image features that can be extracted from the image
itself. Implementations for extracting multiple image features such as color histograms, edge histogram,
tamura texture features and color and edge directivity descriptor are provided with the library.

The paper further describes an additional LIRe Demo package, which provides a graphical user in-
terface that can be used with The implementation of this demo is using multiple threads to index
photos from Flickr. Both the library as well as the demo package are licensed under a GNU GPL license.
uses linear search for searching the generated indices but takes advantage of the fast disk access
layer provided by Lucene and allows indices bigger than the available main memory. also provides
an [Application Programming Interface (API)| which is extensible through interfaces, so further image
features can be added by implementing an interface and implementing an algorithm to build a textual
representation of a given image. The paper also lists indexing performance measurements for the differ-
ent image features. According to the provided list, the two most computational expensive image features
are Auto color correlation and

We consider this paper very interesting and relevant for our research. Instead of trying to locate a
specific item on an image, this approach uses [global image features| to describe the image in a more
generic way. If we could use this approach to build clusters of positive and negative images respectively,
this would allow us to circumvent the problem of precisely locating lesions in the image. This might also
allow us to reduce the amount of preprocessing steps and therefore build a much more simple and efficient
pipeline. Further we expect the indexing of [global image features|to be significantly less expensive than
conducting machine learning for the same purpose.

2.3.4 Virtual Colonoscopy

[Virtual Colonoscopy| or [CTC] is not by itself a method for automatic detection. However,
is another non-invasive method that can be used for imaging the colon. This method uses helical
instead of a colonoscope or a[camera capsule] For the exampination, the colon is inflated using carbon
dioxide or regular air. The time for the entire examination is usually around 10 minutes.

Heiken et al. [10] present a report on the status of [Virtual Colonoscopy| for colorectal cancer screen-
ing. The report describes the process and the methods used for[CTC] It compares with conventional
and lists advantages and disadvantages. One of the main advantages of[CTC|is that it allows
to eliminate blind spots behind [haustral folds|or beyond bends of the colon by providing an
[view]in forward and backward direction. A common problem with [CTC|is that retained fluids or incom-
plete distension of colonic segments can obscure lesions and thereby cause false negatives. Also, false
positives can occur, for example, due to retained stool or folds in the colon. Further, does not allow
immediate biopsy or removal of polyps that are identified. According to the report, studies performed
with have shown sensitivities of 82% to 100% and specificities of 90% to 98% for polyps above
10mm. The data generated by [CTC|is viewed interactively and it is usually available in two-dimensional
or three-dimensional format. A remaining problem with is the variability of diagnostic
among readers. According to the report, this issue could potentially be addressed with[CAD]

22 Computer-Aided Screening of Capsule Endoscopy Videos

Perumpillichira et al. [19] provide an overview on research towards [CAD|systems related to
Most the research prototypes that were built employ the steps of extracting the colonic
wall, detecting candidates, reducing false-positives and, eventually, displaying of detected polyps.
For the extraction of the colonic wall, the contrast of the CT values between wall and air inside the inflated
colon lumen is used. The [isotropic volume]|is reconstructed from the axial CT images and thresholding
is applied. It is possible to extract approximately 98% of the eintire colon. Extraction of geometric
features is then used to detect [polyp| candidates. Various methods have been developed and shown to
be effective for detecting polyps. Among them are sphere fitting, surface normal overlap, volumetric
shape index and curvedness, and others. False-positive candidates can be reduced using methods, such
as texture analysis and gradient concentration, CT attenuation, random orthogonal shape section, and
optical flow. In particular, texture analysis has shown to be effective for filtering out false-positives
caused by stool. For the final decision on classifying a candidate as a[polyp|or not, a statistical
can be used. Several different solutions have been researched for this purpose. Among them are quadratic
discriminant analysis, [neural networks|and [SVMs] The article quotes several studies and concludes that
[CAD|has a performance comparable to the one of a human detecting polyps. As an important finding of
one of the studies, it also mentions that[CAD]significantly decreased the interobserver variability among
three radiologists.

2.4 Summary

In this chapter, we discussed several articles related to our work. We have found some approaches that
seem promissing and might be worth considering for implementing a detection pipeline. Further, we
also highlighted problems or issues where we could find them. It is worth mentioning, that there is a
significant amount of related literature available, suggesting that the problem we are trying to address
has already been researched for quite a while. Several algorithms or methods have been proposed and
have achieved very promissing results in their respective testing environment. However, we have noticed
that in some cases, it is unclear how well the approach would perform under “real world” conditions.
Several articles use a rather small amount of training and testing data. This makes it very difficult to
generalize beyond that specific dataset; could therefore be the reason for the good results.

Table2.T|presents a summary of the discussed approaches for detecting polyps. The different articles
provide different metrics for measuring the performance and use different datasets for training and
testing. Therefore, some cells in the table are incomplete and it is difficult to conclude with a direct
comparison of the different approaches.

Table 2.1: Performance comparison of polyp detection approaches discussed in this chapter.

Publication ‘ Detection Type Recall | Precision | Specificity | Accuracy
Mamonov et al. [|39] polyp / shape 47% N/A 90% N/A
Hwang et al. 23 polyp / shape ~96% ~83% N/A N/A
Li and Meng [43| tumor / textural pattern | 88.6% N/A 96.2% 92.4%
Zhou et al. [13]] polyp / intensity 75% N/A 95.92% 90.77%
Alexandre et al. [11] | polyp / color pattern | 93.69% N/A ~76.89% N/A

For classifying video imaging data, we have found that most approaches either already
use an[SVM]|in some way, or could be used as a pre-processing step for one. The features, which are fed
to the or the vary a lot depending on the approach. We have discussed methods
that use physical dimensions, grayscale intensitiy values, gradient orientation or RGB color information
as input to the Each of these methods has its respective advantages and disadvantages. In the
subsequent chapters, we will describe the design of a solution, which we can use to overcome the dataset

3This classifier is classifying complete shots, and not single frames.

Computer-Aided Screening of Capsule Endoscopy Videos 23

problem by collecting more data for testing. The same solution can also be used to implement and test
different machine learning approaches and algorithms for image recognition.

24

Computer-Aided Screening of Capsule Endoscopy Videos

Chapter 3
Object Tagging

With this thesis, we research solutions for automating the detection of lesions in videos.
Automating this process is a prerequisite for mass-screening for and its precursors, using
[camera capsules| We evaluate different filtering and machine learning approaches for this purpose. For
experimenting with machine learning methods, we first need to build a ground truth dataset. Therefore,
we have built several tools for creating training and [testing datasets|from video sequences.

Annotation Verification and

\\ Correction
\
\ \
\ \
\ \
8 ' \
c \| |
?‘; Object Object Machine Detection
0 Tagging Tracker Learning Tool
5
2
>

Figure 3.1: The dataset creation process is a prerequisite for training an algorithm and eventually building
a fully automated detection tool.

The dataset creation process can generally be split into two separate tasks. The first one is to identify
and mark any irregularities in a video sequence; we refer to this step as Object Tagging. The second
task is to track the movement of previously tagged objects within the same video sequence; we refer to
this second step as Object Tracking. The process for the dataset creation and the subsequent steps for
eventually creating a fully automated detection tool are shown in Figure [3.1]

In the first section of this chapter, we discuss the design and implementation of the tools we have
developed for collecting data by Object Tagging and annotating videos. Object Tracking will be discussed
in Chapter [d] In the second section of this chapter, we evaluate the tools we have created by presenting
them to potential users, and finally, we conclude this chapter with a short summary of our achievements.

25

26 Computer-Aided Screening of Capsule Endoscopy Videos

3.1 Design and Implementation

The work of evaluating video sequences and detecting irregularities is a task that has to
be done by a specialist. This is to make sure that all relevant regions, and relevant regions only, are
marked. Or in other words, as this is our ground truth dataset, we have to make sure to avoid any false
positives and false negatives. We have therefore implemented and experimented with several different
tools to make it easy for medical specialists to provide us with the needed information. In this section,
we describe the different tools and implementations that we came up with.

3.1.1 Prototype 1: Object Tagging and Manual Tracking

The purpose of this very first object prototypeEl was to find a convenient way, for specialists at
Rikshospitalet, to collect ground truth information by lesions in videos. The tool,
as seen in Figure [3.2] was written in using [07 and We chose because it is a

very convenient and efficient language for doing rapid prototyping, and because there are bindings for
many toolkits and third party libraries available. For the same reasons, we chose [0F] for implementing
the user interface. At this point,[OpenCV]was only used to read and decode video files. A further reason
to choose this combination of technologies was that all of them are available on all major platforms such
as Windows, Linux and Mac OSX.

This first prototype has a very basic [User Interface (UI)| providing the regular controls of a video
player. A specialist would use the application to watch a video, and whenever he finds a
he would use the mouse cursor to mark it as a[ROIl A mouse click into the video frame creates a
round semi-transparent overlay that will then move with the mouse cursor and must be kept to cover the
ROI on subsequent video frames. A second mouse click on the video frame hides the overlay again and
stops the recording of positions and dimension of the ROI. The size of the ROI can be adjusted using the
mouse wheel.

-

Groud Truth Tagging Tool

| Input Folder

il Output Folder

Video Lisk:

colon.avi
colon2.avi
colon3.avi

T Delete Circles

e B> Fv

Figure 3.2: User Interface of the prototype written in Python using Qt and OpenCV

IThis first prototype was jointly developed by Jiang Zhou from Dublin City University.

Computer-Aided Screening of Capsule Endoscopy Videos 27

We have been experimenting with the first prototype ourselves for a while, and we came to the
conclusion that this approach has several flaws, in particular with regards to the usability of the tool.
Some of the issues we found are listed subsequently:

» Using a semi-transparent selection area attached to the mouse cursor for hovering an object while
the mouse button is not pressed, seems to be counterintuitive and confusing for the user. The fact
that positions for frames are recorded from a first mouse click to a second one is in particular
confusing, as the mouse cursor is also used outside of the video frame to control the playback
buttons.

* Depending on whether the mouse wheel or touch pad being used, it is very difficult to control the
size of the selectied area. Especially on laptops with a touch pad, this is a problem, as size and
position can not be modified at the same time. Yet, to stop the video or change the playback speed,
it is necessary to move the cursor outside of the video frame to use the player controls.

* While all the technologies used are available for all major operating systems, the combination
of several libraries and their dependencies are hard to manage when supporting multiple target
operating systems.

* [O1is written in C++ and is also meant to be used as a C++ toolkit. [PyQfis a third party product
that provides [Python]bindings for [Oflibraries. These bindings must be created matching a specific
major, minor and bugfix version of [04 Using bindings for a toolkit{API] which is meant
to be used with C++ often feels very unnatural and leads to a rather poor development experience.

» Packaging of the tool is a difficult task, and there is no standard solution across several operating
systems. Packages for deployment must be built using different third party tools for different
operating systems. For Windows, pyZexﬂ can be used for deployment, and for Mac OSX, pyZapﬂ
is a solution. This is mainly a problem because is an interpreted language, which does not
compile to binaries in form of a single file that could then be deployed to a target system.

. exists in two major versions 2 and 3. While 3 is meant to replace 2 in the
long run, both versions are still actively developed, and 2 is still widely in use. is

nowadays targeting 3, but, unfortunately is still usually targeting 2. So,
we need to create special builds of one of the libraries to be able to use[PyQfand [OpenCV]together.

A first short presentation to specialists at Rikshospitalet, who are currently the primary user of the
software developed for this thesis, led to the conclusion that a more automated approach is expected. In
particular, the time a specialist spends on a video should be minimized.

Because of this requirement and due to the technical reasons mentioned before, we decided to
research an approach, where we divide the process into two separate parts: Object Tagging and Object
Tracking. While the expertise of a specialist is needed for recognizing and any irregularities,
a specialist’s knowledge is not necessary to track a previously tagged object in a video sequence.
Therefore, the specialist is only needed for the first part of the process, and a lot of his time can be
saved by automating the of any initially tagged regions. Further, this architecture leads to
simplifications for deployment and allows us to choose technologies that are more suitable for the specific
task of [tagging| or [tracking| respectively. Object Tracking is discussed in detail in Section 4]

3.1.2 Prototype 2: Web-Based Object Tagging

Based on the experience we gained from our first based prototype and the finding that the
dataset creation process might benefit from being split into two separate steps, we started evaluating
web technologies for the object[tagging| part.

The requirements for a technology that we can use to implement object in videos are rather
low; the only real requirements are the ability to playback video and to allow recording selections that

Zhttp://www.py2exe.orq/
3https://pythonhosted.org/py2app/

http://www.py2exe.org/
https://pythonhosted.org/py2app/

28 Computer-Aided Screening of Capsule Endoscopy Videos

reference a specific point in playback time of the video. The HTMLS video element and JavaScript
provide both. We considered a web-based solution to be especially suitable for our needs, because
it circumvents the need for deploying our software to a target system. Assuming that a recent web
browser is installed, there is no need to install any additional software on the computer our system
is accessed from. Deployment to a target system in a restrictive medical environment can be rather
difficult due to data privacy concerns and the exceptionally sensitive data that is usually processed in
such an environment. A solution based on web technologies circumvents this problem in a rather elegant
way, as the only requirement to the target system is an HTMLS5 compliant web browser and an Internet
connection.

As described in Chapter 2] there already exists a web-based video annotation tool called
Videojot [33]. Despite our use case being slightly different, this tool was a very good starting point.
Videojot is using free hand annotations. For our use case, we needed to implementrubber-band-selection|
We have also added a slider for controlling the playback speed, allowing to screen irrelevant parts of the
video more quickly and assess relevant parts more thorough at a slower playback rate. The [UI) of our
tagging| tool is shown in Figure [3.3] It provides the usual start, stop and pause controls of a regular video
player. Additionally, we added a seek bar that highlights the playback position and any regions of interest
in colors. We also added ”seek-forward” and “’seek-backward” buttons that allow stepping to the next or

previous[ROJ|

® ® | | Medical Video Annotation X

€ cla

Video Library
Video

colon3

Figure 3.3: The user interface of the HTMLS5 based video tagging tool.

Our web application is mostly written in HTMLS5 and JavaScript. Specifically, it makes use of the
HTMLS5 video element. Listing and uploading videos and storing ftagging|information is implemented in
Java and runs in an Apache Tomcat [servlet containerf’l All video sequences are uploaded to the server
through the web interface. On the server, we use a[Java Servlet, which spins off a job to transcode the
video to[H.264| For transcoding| we use libav and avcon\ﬂ Transcoding|is necessary in case the original
video file is not encoded in a codec that is supported by the browser. [H.264] seems to be a good choice,

4http://tomcat.apache.org
Shttps://libav.org/avconv.html

http://tomcat.apache.org
https://libav.org/avconv.html

[I I O

Computer-Aided Screening of Capsule Endoscopy Videos 29

as all major web browsers currently support it. The job is running asynchronously, so a
connection to the server is not needed to keep the job alive. Once the [transcoding] process has finished,
the video shows up in the list of available video sequences for processing.

As the video playback in HTMLS is running outside of the JavaScript execution thread, we do not
have a strict control over the video frames being displayed. The playback position is only provided as a
floating-point value property, called currentTime, in seconds. The property can be read and it can also be
set in order to seek to a specific position. When executing JavaScript code, this property can be read at an
arbitrary point in time. Since a single video frame is usually being displayed for about 40mf], this means
that, when playing a previously tagged video sequence, we will most likely not read the same value
from the currentTime property again as we were reading when creating the tag. Therefore, visibility of a
previously created tag cannot be guaranteed during playback, and we must use the seek buttons to seek
to the next or previous ROl

Whenever a has been selected, an editor shows up and allows the specialist to enter a
classification and a comment. This information will be stored together with the tagged rectangle in
[TavaScript Object Notation (JSON)|[51]] format on the server.

An example of two selections stored in format is presented in Listing 3.1} All numeric values
are stored as floating-point numbers. This is not because of the need for [accuracy| beyond the size of a
single pixel, but a result of the direct exporting of the data from JavaScript after using division operations
to transform selection points from coordinates to video coordinates. The singleShot key/value
pair is needed to strictly mark a selection as a single event, which should not be considered for geometry
updates on subsequent frames. The web application for [tagging] will always set this property to true, as
geometry updates for subsequent frames will only become relevant in the object|tracking|step. An actual
file stored on the server usually contains more redundant information due to the direct export of
JavaScript data structures.

Listing 3.1: JSON format used to store [tagging|information.

"markings": [
{
"startTime":37.863281,
"stopTime":0,
"geometryUpdates": [
{
"time":37.863281,
"x":326.60123365077436
"y":302.35123365077436
"width":99.29753269845128,
"height":99.29753269845128
}
1,
"classification":"polyp",
"description":"This is a typical example of...",
"singleShot":true
b
{
"startTime":45.5625,
"stopTime":0,
"geometryUpdates": [
{
"time":45.5625,
"x":363.3332569774822,
"y":213.55200697748225,
"width":100.89598604503551,
"height":100.89598604503551
}
1,
"classification":"bleeding",
"singleShot":true
}
1

Sassuming a usual frame rate of 25 frames per second

30 Computer-Aided Screening of Capsule Endoscopy Videos

3.2 Evaluation and Discussion

By talking to doctors and researches, we have learned that they usually have more urgent duties than
spending a lot of time videos and delivering information to non-experts. Because of this, it is
very important to make the task of collecting and video sequences as easy and time efficient
as possible. We believe that with our online tool for video sequences, we have developed a
prototype for a solution that minimizes the time a specialist spends on collecting and data for
our purpose. In particular, the proposed solution includes the following features, which should make the
whole process more convenient for a specialist:

* Drag and drop can be used to upload entire video sequences. No manual steps are needed for
delivery of the data.

* A wide range of video codecs is supported and will be transcoded automatically on the server side.
A user therefore never needs to make sure he uses a specific format or codec.

* Every irregularity only needs to be tagged a single time. The user does not need to track a RO]|
through multiple video frames. (Requires object tracking as a second step.)

* An irregularity can be tagged in any frame. It is not required that a tag is created in the first video
frame an irregularity appears. (Requires object tracking as a second step.)

* No installation on user side is necessary. Since we only use JavaScript and HTMLS technologies,
the only requirement is a HTMLS compliant web browser.

We have presented our solution at different stages during development to specialists from
Rikshospitalen. We have received the feedback that our prototype based on HTMLS is easy to use
and is an acceptable solution for providing us with further video data.

We would like to mention that the availability of training data is crucial for any future research project
with a similar approach. It is important to have sufficient data available early on. Multiple instances of
our web based solution could be run simultaneously for that purpose, and credentials could be
provided to multiple entities. This would make it more likely to collect enough data within reasonable
time.

3.3 Summary

In this chapter, we discussed our prototyping efforts for tools to collect from hospitals
and doctors. For this purpose we have first developed a prototype in |Python} for [fagging| lesions in
videos. After a first review of this prototype with potential users, we have decided to split
the process of collecting into two sub-tasks, Object Tagging and Object Tracking. This
allows to reduce the time a specialist needs to spend for the initial of lesions, as we can do the
of the selected lesions by ourselves. Also, we can mostly automate this process, once we have
the initial tags. Therefore, we have developed a web-based tool for the Object Tagging task. Using a
web-based solution for the initial Object Tagging, also makes the deployment of the software much more
easy, as the only requirement is a recent web browser with HTMLS5 support. The user interface of the
tool is minimal, intuitive and time-saving to use, and is an acceptable solution for the potential users.
In order to further save time in the operation where the tagged object needs manual tracking
through a number of frames, we next introduce an approach to automatically track an object marked in
the video.

Chapter 4

Object Tracking

In this chapter, we describe different approaches for the [tracking|of objects in videos to create a complete
The first section of this chapter discusses the design and implementation of approaches
we have considered and the solution we eventually settled for. In the second section, we evaluate our
solution and measure the time we can potentially save using our solution for object tracking] Finally, we
summarize our work related to object ftracking|in the last section.

4.1 Design and Implementation

The object part is to track the ROI on previous and subsequent frames, based on the previously
manually created tags during object[tagging] The output of this part is a dataset containing a completely
annotated video sequence. All occurences of lesions must be correctly tagged, and no false positives or
false negatives must be present, as this data will be used as for machine learning. However,
this part is more about an object and adjusting the size and position of the tracked region than
about identifying or recognizing irregularities. A specialist’s knowledge is therefore not required.

4.1.1 Object Tracking in JavaScript

We have considered implementing the object part in JavaScript as well. There are already
object T and face recognition algorithms available for JavaScript. A fairly prominent example is
tracking.js'| A web-based solution would also benefit from the implicit abstraction provided by the web
platform and make it possible to easily deploy it to any computer that has a web browser and an Internet
connection. A further advantage of doing the object tracking|on the client side is that the [tracking|result
is immediately available to the person using the system. Such a solution could then be integrated into
a single application with the Object Tagging step. Unfortunately, a few experiments and more thorough
studying of the HTMLS5 video element[AP]|revealed that this approach is not feasible, due to the limited
control over the video element.
We have in particular identified the following limitations:

* The HTML standard specifies the attribute currentTimd?] as a readable and a writable attribute. On
reading, it is supposed to return the current playback position in seconds as a floating-point value.
When writing to the attribute, the media player implementation must seek to the position provided
as an argument. This is the most fine graned control available for changing playback position of
the video. Seeking to a specific frame is therefore only possible by calculating a playback time
based on the expected frame rate. For our purpose, this is not accurate enough, as we have to be
sure that any selection made by the user or by the algorithm is recorded with the exact
frame it belongs to.

* The video element does not provide a direct way to access the video textures. Instead, the video
element must be queried at a regular interval, and the drawlmage function of a 2d canvas context

Ihttp://trackingjs.com
Zhttps://html.spec.whatwg.org/#dom-media—-currenttime

31

http://trackingjs.com
https://html.spec.whatwg.org/#dom-media-currenttime

32 Computer-Aided Screening of Capsule Endoscopy Videos

must be used to mirror the image to a hidden canvas element. Only then, it is possible to access
the pixels directly from the canvas object using the getImageData function.

* The video element does not provide a way to execute a JavaScript function for every new video
frame being displayed. The lack of a notification when the next frame is to be read makes it
impossible to trigger the object ftracking|algorithm exactly once for every frame. It would basically
imply guessing when a frame should be read and fed to the algorithm.

4.1.2 Object Tracking in Google Native Client

IGoogle Native Client (NaCl)p|is a technology that allows executing compiled code through the so
called[Pepper API|within a Chromium or Chrome web browser. This technology requires writing a plugin
that needs to be compiled with a special [NaCl|or[Portable Native Client (PNaCl)|toolchain. allows
compiling code to a bitcode executable, which is then translated to host-specific executable as soon as
the plugin is loaded by the web browser. [NaCl| provides full support for C and C++ and allows making
use of multiple CPU cores during execution. It also exposes the capabilities such as [Single Instruction|
Multiple Data (SIMD)| vectors. therefore seems like a very good fit for video processing and object
We have given this approach a try and we successfully built[OpenCV]for[PNaCIl This allowed
us to run simple examples such as face recognition on images or graphical effects on the video stream
from a webcam.

For security reasons, is running inside a sandbox. Direct access to the hardware or the file
system is therefore not possible. Any data needs to be fed in through the [Pepper Plugin APT (PPAPT)|
using JavaScript. In case of a video stream from a webcam, this is fairly simple. We can get hold of the
video stream using the "Navigator.getUserMedia()" Using this we can request access to the
webcam and provide a callback that will receive a handle to the media stream, in case access is permitted.
For our case, this is not very relevant though, as we do not want to access a stream from a camera
but rather process an existing video file. Loading the file directly from disk is not possible because of the
sandbox. The more appropriate approach would be to make use of the HTMLS5 video element, and then
capture a stream from there to process it. From an architectural point of view, this would be perfect. We
would leverage the capabilities of the full multimedia stack of a web browser and still harness the power
of code through This is also how the is designed in drafts for web standard{’] We
could simply use the "HTMLMediaElement.captureStream()" extension to get hold of the media stream
from the HTMLS element. Unfortunately, at the time of writing this document, this mechanism is not
implemented in Chromium, and this prevents us from using this approach.

The third option for using Would be to load the video from a URL using URLLoadelﬂ But, also
this option would lead to several problems. It would mean to implement not only the but the
whole playback of the video as well as the selection of ROIs in[NaCIl Also,[NaClis currently limited to
a total of lGBIZ] addressable memory. For long video sequences, this seems to be a rather tight restriction.

Considering this restriction and that there is no real toolkit available for [NaCl|except for[OpenGL ES 2]
the based approach is out of scope for this thesis.

4.1.3 Object Tracking on the Server Side

We have also been experimenting with a solution that would use HTMLS5 for the user interface, but
delegate the actual object [tracking|to the server. Such an approach would again have the advantage of a
very easy deployment to the user. For a big part, we could also reuse the user interface and the server-side

setup from the object part. Whenever the user selects an ROI for we send a

request containing the coordinates, dimensions of the ROI and the current video playback time to the

3nttps://developer.chrome.com/native-client/nacl-and-pnacl

4http://w3c.github.io/mediacapture—main/getusermedia.html#idl—def—
NavigatorUserMedia

http://w3c.github.io/mediacapture-main/getusermedia.html#idl-def—
NavigatorUserMedia

"https://groups.google.com/forum/#/topic/native-client-discuss/IFuLcxCWWh8

https://developer.chrome.com/native-client/nacl-and-pnacl
http://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-NavigatorUserMedia
http://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-NavigatorUserMedia
http://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-NavigatorUserMedia
http://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-NavigatorUserMedia
https://developer.chrome.com/native-client/pepper_dev/cpp/classpp_1_1_u_r_l_loader
https://groups.google.com/forum/#!topic/native-client-discuss/IFuLcxCWWh8

Computer-Aided Screening of Capsule Endoscopy Videos 33

web server using the XMLHttpRequest[APIl The server processes such a request in a[Java Servlet] This

then spins off a separate process that tracks the selected ROI and prints the [tracking| results
for a predefined amount of frames to the standard output stream. The servlet reads the output of the

tracking| process and forwards the information to the calling web application. The object itself
is implemented in C++, using

The problem with object on the server is the latency introduced by communicating over the
network. With this very naive approach, we measured round trip times of about 45ms without any actual
being done on the server side. Spinning off a process from the and initiating the
easily increased this to above 100ms. Of course, the overhead could be significantly decreased,
for example, by implementing the directly in the[Java Servlet/using [OpenCV|instead of spinning
off a separate process. However, getting the anywhere close to 25 [FPS| with on the
server, seems challenging.

A further problem with this approach is the communication between client and server during the
phase. As the client is waiting for the results, we would want the server to reply
as quickly as possible. But, after replying with results for the first frame, the server should
keep sending updates to the client for subsequent frames. Due to the nature of HTTP this is slightly
problematic and not easy to achieve. Using basic HTTP, there is no direct way for a server to push
information to a client. Instead, a client has to request information from the server using a GET/PUSH
request. This essentially means that the client needs to poll the server by sending a new request for
every subsequent frame, or that we need to process multiple frames before sending a first reply. Both
of these approaches imply introducing yet a further delay, either due to synchronous polling or due to
the time required for processing multiple frames. A potential solution to this problem is the [WebSocket|
standards. Using would allow building a two-way communication channel between client
and server.

We believe that building a solution for[tracking|on the server side is possible. But, an implementation
of this is beyond the scope of this thesis, and we therefore do not research this approach any further.
Instead, we focus on a more simple approach based on building a[native]tool for the object tracking] part.

4.1.4 A Native Tool for Object Tracking

After several experiments, we decided to implement a separate tool for the object tracking]step in
C++ using for the user interface, and for reading and processing the video data. We further
integrated Struck [36] as well as [37] for the tagged regions. Both Struck and work
reasonably well. We observed that is providing better results when the tracked object is not only
moving, but also rotating and therefore changing its appearance over time. Further, has a built-in
functionality to report when the tracker has lost the object.

The user interface for our software is similar to the web interface described previously and
can be seen in Figure It features a video widget, play, seek-forward and backward buttons, as well
as a seek bar with identical behavior. A slider to increase or decrease the playback speed and an editor
for classification and description are present. Further, a button for playing the video in reverse direction
and context menus for modifying regions of interest are provided.

After starting the application, a file that was created using the web application can
be opened, and the respective video file must be selected. We use the original video file instead of
the encoded one, because we need to be able to play the video forwards and backwards frame
by frame. Recreating frames in reverse direction is very expensive with since frames can be
encoded by referencing previously encoded ones. The original files uploaded to our server are usually
simple video files and are very well suited for playing in both directions. The annotations that
are imported from the file are displayed in shape of red rectangles on top of the respective video
frames. These selections can then be chosen for or can be modified by the users. The users
use the seek buttons to seek to the next or previous regions of interest. Then they use the context menu
to select one or multiple regions for Playing the video in either direction will then track the

8Shttp://www.opencv.org
nttp://tools.ietf.org/html/rfc6455
Onttp://www.qt.io

http://www.opencv.org
http://tools.ietf.org/html/rfc6455
http://www.qt.io

34 Computer-Aided Screening of Capsule Endoscopy Videos

06

Classification:
polyp

Description:

M <« » pl 882

Figure 4.1: The user interface of the tracking software implemented in C++ using Qt and OpenCV.

region in the video frames being displayed. Alternatively, the arrow keys can be used to step forward
or backward frame by frame. The playback can be paused at any time to adjust size or position of the
tracked region in case the dimensions changed significantly or the result is not satisfying any
longer.

Using double buffering allows reading and processing the next frame while the previous frame is still
being displayed. The processing (reading of frames and of regions) is therefore running in a
separate thread. The communication between the user interface and the worker thread is implemented
using @’s events delivery mechanisnﬂ This is an event loop based delivery mechanism, which delivers
event-objects to instances of QObject-derived classes, calling their respective event() function.

Whenever the algorithm fails to track a region, the playback stops automatically. It is then
up to the user to decide if the tracked region should be removed or if the should be re-initialized
with an updated region. The user can seek forwards and backwards freely to review the and
tracking|results and adjust and move a region, or restart the of it at any point during the process.
Once the of regions is complete, all the information can be saved to a file. This file will
also reference the video file that was used. If the JSON|file is re-opened, the video file will be found
automatically. In case the video file has been moved, the user will be asked to select the matching video
file manually.

The format of the stored JSON|file is an extended form of the format that is already used by
the web-based application. A shortened example of this format is presented in Listing .1} In
comparison to the JSON]| format from Listing [3.1] a marking can now contain multiple updates for its
geometry. In this case, the singleShot property is removed and a valid stopTime property must be added
to mark the first frame where the marking is not present anymore. Further, the format also contains a list
of frames that can be used for negative samples (negativeFrames) and the absolute path to the video file.

After processing a video sequence with the software it is also possible, to feed the dataset,
consisting of the video sequence and JSON|file containing the annotations, back into the tagging|software
for displaying with a web browser and verification by a specialist.

Mhttp://doc.qt.io/qt-5/eventsandfilters.html

http://doc.qt.io/qt-5/eventsandfilters.html

Computer-Aided Screening of Capsule Endoscopy Videos 35

Listing 4.1: JSON format used to store tracking information.

"markings": [

{

"classification": "polyp",
"description": "description for polypl",
"geometryUpdates": [

{
"frame": 874,
"height": 112,
"time": 34.960000000000001,
"width": 112,
D0y B4R,
"y": 258

"frame": 876,

"height": 112,

"time": 35.039999999999999,
"width": 112,

"x": 341,

D0y 257
}

1,

"startTime": 34.960000000000001,

"stopTime": 35.079999999999998

b

1,
"negativeFrames": [1129, 1130]
"videoName": "/Users/zeno/Desktop/Medical Videos/colon3.avi"

4.2 Evaluation and Discussion

The solution we have implemented for object is meant to reduce the amount of work that is
needed, to create a dataset by irregularities in a video sequence. For creating a dataset, we want
to extract all the regions of interests from all video frames they appear in. We therefore first need to select
all the regions on all the video frames, so we know which parts of the video frames should be extracted.
Instead of using object tracking] it would also be possible to do this step manually. We would then have
to mark any on any video frame manually. For doing this, we could either use the web based [tagging]
tool, or the TagAndTrack tool that we have developed. We consider TagAndTrack to be more suitable
for the task, as it provides more fine-grained control over the video playback. Being familiar with the
tool ourselves, we manage to manually process about 100 frames in 6 minutes. Using the built-in object
[tracking| mechanism instead, we manage to process the same 100 frames in about 20 seconds on average.
During these 20 seconds, we had to select the region once and adjust the size of the tracked region
twice, meaning we have reduced the amount of time spent on this task by about 94%. These numbers
are also presented in Figure d.2] This is of course just a very rough measurement and calculation. The
actual speed of completing a dataset very much depends on the need for seeking/stepping forwards and
backwards and on the speed the camera is moving at. Nevertheless, the rough numbers provide a feeling
for the amount of time that we can save using object tracking]

Processing Time [sec]

0 60 120 180 240 300 360 420

manual tracking
automated tracking

Figure 4.2: Time comparison of processing 100 video frames, using manual or automatic tracking.

The weakness of our implementation is that the [fracking| rectangle always retains the same size and
is not resized when the tracked object changes in size. So, whenever a[ROI|significantly changes in size,
a manual adjustment of the rectangle is necessary, still slowing down the process significantly.
So, it might be worth trying to implement an automatic resizing of regions to reduce the time a
user spends on creating a dataset even more.

36 Computer-Aided Screening of Capsule Endoscopy Videos

4.3 Summary

In this chapter, we have evaluated several different options for the Object Tracking task. The purpose of
Object Tracking is to track any previously selected regions in the video, and thereby generate a complete
dataset that we can use for machine learning. We have found that a regular native] application is the most
suitable solution for our purpose and have developed a tool that we call TagAndTrack. TagAndTrack can
load the output data from our web-based [tagging|tool, select new regions, track selections and eventually
export the data in formats suitable for machine learning using opencv_traincascade or aldlib|based[HOG}
Trainer.

Using the automated that we have built into TagAndTrack, we can reduce the time needed
for creating a fully tagged dataset by 94%. A fully tagged dataset is a video where any that
was selected once, is also marked in any previous and subsequent frames it appears. The ability of
TagAndTrack to play and track selections both forwards and backwards in the video sequence is a further
improvement, as this implies that we no longer require a to be marked in the very first frame it
appears.

We now have a tool that can efficiently tag and track objects in videos to create datasets for machine
learning. The next step is to apply filters to the individual video frames for preprocessing. This is
addressed in the next chapter.

Chapter 5

Preprocessing and Image Filtering

While our tools allow rather efficient creation of a dataset for machine learning, the actual video
sequences still need to be collected. During the time we did not have enough video sequences available
for machine learning, we started experimenting with filtering to enhance the available data. For this
thesis, the term filter refers to a function or an algorithm that is used to modify a single image, without
applying any kind of machine learning or making use of data extracted from other images. In the
first section of this chapter, we present the implementations we have created for several filtering and
preprocessing methods. In the second section, we evaluate our implementations and present our findings.
Eventually, we provide a summary of our work related to filtering in the final section.

5.1 Design and Implementation

We have looked into four basic filtering mechanisms. The first one is what we call [border detection]
and it is meant to mask any irrelevant regions along the border of the video frames. The second one
is called and it can be used to detect any edges within the video, based on a predefined
edge threshold. The third mechanism is called which is a simple detection mechanism
built into[OpenCV|for detecting predefined shapes. The last mechanism we discuss is [specular highlight]
filtering. This mechanism is meant to remove or reduce reflections caused by a light source, such as the

light built into an

5.1.1 Border Detection

[Border detection|is used to mask any irrelevant regions along the edges of the video frames. There are
multiple kinds of regions that we consider irrelevant. Several videos that we have received, do have black
stripes at the top and at the bottom, which were most likely added automatically to fit a certain aspect
ratio. These stripes are obviously irrelevant to our purpose. The video sequences that we deal with are
usually recorded with special equipment. Several of the videos contain symbols or [metadata]
along the border (see Figure[6.1(c)). The light source is usually mounted directly into the and
the lighting for the video recording is therefore best at the point the endoscope]is directly pointing at and
is decreasing radially. Together with the size and shape of the lense of a regular [endoscope] the variable
intensity of the lighting leads to the[viewport] which contains the actually usable part of the video, having
a circular shape.

The algorithm for [border detection|is fairly simple and can mostly be implemented using functions
provided by We first convert a video frame to gray scale and then apply a fixed-level threshold
to create a binary black and white image. We define that any value below 20 for a pixel is most likely too
dark to be actually useful for our purpose and should therefore be masked.

We can now use the built-in function findContours to find any contours in the remaining
8-bit single-channel image. We are only interested in the extreme outer contours. We therefore pass the
argument CV_RETR_EXTERNAL to findContours. This will only return contours of the outer most level,
and all the returned contours will be closed.

37

[I N O

38 Computer-Aided Screening of Capsule Endoscopy Videos

All the detected contours now need to be processed further. As we are expecting a circular [viewport,
we want to filter out extremes of the contour detection that could be caused by annotations or symbols
along the edges of the video. We therefore ignore any detected contour, covering less than 25% of the
video frame. has a built-in fuction contourArea, which takes a contour as an argument and
returns the enclosed area in number of pixels. The minimum size of 25% of the video frame has been
chosen after short experimentation and could probably be reduced and fine tuned significantly. But, we
have not experienced any false negatives with these settings so far. We then wrap a around
any remaining contour and then draw the contour onto a new image buffer initialized with black color
and of the same size as the original image filling the enclosed area with white color. With this approach,
we have only ever had a single contour remaining, and the result is therefore a black and white image of a
convex shape that can be used with a bitwise-and operation to mask the irrelevant borders of the original
video frame. The algorithm is described in more detail with comments in Listing[5.1} An example for
comparing the original and the resulting video frame is presented in Figure[5.1]

Listing 5.1: Algorithm for border detection

static inline void detectBorder (const cv::Mat *video_frame, int borderThreshold, cv::Mat &croppedVideo) {
ate a buffer that can hold a single contour.
// cv wContours expec a vector of contours, so we need a vector despite the size of 1.
std::vector<std::vector<cv::Point>> borderContourContainer (1) ;
std::vector<cv::Point> &borderlineContour = borderContourContainer[0];
static cv::Mat gray, threshold_output; // Make intermediate buffers static to avoid re-allocation.

cvtColor (xvideo_frame, gray, cv::COLOR_BGR2GRAY); // Create an 8-Bit gray scale copy of the video frame.

// Apply a threshold on every pixel. Pixels below a value of "borderThreshold" will be painted black.
cv::threshold(gray, threshold_output, borderThreshold, 255, cv::THRESH_BINARY);

// Find any extreme outer contours. Store contours in simply approximated form.
std::vector<std::vector<cv::Point> > contours;

std::vector<cv::Vec4i> hierarchy;

cv::findContours (threshold_output, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE) ;

static cv::Mat drawing; // Avoid reallocation of the drawing buffer.

drawing = cv::Mat::zeros(gray.size(), CV_8UC3); // Make sure the buffer is initialized to black.
// Iterate through a top-level contours. There is usually only 1.
for (int i = 0; i >= 0; i1 = hierarchy[i][0]) {

// A contour has to be at least 1/4 of the image, otherw we will ignore it.
double area = cv::contourArea (contours([i]);

if (area < drawing.size().area() / 4) continue;

cv::convexHull (contours[i], borderlineContour); // Wrap a convex hull around the contour.

// Paint the convex hull to the borderContourContainer buffer.

cv::Scalar color = cv::Scalar (255, 255, 255);

cv::drawContours (drawing, borderContourContainer, 0, color, -1 /%fill enclosed areax/, 8 /xomit outlinex/)
}
// Use bitwise_and to mask the video frame with the generated drawing mask.

cv::bitwise_and(*xvideo_frame, drawing, croppedVideo);

(a) original (b) border detected

Figure 5.1: Original video frame and masked video frame after border detection.

Rl Y N N

Computer-Aided Screening of Capsule Endoscopy Videos 39

5.1.2 Edge Detection

Ldge detection]is a method to identify points in an image, where the intensity changes rapidly. Such
points are usually organized in curves or line segments, and can, for example, be used for

To get a better understanding of the potentials for we have implemented
with a variable edge threshold. The process of Canny-based edge detection is starting by
smoothing the image using a In the second step, the intensity gradient of the image is
extracted. The edges within the intensity gradient are thinned by reducing them to the local maxima.
Then the low and the high thresholds are used to classify pixels into suppressed pixels, weak edge pixels
and strong edge pixels. Eventually, all edges consisting of weak pixels only are surpressed. According
to Canny’s recommendation [52], the high and the low threshold for the Canny function should be in the
range of two or three to one. We therefore define the high threshold to be exactly three times the low
threshold. Depending on the selected threshold, we get a different granularity of edges detected. The
low threshold can be adjusted using a slider with a range of 0 to 100.

We used to experiment with various settings in an attempt to extract shape features
from the image that could then be used further to detect irregularities. The algorithm for this is presented
in Listing [5.2] We first convert the video frame to grayscale and apply a blur effect with a 3x3
to reduce the noise in the image. Eventually, we use the Canny function to detect edges and
generate an output image.

Listing 5.2: Algorithm for edge detection.

static inline void detectEdges(const cv::Mat xvideo_frame, int lowThreshold, cv::Maté& edgeDetected)
{

cv::cvtColor (xvideo_frame, edgeDetected, cv::COLOR_BGR2GRAY); // Convert the original video frame to grayscale.
cv::blur (edgeDetected, edgeDetected, cv::Size(3,3)); // Reduce noise with a kernel 3x3.
int kernel_size = 3;

int highThreshold = lowThreshold x 3;
cv::Canny (edgeDetected, edgeDetected, lowThreshold, highThreshold, kernel_size);

The problem we found with this approach is that, depending on the video sequence and the lighting
conditions, we need very different settings for the edge threshold to get a meaningful extraction of shapes.
Also, the noise level is very high. In other words, for many video frames, it is possible to find a threshold
that leads to the resulting image showing almost only the edges of an irregularity. But, the threshold
needed for this is highly specific to the particular video frame, so a different video frame would need
a completely different threshold setting. Figure [5.2] shows the same video frame with different

settings.

(a) original (b) threshold 15 (c) threshold 68

Figure 5.2: A video frame in the original form, and with two different edge detection thresholds.

Given the possibility of extracting edges of irregularities, we considered that it might be valuable

to add on top of with a very low threshold. The idea is to extract shape
information using and use the extracted shape information to detect previously learned

shapes.

(SN IS NV R NI R

N N N N N T R R N R N R R S R Sl N R e il
PSR NEVIN SRS IR SEVC I SN I NV I S I i SRV I R NE VN NE R N R R o R N I VT

40 Computer-Aided Screening of Capsule Endoscopy Videos

5.1.3 Shape Detection

Based on the previously described [edge detection] we decided to experiment with a simple approach of
manually selecting detected edges for learning, so that we can later detect similar shapes again. We call
this method For this approach, we added a data structure for storing shape data to our
program. Also, we added rubber-band-selection|and a context menu for selecting and learning shapes.
In this method, newly detected shapes are compared to previously learned ones. Shapes are stored
as a vector of points and the function matchShapes is used for comparing shapes based on
In image processing, a moment is a defined weighted value, describing a certain property or
geometric interpretation of an image. are a set of seven moments, which are invariant to
rotation, translation and scale and were first presented in [53]]. The function matchShapes compares two
shapes and returns a metric describing the similarity of the two shapes. The smaller the value, the better

is the match. The algorithm for is presented in Listing [5.3] with inline comments for
explanation.

Listing 5.3: Algorithm for shape detection

static inline double matchShapes (const std::vector<cv::Point> c, const std::vector<std::vector<cv::Point>> &learnedC)
{
double match = DBL_MAX;
// Iterate through all learned sha and compare given shape.
for (auto it = learnedC.begin(); != learnedC.end(); ++it) {
double d = ::matchShapes(c, =*it, CV_CONTOURS_MATCH_I1, 0.0f);
// Only update the value if the match is better (smaller value) than any previous one.
match = match < d ? match : d;

}
return match;

}

static inline void detectShapes (const cv::Mat +img, double detectorSensitivity, const Marking xselection,
const std::vector<cv::Point> &borderlineContour, const std::vector<std::vector<cv::Point>> &learnedShapes,
std::vector<std::vector<cv::Point>> &selectedShapes, cv::Mat &shapeDetectedVideo)

// Detect shapes in the image and store them in a tree structure, representing the relative positioning.
std::vector<std::vector<cv::Point>> shapes;

std::vector<cv::Vec4i> hierarchy;

cv::findContours (ximg, shapes, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE) ;

shapeDetectedvVideo = cv::Mat::zeros(img->size(), CV_8UC3); // Initialize the output image with black color.

// Clear the data structure holding any selections.
selectedShapes.clear () ;
// Iterate through all detected shapes and compare them to the learned ones.
for (size_t i = 0; i < shapes.size(); ++i) {
// Check shapes for being within rubber-band-selection.
cv::Scalar color = cv::Scalar (255, 255, 255);
if (selection) {
std::vector<cv::Point> selectionShape = selection->contour();
for (size_t j = 0; j < shape.size(); ++3) {
if (pointPolygonTest (selectionShape, shape[j], false) > 0.0) {
color = cv::Scalar (0, 255, 255);
selectedContours.push_back (shape) ;
break;

}
// Compare shapes to learned ones and color shapes which are below detectorSensitivity threshold.
double match = matchShapes (shapes[i], learnedShapes);

if (match < detectorSensitivity) color = cv::Scalar (0, 0, 255);
cv::drawContours (shapeDetectedvVideo, shapes, i, color, 2, 8);

In theory, the rotation-, translation- and scale-invariance of matches our requirement to
detect irregularities such as polyps in an arbitrary position and size. But, unfortunately, our experiments
quickly showed that basing this matching of shapes, which we call on top of the
previously described does not lead to the expected result. Shapes visible in the image
are often detected as multiple individual contours. A contour is just defined by a set of points, and the
starting and end points are not strictly defined. Also, for example, the shape of a U-shaped [polyp| might
have small extensions on its sides towards the regular tissue. So, even a very simple shaped [polyp| is
already very hard to detect in that manner. The threshold for detection would therefore have to be very
small, but this would then lead to many false negatives. The problem can easily be seen in Figure [5.3]
Figure shows a shape that is learned for later detection of similar shapes. In Figure [5.3(b)] that
single learned shape is re-detected in a subsequent frame. In Figure the shape of the [polyp| that
we want to detect has just changed marginally, yet the shape is not detected as a match anymore. In

Computer-Aided Screening of Capsule Endoscopy Videos 41

Figure on the other hand, the [polyp]is successfully detected again. But, unfortunately, in this last
image, we also have a false positive. For these three examples, only a single shape was learned, and the
threshold has been kept the same for all the detections. Yet, we have a correct detection, a very obvious
false negative and a very obvious false positive in this sequence, leading us to the conclusion that this
very simple approach is not usable for our purpose.

(a) learning (b) detecting

(c) detecting: false negative (d) detecting: false positive

Figure 5.3: Shape detection in the learning and detection phase.

5.1.4 Sepecular Highlight Filtering

[Specular highlights|are bright spots or regions on a shiny object, caused by a light source. In
videos, we can usually find many of these regions, because of the wet and shiny surface of the
The protruding, often round shape of apolyp| usually leads to reflections right on top of the itself.
Without filtering, this would become the most characteristic feature of a [polyp} also, this leads to many
false positives, because not every reflection actually is a[polyp|

[Specular highlight| filtering is regularly used in photography to remove reflections on skin caused by
a flash, for example on portrait pictures. The state of the art method used for this purpose is
[54]). For photography, this leads to good results, and, as a side effect, the filtering also smoothens
out normal irregularities of the skin.

We have tried the same approach for removing|specular highlight|incolonoscopy| videos that we used
for the training of our [classifiers] However, the results with [Gaussian filtering| are not sufficient for our

42 Computer-Aided Screening of Capsule Endoscopy Videos

purpose. While|Gaussian filtering|smoothens the edges of the reflections, the reflections were usually too
big to be removed entirely from the image. The reflections we have to deal with are usually significantly
bigger than the ones we would find on a portrait picture, mostly due to the wet and shiny surface of the
On many video frames, we find relatively large areas which do not have any color information
left at all. [Gaussian filtering| would make these areas more fuzzy and smaller, but at the same time, we
would also loose a lot of valuable texture information by applying this kind of filtering to the rest of
the image. The effect of [Gaussian filtering]is presented in Figure [5.4] The first Figure shows the
unmodified image containing [specular highlights] Figure [5.4(b)| shows the same image after applying
[Gaussian filtering| with a of size 5x5 pixels. In this image, it is visible that the edges of the
[specular highlight|are more smooth and the reflections appear slightly smaller. However, the reflections
remain visible, and the whole image appears slightly out of focus. This becomes even more obvious in
Figure It is the same image again, just that for making it more obvious, we have now applied a
[Gaussian filtering| with akernel| of size 21x21 pixels.

(a) Original Image (b) Gaussian filtering 5x5 kernel (c) Gaussian filtering 21x21 kernel

Figure 5.4: Specular Highlight Reduction by Gaussian Filtering.

As seen in Figure [5.4] [Gaussian filtering] is not a viable option for our use case. The reflections are
too strong to be filtered out, and, at the same time, we loose a lot of detail. In order to minimize the effect
of the reflections in our we have therefore tried to find a better solution for replacing
reflections in the image with estimated or randomized data. The result and the intermediate steps of
the algorithm we came up with, are shown in Figure [5.5] The code for this contains a lot of loops and
index operations to deal with image borders, pixel offsets and image masks. The code is therefore rather
tedious to read and does not explain the concept in the best possible way. We will therefore use images
of intermediate steps instead of source code, to describe the concepts.

To detect [specular highlight| regions, we transform the image into gray scale and use a simple
threshold. Every pixel above this threshold is masked. To make this more visible, we have marked any
masked pixels in Figure [5.5(b) with red color. As we can see in this figure, there is often a dark contrast
line around a[specular highlight] This dark ring we do want to remove together with the already masked
pixels. For this purpose, we use a of 9x9 pixels to extend the mask around every previously
masked pixel. The result of this is shown in Figure Once we have determined all the pixels we
want to replace, we use a gradient to fill the masked area line by line. Instead of doing this operation
line by line, we could do it column by column with essentially the same result. In order to minimize
the building of visible lines, we calculate the arithmetic mean of the gradient and the value of the pixel’s
neighbors in vertical direction for every pixel in Figure[5.5(d)] To further reduce the visible lines caused
by the modified pixels, we use a 3x3 [kernel] for all the previously masked pixels, and randomly distribute

the pixels within the The final result is presented in Figure

Computer-Aided Screening of Capsule Endoscopy Videos 43

(a) Original Image (b) Masking pixels above threshold (c) Masking pixels with a 9x9 kernel

(d) Apply horizontal gradient (e) Randomize gradient with 9x9 kernel

Figure 5.5: Specular Highlight Reduction by using Gradients and randomized Kernels.

5.2 Evaluation and Discussion

In this section, we will discuss our findings from implementing and experimenting with the filtering
mechanisms that we have built into TagAndTrack. An algorithm based on geometric analysis, which
seems very promising for implementing automated detection, is presented in [39]. We believe, it is
possible that an approach based on filtering and machine learning would lead to even better results.
However, the focus of this thesis is to use machine learning and building up related software infrastructure
for the processing of [capsule endoscopy| video data. Filtering of the imaging data has therefore only
been considered for preprocessing steps. These built-in filtering mechanisms are comparably simple and
are meant to be used for experimenting with the technologies available, rather than conducting actual
detection tasks.

5.2.1 Border Detection

The mechanism we have implemented for removing border regions is basically masking anything outside
of the biggest detected contour in the image, after having applied a threshold on the intensity of the
frame. This method has worked very well for all the video sequences that we had available. Using this
mechanism, we have successfully removed any border regions which were too dark to contain any really
valuable information. For our purpose, we have simply defined this threshold to be a grayscale pixel value
of 20. This is an arbitrary number, which we chose after a few experiments and might therefore not be the
optimal value. As there is only very little information contained in these dark regions, those usually do
not interfere with the actual detection and the significance of [border detection)as a prepocessing step just
for this purpose is therefore questionable. However, as a side effect of abstracting the remaining contour
to a we also remove any symbols or annotations along the borders of the original video
frame. With the video sequences that we had available, this side effect was rather important. Most of
these videos were not recorded using camera pills, but rather using equipment, which serves

44 Computer-Aided Screening of Capsule Endoscopy Videos

more purposes than just taking videos. Several of the videos therefore contained symbols or annotations
added by the recording equipment, which interfered with our [classifiers|and caused false positives.

We therefore conclude that the need for |[border detection| as a preprocessing step depends on the
video material being used for training or detection. If any symbols or annotation are present, this step is
needed. Instead of storing such information directly in the image, we would suggest the video capsule
manufacturers to store any annotations in form of separate[metadata] similarly to how subtitles for movies
or geotagging information for photography are handled. This would most likely make [border detection|
as a preprocessing step redundant.

5.2.2 [Edge Detection

is one of the most simple and basic detection mechanisms. If the threshold is configured
manually, it is usually quite easy to find a setting where objects such as polyps stick out visually.
Unfortunately, the needed value for this threshold varies a lot, depending on the surface, the light and the
quality of the recording. So this method cannot be used in a generic way for detecting polyps or other
irregularities.

If we had a dataset only containing video sequences that were created with the same camera
equipment or and the dataset would therefore be more uniform, it might be possible
to find a threshold value, which can be used for a first screening step. This could be valuable in a
setup, where we would use multiple different [classifiers|to detect different properties and apply a ranking
system on the output of the different|classifiers]

The edges that can be detected and made visible using this method, usually contain a lot of noise
caused by structure of the and shades or reflections on its surface. We usually also detect a
rather clear edge along any protrusion, caused by the different angle of the surface of a protrusion to the
light source. The amount of reflected light is bigger on top of the protrusion than around it, leading to a
rather clear edge being detected along a protrusion. We therefore wanted to try using to
recognize the protrusions, which are typical for polyps, from the previously detected edges.

5.2.3 Shape Detection
Having in place, it was very straight forward to add [shape detection]as well, as

provides built-in functionality for finding matching shapes. We had to add some basic functionality
for selecting shapes (based on edges) and remembering those by storing their points in an appropriate
datastructure.

The results of based on cv::matchShapes are not very promissing. Matching shapes
is a well defined operation, and a threshold for the similarity of shapes can be defined. But the shapes

generated by are not suitable as input for the because just
detects actual edges and not complete objects. Whileedge detection)might make an object clearly visible
on screen, such an object is usually a composition of multiple separate edges. If we then use our simple
shape matching implementation to learn the shapes of a selected object, we will be comparing separate
edges of an object, rather than its whole connected shape. This leads to both many false positives and
false negatives, even with very simple objects. Figure [5.6/makes this problem very obvious. Trying to
detect stars on the American flag, only the exact same star, as has been learned, is detected. But, at the
same time multiple edges of the stripes are detected erroneously.

We conclude that basing on the output of is not usable for our

purposes. It can be neither used as a detection mechanism, nor for preprocessing.

5.2.4 Specular Highlight Filtering

[Specular highlights| are a significant problem with our machine learning approach. The amount of light
reflected by protrusions - in particular by polyps - is very strong on most of our samples. It does, however,
not make a good characteristic feature, because there is also a plenty of reflections on healthy
Therefore, a[classifier] trained with unfiltered data mostly detects reflections rather than actual polyps or
protrusions.

Computer-Aided Screening of Capsule Endoscopy Videos 45

Figure 5.6: Shape detection of stars on the american flag.

We have experimented with [Gaussian filtering] the standard solution for [specular highlight filtering
used in photography. This resulted in a blurry image and thereby loss of valuable texture information.
At the same time, the reflections on the are too strong to be removed or significantly reduced by
this kind of filtering.

In many places on the video frames we are using, there is basically no color information left.
The reflection causes a completely white spot in the image without any real information. We have
therefore developed our own solution for filtering out completely white spots without texture information,
removing the surrounding shades and augmenting the original image with randomized gradients. We use
these gradients to smoothen the transitions to the surrounding colors of the augmented areas. To make
sure that our [classifiers|do not learn to detect gradients instead of the actual target objects, we randomly
distribute the pixels within the gradient lines to reduce any gradient patterns.

ack ROIs using TLD ack ROIs using TLD
er Specular Highlight er Specular Highlight
dge Detection Edge Detection

Edge Threshold: Edge Threshold:

Border Detection
Border Threshold:

Border Detection
Border Threshold:

Shape Detection Shape Detection

Detector Sensitivity: Detector Sensitivity:

Cascade Detection Cascade Detection

Clear Markings Clear Markings
Teach HOG Detector Teach HOG Detector

HOG Detection HOG Detection

(a) without Specular Highlight Filtering (two false positives) (b) with Specular Highlight Filtering (no false positives)
Figure 5.7: Haar-based polyp detection on the same frame, with and without Specular Highlight Filtering.

The noise caused by reflections is significantly reduced in the resulting images, and the [classifiers|we
have trained with this data, detect significantly less false positives caused by reflections (see Figure[5.7).
We therefore conclude that this is a valuable preprocessing step for the data used to train a
However, it is likely that [specular highlights| are less of a problem when data is being recorded with
actual [camera capsules| All the data we had available was recorded using conventional endoscopes,
which have rather strong lights placed next to the camera. Also, during an examination, the
doctor usually directs the camera and the light source directly at polyps, which leads to even stronger
reflections. With [camera capsules| the deliberate directing of light and camera would not be the case;
also, the light source would most likely be significantly less strong. This is because a|camera capsule]
has a very limited size and can therefore only store a limited amount of energy in its battery. This energy

46 Computer-Aided Screening of Capsule Endoscopy Videos

has to be managed carefully to allow capturing video frames over several hours. The amount of energy
available for the light is going to be much lower than with the conventional

5.3 Summary

In this chapter, we have discussed the implementation of four different filtering mechanisms for
preprocessing and for detecting shapes in video frames. We have also evaluated these filtering
mechanisms separately. We have found that|border detection|is useful to filter out artifacts and irrelevant
regions along the edges of the video frames. We therefore consider it a valuable preprocessing step for

our training and [testing datasets

We have also implemented with a variable edge threshold. We evaluated
as a preprocessing step only, as it only affects the visual representation of the image, but cannot

be used to detect any lesions or polyps by itself. Video frames processed with this mechanism, can make
protrusions such as polyps well recognizable for the human eye. However, the amount and the quality
of the edges produced depends heavily on the threshold, which must be adjusted to fit the specific frame
or video sequence. Based on the edges detected we have implemented functionality to select, learn and

recognize learned edges. We call this mechanism [shape detection] We considered using

to learn and detect the shape of polyps. However, our experiments have shown that this approach is not
suitable for our purpose, mostly because the edges produced by for a protrusion are not
always equally well connected and, therefore, produce various different shapes.

We have further developed a mechanism for |[specular highlight| filtering, which we can use as a
preprocessing step for training and testing data in machine learning. This is relevant, because the
reflections on the caused by the light of an are very strong and cause the
to learn detecting reflections instead of lesions. This mechanism removes any pixels with an intensity
above a certain treshold and replaces those pixels with a randomized gradient to reduce the creation
of patterns that could interfere with the training. We consider [specular highlight filtering a
valuable preprocessing step for our further experiments.

After implementing and experimenting with different filtering mechanisms, we next aim for a system
that can automatically detect polyps in video sequences. This is investigated by introducing machine
learning in the next chapter.

Chapter 6

Machine Learning

An existing procedure for detecting colon polyps is [55]], also called |Virtual Colonoscopy] [10].
A computer-aided detection approach for [CI'C| imaging data is described in [[19]. According to [[19]],
most of the computer-aided detection systems, which have been developed as research prototypes, use
algorithmic extraction of the colonic wall to reconstruct a three-dimensional model of the whole colon.
The detection thereafter is based on detecting geometric features that characterize polyps. In the case
of |capsule endoscopy| videos, the precise position and direction of the capsule at the moment a picture
is taken are not available. So, it is not possible to use the same process of extracting the colonic wall.
Instead of recreating a complete three-dimensional model of the colon, we therefore rely on the color
and geometry features available on single images. The main idea is to use machine learning to train an
algorithm to detect irregularities on an image, in the same way as a human would do manually.

Our goal is to categorize any input images or video frames into two classes: showing a polyp and
not showing a polyp. This is a typical binary classification problem and is therefore suitable for using
an[SVM] An[SVM]is a[supervised Iearningl model and requires us to collect labeled training data. There
is also a concept of [unsupervised learning] e.g. clustering, which works on unlabeled data [29]. As
we want to base our on expert knowledge, and considering that the problem is suitable for
using a we have decided to use [supervised learningl In [56], the goal of machine learning is
described as follows: “The fundamental goal of machine learning is to generalize beyond the examples
in the training set.” To generate this generalization during the training process, a must
contain a sufficient amount of data. The dataset must be diverse and representative enough to avoid
[overfitting] [Overfitting] occurs, when the training data being used does not generate an abstract model
of the problem we are trying to build a for. In this case, our detector or would not
detect a generalization of the problem, but rather encode random noise. An example of how we could
cause is, training an algorithm only based on images of a single [polyp| But later, we would
like to use the generated for detecting polyps in different videos. In this case, we would most
likely end up encoding or learning the exact features of that one single [polyp| instead of achieving a
generalization of all polyps. Such a detector would score very high on the training data, but show very
poor performance on any data that has not been part of the training set.

To be able to generalize the features of a or any other it is therefore crucial to have
plenty and diverse training data available. In the case of colon polyps, it is not very easy to collect such
data. We neither have the means nor the patients available for this. Neither do we have the expertise
to reliably recognize all the disease patterns. So, we have to rely on hospitals to provide us with such
data. In the previous chapthers, We have therefore implemented and evaluated several prototypes for
collecting such [training datasets| from doctors or hospitals. In this chapter, we discuss and evaluate our
experiments and prototypes for detecting colon [polyps|using machine learning methods.

6.1 Design and Implementation

As mentioned already before, there are many different kinds of irregularities that can be found and
diagnosed using Examples of such irregularities are presented in Figure[6.1]

47

48

Computer-Aided Screening of Capsule Endoscopy Videos

ThTm

(e) Familial adenomatous polypsis (FAPEI

(g) Diverticular Bleedingﬂ

Figure 6.1: An inconclusive list of irregularities that can be diagnosed using colonoscopy.

Computer-Aided Screening of Capsule Endoscopy Videos 49

As seen in this figure, there are a plenty of different disease patterns, which have very little
characteristic features in common, except that they all occur in the colon. While it is not hard for the
untrained eye to guess that there is something wrong, it is very hard to actually describe a pattern or even
to describe in words what exactly to search for. For simplicity and due to the limited amount of collected
data, we will therefore limit the scope for our machine learning process to detecting colon polyps.

Colon polyps are growths of tissue inside the [55]. Some polyps are mushroom-
shaped protrusions on the end of a stalk. Others appear as bumps that lie flat against the intestinal
wall. According to another source [57]], the word derives from the Greek polyposes, ”a morbid
excrescence”, but it now applies to any protrusions from the mucous membrane. To summarize in simple
words, we are looking to find any protrusions from the regular wall of the

A different noninvasive method, which would provide data that is easier to process for this purpose
is [Virtual Colonoscopy]| (also known as computed tomography colonography (CTC)). Using
[Colonoscopylit is possible to review the recorded images interactively in a two-dimensional or in a three-
dimensional format. In the two-dimensional mode, a reviewer screens the dataset in transaxial, coronal
and sagittal planes. In three-dimensional mode, the colon is examined from an perspective
and it can be navigated through the entire length of the colon in both directions, in order to avoid missing
polyps, which could be hidden behind a fold of the colon in one or the other direction [10]. Especially the
two-dimensional axial images of the |Virtual Colonoscopy|are very well suited for detecting protrusions.
In this view the hollow space of the colon is visible as a black mostly concave area in the image and
any convex protrusion into that hollow space is a potential irregularity that needs to be examined more
closely.

While this method is noninvasive, well tolerable for the patient and the collected data would even be
more suitable for machine processing, it does not solve the problem of scalability. The whole procedure
still needs to be conducted by specialists, and expensive equipment is a requirement.

This is why we are instead focusing on imaging data acquired by [camera capsules| Of course this
leads to a few more challenges. We do not know the exact position of the capsule when a certain
picture was taken, neither we know the direction or what it was pointing at. So we are lacking accurate
positioning and focusing information. The only information available to us, is the image itself. A
common way of recognizing objects on pictures is training a Haar-like feature based|cascading classifier]
Another method is feature detection using histograms of oriented gradients. Subsequently we will
describe the work we have done to train|classifiers|using these two approaches. This includes descriptions
of software we had to write ourselves, as well as configuration and usage of existing tools.

6.1.1 Cascade Classifier Training

Classifier cascading is the concatenation of several where the output of each intermediate

is used as additional input to the next in the cascade. A face detector implementing
this technique has been described in [48]] and this is still the basis for Haar-training in

[OpenCV]provides several tools for creating a dataset, training a[classifier] and even for analyzing the
performance of a given In this section we will describe our efforts for creating a
to detect colon polyps and we will also describe the tools we created, to be able to use the previously
processed video sequences as input for the training of such a[classifier]

1CC BY-SA 2.5 / Stephen Holland, M.D., Naperville Gastroenterology, Naperville, IL, USA;
http://commons.wikimedia.org/wiki/File:Polyp-2.jpeg

2CC BY-SA 3.0/ Jiri Pekhart;
http://commons.wikimedia.org/wiki/File:Colorectal_cancer_endo_2.jpg

3CC BY-SA 3.0/ Attribution to Samir at English Wikipedia;
http://commons.wikimedia.org/wiki/File:Ulcerative_colitis.jpg

4CC BY-SA 3.0/ Attribution to Samir at English Wikipedia;
http://upload.wikimedia.org/wikipedia/commons/0/0e/CD_colitis.jpg

SCC BY-SA 3.0/ Attribution to Samir at English Wikipedia;
http://commons.wikimedia.org/wiki/File:FAP.jpg

6CC BY-SA 3.0/ Attribution to Samir at English Wikipedia;
http://commons.wikimedia.org/wiki/File:Diverticulosis_2.jpg

7Copyright by Brugge / endoatlas.org;
http://www.endoatlas.org/assets/media/img/xl/weo_colon_diverticulum_active_bleeding_brugge.jpg

BN =

50 Computer-Aided Screening of Capsule Endoscopy Videos

For training the we need a dataset as input to opencv_traincascade. Such a dataset consists
of a vector file that contains all our positive samples and a selection of images for negative samples. To
create a vector file with positive samples, we can use the tool opencv_createsamples. This tool is very
convenient to use when creating alclassifier] for a rigid and well-defined object - for example, a company
logo. A company logo is a very simple case, as corporate identity usually dictates the logo always to
look exactly the same. So, in this case, the only needs to detect exactly one specific object. Of
course, this object can be rotated, skewed or have a perspective distortion on any picture we might feed
to the But, it will still remain a single object with precisely defined characteristic features.
opencv_createsamples makes it very easy to create a vector file containing positive samples for this
specific case. All we need is a single image showing the logo. The tool can then create as many samples
as we want by applying rotations and distortions. This can be achieved with the following command:

Listing 6.1: Generate samples from a single image.

opencv_createsamples -img logo.png -num 100 -bg negatives.dat -vec samples.vec -maxxangle 0.5 \
-maxyangle 0.4 -maxzangle 0.3 -bgcolor 0 -bgthresh 0 -w 20 -h 20

The command presented in Listing [6.1] would generate a vector file samples.vec containing
100 samples, generated from a single image logo.png, using background images listed in the file
negatives.dat. The distortions applied to the original image would be limited by a maximum rotation
of 0.5 rad around the x-axis, 0.4 rad around y-axis and 0.3 rad around z-axis. The background color of
0 is treated as transparency, which equates to black in grayscale, and the threshold for the background
color will be 0. This threshold means that any completely black pixels in our sample image would
simply be ignored in the later training of the This would work great, for a simple logo on
a black background. Unfortunately, our case is slightly more complicated than the simple case with a
single logo. In our case, we are not trying to recognize a single well defined logo, but rather a whole
class of objects, each of them slightly different from any other object.

6.1.1.1 Exporting Positive Samples from TagAndTrack

As we have described previously, opencv_creatsamples can be used to create many samples from a
single image by applying rotations and distortions. It is, however, not capable of doing the same with
multiple input images. So we either have to invoke that tool for every single image and merge the
resulting vector files, or do the rotations and distortions by ourselves, and just use opencv_createsamples
to actually bundle a list of images into a vector file. We therefore implemented an export mechanism
in our TagAndTrack tool. After using TagAndTrack to create a complete dataset by object tracking| and
applying manual corrections, the user can choose the menu option called Export Samples. The tool will
then ask the user to select a target folder to export all the information to. All regions that have been
marked as positive samples will be rotated clockwise in steps of 20 degrees, resulting in a total of 18
samples per region. Each of these samples will then be cropped to the of the rotated region
and will be stored as a separate image. Every image will be named according to the pattern described in
Listing [6.2] The pattern encodes the exact time of starting the export task in the image name. This will
allow us to easily merge multiple folders containing exported results without renaming any files.

Listing 6.2: Naming pattern for positive samples.

p_[rotation angle]_sample_[date & time of exporting]_[frame number].png

An example for a positive sample from frame 1262, rotated by 40 degree exported on the 2nd of December 2014 at 22:32.34:
p_40_sample_141202223234_1262.png

If we would simply create rotated copies of a this would look like shown in Figure Of
course, the most characteristic feature in such a series of samples would then rather be the rotated
rectangle, than the actual content of the selected region. To avoid this problem, we therefore have to
calculate the correct of the rotated selection and then crop the sample image accordingly.
The dimensions for the region to store in an image after rotating are calculated using the algorithm
described in Listing [6.3] We have added inline comments for additional explanations.

[SIN-I- IS I VRN NI R

B N 1D I 1D R N DD B = e i i i i
CRITNARERDLN—~S ORI R LN~

Computer-Aided Screening of Capsule Endoscopy Videos 51

(a) selected region (b) rotated by 20° (c) rotated by 40°

Figure 6.2: Uncorrected rotation of

Listing 6.3: Calculation of region to export after rotating.

static void saveSamplesForRect (const QImage &image, const QRectF& rect, const QString sampleName
, QDir& targetDir, QTextStream &positive)
{
// Calculate the dimensions needed to accommodate all rotations for the selection.
int w = rect.width();
int h = rect.height();
float r_selection = sqgrt(pow(w, 2) + pow(h, 2)) / 2;
float r_boundingBox = sqrt (pow(2 * r_selection, 2) * 2) / 2;
int x1 = rect.x() + w / 2 - r_boundingBox;
int yl = rect.y() + h / 2 - r_boundingBox;

// Create a copy of the part of the image needed to accommodate all rotations.
QImage rotatable = image.copy(xl, yl, 2 * r_boundingBox, 2 % r_boundingBox);
QRectF selectionRect ((rotatable.width() - w) / 2, (rotatable.height() - h) / 2, w, h);

// Calculate and store all required rotations in incremental steps of 20 degrees.

for (int i = 0; i < 360; i+=20) {
QString fileName = sampleName.left (2) + QString::number (i) + "_" + sampleName.mid(2);
QMatrix trueMatrix = QImage::trueMatrix (QMatrix().rotate(i), rotatable.width(), rotatable.height());
QImage rotated = rotatable.transformed(trueMatrix);

QRectF exportRect = trueMatrix.mapRect (selectionRect);
// Crop the rotated image to the bounding box of the rotated selection and save it with best quality (100).
QImage cropped = rotated.copy (exportRect.toRect());

cropped.save (targetDir.absoluteFilePath (fileName), "PNG", 100);
// Save the metadata to the text stream for positive samples.
positive << fileName << " " << 1 << " " << 0 << " " << 0 << " " << cropped.width() << " " << cropped.height () << "\n";

Figure[6.3]visualizes the calculation steps from Listing[6.3] The figure shows an example video frame
with a clockwise rotation by 40 degrees for exporting. The green rectangle is the originally selected RO]|
rect. The green dotted circle is defined by r_selection and is used as an intermediate step to calculate the
radial dimensions of the rotated [bounding box] Using the resulting r_boundingBox (blue dotted circle)
we can then calculate the maximum dimensions we need to accommodate the for any
rotation of the image. For simplicity, we then create a new image rotatable, which is a copy of the
necessary fraction of the original image (red rectangle). Finally, the blue rectangle exportRect is the
fraction of the image, which eventually will be stored as a separate sample.

6.1.1.2 Exporting Negative Samples

The opencv_traincascade tool requires a set of images for negative / background samples. These images
should show regular content that could appear in the background of a picture passed to the detector later
in the process. In theory, we could use any image that has not specifically been marked to contain a[ROIl
for this purpose. However, there are several reasons why we would not want to make use of every single
non-marked frame in a video sequence. Some parts of a video sequence might, for example, show an
irregularity, but be out of focus, which is why we did not mark any regions on these frames. Another
reason could be visibility of equipment, used during the to take samples from the
And, of course, videos might also have parts in the beginning and towards the end, which we are not
interested in.

Further, we also had to add functionality for selecting frames to be used as negative samples to our
TagAndTrack tool. For simplicity, we have decided only to allow selection of whole frames and not

AL =

[< VR NI

52 Computer-Aided Screening of Capsule Endoscopy Videos

Figure 6.3: Calculated geometries for roatating and exporting positive samples.

sub-areas as negative samples. For this purpose, we added an indicator, which changes color depending
on a frame being a positive or a negative sample. By default, we treat any frame like a positive sample,
and the indicator is colored red. During playback or while stepping forwards or backwards using the /left-
or right-key, a user can press the Ctrl- / Command-key to explicitly mark the frame stepping away from
as a negative sample. When stepping or seeking back to a previously marked frame, the indicator will
then be colored green. To remove the negative marking from a previously marked frame, the same action
can be used, but with pressing the Shift-key instead of the Ctrl- / Command-key. When using the export
mechanism, all frames marked as negative samples will be stored as separate images, un-cropped and in
full resolution. Every image will be named according to the pattern presented in Listing [6.4]

Listing 6.4: Naming pattern for negative samples.

n_sample_[date & time of exporting]_[frame number].png

An example for a negative sample originating from frame 1289, exported on the 2nd of December 2014 at 22:32.34:
n_sample_141202223234_1289.png

6.1.1.3 Exporting Metadata for the Samples

In addition to the actual image frames, we also need to export [metadata] for the pictures to be usable for
opencv_createsamples and opencv_traincascade. When exporting the images, we therefore also create
two text files in the same directory. The file containing the meta data for the positive samples we call
positive.dat, and the file containing the data for negative samples we call negative.dat. The positive.dat
file contains a single line for every positive sample. Every line has the format presented in Listing[6.5]

Listing 6.5: Format of positive.dat.

[filename] [number of objects] [[x y width height] [... object 2 ...] ...]

As we export a separate image for every single sample, we will only have a single object per line.
Since all the samples are also cropped and rotated, the position of the object in the sample always starts
at the top left corner, and the width and height of the object are equal to the width and height of the image
itself. In our case, the positive.dat file will therefore always be similar to Listing [6.6]

Listing 6.6: Example of positive.dat

p_0_sample_141202150457_874.png 1 0 0 131 126
p_20_sample_141202150457_874.png 1 0 0 166 163
p_40_sample_141202150457_874.png 1 0 0 181 181
p_60_sample_141202150457_874.png 1 0 0 175 176

0
0
0
p_80_sample_141202150457_874.png 1 0 0 147 151

R I N S

Computer-Aided Screening of Capsule Endoscopy Videos 53

The file negative.dat contains a line stating the file name of every image to be used as a negative
sample. When exporting data for several different video sequences, all of the exported images should
have distinct names. If we want to train alclassifier) with the output for multiple video sequences, we have
to copy all the images into a single folder. Further, we have to concatenate all the negative.dat files and
also concatenate all the positive.dat files. As we are potentially dealing with thousands of files, merging
directories can be difficult. A simple cp in a bash shell might not work because of a too long list of
arguments. This can, however, be solved by making use of xargs, as shown in Listing

Listing 6.7: Using xargs to work around command argument limitation.

ls video_samples/ | xargs —-I{} -n 1 cp video_samples/{} ~/my_dataset/

6.1.1.4 Using opencv_traincascade to Train a Classifier

Before we can actually start training a we still need to create a vector file from the previously
exported positive samples. For this purpose, we can use opencv_createsamples with the positive.dat file
as input, as presented in Listing[6.8]

Listing 6.8: Creating a vector file from raw images and positive.dat.

opencv_createsamples -info positive.dat -vec positive_samples.vec -w 24 -h 24 -num ‘cat positive.dat | wc -1°

This will create a file called positive_samples.vec, which contains all the sample images stated in
positive.dat. All the samples will be scaled to 24x24 pixels. We also have to pass the number of lines we
want to process from the input file. There is no documentation for [OpenCV|that describes what size the
positive samples should be scaled to. Some tutorial suggest using sizes around 20x20 pixels for face
recognition. Of course, the scale also affects the level of detail preserved in the samples. The bigger the
sample, the more details are available. At the same time, this comes at the cost of a significantly longer
time for training the|classifier] We have decided to use the default value of 24x24 pixels to make sure we
can detect a reasonable level of detail.

The next step is to train the For this purpose, provides a tool called
opencv_traincascade. We will use the command sequence in Listing [6.9] for the training. The
opencv_traincascade tool requires us to pass the number of positive samples to be used for the training
in each stage with the parameter -numPos. We should not just pass the number of available positive
samples here, because opencv_traincascade will skip samples, which do not have additional training
effect for subsequent stages. We would like all our positive samples to be used, but we cannot know the
amount of discarded positive images in advance. If we require more images to be used than available
after discarding some, the training process will abort. A good rule of thumb is to use 90% of the available
samples. Before starting the training process, we therefore shuffle the lines in the positve.dat files. As
opencyv_traincascade will process the samples in the same sequence they are mentioned in positive.dat,
this will make it much less likely that we will miss a complete original sample in the training process.
Of course, we will still discard the same amount of samples, but these will most likely be rotations of
different samples instead of all the rotations of a single sample.

Listing 6.9: Training the classifier with opencv_traincascade.

Randomize the order of the positive samples.

gshuf positive.dat > shuffled_positive.dat

Determine the amount of positive samples to use per stage.
NUMPOS=‘cat shuffled positive.dat | wc -1‘

NUMPOS=‘echo " ($NUMPOS % 0.9)/1" | bc®

Determine the amount of negative samples to use per stage.

NUMNEG="‘cat negative.dat | wc -1

Start the training.
opencv_traincascade -data output_traincascade -vec positive_samples.vec -bg negative.dat -precalcValBufSize 2048 \
—precalcIdxBufSize 2048 —numPos S$NUMPOS —numNeg S$SNUMNEG -w 24 -h 24 -mode ALL

8http://note.sonots.com/SciSoftware/haartraining.html#Kuranov

http://note.sonots.com/SciSoftware/haartraining.html#Kuranov

SO XA U W~

54 Computer-Aided Screening of Capsule Endoscopy Videos

The command sequence in Listing [6.9) will start the training process and write any intermediate and
final output data into the directory output_traincascade. We increase the buffer sizes for precalculated
features and indices to 2048 MB each, to make sure the process has enough memory available. Further,
we specify to use all available for the training. The meaning of all the arguments is
described in Listing[6.10]

Listing 6.10: Description of arguments to opencv_traincascade
-data <output directory>
-vec <positive samples vector file>
-bg <negative samples dat file>
—-precalcValBufSize <buffer size for the precalculated features (MB)>
—-precalcIdxBufSize <buffer size for precalc. feature indices (MB)>
—-numPos <number of positive samples to be used in each stage>
—numNeg <number of negative samples to be used in each stage>
-w <width of the positive samples in the vector file>
-h <height of the positive samples in the vector file>
-mode <set of Haar features to use for training>

The training process runs for several days, depending on the required and the available
input data. We were running a training process with a total of 14,472 positive samples and 10, 842
negative samples. With the settings described previously, this process took about 9 days to finish on a
Mac Pro Mid 2010 with dual 2,4 GHz Quad-Core Intel Xeon CPUs, 16 GB of memory and an SSD
drive. However, the specifications of the computer are not that significant since for the biggest part of the
training process only a single CPU is used. On Linux, it is possible to build[OpenCV]with|[Intel Threading
\Building Blocks (TBBJ)| support. is a C++ template library for task parallelism. It is available on
multiple platforms, but does not make use of it on Mas OS X. Using a Linux machine with a
custom built[OpenCV]version to support[TBB| we observed a significant speed increase. With a computer
of similar hardware specification, we could then complete the training in about 4 days.

6.1.1.5 Building an OpenCYV based Detector Tool

The output of opencv_traincascade is an file, which contains the trained The detector
tool processes an input video, classifying every single video frame using the loaded from such
an[XML]file. To be able to concatenate several such tools to a processing pipeline, it should be possible to
run the detector in a head-less mode, not requiring a user to operate a user interface. This will also make
it very simple to run the detector tool on multiple servers, to process many different video sequences
simultaneously. We therefore made this a simple command line tool, without a graphical user interface.

The basic functionality of such a detector is rather straight forward, and is described in Listing[6.11]
As in previous listings, the code was simplified and code, such as include statements or
parsing of command line arguments, has been removed. The boolean detect is passed as command line
argument -c and the cascading classifier] will only be used if this option is passed. This allows us to run
the tool just for measuring the time needed for reading a video file without any actual processing. We
can use this reading-time as a baseline for benchmarking.

We implemented a class RectMap, which is essentially a wrapper for a simple std::vector holding
cv::Rect instances. RectMap implicitly allocates this vector to be of equal size as the current video’s
lenght in frames. At a later point in time, this allows us to simply assign cv:.:Rect instances belonging to
a specific video frame to a given position in the vector, without having to resize the vector beforehand.
We use a cv::CascadeClassifier instance to load the[classifier|data from a file called cascade.xml” in the
same directory. We also use a cv::VideoCapture instance, to read the video file frame by frame. Before
we start reading any frames, we store a timestamp so we can calculate the processing duration before
exiting the program. We then read the video file frame by frame, convert the image to grayscale, equalize
the grayscale histogram to improve the contrast of the image and use the detectMultiScale function of
our[classifier] to run the actual detection at multiple different scales. The result of this function call, we
insert into our RectMap. Once all the frames have been processed, the RectMap contains all detection
information, and the datastructure could be printed or processed further. For now, we are only interested
in the number of regions detected and the duration of processing a video sequence. We therefore acquire
a second timestamp, calculate the time difference and output this information on the command line.

dhttps://www.threadingbuildingblocks.org/

https://www.threadingbuildingblocks.org/

[Y N

Computer-Aided Screening of Capsule Endoscopy Videos 55

Listing 6.11: A simple OpenCV based detector.

<<< include several headers >>>
using namespace std;

class RectMap {
public:
RectMap (size_t s) : rectangles(s, std::vector<cv::Rect>()) { }

void insert (int frame, const std::vector<cv::Rect> &rects) {
rectangles[frame] = rects;

}

int totalNumRects () const {
int num = 0;
for (auto it = rectangles.begin(); it != rectangles.end(); ++it) num += it->size();
return num;

}

private:
std::vector<std::vector<cv::Rect>> rectangles;
}i

int main(int argc, charx argv[]) {
<< check command line argum
std::string video_file; //

on command line.

bool detect; // Passed on command line as argument -c.
cv::CascadeClassifier classifier;
if (!classifier.load("cascade.xml")) { return -1; }

cv::VideoCapture capture (video_file);
double frame_count = capture.get (CV_CAP_PROP_FRAME_COUNT) ;
RectMap result (frame_count); // Datastructure for storing ROIs.

chrono::steady_clock::time_point start = chrono::steady_clock: :now();

cv::Mat image;
int framesRead = 0;
while (capture.read(image)) {
if (!detect) continue;
static cv::Mat gray;
cv::cvtColor (image, gray, CV_BGR2GRAY);
cv::equalizeHist (gray, gray); // Use histogram equalization to improve the contrast.

std::vector<cv::Rect> detectedRegions;
classifier.detectMultiScale (gray, detectedRegions);
result.insert (framesRead++, detectedRegions);

}

chrono::steady_clock::time_point end = chrono::steady_clock: :now();

cout << "Regions detected: " << result.totalNumRects() << endl;
std::chrono::milliseconds ms = chrono::duration_cast<chrono::milliseconds> (end - start);
std::chrono: :seconds sec = chrono::duration_cast<chrono::seconds> (ms) ;

ms -= sec;

cout << "time:" << sec.count() << "." << ms.count () << " sec." << endl;

return 0;

As we do not have a separate user interface for the detector, we will need another way for a specialist
to look at any detected irregularities, to do a complete diagnose. But, in fact, we already have two tools
which can be used exactly for this purpose. If we store the information about detected regions in the
same [JSON|format, as described in Listing[3.1] we can read it with either the web-based tool, or
with the TagAndTrack software, which we have developed for [tracking] For this purpose, we also need
to implement a function that can write the RectMap data structure to a file in[JSON|format. The code for
this is rather straight forward, and will not be described here in more detail.

For testing the performance of our solutions, we use a video sequence with a duration of 81 seconds
and a total of 2,025 frames. The resolution of the video is 768x576 pixels. For all the testing, we use
the same MacBook Pro Retina 15-inch Late 2013 with a 2.6 GHz Intel Core i7, 16 GB of memory and
an NVIDIA GeForce GT 750M graphics card with 2,048 MB of graphics memory. The [classifierf] we use
was trained with the same video sequence and it must detect a total of 583 regions in that specific video.
The detection in this case contains both false negatives and false positives, but this is irrelevant for the
purpose of measuring the time needed for processing the video sequence. To goal is to be able to process
a video sequence at its normal playback speed. For this, we need to achieve a frame rate above 25[FPS|

The most simple implementation, as described in Listing processes the whole video in 62.403
seconds (32 [FPS). If we are not passing the -c switch on the command line, the program will only read
and decode all the video frames but not run any detection. Without running the detection, the video is
processed in 15.278 seconds (132 [FPS). The most obvious optimization for this implementation is to
separate the reading and decoding of video frames into a separate thread.

[Y N

56 Computer-Aided Screening of Capsule Endoscopy Videos

6.1.1.5.1 Use a Separate Thread for Decoding

Using a separate thread for reading and decoding of video frames will allow running the detection on
a video frame at the same time as the next frame is being read and decoded. Based on the previous
results, we would expect to reduce the processing time for the same video sequence by about 15 seconds,
which is the amount of time spent on reading and decoding video frames only. The changes we needed to
implement this behavior are presented in Listing[6.12] Implementation details which have been described
previously, such as RectMap or the time measurement, have been removed from the listing intentionally.

Listing 6.12: An OpenCV based detector with a single worker thread.

<<< include several headers >>>
using namespace std;

s definition for RectMap >>>

class Frame {
public:
Frame (int frameNumber, const cv::Mat &img) : id(frameNumber) {
img.copyTo (image); // Take a copy of the image, as the buffer is being reused.

}

std::vector<cv::Rect> process(cv::CascadeClassifier& classifier) {
cv::Mat gray;
cv::cvtColor (image, gray, CV_BGR2GRAY);
cv::equalizeHist (gray, gray);

std::vector<cv::Rect> detectedRegions;
classifier.detectMultiScale (gray, detectedRegions);
return detectedRegions;

}

int id;
cv::Mat image;
}i

Framex framesBuffer[2]; // Buffer for two frame pointers.
std::mutex mtxFrameBuffer; // Mutex for pro ting the buf o
volatile int indexFrameBuffer; // Buffer index for next frame.
volatile bool doneReading = false;

void processFrames (RectMap *r) {
cv::CascadeClassifier cascade;
S load cascade classifier from xml file >>>

while (true) {
Frame xframe = 0;
mtxFrameBuffer.lock();
std::swap (frame, framesBuffer[indexFrameBuffer]);
mtxFrameBuffer.unlock () ;
if (frame) {
std::vector<cv::Rect> rects = frame->process (cascade);
r->insert (frame->id, rects);
delete frame;
frame = 0;
} else if (doneReading) return;

int main (int argc, charx argv[]) {
< check command line arguments >>>

cv::VideoCapture capture (video_file);
double frame_count = capture.get (CV_CAP_PROP_FRAME_COUNT) ;
RectMap result (frame_count); // Datastructure for storing ROIs.

indexFrameBuffer = 0;

framesBuffer[0] 0;

framesBuffer (1] 0;

int framesRead = 0;

cv::Mat image;

std::thread detectorThread (processFrames, &result);

<<< take start timestamp >>>
while (capture.read(image)) {
if (run_cascade) {
Frame *frame = new Frame (framesRead, image);
while (true) {
std::unique_lock<std::mutex> lck (mtxFrameBuffer)

Frame *buffer = framesBuffer[indexFrameBuffer];
if (buffer == 0) {
framesBuffer[indexFrameBuffer] = frame;
indexFrameBuffer ~= 0xl; // Switch to other buffer 0 -> 1 or 1 -> 0.
break;
}
}
}
++framesRead;

}
doneReading = true;
detectorThread. join() ;

<<< calculate time difference >>>
return 0;

Computer-Aided Screening of Capsule Endoscopy Videos 57

The most significant change is that we added a class Frame, which represents a single video frame
and also includes a method process that can run the detection on the given frame. Further, we introduced
a buffer that can hold two frames, so that we can alternate between these two frames for updating the
content and processing it. This essentially is the concept of double buffering. We use an std::thread
for running the processFrames function. This function then checks for a frame being available in the
buffer to be processed, calls the Frame::process function on such a frame and deletes the frame after
processing. We use a minimal critical section in the function processFrames to secure the std::swap call.
This call will swap a frame pointer out of the buffer and replace it with a null pointer. If the swapped out
pointer is non-null, we have successfully swapped a frame out of the buffer and can process it outside of
the critical section.

With the improvement of reading and decoding the frames on the main thread, but using a separate
thread for running the detection, we repeated the previous experiment and we achieved a slightly better
result. The total processing time decreases to about 50 seconds (40 [FPS). This is an improvement of
about 20% and that matches our expectation. However, on our test machine, the CPU usage still only
reaches about 40% when running the detector. So, it seems that our CPU is idle about 60% of the time,
and this idle time we obviously want to reduce as much as possible. After all, this implies that, taking
synchronization overhead into account, we could in theory reduce the processing time again by more
than 50%. We therefore implemented a solution that allows us to use multiple threads for running the
detection on multiple separate video frames concurrently.

6.1.1.5.2 Introduce Multiple Threads

Considering the changes we made to our detector for running with a single worker thread, we only have
to change a few minor parts to allow running an arbitrary number of worker threads. The Frame class
is already well suited for usage with multiple threads. We need to implement a queue data structure
FrameQueue, which is protected by a mutex and can therefore be accessed from different threads. This
data structure basically replaces the framesBuffer from the single worker thread implementation. In
the FrameQueue, we then store a pointer to each frame that was read and decoded by the main thread.
Further, we need to add a processQueue function, which we use as an entry point for the spawned threads.
In this function, we just spin a loop that queries the queue for new frames. Whenever a new frame is
available in the queue, a worker thread will dequeue the frame, call the Frame::process function on it,
store the detected regions in RectMap and eventually delete the frame. Once the queue is empty and
the main thread signaled that it finished reading, the main thread will wait for all worker threads to join
and display the results to the user. As the class CascadeClassifier is not designed to be used by multiple
threads, we have to instantiate one per thread. The implementation for this is presented in
Listing[6.13] This implementation allows us to run the detector with several different configurations. We
can choose to only read and decode, but not run any detection at all, we can choose to run decoding and
detection sequentially in a single thread, or we can choose to spawn an arbitrary amount of worker threads
for the detection. The processing times achieved with this implementation using different configurations
are presented in Figure and Table We achieved the best result using 4 worker threads. With this
configuration, we can process the whole video sequence in about 28.3 seconds (71 [FPS).

The CPU usage in Table[6.T|was measured using Activity Monitor of Mac OSX on the same MacBook
Pro we used to conduct all the other measurements. This computer does have four physical cores, which
do have support for Therefore, it is theoretically possible to achieve 800% CPU usage.
However, as we can see from the table, the fastest processing time is achieved with a total of four worker
threads. Adding further threads will show a higher CPU usage, but the processing time will not decrease
anymore. This is because all four physical cores are working at almost 100% and using
to switch in-between threads that are part of the same job does not speed things up any further. The
optimal amount of threads should therefore be the amount of physical cores plus a single thread for
reading and decoding the video frames.

SO ao U s W=

11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69

71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90

58

Computer-Aided Screening of Capsule Endoscopy Videos

Listing 6.13: An OpenCV based detector with multiple worker threads.

<<< include several headers >>>

<<< implementation of cla rame >>>

<<< implementation of class RectMap >>>

class FrameQueue {
public:
void enqueue (Frame xframe) ({
g_mutex.lock();
g.push (frame) ;
g_mutex.unlock () ;
}

Framex dequeue() {
g_mutex.lock();
Frame xf = 0;
if (!qg.empty()) {

f = g.front ();
g.pop();

}
g_mutex.unlock () ;
return f;

}

bool empty() const {
g_mutex.lock();
bool e = g.empty ()
g_mutex.unlock () ;
return e;

}

private:
std: :queue<Framex> q;
mutable std::mutex g_mutex;
i

bool doneReading = false;
void processQueue (FrameQueue xq, RectMap *r) {
cv::CascadeClassifier cascade;
<<< load classifier from xml file >>>
while (true) ({
Frame xframe = g->dequeue();
if (frame) {
std::vector<cv::Rect> rects =
r->insert (frame->id, rects);
delete frame;
frame = 0;

frame->process (cascade) ;

}
if (doneReading && g->empty()) return;

}

int main(int argc, charx argv[]) {
std::string video_file; // Provided on commandline.
bool run_cascade; // Provided on commandline.

int num_threads; // Provided on commandline.
<<< check & parse command line arguments >>>
<<< open video_file with cv::VideoCapture object >>>

// Create a queue datastructure for the
// Datastructure for results.

FrameQueue framesQueue;
RectMap r (frame_count);

// Create as many worker threads as requested.
std::vector<std::thread+> threads;

for (int i = 0; i < num_threads;
take start timestamp >>>
cv::CascadeClassifier cascade;
<<< if 0 thre load c

n xml file >>>

worker

cv::Mat image;
int framesRead = 0;
while (capture.read(image)) {
if (run_cascade) {
Frame *frame = new Frame (framesRead, image);
if (num_threads > 0) framesQueue.enqueue (frame);
else r.insert (frame->id, frame->process (cascade));
}
++framesRead;
}
doneReading = true;

!= threads.end(); ++t)

for

(auto t = threads.begin(); t

< calculate time difference >>>

<< print results >>>
return 0;

++i) threads.push_back (new std:

(*t)->join();

frames.

:thread(processQueue, &framesQueue,

// Only used with 0 worker threads.

// Join all worker threads.

&r));

Computer-Aided Screening of Capsule Endoscopy Videos

100

Processing Time [sec]

Worker Threads

Processing Time N

CPU Usage Immmm

800
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50

CPU Usage [%]

59

Figure 6.4: Processing Times for Multi Threaded Cascade Classifier Detection, processing 2,025 frames

at a resolution of 768x576.

Table 6.1: Processing Times for Multi Threaded Cascade Classifier Detection, processing 2,025 frames

at a resolution of 768x576.

Worker Threads | Processing Time [s] \ CPU usage [%] \

no detection 15.97 40
0 63.87 240
1 48.21 290
2 33.48 345
3 29.96 400
4 28.31 510
5 29.98 590
6 29.78 610
8 28.92 610

[Y N

1O M M B = i e e
DRS00 IFARE DL =0

60 Computer-Aided Screening of Capsule Endoscopy Videos

Using Instruments, the profiling tool provided with XCode, it is possible to easily analyze the runtime
behavior of the detector. For this purpose we are again running the detector with the optimal amount
of four worker threads. The interesting part of the output generated by instrument is presented in

Listing

Listing 6.14: Profiling detector running with 4 threads.

Symbol Name
thread_start
_pthread_start
_pthread_body
voidx std::__1::__thread_proxy<std::...
processQueue (FrameQueue*, RectMapx*)
Frame: :process (cv::CascadeClassi...
cv::...::detectMultiScale(cv::...

7

HHOOOOOOKRHBEOOONOOOOOOOND
<~ < R N N I ~ =

CO0O000O00O00O0O0O0OOOO0OOOOOOOO H

Running Time

25706.0ms 61.7%
25706.0ms 61.7%
25706.0ms 61.7%
25649.0ms 61.5%
25649.0ms 61.5%
25646.0ms 61.5%
24942 .0ms 59.8%

400.0ms 0.9% cv::equalizeHist (cv::_InputArr..

304.0ms 0.7% cv::cvtColor (cv::_InputArray c..
3.0ms 0.0% Frame: :~Frame (

57.0ms 0.1% listenOnNotificationPort

13913.0ms 33.4% 13
13775.0ms 33.0%
13774 .0ms 33.0%

start_wgthread
_pthread_wgthread
_dispatch_worker_thread3 <libdispatch...

4.0ms 0.0% <Unknown Address>
2024 .0ms 4.8% start
2024 .0ms 4.8% main
1936.0ms 4.6% cv::VideoCapture: :read(cv::Maté&)
87.0ms 0.2% o Frame::Frame (int, cv::Mat consté&)
1.0ms 0.0% ’ operator new(unsigned long)
1.0ms 0.0% _pthread_wgthread
1.0ms 0.0% objc_opt::objc_stringhash_t::hash(char con...

The profiling results show that we are spending about 61.5% of the running time in the
Frame::process function. Looking at the source code, we see that the function contains just a few lines of
code and, most importantly, it calls the CascadeClassifier::detectMultiScale function, which is where we
expect to spend most of the time. The profiling results verify this by showing that we are indeed spending
59.8% out of the 61.5% of the time within detectMultiScale. The remaining running time is consumed
for the biggest part by a function called _dispatch_worker_thread3 of a library called libdispatch. This
library is an interfacing library to the (Grand Central Dispatch (GCD)| of Mac OS X, and is used by
for concurrent code execution. The use of [GCD| with [OpenCV] for Mac OS X is implicit and
not configurable without modifying the source code. So, without modifying this part is out of
our control. The last 4.8% of running time is consumed by VideoCapture::read for reading video frames
from the input file, which is a necessity as well.

All in all, the results seem to be fairly optimal with this configuration. Further optimizations could
potentially be done within code or by changing the configuration of at compile time.
It is also possible that using Intel Threading Building Blocks instead of on a Linux machine would
lead to different results.

6.1.2 Histogram of Oriented Gradients Detector

The second machine learning method we look into, is a[HOG]|[47] based object detector. For this purpose
we use the |dlifl°| C++ Library, which provides a trainer and a structural solver. based

object detection is known in particular for requiring a low amount of samples to build a detector of
reasonably good quality. Further, the time needed to train the detector is expected to be much lower than,
for example, the time needed to train a[cascading classifier] as described earlier. The most common use
case for a[HOG] detector is face detection. An example of this use case is implemented and provided
together with sample pictures with [dlib]

The approach of implementing a detector with [dliD|is slightly different from the approach used with
While [OpenCV] provides a separate tool for training a [dlib] only provides an for
implementing such a tool. For simple testing purpose, we therefore decided to add [dliD} training directly
into our existing TagAndTrack tool.

6.1.2.1 Adding HOG-training to TagAndTrack

The advantage of adding [dlib}based [HOGHraining directly to TagAndTrack is that we can reuse a lot of
functionality we have implemented previously. We can adopt the whole handling, reading and playback

Onttp://dlib.net/

http://dlib.net/

[I I N N

N R EREREREEREDEWOWEWEWWWWIRNNENNDNNDN = — === — = —
ISECE- IS NV NIV SRR SRRl NV I SEA T S R SV-R RN NI N S SR R N P N IO e =

Computer-Aided Screening of Capsule Endoscopy Videos 61

of video files as well as the selecting of regions of interest. We can also avoid reading/writing any
intermediate format such as [XML] or JSON]|for the single purpose of training the detector. We therefore
added a function trainHOGDetector to our class CVWorker, which is triggered by pressing a button of
the user interface of TagAndTrack. We assume that when this function is called, the user has previously
loaded a video into the application and has marked some regions of interests that we can then use to train
the detector. The code for the function frainHOGDetector is described in Listing We have added
inline comments for additional explanations.

Listing 6.15: Implementation of HOG training in TagAndTrack.

// Create an image pyramide data type for d ampling by 3/4.
typedef dlib::scan_fhog_pyramid<dlib::pyramid_down<4> > scanner_t;

void CVWorker::trainHOGDetector ()

{
// Any image in training_images will have its rectangles stored in training_rectangles at the same index.
dlib::array<dlib::array2d<unsigned char>> training_images;
std::vector<std::vector<dlib::rectangle>> training_rectangles;

// Create a map that contains all the markings per video frame.

std::map<int, std::vector<const Marking+>> &mpf = resolveMarkingsPerFrame (m_cvWidget->markings());

// Iterate through all the frames in the map. Those are all the frames where regions of interest were selected.
for (auto it = mpf.begin() ; it != mpf.end(); ++it) {

cv::Matx img = seek (it->first); // Seek to the required video frame.

static cv::Mat gray; // Convert the video frame to grayscale
cv::cvtColor (ximg, gray, cv::COLOR_BGR2GRAY);

// Copy the raw data of the video frame into a dlib compliant container for video frames.
array2d<unsigned char> dlib_img;

dlib::assign_image (dlib_img, dlib::cv_image<unsigned char> (gray));
training_images.push_back (dlib_img) ;

// Convert the
auto markings >second;
std::vector<dlib::rectangle> rectangles;
for (auto it = markings.begin(); it != markings.end(); ++it) {
const Markings marking = *it;
int 1 = marking->x();
int t marking->y () ;
int r 1 + marking->width();
int b = t + marking->height ();
rectangles.push_back (dlib::rectangle(l, t, r, b));

ons of interest into a vector of rectangles, that is usable for dlib.

}
training_rectangles.push_back (rectangles);
}

// Add left right flips for symmetrical training.

dlib::add_image_left_right_flips(training_images, training_rectangles);

scanner_t scanner; // Setting the size of the sliding window to 80x80 pixels.
scanner.set_detection_window_size (80, 80);

dlib::structural_object_detection_trainer<scanner_t> trainer (scanner);
trainer.set_num_threads(4); // Use 4 thread
trainer.set_epsilon(0.01); // Stop training when epsilon <= 0.01

for training.

//

m_hogDetector = trainer.train(training_images, training_rectangles); // Start the actual training process.

The sliding window size of 80x80 pixels defines the minimum size of an object to be detected. It
also defines the aspect ratio and therefore the shape of the objects we do want to detect. Any selected
[ROI| should have an aspect ratio that is similar to the dimensions defined for the sliding window. If this
is not the case, the training will fail and the user will be notified. The sliding window needs a certain
size in order to create meaningful results, because multiple pixel values are needed in a cell to create a
gradient. A very interesting point is the ability to use multiple threads for the training. This possibility
significantly speeds up the training process. As we use a machine with 4 CPU cores, we create 4 threads.
The training stops as soon as the epsilon value, in our case 0.01, was reached.

6.1.2.2 Visualizing the training result for a HOG detector

A very interesting feature provided by [dlib]is the ability to visualize an existing [HOG]detector. The code
for this conversion and for displaying the result on screen is shown and explained in Listing A
detector uses cells; it counts the occurrences of gradient orientation in each of these cells for every
sample. We can display these resulting gradients as an image. This is in particularly interesting, because
it allows us to analyze the detector not just by looking at the images it succeeds or fails to detect, but also
to understand why it might fail to detect some images. We can then draw conclusions on how to adjust
the settings for a detector.

62 Computer-Aided Screening of Capsule Endoscopy Videos

If we take a look at the visualizations in Figure [6.5] we can immediately see, that the image in
Figure shows the visualization of a detector that was trained with faces. The gradients form an
oval shape of a face, with the eyes, nose and mouth clearly visible. The training of the detector has
basically reduced the training images to the most characteristic features of a face.

The image in Figure [6.5(b)| shows the visualization of a detector that was trained with images of a
[polypl And, in that case, we can see the typical characteristic features of a[polyp| In this case, those are
the simple round shape of a protrusion, the connection to the (towards the bottom of the image
in this case), and the [specular highlight|in the center of the caused by the light source pointing at
1t.

(a) Faceq'] (b) PolypaE]

Figure 6.5: Visualizations of HOG detectors for faces and for polyps with a window size of 80x80.

(a) Faced] (b) Polypg]

Figure 6.6: Visualizations of HOG detectors for faces and for polyps with a window size of 30x30.

Visualizing [HOG]| detectors also gives us the opportunity to examine a bit more close, how to choose
the right size for the sliding window. According to the documentatiorEl the sliding window defines
the minmum size of object that we will be able to detect after the training. So, the obvious choice would
therefore be, to make the sliding window very small, to allow detecting small objects as well. However,
if we change the size of the sliding window from 80x80 to 50x50 or 30x30 pixels, we will immediately
see that the quality of the detection gets significantly worse. In our experiment, the amount of false
positives remains stable, but the amount of false negatives increases drastically. For this experiment, we
have used a single video sequence. We have marked the same on 10 subsequent video frames of
a single video sequence and have then trained the detector with these samples. We have used the

"The faces HOG detector was trained with the example pictures provided with dlib.

12The polyp HOG detector was trained with 358 pictures from a single video sequence showing the same polyp.

Bftp://ftp.nist.gov/pub/mel/michalos/Software/Optimization/dlib-18.9/docs/dlib/
image_processing/scan_fhog_pyramid_abstract.h.html

ftp://ftp.nist.gov/pub/mel/michalos/Software/Optimization/dlib-18.9/docs/dlib/image_processing/scan_fhog_pyramid_abstract.h.html
ftp://ftp.nist.gov/pub/mel/michalos/Software/Optimization/dlib-18.9/docs/dlib/image_processing/scan_fhog_pyramid_abstract.h.html

[I I N O

PO MO M M R — m — m =
AU ROUN—~S0XxAU kL~ O

Computer-Aided Screening of Capsule Endoscopy Videos 63

trained detector to detect the same on 100 subsequent video frames. On all of these 100 video
frames, the is visible exactly once. The numbers for this experiment are listed in Table[6.2]

Table 6.2: Performance of a simple HOG detector with different window sizes.

Window Size (pixels) ‘ Correctly Detected | False Positives | False Negatives

80x80 79 0 21
50x50 29 0 71
30x30 0 0 100

The reason for the detecting performance decreasing with the sliding window size becomes rather
obvious when looking at the visualization of the 30x30 detectors in Figure [6.6] Again, those detectors
have been trained with the same data as the ones in Figure [6.5] just this time the sliding window was
smaller. As we have described previously and as the name itself is saying, histogram of oriented gradients
detection works by counting the occurrences of gradient orientation in sub-portions or cells of an image.
Those cells are required to have at least a certain minimal size to allow calculating a gradient and an
orientation. If the sliding window is too small, there will only be very few cells and the gradients
may not give an accurate enough representation of the object we are trying to detect. Comparing the
visualizations of 80x80 detectors with the ones of the 30x30 detectors makes this problem very obvious.
While the object to detect is clearly recognizable in the 80x80 visualizations, it is literally impossible to
recognize anything in the 30x30 visualizations. We have therefore decided to use a sliding window size

of 80x80 pixels for our purpose.

Listing 6.16: Visualizing a HOG detector.

void CVWorker::visualizeHOGDetector ()
{

// Extract the image information from the detector.
dlib::matrix<unsigned char> img = draw_fhog (m_hogDetector)

// Create a grayscale QImage instance matching the size of the visualization.
QImage gimg(img.nc(), img.nr(), QImage::Format_Indexed8);
// Initialize the 8-bit grayscale color table.

QVector<QRgb> table(256);

for(int i = 0; i < 256; ++i
table[i] = gRgb(i, i, i);

gimg.setColorTable (table) ;

// Copy all the pixel values into the QImage instance.
for (int x = 0; x < img.nc(); ++x) {
for (int y = 0; y < img.nr(); ++y) {

gimg.setPixel (x, y, img(y, x));
}
}

// Display the resulting image in a top level window (QLabel) .
static QLabel xhogDisplay = new QLabel;
hogDisplay->setGeometry (100,100, gimg.width(), gimg.height());

hogDisplay—>setPixmap (QPixmap: : fromImage (gimg)) ;
hogDisplay->show () ;

Our experiments with the described solution of building [HOG}detection into TagAndTrack lead to
fairly promising results. The results will be described in more detail in Section [6.2.2] The obvious
problem with this approach is that we can only train a detector with the data of a single video. We
therefore needed to develop a separate tool that we can use for training [HOG}based detectors. The
[dlib| library provides convenience functions for serializing and deserializing fully trained detectors. We
can make use of these functions to load a detector that was trained by a separate program back into
TagAndTrack to evaluate the quality of the trained detector.

6.1.2.3 Implementing a separate HOG-Trainer

So far, we have used TagAndTrack to train basic[HOG{classifierss However, TagAndTrack is designed to
process a single video file at a time. We therefore want to develop a separate [HOG} Trainer, which can

train a using exported from TagAndTrack. The library provides a function

[Y N N

N O I T R R T T R R S Sl Sl N S S N S N el e Rl
LIRS IR NV SRV ISR SV o NEV N WIS I IV IO I NV I N S R Vol R I N T N O S e =

64 Computer-Aided Screening of Capsule Endoscopy Videos

load_image_dataset to load a dataset of images and rectangles for training from an input file. For
convenience, we want to make use of this function. However, as we are specifically implementing a
separate [HOG} Trainer for training a detector with input data from multiple video sequences, we have
to add a bit more logic to deal with multiple input files. The process of creating the files will be
described in the subsequent Section [6.1.2.4] In Listing we present the basic implementation of
the separate [HOG} Trainer, we have implemented. We have removed a lot of code, such as
exception handling and including of headers, to make it more readable and concise. We also removed
pieces of code, which have already been discussed in Listing[6.15] such as instantiating the image scanner
and training objects.

Listing 6.17: HOGTrainer implementation

<< include various header files >>>
using namespace std;
using namespace dlib;
typedef std::vector<std::vector<rectangle>> Rectangles;
typedef dlib::array<array2d<rgb_pixel>> Images;

int main(int argc, charx* argv) {
<<< Verify the amount of arguments

< Exception handling is left out i ntionally. >>>
Images tr_images;

Rectangles tr_rects;

// Import the a from every XML file, and merge it into tr_images and tr_rects.
for (int i = 1; < argc; ++i) {

Images images;

Rectangles rects;

load_image_dataset (images, rects, argv[il);

for (auto it = images.begin(); it != images.end(); ++it)

tr_images.push_back (xit);
tr_rects.insert (tr_rects.end(), rects.begin(), rects.end());

}

// Add left/right flips of every training image (mirroring).
add_image_left_right_flips(tr_images, tr_rects);

// Add rotations for every training image in steps of 40 degrees.
matrix<double, 8,1> angles;

double step = 40.0 » M_PI / 180.0;

for (long r = 0; r < angles.nr(); ++r) angles(r) = r * step;
add_image_rotations (angles, tr_images, tr_rects);
cout << "training images: " << tr_images.size() << endl;

// Filter out unobtainable rec he user

int n_ d = 0; // number of dis ded s.

Rectangles d = remove_unobtainable_rectangles (trainer, tr_images, tr_rects);
for (auto it = d.begin(); it != d.end(); ++it) n_d += it->size();

cout << "discarding " << n_d << " rectangles." << endl;

// Start the training pro the discarded rectangles!
object_detector<image_scanner_type> detector = trainer.train(tr_images, tr_rectangles, d);

Make sure to p

cout << "storing detector to: detector.svm" << endl;
serialize ("detector.svm") << detector;
return 0;

We add rotations of every positive training sample to allow detection of an object in any possible
orientation. [dlib] provides us with a very convenient function add_image_rotations exactly for this
purpose. This pre-calculates all the image rotations as well as the rotations for the provided rectangles,
and all this data is kept in memory. Even with a fairly big amount of memory (16GB), we were running
out of memory very quickly. As[dlib]is designed in a way that requires all training data to be loaded
into memory before starting the training, and it does not allow for incremental training either, this just
leaves us the option to reduce the number of training samples used. Because of this, we have reduced the
number of rotations to 8 images per sample with increments of 40 degrees each.

Our TagAndTrack tool does not have any restrictions to the size or the proportions of the selected
rectangles. on the other hand, requires us to define a window size for the detector. And, as previously
described, we have decided to use a window size of 80x80 pixels. Any selected rectangles, which [dliD]
considers not to be close enough to an aspect ratio of 1, can therefore not be detected. If we still pass
such an impossible rectangle to the trainer, would throw an exception, and the training process
would need to be restarted without the offending rectangle. In order to avoid this, we can filter out any
impossible rectangles using the remove_unobtainable_rectangles function. This function will remove
any offending rectangle and return a matching datastructure containing offending rectangles only. We
have to make sure that we pass this datastructure as the third argument to the train function, to make sure

R I N S

Computer-Aided Screening of Capsule Endoscopy Videos 65

that the rejected image region is not used as a negative sample during the training process.

The serialized can simply be deserialized with provided by , as shown in

Listing [6.18] Of course, the datatype for m_hogDetector must match the datatype that was used when

the [classifier] was exported.

Listing 6.18: Deserialize HOG detector.

void CVWorker::openHOGSVMFile (const QString hogSvmFileName) {
dlib::deserialize (hogSvmFileName.toStdString()) >> m_hogDetector;
}

The HOGTrainer implementation expects a list of files passed as command line arguments.
The format of such an file is defined by [dliD] and is described in Listing [6.19] Using this format,
it is possible to define multiple regions (box tags) within a single image. The contained data is basically
the same as we are exporting for the use with opencv_traincascade, but the format is slightly different.
It would be possible to build a translator to translate between the two formats, but it is more straight
forward to add support for exporting data in the required [XML] format directly into TagAndTrack.

Listing 6.19: Format of an XML file used as input to HOGTrainer.

<?xml version=’1.0’ encoding=’IS0-8859-1’7?>
<?xml-stylesheet type=’text/xsl’ href=’image_metadata_stylesheet.xsl’?>
<dataset>
<name>150125141605</name>
<images>

<image file='p_image_150125141605_1237.png’>

<box top='95’ left=’334’ width="108’ height='"180"/>
. more boxes ...
</image>
. more images ...

</images>
</dataset>

6.1.2.4 Exporting data from TagAndTrack to HOGTrainer

We want to use TagAndTrack to create several ground truth datasets consisting of images and selections
that mark polyps in these images. This we want to export in the predefined format, so
it can be used as input data for training a[classifier] with HOGTrainer. A usual way for writing generic
data is implementing an in-memory representation of the XMLJ[Document Object Model (DOM)]
which can be serialized and written to a file in plain text. This is a very generic approach that can
deal with literally any kind of data. However, our case does not require a generic implementation, and
assuming that the format will not become more complex over time, we can save a lot of tedious
work for implementing a representation. We know that the header of every file will start with the
same two lines, defining the XML} version, the encoding and the XMI}stylesheet. This will always be
followed by a dataset opening-tag, a name-tag, and an images opening-tag. We can then simply iterate
through all the images we have positive regions of interests for. For each image, we append an image
opening tag, followed by as many box-tags needed for that image, and eventually write an image closing-
tag for it as well. Once we finished iterating through the available images, we just need to append images
and dataset closing-tags. In addition to the data, we also have to export the image files containing
regions of interest. The algorithm for all this is described in more detail in Listing We also added
a button to the user interface of TagAndTrack to trigger the export action. Clicking this button will then
bring up a dialog, where the user can choose a directory to write the exported data to. To make sure
the data is kept separate, we only allow for empty folders to be selected. During the export process we
pop-up a dialog with a progress bar and a cancel button, in order for the [U]] to remain responsive and
allow the user to abort the export process.

[SE-I- IS NV R NI R

R R I B I I e e N S R R B R N B B M S S Al T i
R-3STCXINRORO—~S0xxa00 DR RSO XITNRERLURN~S ORIV RO —~SORINUN A WN —

Computer-Aided Screening of Capsule Endoscopy Videos

Listing 6.20: Exporting tagging and tracking information for HOGTrainer.

void CVWorker: :exportHOGXML (const QString &dirName, const QString &uid) {

if (isPlaying()) stop(); // Stop any running playback.

// Show a modal progress dialog.
QProgressDialog progress ("Creating Samples...", "Abort", 0, 100, m_cvWidget->window());
progress.setWindowModality (Qt::WindowModal) ;

// Create a map where the key is the frame number and the
// value is a
std::map<int, std::vector<const Marking*>> &markingsPerFrame = resolveMarkingsPerFrame (m_cvWidget->markings());

“or containing all ROIs for the corresponding frame.

// Create and open the XML file for writing.
QFile xmlfile (QDir (dirName) .absoluteFilePath(QLatinlString("training_") + uid + QLatinlString(".xml")));
if (!xmlfile.open(QIODevice::WriteOnly | QIODevice::Text)) {
std::cerr << "could not open training_"
<< uid.toStdString() << ".dat" << std::endl;
return;

}

// Create a text stream to the XML file, and write the header data.

QTextStream str(&xmlfile);

str << "<?xml version='1.0’ encoding=’IS0-8859-1’?2>\n";

str << "<?xml-stylesheet type=’text/xsl’ href=’image_metadata_stylesheet.xsl’?>\n";
str << "<dataset>\n<name>" << uid << "</name>\n<images>\n";

// Iterate through all the available frames for this video.

int frameCount = m_capture->get (CV_CAP_PROP_FRAME_COUNT) ;

for (int frameNumber = 1; frameNumber < frameCount; ++frameNumber) {
<<< Skip the frame if there are nc >>

<<< Seek to frame and save it in PN mat to the export dir. >>>
auto m = markingsPerFrame [frameNumber];
bool imageTagWritten = false;

// Iterate through all markings for this frame.
for (auto marking = m.begin(); marking != m.end(); ++marking) {
QRect rect = (*marking)->rectForFrame (frameNumber) .toRect ();
if (!rect.isNull()) {
if (!imageTagWritten) { // If there is a marking, write an image opening-tag.
str << " <image file=’'" << sampleName << "’>\n";
imageTagWritten = true;
}

// Write the rectangle information to the stream.

str << " <box top='" << rect.top()
<< "' left='" << rect.left (
<< "/ width='" << rect.width(
<< "' height='" << rect.height ()

<< "1 />\n";

// Update the progress bar and check if the user pressed cancel.
progress.setValue (100.0 / frameCount * frameNumber)
if (progress.wasCanceled()) return;

written, write a closing-tag.
</image>" << "\n";

// If an image opening-tag w
if (imageTagWritten) str <<

}

// Write closing-tags for the document.
str << "</images>\n</dataset>\n";

6.1.3 Index of Global Image Features

So far, we have looked at machine learning approaches to precisely locate a in a given image.
However, our goal is not detecting the precise location, but rather the presence of a All the
images that we process can therefore be separated into two disjoint sets. The first set contains all the
images showing a and the other set contains all the images without any As we do not
necessarily need to detect the precise location of a we can also consider [global image features|
(58] is an library for content based image retrieval, written in Java. It provides a
comprehensive set of algorithms to extract different types of [global image features| Using|LIR¢|therefore
allows us to experiment with a whole set of[global image features|to find out if we can use any of these for
classifying or clustering video frames from |colonoscopy| video sequences. uses Lucenﬂ indices
for storing and searching image feature data. Lucene indices are structured in documents, fields and
terms. An index contains a sequence of documents, where a document is a sequence of fields, a field
is a sequence of terms and a term is a string [59]. A sketch of the structure and the basic elements of a
Lucene index is presented in Figure

Our basic idea is to create an index of as many [colonoscopy|images as possible. The index should

also contain the information whether a certain image does contain a[polyp| or not. A [classifier] can then

“https://lucene.apache.org/

https://lucene.apache.org/

Computer-Aided Screening of Capsule Endoscopy Videos 67

Index

Document
Al Term Term Term
(String) (String) (String)
il Term Term Term
(String) (String) (String)

Figure 6.7: The structure and basic elements of a lucene index.

search the index for the images that are most similar to a given input image. Based on the classification
of the results, we can then decide which cluster the input image belongs to. For this approach, we
implemented two separate tools, an Indexer and a Classifier (see Figure [6.8)). As and Lucene are
both implemented in Java, we have implemented these tools in Java as well. The design of these tools
is described in the subsequent paragraphs. We have released the Indexer and the Classifier as a separate
project called OpenSecEl under the terms of the (GNU General Public License|version 3[131

=
C—>| Indexer |C—)
EEEEEEEN f

Training
Input e
Classifier I:> Results I:>

Data

TagAndTrack

Figure 6.8: The overall architecture of our global image features based approach, consisting of Indexer
and Classifier as separate tools.

6.1.3.1 Global Image Feature Indexer

The purpose of the [global image feature| indexer is to extract image features from input images and
store these in a Lucene index. Such indices can then be used as input data for the [global image features|
We have created the indexer as a separate tool, which can be started from the command
line tool. It then creates indices for all directories passed on the command line. The image features to
calculate and store in the indices can be passed as separate arguments. The indexer indexes all the images
in a given directory. It stores the generated index in a subdirectory index inside the indexed directory.
If multiple directories are passed for indexing, it creates a separate index for each directory. The exact
usage of the indexer is presented in Listing [6.22] and the implementation of the Indexer is presented in
detail in Listing [6.2T] We have added inline comments for additional explanations. To make the code

Bhttps://bitbucket.org/mpg_projects/opensea
http://www.gnu.org/licenses/gpl-3.0.en.html

https://bitbucket.org/mpg_projects/opensea
http://www.gnu.org/licenses/gpl-3.0.en.html

SO XU AW~

DR DD I B2 N R R DD = pm o
XA EORN—~SOCRINUN A WN—

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69

71
72
73
74
75
76
71
78
79
80
81
82
83
84
85

68 Computer-Aided Screening of Capsule Endoscopy Videos

more readable, we have removed a lot of exception handling, reduced the class structure and stripped
out a lot of insignificant code and error handling. We assume that the machine we use does
have [hyper threadingland we therefore only use as many threads as the cores reported by the Java Virtual]
[Machine JVM)| Unfortunately, there is no guarantee that the JVM]reports a correct number of physical
cores. In future, it might therefore be worth considering to use a command line option for this purpose
as well.

Listing 6.21: Implementation of the Indexer for global image features.

package no.simula.indexer;
<<< Import various Java, Lire and Lucene classes. >>>

public class Indexer {
static ExecutorService pool = null;
static IndexWriter indexWriter = null;

public static void main(String[] args) {
<<< Verify and process command line arguments. >
ArraylList<String> featureNames; // Provided on command line.
ArraylList<String> directories; // Provided on command line.
if (featureNames.isEmpty()) featureNames.add("JCD"); // Fall back to JCD, if no feature names were passed.

// Force the class loader to load these classes at startup, to prevent
// initialization race when using ImageIO with multiple threads.
Class.forName ("javax.imageio.ImageIO");

Class.forName ("java.awt.color.ICC_ColorSpace");
Class.forName ("sun. java2d.cmm.lcms.LCMS") ;

for (String samplePath : directories) ({
// List all the images in the directory.
List<String> images = Collections.synchronizedList (FileUtils.getAllImages (new File (samplePath), true));
DocumentBuilder builder = getDocBuilder (featureNames) ;

String iPath = samplePath + "/index";

<<< Delete any already existing index. >>>

// Create a new index writer for the given directory.

IndexWriterConfig conf = new IndexWriterConfig(LuceneUtils.LUCENE_VERSION, new WhitespaceAnalyzer (LuceneUtils.
LUCENE_VERSION)) ;

indexWriter = new IndexWriter (FSDirectory.open (new File (iPath)), conf);

// Create a ThreadPool with (cores / 2) number of threads.

int numCores = Runtime.getRuntime () .availableProcessors() / 2;
if (numCores < 1) numCores = 1;
final int numThreads = numCores; // numThreads must be final. We access it from within a lambda.

pool = Executors.newFixedThreadPool (numThreads) ;

< Take start timestamp. >>>
final int numImages = images.size();
eate a Runnable for e thread.
for (int rId = 0; rId < numThreads; ++rId) {

final int runnableId = rId; // Accessed inside lambda.

Runnable r = () —> {
// Each Runnable starts processing the images list at the index position of its own runnableld
// and continues processing in offsets of numThreads. This implicitly partitions the work.
for (int i = runnableId; i < numImages; i += numThreads) {

String imgPath = images.get (i);

BufferedImage img = ImageIO.read(new FileInputStream(imgPath));

// Create the actual index entry (document).

Document document = builder.createDocument (img, imgPath);

protectedAddDocument (document); // Add entry to common index.

showProgress (i, numImages);

}

bi

pool.execute(r); // Start the execution of the threads.
}
pool.shutdown(); // Wait for all threads to complete.
if (!pool.awaitTermination (365, TimeUnit.DAYS));
<<< Take end timestamp and print duration. >>>
indexWriter.close();

}
public static DocumentBuilder getDocBuilder (ArrayList<String> features) {

// Create a DocumentBuilder which chains multiple different DocumentBuilders, each for a specific image feature.
ChainedDocumentBuilder builder = new ChainedDocumentBuilder ();

for (String fName : features) {
// Instantiate document builder by class name.
String cName = "net.semanticmetadata.lire.imageanalysis." + fName;
Class<? extends LireFeature> c = (Class<? extends LireFeature>) Class.forName (cName) ;

builder.addBuilder (new GenericDocumentBuilder (c, true));
}
return builder;

}

// This method is synchronized to ensure mutual exclution, when adding a document to the indexWriter.
private static synchronized void protectedAddDocument (Document document) { indexWriter.addDocument (document); }

private static int currentProgress = 0;

private synchronized static void showProgress (int index, int numDocs) {
// Each thread reports the processed index number. We only allow incrementing the progress.
if (index < currentProgress) return;
currentProgress = index;

<<< Print progress to System.out. >>>

[I I T N

Computer-Aided Screening of Capsule Endoscopy Videos 69

Listing 6.22: Usage of the Indexer for global image features.

java -jar indexer.jar /dir/with/images [/dir/with/more/images ...] [-f ...]
All the provided paths will be indexed and a separate index will
be stored in a subdirectory inside each provided directory.

-f | —-feature A feature to use for classification. JCD is default.
Multiple features can be provided. Possible features
are for example: JCD, FCTH, EdgeHistogram, CEDD,
ColorLayout, LocalBinaryPatternsAndOpponent,
FuzzyOpponentHistogram, FuzzyColorHistogram,

Gabor, JointHistogram, JpegCoefficientHistogram,
OpponentHistogram, PHOG, RankAndOpponent,
RotationInvariantLocalBinaryPatterns,
ScalableColor, SimpleColorHistogram, Tamura.

6.1.3.2 Global Image Feature Classifier

We have implemented a search based [classifier| for [global image features| The [classifier|can be used to
classify video frames from an input video into two groups: positive (containing a and negative
(not containing a [polyp). The [classifierj uses indices generated by the indexer described in the previous
section. In contrast to the other that we have built, this is not trained in a separate
learning step. Instead, the searches previously generated indices for similar image features,
weights the search results and decides which cluster an input image most likely belongs to. We refer to
these previously generated indices, which are searched for similar image features, as classifier indices
or indices containing training data. The expects at least one and one input
source as a command line argument. The input source can either be a video sequence or another
previously generated index. If an index is used as an input source for classifying, the will
output benchmarking information (Figure [6.9]/ bottom) and an HTML page with a visual representation
(Figure of the results, once the processing is finished. For the to provide correct
benchmarking data, the input data indices must contain either negative or positive samples only, or must
have the sample type encoded in the file names of the indexed images. If a video sequence is used as
an input data source, no benchmarking data can be collected, and no HTML file is produced. Instead, a
file is generated, which contains a lists of positive and a list of negative frames. This file
can be opend with TugAndTrack for reviewing the results. The exact usage of the is described

in Listing [6.23]

using 4 threads for classifying.

image_hortVD_wp_68_71.jpg -> Tamura: LateFusion:
image_hortVD_wp_68_8.jpg -> Tamura: LateFusion:
image_hortVD_wp_68_79.jpg -> Tamura: LateFusion:
image_hortVD_wp_68_82.jpg -> Tamura: LateFusion:
image_hortVD_wp_68_78.jpg -> Tamura: LateFusion:
image_hortVD_wp_68_77.jpg -> Tamura: LateFusion: JCD:
image_hortVD_wp_68_81.jpg -> Tamura: LateFusion: JCD:
image_hortVD_wp_68_83.jpg -> Tamura: LateFusion: JCD:
image_hortVD_wp_68_80.jpg -> Tamura: LateFusion: JCD:
image_hortVD_wp_68_9.jpg -> Tamura: LateFusion: JCD:
image_hortVD_wp_68_102.jpg -> Tamura: LateFusion:NEGATIVE JCD:NEGATIVE
image_hortVD_wp_68_84.jpg -> Tamura: LateFusion: JCp:
image_hortVD_wp_68_101.jpg -> Tamura: LateFusion:NEGATIVE JCD:NEGATIVE
image_hortVD_wp_68_103.jpg -> Tamura: LateFusion:NEGATIVE JCD:NEGATIVE

Precision Recall TNRate FPRate Accuracy FMeaseure WFMeaseureMccMeasure
34 0.816832 ©0.887097 ©.478873 0.521127 0.774319 0.850515 0.850515 @.399001
LateFusion 172 51 0.895833 0.924731 ©0.718310 0.281690 0.867704 0.910053 0.910053 0.661481
JCD 162 45 0.861702 ©0.870968 ©.633803 0.366197 0.805447 0.866310 0.866310 @.509303

writing html output to: results-1435447137.html
duration: 78.293seconds.

Figure 6.9: Console output of the classifier using the features JCD and Tamura.

[SI-I-IN I NV R NI R

00 L) L) LI LY LI I B I B R N B DD =
QRO A CRXATLRERORN—~SORINUN A WN —

70

® ® /| | Classification Results X

Computer-Aided Screening of Capsule Endoscopy Videos

C' | |7 file:///Users/zeno/work/asu-mayo-clinic-dataset/wp_68/results-1435447137.html| #j’ =

Figure 6.10: HTML output of the classifier using the features JCD and Tamura.

Listing 6.23: Usage of global image feature based Classifier.

java -jar classifier.jar -i /to/classify -c /classifier -f feature

=@

P

—classifierIndex

-posClassifierIndex

—negClassifierIndex

—input

—inputPositive

-inputNegative

—inputvVideo
—feature

—-measure

Previously indexed training data.

It is possible to provide indices of
multiple training datasets.

Previously indexed training data,
containing positives only.

It is possible to provide indices of
multiple training datasets.

Previously indexed training data, containing
negatives only. It is possible to provide
indices of multiple training datasets.
Previously indexed data to be classified.
Any indexed file starting with ’p’ is
considered a positive sample.

Any indexed file starting with ’n’ is
considered a negative sample.

Previously indexed data to be classified.
The generated metrics rely on this index
only containing positive samples.
Previously indexed data to be classified.
The generated metrics rely on this index
only containing negative samples.

Video file to classify frame by frame.

A feature to use for classification.
Multiple features can be provided.
Possible features are for example:

JCD, FCTH, EdgeHistogram,

The respective feature must be present in
any index provided.

The measure to use. (any of: classCount,
weightedByRank, weightedByDistance,
weightedByAverageDistance)

All command line options must always be used in pairs of option and value.
At least a single classifier index is required.

[I I O

[N Sl S Sl N N N N N S N el i i e e
FORN S OCRXRITRRON—~S00A0Un kW0~ O

Computer-Aided Screening of Capsule Endoscopy Videos 71

The implementation of the[classifier]is described in multiple subsequent listings. In all these listings,
a lot of boilerplate code, exception handling and error checking has been removed to improve the
readability. The main entry point for the is presented in Listing [6.24] The main purpose of
this class is to parse, the command line arguments and initialize any member variables accordingly. The
library must be loaded explicitly to avoid any linking errors at runtime, because is a
library and not an actual Java module. We create an instance of the class Classifier and we pass
a map that contains all the paths to the classifier indices that should be used for classification. Entries
in this map contain a path to the index of a and map every index to a SampleType,
which can either be POSITIVE, NEGATIVE or INVALID. In case of INVALID, the index might contain
both POSITIVE and NEGATIVE samples. In this case, the SampleType is deduced from the original
file name for each image separately, and all images should therefore be prefixed with either ”p_" for a
positive sample or ’n_" for a negative one. The constructor of the Classifier class initializes several
variables and datastructures and decides on the amount of threads to use, based on the amount of
available cores reported by the It also maps all the index files into memory and instantiates
AugmentedIndexReaders for those files. An AugmentedIndexReader is a composition of a Lucene
IndexReader and a SampleType defining the type of samples contained in this index.

The Classifier can be used to classify the frames of an input video or an If a video
is processed, it is read using and the output is stored in [JSON] format compatible with our
previously developed TagAndTrack tool. TagAndTrack marks positive frames with a red section in a
separate bar below the seek-bar (Figure [.T1). If an is processed, the results are stored in
[HyperText Markup Language (HTML)| format. The page that is produced presents every single
image of the[input index| with either a green border for negative samples or a red border for positive ones,
as presented in Figure [6.10] The results are also displayed on the console, as presented in Figure [6.9]
When processing an index, the SampleType of the input is detected the same way as it is done for the
indices. This makes it possible to display performance metrics for the classification in addition
to the normal classification results. These performance metrics are written to the console.

Listing 6.24: Main entry function for the classifier.

package no.simula.classifier;

< Import various Java, ire, lucene, opencv clas

enum MeasureType{COUNT, WEIGHTED_BY_RANK, WEIGHTED_BY_DISTANCE, WEIGHTED_BY_AVG_DISTANCE}
enum SampleType{POSITIVE, NEGATIVE, INVALID}

public class Main {
// All the variables below are set by command line arguments.
private static HashMap<String, SampleType> classifierIndices = new HashMap<String, SampleType>();
private static ArrayList<String> imageFeatures = new ArrayList<String>();
private static HashMap<String, SampleType> inputDatalndices = new HashMap<String, SampleType>();
private static MeasureType measureType = MeasureType.COUNT;
private static String inputVideo = null;

public static void main(String[] args) throws Exception {
System.loadLibrary (Core .NATIVE_LIBRARY_NAME); // Load OpenCV library at startup.
<< erify command line arguments. >>>

<<< Take s

amp. >>>

Classifier classifier = new Classifier(classifierIndices);

ClassificationList classificationList = null;
if (inputVideo != null) {
classificationList = classifier.classifyVideo (inputVideo, imageFeatures, measureType);

classificationList.print();
classificationList.exportJSON (inputVideo) ;
} else {
classificationList = classifier.classifyDataset (inputDataIndices, imageFeatures, measureType);
classificationList.print();
classificationList.createMetrics();
classificationList.createHTML() ;

<< Calculate and print prc

The main function of the creates an instance of the class Classifier and, depending on
the input data, calls classifyVideo or classifyDataset on this object. The implementation of those
functions is almost identical. The only difference is that in classifyDataset, there is no need to spin
a thread for reading and decoding the video frames. Instead of using dequeueVideoFrame we can call
getNextDocument to receive the next image to process. Both the functions dequeueVideoFrame and
getNextDocument are synchronized to allow concurrent access by multiple threads; also, both functions
return documents from their respective input data source in sequential order.

72 Computer-Aided Screening of Capsule Endoscopy Videos

eCce
06

Track ROIs
Track ROIs using TLD
Filter Specular Highlight
Edge Detection

Edge Threshold:

Qe

Classification:

Description:

Border Detection
Border Threshold:

Contour Detection

Detector Sensitivity:

Cascade Detection

Clear Markings

Teach HOG Detector

HOG Detection

Export HOG XML

Load HOG SVM

Visualize HOG Detector <> |m] [Negative Sample

Figure 6.11: TagAndTrack showing the results from the global image features classifier.

We will not discuss the function classifyDataset in more detail, because it is basically just a simplified
version of classifyVideo. The implementation of the function classifyVideo is presented in Listing [6.25]

We use to create separate for reading the video input file and for processing the

buffered images. The that we call videoRead uses an VideoCapture object to read
and decode the video frames. The function mar2img is used to convert from an Mat object

to a Bufferedlmage. We use a custom document builder to extract all the requested image features
from the Bufferedlmage and create a Document containing that information. Such Documents are then
buffered in a queue datastructure called videoFrames. We use an ExecutorService with a fixed thread
pool for processing the Each processing thread creates a separate list of search providers for
all requested image features. It then dequeues video frames as long as there are any frames available
and calls classifyDocument providing the frame as a Document, and the list of SearchProviders and a
reference to a ClassificationList for storing the results as arguments. The ClassificationList is the return
value of classifyVideo and is a single common object shared by all threads. Its insert function is therefore
synchronized. If the decoding of the video file is not finished, but no frame is currently available in the
buffer, the function dequeueVideoFrame will block. Only if no frame is available in the buffer anymore
and the decoding of the video file finished, dequeueVideoFrame will return null and the processing
thread will exit. All threads are equally responsible for updating the progress indicator displayed on
the console, which therefore must be done in a synchronized block or synchronized function to avoid a
corrupted terminal output.

[I N O

Rl e Y N N

Computer-Aided Screening of Capsule Endoscopy Videos 73

Listing 6.25: Implementation of the function classifyVideo.

// Defined by OpenCV, but not exported in Java.
private static final int CV_CAP_PROP_POS_FRAMES = 1;
private static final int CV_CAP_PROP_FRAME_COUNT = 7;

public ClassificationList classifyVideo (String inputVideo
, ArrayList<String> featureNames, MeasureType measureType) throws IOException ({
ClassificationList classificationList = new ClassificationList ();
VideoCapture capture = new VideoCapture (inputVideo) ;
int totalDocuments = (int)capture.get (CV_CAP_PROP_FRAME_COUNT) ;
Mat frameMat = new Mat ();
DocumentBuilder builder = getCustomDocumentBuilder (featureNames) ;

ExecutorService pool = Executors.newFixedThreadPool (numThreads) ;
Runnable videoRead = () -> {
while (capture.read(frameMat)) {

BufferedImage frame = mat2img(frameMat) ;
double pos = capture.get (CV_CAP_PROP_POS_FRAMES) ;
Document doc = builder.createDocument (frame, String.valueOf ((int)pos));
enqueueVideoFrame (doc) ;
}
synchronized(videoFrames) {
finishedReadingVideo = true;
videoFrames.notifyAll();
}
}i
pool.execute (videoRead) ;

for (int runnableId = 0; runnableId < numThreads; ++runnablelId) {
Runnable r = () —-> {
ArraylList<SearchProvider> searchProviders = setupSearchProviders (featureNames) ;
while (true) {
Document imageDocument = dequeueVideoFrame () ;
if (imageDocument null) break;

< Show progres “reen. >>>

classifyDocument (imageDocument, searchProviders, classificationList);
}
i
pool.execute(r);

}
pool.shutdown () ;
pool.awaitTermination (365, TimeUnit.DAYS));
return classificationList;
}
public static BufferedImage mat2img (Mat img) {
byte[] data = new byte[img.cols() * img.rows() * (int)img.elemSize()];

img.get (0, 0, data);

int type = BufferedImage.TYPE_3BYTE_BGR;
if (img.channels() == 1) type = BufferedImage.TYPE_BYTE_GRAY;

BufferedImage bufferedImage = new BufferedImage (width, height, type);

bufferedImage.getRaster () .setDataElements (0, 0, width, height, data);
return bufferedImage;

The function presented in Listing [6.26] creates a ChainedDocumentBuilder, chaining a variable
amount of separate document builders. The actual amount and type of document builders to be chained is
defined by the user on the command line as a set of feature names. The function derives the class names
of features from the feature names and creates matching instances of GenericDocumentBuilder.

Listing 6.26: Implementation of function getCustomDocumentBuilder.

public static DocumentBuilder getCustomDocumentBuilder (ArrayList<String> featureNames) {
ChainedDocumentBuilder builder = new ChainedDocumentBuilder ();

for (String featureName : featureNames) {
String className = "net.semanticmetadata.lire.imageanalysis." + featureName;
Class<? extends LireFeature> ¢ = (Class<? extends LireFeature>) Class.forName (className);

builder.addBuilder (new GenericDocumentBuilder (c, true));
}
return builder;

}

The function setupSearchProviders (Listing [6.27) returns a list of SearchProviders based on the
list of feature names passed as an argument. Each of the processing threads will need its separate
SearchProviders, hence, this function must be called once per thread. It creates a separate SearchProvider
instance for every single image feature by passing numNeighbors, featureName, and featureDescriptor
as arguments to the SearchProvider-constructor. The value numNeighbors defines how many nearest
neighbors the SearchProvider should report. This value should be significantly smaller than the amount
of samples of the SampleType with the fewest samples in the For example, if our
classifier index contains 30 POSITIVE and 100 NEGATIVE samples, and we define numNeighbors to
be 40, any list of nearest neighbors would always contain at least 10 NEGATIVE neighbors. Depending
on how the results are weighted, this could significantly reduce the detecting performance. For this
thesis, we have hard-coded the value numNeighbors to 77. This value could most likely be reduced to

ol R Y N T

R I N N

[Y N N

SHE®L—D0

74 Computer-Aided Screening of Capsule Endoscopy Videos

make the faster. However, we have not made an attempt to find an optimal value, as this value
most likely depends on the specific dataset that is processed.

Listing 6.27: Implementation of the function creating SearchProviders for a list of feature names.

private ArraylList<SearchProvider> setupSearchProviders (ArrayList<String> featureNames) {
ArraylList<SearchProvider> sp = new ArrayList<>(featureNames.size());
for (String featureName : featureNames) {
String featureDescriptor = ((String) DocumentBuilder.class.getField("FIELD_NAME_" + featureName.toUpperCase()).get (null));
SearchProvider searchProvider = new SearchProvider (numNeighbors, featureName, featureDescriptor)
sp.add (searchProvider)
}
return sp;
}

The class SearchProvider extends the class BitSamplinglmageSearcher and allows us to store the
feature name it is processing in the instance of the class. Storing the feature name in the SearchProvider
is needed, because we allow processing of multiple image features simultaneously. When collecting
the search results, we need to know which image feature the results are for. We decided to add this
information directly to the SearchProvider. This is the easiest way to ensure data integrity, when using
multiple threads and multiple instances of the class per thread. The implementation of the class is

presented in Listing

Listing 6.28: Implementation of class SearchProvider.

public class SearchProvider extends BitSamplingImageSearcher ({
SearchProvider (int numNeighbors, String featureName, String featureDescriptor) {
super (numNeighbors, featureDescriptor, featureDescriptor + "_hash"
, (LireFeature) Class.forName ("net.semanticmetadata.lire.imageanalysis." + featureName) .newlInstance(), 1000);
m_featureName = featureName;
}
private String m_featureName;
public String featureName () { return m_featureName; }

}

The functions used for managing the input queue for video frames are presented in Listing[6.29] The
function enqueueVideoFrame is called from the video decoder thread to add a new video frame to the
queue. To avoid any inconsistencies caused by simultaneous access, the enqueue as well as the dequeue
operations are synchronized on videoFrames. Once a new frame was added, we wake up a single waiting
thread. The function dequeueVideoFrame is called from any of the worker threads processing the search.
If the queue is empty, we yield and wait for a frame to become available, or, alternatively, if the video
decoding has already finished, the function returns null.

Listing 6.29: Implementation of functions managing the input queue for video frames.

private void enqueueVideoFrame (Document doc) {
synchronized (videoFrames) {
videoFrames.addFirst (doc);
videoFrames.notify(); // Notify a single waiting thread.
}
}

private Document dequeueVideoFrame () throws InterruptedException {
synchronized(videoFrames) {
while (videoFrames.isEmpty()) {
if (finishedReadingVideo) return null;
videoFrames.wait (); // Wait for a frame to become available.
}

return videoFrames.removelLast ();
}
}

The function classifyDocument (Listing [6.30) is called once for every document. It takes the
document to be classified as an argument, as well as a list of SearchProviders and a reference to a
ClassificationList. The document is then processed by each SearchProvider separately and all the results
are stored in a Classification object. The function also adds a[[ate fusion| value and eventually adds the
Classification object to the list of classifications. In machine learning, there is generally two ways of
combining feature vectors. The first one is and the second one is When using
the extracted features are combined before the learning step. When using the

features are processed separately, and only the results are weighted and combined. We have decided to
use because this fusion scheme tends to provide better performance for video data [60].

[Y N N

Fom—ow

C 0NN U AW —

Computer-Aided Screening of Capsule Endoscopy Videos 75

Listing 6.30: Implementation of the function for classifying an image document.

private void classifyDocument (Document img, ArraylList<SearchProvider> providers, ClassificationList cl) {
Classification classification = new Classification (img);

float lateFusionValues[] = new float[SampleType.values().length];

for (SearchProvider searchProvider : providers) {
SampleInformation detectedSampleInfo = getMatchingSampleTypeForDocument (img, searchProvider, measureType);
lateFusionValues [detectedSampleInfo.type.ordinal ()] += detectedSampleInfo.confidence;
classification.insert (searchProvider.featureName (), detectedSampleInfo.type);

}

classification.insert ("LateFusion", lateFusionValues[SampleType.POSITIVE.ordinal()]

> lateFusionValues[SampleType.NEGATIVE.ordinal ()] ? SampleType.POSITIVE : SampleType.NEGATIVE);
cl.insert (classification);

We use the function getMatchingSampleTypeForDocument to decide which type cluster a certain
image document belongs to. We search all indexReaders that contain training data for the most similar
documents and combine the results in a The implementation of the class Utils.MaxHeap
is described in Listing [6.32] We use the heap structure to automatically sort the documents in a
hierarchical order. That way, we always end up with the least similar document (biggest distance) at
the top of the heap. This allows us to keep a fixed amount of most similar documents in the data
structure. Whenever we want to insert a new document, we only have to peek at the top document,
to decide if the new document should be inserted into the heap, or if it should not be inserted, due
to being less similar than the least similar document currently contained in the heap. Once we have
combined all the results from the different indexReaders we can repeatedly call poll() to remove the top
document from the heap. This allows us to process the combined search results in a prioritized order
and apply weighting to the results. We distinguish between different measurement types. COUNT is
simply counting the amount of occurences of the same type in the result set. WEIGHTED_BY_RANK
counts the amount of occurences and applies weighting to each occurence, based on the rank of the
individual results. WEIGHTED_BY_DISTANCE applies weighting on the distance of the occurences,
and WEIGHTED_BY_AVG_DISTANCE classifies based on the average of the weighted distances. The
function returns a Samplelnformation object which contains a SampleType value and a confidence value.
For our use case, the SampleType value will always be either POSITIVE or NEGATIVE, because we
only do binary classification. However, the implementation is done in a generic fashion, so we could
add classification into further subcategories later. The confidence value is the amount of samples that
contributed to the result. This value is used later on for combining the results for multiple image features
using|late fusion] The implementation of the function gerMatchingSampleTypeForDocument is presented

in Listing [6.31]

Listing 6.31: Implementation of the search based classification for a single image feature.

public static final String SAMPLE_TYPE_DESCRIPTOR_NAME = "sampleType";

public SampleInformation getMatchingSampleTypeForDocument (Document document
, AbstractImageSearcher searcher, MeasureType measureType) {
// Initialize a HashMap to keep the score per type.
HashMap<SampleType, Utils.MutableFloat> typeScore = new HashMap () ;

for (SampleType type : SampleType.values()) typeScore.put (type, new Utils.MutableFloat());
// Search the indexReaders, and store all the results in a MaxHeap.
Utils.MaxHeap matches = new Utils.MaxHeap (numNeighbors);
for (AugmentedIndexReader augmentedReader : indexReaders) {
ImageSearchHits imageSearchHits = searcher.search(document, augmentedReader.indexReader);
for (int i = 0; i < imageSearchHits.length() && i < numNeighbors; i++) {
Document matchingDocument = imageSearchHits.doc(1i);

// Add the sample type to the document.
matchingDocument.add (new StoredField(Utils.SAMPLE_TYPE_DESCRIPTOR_NAME, augmentedReader.sampleType.name()));
matches.insert (imageSearchHits.score (i), matchingDocument) ;
}
}

int numMatches = matches.size();
// Pr all the matc
// and lculate the re ot
while (!matches.isEmpty()) {
Utils.PrioritizedDocument prioritizedDocument = matches.poll();
SampleType sampleType = Utils.getSampleTypeFromDocument (prioritizedDocument.document);
switch (measureType) {
case COUNT: typeScore.get (sampleType) .increment (1); break;
case WEIGHTED_BY_RANK: {
float wc = 1.0f / ((float) matches.size() + 1.0f);
typeScore.get (sampleType) .increment (wc); break;
}
case WEIGHTED_BY_DISTANCE:
case WEIGHTED_BY_AVG_DISTANCE: ({
float weight = 1.0f / ((float) matches.size() + 1.0f);
// Range of score is 0 to MAX_FLOAT, where 0 is a perfect match.
float was = prioritizedDocument.score x weight;

riority

s for all possible types.

38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

[Y N N

00 L) L) LI LY LI I D N B N DD R R B DD = =
QRO -~ ORIV EOLRN—~SOCRITUNAR LN~ O

76 Computer-Aided Screening of Capsule Endoscopy Videos

typeScore.get (sampleType) .increment (was); break;
}
}
}

// Determine the highest and lowest scoring types.
SampleType highType = SampleType.INVALID, lowType = SampleType.INVALID;
float high = 0, low = Float.MAX_ VALUE;

Iterator it = typeScore.entrySet().iterator();
while (it.hasNext()) {
HashMap.Entry pair = (HashMap.Entry)it.next();
if (pair.getKey() == SampleType.INVALID) continue;
Utils.MutableFloat score = (Utils.MutableFloat)pair.getValue();
float £ = score.get();
if (measureType == MeasureType.WEIGHTED_BY_AVG_DISTANCE) f = f / score.getIncrements();
if (f > high) high = f; highType = (SampleType) pair.getKey();
if (f < low) low = f; lowType = (SampleType) pair.getKey();

}

// Calculate the confidence in the result.
SampleInformation info = new SampleInformation();
switch (measureType) {
case COUNT:
case WEIGHTED_BY_RANK:
info.confidence = (float)typeScore.get (highType) .getIncrements();
info.type = highType; break;
case WEIGHTED_BY_ DISTANCE:
case WEIGHTED_BY_AVG_DISTANCE:
info.confidence = (float)typeScore.get (lowType) .getIncrements();
info.type = lowType; break;
}
info.confidence = info.confidence / numMatches;
return info;

}

private class SampleInformation {
SampleType type = SampleType.INVALID;
Float confidence = 0Of

}

We need a MaxHeap datastructure to keep a fixed amount of documents in a prioritized order
and to efficiently replace entries with more similar search results. We therefore implemented a

MaxHeap class, which inherits from a regular Our MaxHeap contains objects of type
PrioritizedDocument, which contain a score value. The score value is the value by which we want

to sort the elements in the heap. In Java, the is implemented as a regular mininum
heap. To reverse the ordering of the items in the heap we therefore also needed to implement a new

comparator class MaxHeapComparator. We pass the maxiumum size of the heap as an argument to the
constructor. The insert method of the MaxHeap checks the current size of the heap, and if the maxiumum
size is reached, the object with the highest score is dropped. The implementation for the class MaxHeap,
PrioritizedDocument and MaxHeapComparator are presented in Listing [6.32]

Listing 6.32: Utils class containing several helper functions and helper classes.

public static class MaxHeap extends PriorityQueue<PrioritizedDocument> {
private int maximumSize;
public MaxHeap (int maximumSize) {
super (maximumSize, new MaxHeapComparator());
this.maximumSize = maximumSize;

}

public void insert (float score, Document document) {
PrioritizedDocument top = peek();
if (top == null || size() < maximumSize) {
add (new PrioritizedDocument (score, document));
else if (top.score > score) {
poll();
add (new PrioritizedDocument (score, document));
}
}
}

public static class MaxHeapComparator implements Comparator<PrioritizedDocument> {
public int compare (PrioritizedDocument x, PrioritizedDocument y) {
float c¢c = y.score - x.score;
if (c < 0) return -1
if (¢ > 0) return 1;
return 0;
}
}

public static class PrioritizedDocument {
Document document;
float score;
public PrioritizedDocument (float score, Document document) {
this.score = score;
this.document = document;
}
}

Computer-Aided Screening of Capsule Endoscopy Videos 77

There are a few additional classes and functions which we just describe briefly instead of listing
the complete implementation. The class ClassificatonRate is used as a storage container for true-/false-
positive and true-/false-negative rates for a single image feature. The class ClassificationMetrics is a
map that stores one such ClassificationRate object per image feature. This class further has a print
function, which calculates several metrics such as [precision} frecalll [accuracy| F1 score, and weighted F1
score. This information is then printed to the console (Figure[6.9]/ bottom) and can be used to assess the
performance of the

The class Classification is used to store information for a single image. It stores expected sample
type, image name or frame number, and classification results for several image features. The class
ClassificationList implements a linked list of Classification objects. It also contains a special comparator
to sort the linked list by frame numbers stored in the Classification objects. This is for example used for
writing a sorted list of negative frames and a sorted list of positive frames to a[JSOM file.

The classes MutableInt and MutableFloat are simple wrappers for integer and float values with some
additional convenience functions. These classes allow us to increment or alter the value of the variable
in place, without allocating a new integer or float. This is in particularly useful when an integer or
float is stored in a map and needs to be updated. Using a Mutablelnt or a MutableFloat, this can be
done in a single Java-statement and must not be broken down into read, update and write statements.
The function getSampleTypeFromDocument returns the sample type stored in a Lucene document, if
it is available. If the document does not contain a stored sample type, the function will fall back to
getSampleTypeFromName. The function getSampleTypeFromName is used when the sample type is not
stored in the document, but encoded in the image name instead.

6.2 Evaluation and Discussion

We have experimented with three different machine learning approaches for detecting colon polyps. The
main challenge we were facing was the small amount of data we had available for the machine learning
process. Having a small amount of data, which is not diverse enough, makes it more likely that a trained
will be overfit. This basically means that the will have poor detecting-performance,
because, instead of generalizing from the input samples, it will simply “memorize” training data.

It is relatively easy to find some pictures on the Internet, but to be able to do machine
learning, we need significantly more than just a few pictures per disease pattern. For colon polyps, the
ASU-Mayo Clinic polyp databas is the currently biggest publicly available dataset. Hence, we have
been using this dataset for many of our experiments.

To assess the performance of our we use the measures [precision] [recall and [F-scorel
measures the fraction of the detected-positive instances, which are true-positive. The formula
for calculating the [precision]is listed subsequently. TP is the number of true-positive instances, FP is the
number of false-positive instances, TN is the number of true-negative, FN is the number of false-negative
and P is the number of positive instances.

TP

is the fraction of all true-positive instances, which are also detected positive. The formula for

calculating the is:

RECALL = %

[F-score| (also [F-measure| or F1-score) is the harmonic mean of [precision| and [recall] It is thereby a
combination of these two measures in a single number.

PRECISION * RECALL

F=2x%
PRECISION + RECALL

Thttp://www.polyp2015.com/wp/

http://www.polyp2015.com/wp/

78 Computer-Aided Screening of Capsule Endoscopy Videos

In several sections, the measure is used as well. is the proportion of correctly
classified items out of all the items classified.

(TP 4+ TN)

ACCURACY = (b TN T FP £ FN)

Where applicable, we also conduct a|leave-one-out cross-validation| This is a technique to assess
the generalization of a predictive model. In our case, it describes the process where the training and
testing datasets are rotated, leaving out a single different non-overlapping item or portion for testing, and
using the remaining items for training. This process is repeated until every item or portion has been used
for testing exactly once [61]].

6.2.1 Cascade Classifier Training

We have used opencv_traincascade for training a Haar-based |cascading classifier] with data exported
from our TagAndTrack tool. Since we only had a relatively small amount of imaging data available and to
allow detecting polyps in various orientations, we added functionality to TagAndTrack to export rotations
of every selected region. This functionality generates a total of 18 training samples per selected region.
Training such a is an extremely lengthy and computationally intensive task. The procedure
usually takes several days or even weeks. Unfortunately, this also limited us in trying many different
combinations, training settings or datasets. Unless specified otherwise, we have always been using the
same machine for the training, a fairly powerful Mac Pro Mid 2010. The computer was barely usable for
anything else during training, because we allowed opencv_traincascade to use almost all the available
memory. We have listed the training times for different datasets in Table[6.3] The exact settings and the
computer that was used are specified in detail in Paragraph[6.1.1.4]

Table 6.3: Training Time for a Haar-based Cascading Classifier

Positive Samples | Negative Samples | Training Time

900 1427 3h 30min
4518 1427 13h 12min
10278 24241 | 13d 2h 23min
42300 24107 | 72d 1h 11min

We have conducted three separate experiments for measuring the performance of the

6.2.1.1 Experiment 1

For the first experiment we have selected a video sequence with a total of 2, 025 video frames, where 251
of these frames show the same [polyp| from different positions (due to the being moved). The
video sequence also contains a still sequence of 117 frames, showing the same [polyp] We have removed
these 117 frames from all subsequent calculation, so they will not influence our measurements. We have
also removed 481 frames with surgical equipment visible, as surgical equipment might interfere with our
detection and should never appear in a [capsule endoscopy| video. This leaves us with a total of 1,678
frames. Those are 251 frames where a is visible (positive frames) and 1,427 frames without any
[polyp| (negative frames). We have then trained a|classifierusing all these negative samples and the usual
amount of 18 rotations for the positive samples. We then used the exact same video frames and measured
the performance of the We were doing this, to show that some of the good results reported in
related work are caused by The second part of our evaluation uses strictly separated training
and testing sets. And in this second case, the results seem considerably less promising, leading to the
insight that despite reports of good results, the classification problem is not solved yet.

The results for the first experiment (overfit) are listed in Table [6.4] The number of counted false
negatives matches our expectation. The number of false positives seems rather high, considering that

Computer-Aided Screening of Capsule Endoscopy Videos 79

we used the same data for training and testing. Especially, since a single false positive frame might
contain multiple false detections. Taking a closer look at the false negatives, we observed, that false
positives often occur on video frames that are not in focus. Very often, such out-of-focus frames even
contain multiple false positives. Further, we noticed that in this video, there are a few sequences where
the camera points towards one side of the colon, making the whole wall of the colon look like a giant
protrusion due to the distortion caused by the short focal length of the camera lens. This leads to the
conclusion that, despite the minimal amount of training data and the obvious overfit classifer, a small
degree of generalization was achieved. However, instead of the desired generalization, the effect in this
case is that we have a rather high amount of false positives.

Table 6.4: Performance of a classifier using the same dataset for training and detecting.

True Positives

False Negatives

False Positives

Total Frames

250 1 272 1678
Recall Precision F1 Score
0.996 0.4789 0.6468

6.2.1.2 Experiment 2

For our second experiment, we essentially use the same dataset as we used for the first experiment.
However, instead of using all the 251 positive samples, we are only using a randomly selected subset of
50 positive samples and their respective rotations. Therefore, we have a total of 900 positive samples
and 1,427 negative samples for training. For evaluation, we then used all the 1, 678 frames again. A
total of 50 different images is for sure a very low amount for training a to detect non-rigid
objects. According to the documentatioﬂ thousands of images are needed for training a face
detector. With this experiment, we show that using images of the same for training and testing the
performance of a[classifier]defeats the purpose of the measurement, even if the image sets for training and
testing are disjoint. This is something we have criticized in some of the related work we have discussed.
We therefore expect to achieve a very low amount of false negatives and and a high amount of correctly
detected frames again. The results for this experiment are presented in Table[6.5]

Table 6.5: Performance of a classifier trained with a subset (50 positive frames) of the testing dataset.

True Positives

False Negatives

False Positives

Total Frames

236 15 379 1678
Recall Precision F1 Score
0.94 0.384 0.545

We interpret the results from Table [6.5] as follows. The amount of false positives is significantly
higher, most likely because of a too broad generalization caused by too few positive samples, but this
value is only of marginal interest in this experiment. More interesting is that despite reducing the positive
samples to only 20% of the available ones, we still correctly detect 94% of the frames showing the[polypl
This supports our hypothesis that results for the performance of a are only meaningful, if the
and the [testing datasef] do not contain any pictures of the same [polyp| This is because we
only need a very small amount of samples of one specific to be able to detect the exact same[polyp|
on different images. More specifically, when conducting [leave-one-out cross-validation} it is important
that we leave out whole video sequences and not just single frames.

8nttp://docs.opencv.org/doc/user_guide/ug_traincascade.html

http://docs.opencv.org/doc/user_guide/ug_traincascade.html

80 Computer-Aided Screening of Capsule Endoscopy Videos

6.2.1.3 Experiment 3

For the third experiment, we train a[classifier with data from a total of 2, 350 positive and 24, 107 negative
video frames of 20 different video sequences, containing frames showing 10 different polyps. This
produces a total of 42,300 positive samples. We planned to analyze the performance of the resulting
for a video sequence contained in the training sequence, as well as for a video sequence that
we put aside for testing only and would not use for training at all. It took several weeks for this training
process to complete. However, despite the enormous training effort, the resulting turned out
to be not usable at all. On every single video frame, the detects multiple false positives. We
usually experience more than 10 false positives per video frame, whereas the exact amount of false
positives per frame mostly depends on the resolution of the video sequence. Not a single video frame
was free of false positives, no matter if the sequence was used for training or not. The always
evaluates to “contains a polyp” and does not provide any actual information. We therefore do not list the
results in a separate table.

We have conducted further experiments to find the reason why this is unusable. The most
reasonable explaination we have found is that it is caused by the many rotations we create for every orig-
inal sample and the lack of strong, common features in the available samples. used for the
detection of faces are presented in [48]. The example for [Haar-features| that ships with is also
implementing face recognition. Faces do have very strong optical features, and usually the orientation on
images only changes minimal, also supporting the hypothesis that our[classifiers|trained with fewer sam-
ples were heavily overfit. These [classifiers| caused significantly less false positives, because instead of
properly generalizing, they simply encoded the training instances. We have also verified this by training
several different Haar-based [classifiers| to detect footballs instead of polyps. Optically, a football clearly
separates from the background of a football field. We therefore expected that it should be rather easy
to detect footballs. However, there are many different color patterns for the surface of a football, and a
football can be rotated any possible direction. The common optical features in all the samples are there-
fore only the round shape and the light color. With these football [training datasets| we also experienced
the same issue. The more training samples we used, the more false positives were caused by the trained

We therefore conclude that the unknown orientation of polyps and the lack of strong, common
characteristic optical features make[Haar-featurefbased training an unsuitable machine learning approach

for detecting polyps in the

6.2.2 Histogram of Oriented Gradients Detector

In Section [6.1.2] we have described our first experiments, implementing [HOG}based training and
detection directly into TagAndTrack. This allows us to select regions in a single video sequence for
training directly in TagAndTrack. The generated can then be used on the same video sequence
for testing. As discussed in Section using frames of the same video sequence for training and for
testing is problematic. But as the first experiment for testing the capabilities of[HOG}based detectors, this
was still a valid approach and it led to some very promissing results, which are presented in Table [6.6]
These numbers show that[HOG} based detectors are indeed very good at detecting objects based on a very
small amount of training data. Also, the number of false positives is incredibly low.

As the results with the TagAndTrack integrated implementation were very promissing, we then
implemented a separate HOGTrainer. This allows us to train [HOG}based with data
from multiple video sequences. Experimenting with that implementation, we quilckly found several
limitations. First of all, all training samples for a[HOG}based must have a smiliar aspect ratio.
We enforce this by allowing the implementation to drop any samples with an incompatible aspect
ratio. This is a limitation, but not necessarily a problem, as it is not very likely that one would want to
detect objects of a very different aspect ratio with the same We even considered only allowing
quadratic selection instead of rectangular one.

Trying to train a [classifierf] with the same number of samples as we did for the Haar-based
and using the same number of rotations, we immediately ran out of memory. This is because [dli]] is

Computer-Aided Screening of Capsule Endoscopy Videos 81

Table 6.6: Detector performance of HOG-based classifiers trained in TagAndTrack.

Training Samples | True Positives | False Negatives | False Positives | Total Frames

5 220 31 1 1678
Recall Precision F1 Score
0.876 0.995 0.932

Training Samples | True Positives | False Negatives | False Positives | Total Frames

10 241 10 1 1678
Recall Precision F1 Score
0.996 0.96 0.978

designed to load all the images into memory before running the training algorithm, instead of loading
them on demand. We therefore reduced the number of rotations to 9 per positive frame, and thereby
reduced the number of samples for training.

The next problem that we encountered was that any trained with our HOGTrainer would
never actually trigger; it did not detect the same [polyp]it was trained with, neither it detected any false
positives. This was somewhat a surprise after our first, very promissing experiment. The reason was
however easy to find. The only difference in training was that when training with HOGTrainer, we also
added rotations and mirrored samples to the dataset. Visualizing the resulting detector makes the expla-
nation to this problem obvious. When training a [HOG}based with rotations, no matter what
dataset is used, the gradients will always end up building a circular pattern, as seen in Figure[6.12]

Figure 6.12: Visualizations of a HOG detector that was trained with rotations of multiple pictures of
multiple polyps.

We therefore conclude that a[HOG}based cannot be trained with rotated images and that
this method is only usable if the rough orientation of the object to be detected is known. For detecting
humans, this is not a problem, since humans usually have an upright position in an image. But, for the
detection of polyps this is a problem, because we would first have to define what the “upright” position
for a[polyp|is and would then have to transform all the training samples accordingly. Eventually, this
would then also require to test rotations of every video frame when processing a video with the detector.
This seems not to be a good option either, as it would be very computationally expensive to do this for all
videos we eventually feed to the detector. We believe that[HOG}based detectors are therefore not usable
for the purpose we research.

Nevertheless, we collected a small amount of benchmarking data. Training a with
HOGTrainer is comparably fast. The time consumption for training with different datasets
is listed in Table

82 Computer-Aided Screening of Capsule Endoscopy Videos

Table 6.7: Time consumption for training classifiers with HOGTrainer.

Frames | Samples Training Time
50 450 3min 4sec
251 2259 17min 25sec
502 4518 44min 26sec
1004 9036 - (killed / out of memory)

6.2.3 Index of Global Image Features

To evaluate the performance of our [global image features|(classifier] we have conducted measurements
using the dataset from the ASU-Mayo Clinc polyp databas This dataset consists of 20 separate videos,
where 10 of these videos do contain polyps and the other 10 videos do not. The dataset further contains
an image-mask for every single video frame, where polyps are marked. We can use this information as
our[ground truth] As discussed in Chapter[2] the commonly used metrics for measuring the performance
of a[classifier|are |precision| [recallland [F-score] Hence, we use these metrics to assess the performance of
our|[classifier] The [F-score|or[F-score]is the harmonic mean of [precision|and[recall] A problem of the [F]
is, however, that a low value does not always indicate a bad-performing This can also be
caused by a non-evenly distributed dataset (e.g., many more positive samples than negative ones) [62].
This problem can be addressed by using a weighted (WFI) instead. WFI takes negative and
positive class results into account and provides a more accurate and robust measure.

6.2.3.1 Benchmarking single Image Features

The tools we have developed allow us to use several different [global image features| for classification.
The more image features we use, the more computationally expensive the classification becomes. Also,
not all image features are equally important or provide equally good results for our purpose. As a first
step, we therefore need to find out which image features we do want to use for classification.

To find out which image features provide the best results, we generated indices containing all possible
image features for all frames of all video sequences from the ASU-Mayo Clinic database. We can use
these indices for several different measurements and also for|leave-one-out cross-validation| When using
our the built-in metrics functionality can provide us with information on the performance of
different image features for benchmarking. The[classifier]provides us with separate information for every
single image feature, as well as the of all the selected image features.

For our first test, we ran the [classifier] with all possible image features selected, leaving out one video
at the time, repeating the procedure until each video was left out exactly once. This is essentially the
procedure for [[eave-one-out cross-validation] We then combined the reported values for true-positives,
true-negatives, false-positives and false-negatives for all the runs, and calculated the metrics for the
combined values. The results of this first test are presented in Table [6.8] The single image feature
that generally achieves the best score is [Color and Edge Directivity Descriptor (CEDD), which is
discussed in detail in [63]]. Further, also the image features[Joint Descriptor for CEDD and FCTH (JCD),
EdgeHistogram, Rotation Invariant Local Binary Patterns, and Joint Histogram achieve very
good values. The of all the image features even achieves slightly better numbers. However, it
is impractical to do a[ate fusion|of all these image features as the calculation, indexing and searching of
all image features is computationally expensive. Therefore, we want to find a small subset of two image
features, which provides optimal results despite minimizing the computational effort.

6.2.3.2 Finding an optimal Image Feature Subset

In the previous paragraph, we benchmarked single image features. To create a more robust classification
mechanism, we want to find an optimal subset of two image features, which we can combine using

Ynttp://www.polyp2015.com/wp/

http://www.polyp2015.com/wp/

Computer-Aided Screening of Capsule Endoscopy Videos 83

Table 6.8: Leave-one-out cross-testing combined for all supported image features. The best values are
marked green.

Feature | TP | TN | FP | FN | Prec. | Recall | Fl1

JointHistogram 3369 | 13826 | 1085 | 511 | 0.7563 | 0.8682 | 0.8084
JpegCoefficientHistogram 3224 | 13772 | 1139 | 656 | 0.7389 | 0.8309 | 0.7822
Tamura 3392 | 13861 | 1050 | 488 | 0.7636 | 0.8742 | 0.8151
FuzzyOpponentHistogram 3341 | 13552 | 1359 | 539 | 0.7108 | 0.8610 | 0.7787
SimpleColorHistogram 2736 | 13563 | 1348 | 1144 | 0.6699 | 0.7051 | 0.6870
JCD 3556 | 13777 | 1134 | 324 | 0.7582 | 0.9164 | 0.8298
FuzzyColorHistogram 2708 | 13243 | 1668 | 1172 | 0.6188 | 0.6979 | 0.6560
RotationInvariantLIBP 3479 | 13829 | 1082 | 401 | 0.7627 | 0.8966 | 0.8243
FCTH 2846 | 13671 | 1240 | 1034 | 0.6965 | 0.7335 | 0.7145
LocalBinaryPatternsAndOpponent | 2412 | 13349 | 1562 | 1468 | 0.6069 | 0.6216 | 0.6142
PHOG 2879 | 13806 | 1105 | 1001 | 0.7226 | 0.7420 | 0.7321
RankAndOpponent 2527 | 13553 | 1358 | 1353 | 0.6504 | 0.6512 | 0.6508
ColorLayout 2702 | 14018 | 893 | 1178 | 0.7515 | 0.6963 | 0.7229
CEDD 3705 | 13796 | 1115 | 175 | 0.7686 | 0.9548 | 0.8517
Gabor 1849 | 10643 | 4268 | 2031 | 0.3022 | 0.4765 | 0.3699
OpponentHistogram 2246 | 14157 | 754 | 1634 | 0.7486 | 0.5788 | 0.6529
EdgeHistogram 3548 | 13737 | 1174 | 332 | 0.7513 | 0.9144 | 0.8249
ScalableColor 3231 | 13684 | 1227 | 649 | 0.7247 | 0.8327 | 0.7750
Late Fusion 3710 | 13894 | 1017 | 170 | 0.7848 | 0.9561 | 0.8620

Intuitively, we could simply combine the two image features, which score best individually.
However, there is no guarantee that another combination would not be more balanced and therefore lead
to better results. To test this, we therefore want to try all possible combinations of two image features.
We can calculate the amount of possibilities using the factorial formula for binomial coefficients. We
have a total of 18 image features available and we want to select two. This gives us a total of 153
possible combinations. Testing all these combinations with the complete database, as we have done for
our previous experiment, would probably take many days. Therefore, we have to reduce the amount of
samples we use. The ASU-Mayo Clinic database contains videos showing a as well as videos
not showing any [polyp| For this test, we need video sequences, which contain video frames both with
and without a to make sure our can detect presence as well as absence of afpolyp] We
randomly selected two video sequences (wp_68 and wp_61) out of the ones that have both positive and
negative video frames. We used a simple script to build all 153 different combinations and run
the accordingly. The best results for the first video sequence are presented in Table [6.9] and
for the second video, in Table Combining the results from these two videos, we found that the

of the image features [JCD| and [Tamurd] provides the best performance. [JCD|is in fact by
itself already a combination of the image features [CEDD| [63]] and |[Fuzzy Color and Texture Histogram)

[64]. The feature is a combination of three features, which correspond to human
visual perception and are described in [65]].

6.2.3.3 Classifier Performance Evaluation

Based on the evaluation of different combinations of image features in the previous paragraph, we have
decided to use the image features [JCD|and [Tamurd] for our further performance measurements. To assess

the actual performance of our [classifier| using these two image features, we conducted a [leave-one-ou

with all available video sequences. With these settings, we achieve an average
of 0.889, an average of 0.964 and an average value of 0.916. The problem with this

average calculation is that different video sequences contribute values based on different numbers of

84 Computer-Aided Screening of Capsule Endoscopy Videos

Table 6.9: Top combinations of 2 image features for video wp_68, sorted by F-score.

|| Feature | TP [TN | FP [FN | Prec. [Recall | Fl1
1 | JCD & Tamura 172 | 51 | 20 | 14 | 0.895833 | 0.9247 | 0.9100
2 | CEDD & Tamura 170 | 53 | 18 | 16 | 0.904255 | 0.9139 | 0.9090
3 | ColorLayout & Tamura 165 | 59 | 12 | 21 | 0.932203 | 0.8870 | 0.9090
4 | EdgeHist. & CEDD 175 | 41 | 30 | 11 | 0.853659 | 0.9408 | 0.8951
5 | EdgeHist. & Tamura 175 | 41 | 30 | 11 | 0.853659 | 0.9408 | 0.8951
6 | JCD & EdgeHist. 175 | 40 | 31 | 11 | 0.849515 | 0.9408 | 0.8928
7 | EdgeHist. & PHOG 186 | 25 | 46 | O | 0.801724 1 0.8899
8 | CEDD & PHOG 181 | 30 | 41 | 5 | 0.815315 | 0.9731 | 0.8872
9 | JCD & PHOG 180 | 29 | 42 | 6 | 0.810811 | 0.9677 | 0.8823
10 | PHOG & Rot.Inv.BP 184 | 23 | 48 | 2 | 0.793103 | 0.9892 | 0.8803
11 | ColorLayout & PHOG 178 | 30 | 41 8 | 0.812785 | 0.9569 | 0.8790
12 | FCTH & CEDD 178 | 30 | 41 | 8 | 0.812785 | 0.9569 | 0.8790
13 | EdgeHist. & ScalableColor | 185 | 21 | 50 | 1 | 0.787234 | 0.9946 | 0.8788
14 | JpegCoeft.Hist. & Tamura | 170 | 40 | 31 | 16 | 0.845771 | 0.9139 | 0.8785
15 | OpponentHist. & Tamura 172 | 37 | 34 | 14 | 0.834951 | 0.9247 | 0.8775

Table 6.10: Top combinations of 2 image features for video wp_61, sorted by F-score.

|| Feature | TP [TN | FP | FN | Prec. | Recall | F1 |

1 | Rot.Inv.LBP & Tamura 162 | 22 | 153 | 0 | 0.5142 1 0.6792
2 | PHOG & Tamura 161 | 23 | 152 | 1 | 0.5143 | 0.9938 | 0.6778
3 | JpegCoeff.Hist. & Tamura 162 | 21 | 154 | O | 0.5126 1 0.6778
4 | Gabor & Tamura 162 | 20 | 155 | O | 0.5110 1 0.6764
5 | FuzzyColorHist. & Tamura 162 | 18 | 157 | 0 | 0.5078 1 0.6735
6 | FuzzyOpp.Hist. & FuzzyColorHist. | 160 | 17 | 158 | 2 | 0.5031 | 0.9876 | 0.6666
7 | JCD & Opp.Hist. 135 | 67 | 108 | 27 | 0.5555 | 0.8333 | 0.6666
8 | JointHist. & JpegCoeff.Hist. 162 | 12 | 163 | 0 | 0.4984 1 0.6652
9 | ColorLayout & FuzzyColorHist. 162 | 11 | 164 | 0 | 0.4969 1 0.6639
10 | FuzzyColorHist. & JointHist. 162 | 11 | 164 | O | 0.4969 1 0.6639
11 | FuzzyOpp.Hist. & JointHist. 162 | 11 | 164 | O | 0.4969 1 0.6639
12 | FuzzyOpp.Hist. & SimpleColorHist. | 162 | 11 | 164 | 0 | 0.4969 1 0.6639
13 | JointHist. & Rotat.Inv.LBP 162 | 11 | 164 | O | 0.4969 1 0.6639
14 | JointHist. & SimpleColorHist. 162 | 11 | 164 | 0 | 0.4969 1 0.6639
15 | FuzzyOpp.Hist. & Gabor 161 | 13 | 162 | 1 | 0.4984 | 0.9938 | 0.6639
16 | JCD & JpegCoeff Hist. 161 | 13 | 162 | 1 | 0.4984 | 0.9938 | 0.6639
17 | CEDD & FuzzyColorHist. 159 | 17 | 158 | 3 | 0.5015 | 0.9814 | 0.6638
18 | JpegCoeff.Hist. & Rot.Inv.LBP 152 | 31 | 144 | 10 | 0.5135 | 0.9382 | 0.6637
19 | JCD & Tamura 162 | 10 | 165 | O | 0.4954 1 0.6625
20 | CEDD & Tamura 162 | 10 | 165 | O | 0.4954 1 0.6625

video frames. If we weight the values contributed by every single video sequence with the amount of
frames in the sequence, we even achieve an average of 0.939, an average of 0.985, an
average value of 0.957 and an average weighted value of 0.929. The precise numbers
are presented in Table[6.11]

Computer-Aided Screening of Capsule Endoscopy Videos 85

Table 6.11: Performance evaluation by leave-one-out cross-validation for all available videos, using JCD
and Tamura features.

Feature | TP | TN | FP | FN | Prec. | Recall | Acc. | F1 | WFI1
np_5 1 [60] 0] 0 1 1 1 1 1
np_6 1 [86] 0] 0 1 1 1 1 1
np_7 1 17670 |0 1 1 1 1 1
np_8 1 [710] 0 |0 1 1 1 1 1
np_9 1 [1841] 0 | 0O 1 1 1 1 1
np_10 1 [1923] 0] 0 1 1 1 1 1
np_11 1 [1548] 0 | 0 1 1 1 1 1
np_12 1 [1738] 0 | 0 1 1 1 1 1
np_13 1 [1800] 0 | © 1 1 1 1 1
np_14 1 [1637] 0 | 0 1 1 1 1 1
wp_2 140 [9 [20 | 70 | 0.875 | 0.6666 | 0.6234 | 0.7567 | 0.6851
wp_4 98| 1 [0 |0 1 1 1 1 1
wp_24 310 | 68 | 127 | 12 [0.7093 | 0.9627 | 0.7311 | 0.8168 | 0.6952
wp_49 421 [12 [62 | 4 [0.8716] 0.9905 [0.8677 | 0.9273 | 0.8293
wp_52 688 | 101 | 284 | 31 | 0.7078 | 0.9568 | 0.7146 | 0.8137 | 0.6662
wp_61 162 10 [165] 0 [04954 [1 [0.5103 | 0.6625 | 0.3746
wp_66 223 | 12 [165] 16 | 0.5747 [0.9330 | 0.5649 | 0.7113 | 0.4584
wp_68 172 [51 | 20 | 14 | 0.8958 | 0.9247 | 0.8677 | 0.9100 | 0.8658
wp_69 265 | 185 | 138 | 26 | 0.6575 | 0.9106 | 0.7328 | 0.7636 | 0.7264
wp_70 379 1 [0 |29 1109289 | 0.9290 [0.9631 | 0.9609
Average: 0.8894 | 0.9637 [0.8771 [0.9163 | 0.9162
Weighted Average: 0.9388 | 0.985 | 0.9370 | 0.9568 | 0.9286

6.2.3.4 Scalability Evaluation

One further requirement for our is scalability. The idea is to use such a to do mass
screening of people for lesions in the colon. In this case, the video sequences would be recorded with

[camera capsules| which currently have an average frame rate of 5[FPS|and a resolution of either 256x256
or 512x512 pixels. As the technology improves, it is likely that these specifications will increase to a
regular video playback rate of about 25 and a resolution of 1920x1080. The videos from the ASU-
Mayo Clinic polyp database already have this resolution. It is therefore our goal to process at least 25
on average with this dataset.

There are several conditions that influence the processing speed, such as the performance of the
computer, efficient use of the available resources, but also the size and the amount of features contained
in the that is searched for classification. For any of the subsequent time measurements,
we used the same computer (Mac Pro Mid 2010), as we have used for all previous experiments.

For our first experiment, we used a containing all available 18 image features for
a total of 12,986 video frames. But we only used the features [JCD| and [Tamural as we did for the
previous measurements. We were able to process 1,924 previously indexed frames in 462.604 seconds;

this equates to 4.16 We have then created a for the same video frames, but only

containing the two needed image features [JCD| and [Tamural With this processing the
same 1924 frames was completed in 105.978 seconds, which equates to 18.15 With the specified

computer and the [[ate fusion| of [JCD] and [Tamura, we are not able to reach the goal of 25 [FPS| Further,
the video decoding and the on-the-fly calculation of image features for the testing sequence is not
even included yet. However, we have already invested a significant effort in parallelizing, profiling
and optimizing our tools. To reach a higher frame rate, we can therefore choose less computationally
expensive features, reduce the amount of features to a single one, or require a faster computer for

86 Computer-Aided Screening of Capsule Endoscopy Videos

processing.

As a further experiment, we measured the time consumed for processing the same video frames
using the same but only considering the image feature With this configuration,
the processing was completed in 53.851 seconds, which equates to a frame rate of 35.73 This
would be clearly above the required 25 but would unfortunately not provide an optimal detection
performance.

To find out how powerful a machine would have to be to process data in real-time, we have run
some more tests on Amazon AWS EC2 instances. On a c4.8xlarge instance (Intel Xeon E5-2666 with 36
virtual CPUs), we were able to classify the 1,924 frames with both features [JCD| and [Tamurd| selected,
in 29.377 seconds (65.5[FPS)). When classifying data from a raw video file and therefore calculating the
image features on the fly, the processing time increased to 39.599 seconds (48.6 [FPS). When reading
the data from a Windows media video (wmv) file, the processing time increased to 40.452 seconds (47.6
[FPS). The c4.8xlarge instance is the most powerful instance offered by Amazon. We therefore conducted
the same tests also on a less powerful c4.4xlarge instance (Intel Xeon E5-2666 with 16 virtual CPUs).
Using this instance, we were able to process the indexed data in 60.19 seconds (31.97 [FPS)), the wmv file
in 81.17 seconds (23.7[FPS) and the raw video file in 79.718 seconds (24.14[FPS)). We therefore conclude
that it is possible to process the data in real-time if up-to-date server hardware is available.

6.3 Summary

In this chapter, we have described the functionality we added to TagAndTrack to export data for machine
learning. We have also described the steps to train opencv_traincascade-based [classifiers| with multiple
datasets from TagAndTrack and have developed a separate HOGTrainer tool to allow the same for
[HOG}based The trained with either approach can be used with TugAndTrack to
run the detection. For opencv_traincascade based we have further implemented a separate
optimized detector tool, which uses multiple threads to process multiple frames simultaneously. On our
test computer, we can process upto 71 at a resolution of 768x576 pixels using this detector tool.
This would therefore allow to run detection in real-time.

However, our experiments show that neither opencv_traincascade-based nor [HOG}based
are suitable for the purpose of detecting polyps in videos. The unknown orientation of a
[polyplin the video, the large variety of appearances and thereby the lack of strong common visual features
makes it impossible to use these standard types of

We have therefore conducted further experiments with a different approach using
based on LIRe. We have implemented a solution for a search based using previously
created indices of [global image features| This solution consists of an indexer and a[classifier] The indexer
is used to extract[global image features|from images that were exported together with the respective meta
data from TagAndTrack; it stores these image features in Lucene indices. The classifier can use such
indices as training data or as input data for classifying. The implementation also contains
benchmarking functionality, for benchmarking the itself. Depending on the input source, the
will output an HTML file with a visible representation of the classification results, or a JSON]
file, which can be opened with TagAndTrack to visualize the results.

Our [global Tmage feature] based indexer and tools allowed us to experiment with several
different types of [global image features| and combine results by We have found that a
combination of the image features[JCD|and [Tamurd|led to the most promissing results. We have assessed
the performance of our using these image features by |leave-one-out cross-validation| for the
whole ASU-Mayo Clinic polyp database. Our|classifier] achieves a weighted average of 0.9388
and a weighted average of 0.985. The classification process is rather computationally expensive.
On our test computer, we managed to process 18.15 at a resolution of 1920x1080. However, we
have shown that with modern server hardware, it is possible to process such videos in real-time.

With both [recall| and [precision| above 90% and the ability to process FullHD video in real-time, our
based on [global image features|clearly paves the way for automatic [polyp| detection in

endoscopy|videos.

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have investigated different technologies and solutions for automatically detecting le-
sions in videos. The goal was to automate as much of the screening process for colorectal
cancer and its precursors as possible, to pave the way for a much broader screening process using|camera)
capsules

We have first studied related work that focused on similar problems or has already addressed rele-
vant parts, such as generic image recognition, machine learning or detection of polyps using a different
form of input data. We have then built tools to collect from hospitals or doctors. Such
tools must be easy to use, require minimal training and must be easy to deploy and maintain. We have
developed two different prototypes, one written in and [0f and the second one based on HTMLS.
The HTML5-based approach has shown to be easier to maintain and deploy, especially because no client
side installation is necessary and because the processed videos are automatically uploaded to our server.

To make collecting of for machine learning more convenient and less time consum-
ing, we have researched different approaches for [tracking| of previously annotated regions of interest in
videos. We have implemented these mechanisms in a tool, written in C++, using [Qf for
the user interface and for reading and processing the video data. This tool creates complete
datasets that can be used for machine learning using opencv_traincascade or a separate Histogram of
Oriented Gradient trainer. Further, it provides more fine-graned controls for the video playback and for
creating annotations, mechanisms for simple machine learning experiments and several preprocessing
steps, such as|specular highlightfiltering or [border detection|

We have built [classifiers| and detector tools making use of these using different technolo-

gies for detecting lesions in colonscopy videos. Our first approach was based on an off the shelf image
recognition method using a[Haar-featurefbased [classifier| cascade, implemented with This ap-
proach has shown to be not suitable for the purpose of detecting lesions in the colon for several reasons.
The training data for detecting colon polyps contains too little common characteristic image features for
this approach to work. The unknown orientation of the lesions in the colon is a big problem in particular.
Further, the training process is very time consuming and inefficient.

The second approach we researched is making use of a Histogram of Oriented Gradients-based [clas-]
This type of has several advantages over the traincascade one. It requires only

very few samples and very little time to train a detector. However, also with this approach, the enormous
variety of different appearances and orientations of lesions is a problem.

Our third and most promissing approach is written in Java and makes use of Lucene, and
This approach is based on indexing of [global image features| We use to extract image
features from training data and store the extracted information in Lucene indices. Our search based

87

88 Computer-Aided Screening of Capsule Endoscopy Videos

can extract the same image features for a video sequence to be classified, and classifies each
video frame based on searching the most similar images from the provided using a
distance measure. We have evaluated this|classifier{using|leave-one-out cross-validation|with 20 different
video sequences from the ASU-Mayo Clinic polyp database and have achieved very good performance.
This approach is also easily expandable by adding more features or samples to the index, and the software
we wrote can be used for other image classification tasks beyond the detection of colon polyps.

7.2 Main Contributions

In this thesis, we have built an entire set of tools and prototypes for experimenting with different machine
learning approaches to detect lesions in videos. We have developed an HTML5-based tool
for collecting video data from physicians, and to do an initial tagging| of lesions. We have also developed
a portable application, which can be used to track the initially tagged regions automatically, to
create a complete datasets for machine learning. We have built several preprocessing, filtering and
visualization mechanisms into the same application. These [tagging| and [tracking| tools can be used
for building training and for machine learning, and they build an important part of an
integrated machine learning and detection pipeline.

We have evaluated different machine learning approaches, and we have found that neither the
standard implementations of Histogram of Oriented Gradient-based, nor opencv_traincascade-based
classifiers|are suitable for detecting colon polyps, because of the unknown orientation of afpolyp|and the
large variety of appearances it can have.

Our third approach is a search-based using a combination of the [global image features|[/CD|
and [lamural This |classifier]is efficient, robust, scalable and also provides very promissing results. We
achieve a weighted average of 98.5%, a weighted average of 93.9%, a weighted average
of 0.92 and a weighted average weighted of 0.93 on the full dataset of the ASU-Mayo
Clinic polyp database. We have also shown that with recent server hardware, it is possible to process
videos at FullHD resolution in real-time. Compared to the other machine learning approaches we have
evaluated, this approach also requires significantly less time for training/indexing. We conclude that our
[global image features|based [classifier]is a very promissing approach for automating the detection of colon
polyps in capsule endoscopy| videos. With an average [recall| and [precision| above 90% and the ability to
process FullHD videos at regular playback speed, this paves the way for future mass screening for[colon]
and its precursors using capsule video endoscopy.

Parts of the software that we have developed have already been presented at the ACM Multimedia
System 2015 conference in Portland [28]]. All the software developed for this thesis is available under the
terms of the [GNU General Public License] version 3. The source code can be obtained from Bitbucket,
and all the repositories are listed in Appendix

7.3 Future Work

With this thesis, we have built and tested several different approaches for detecting lesions in
videos. The search-based|classifierjapproach using[global image features|is clearly the most promising of
our experiments. Further research is required to make this a production ready solution that incorporates
adaptive learning and is easily usable as a service for hospitals.

It is also necessary to further reduce the processing time to allow using much larger datasets with a
reasonable performance. The size of the directly affects the classification performance
and the processing time for classification. It is therefore crucial to find the most optimal way to store and
search indices efficiently. We have adopted Lucene indices, because this is What uses, and we have
not yet researched any other solutions. also contains examples for a hashing indexing mechanism,
which could potentially reduce the processing time for very big classifier indices.

We have only used video sequences from conventional for this thesis. It is therefore
necessary to collect a reasonable amount of|capsule endoscopy|video sequences, re-evaluate the approach
and verify that the same image features are an optimal choice with capsule endoscopy| videos. Once an

Computer-Aided Screening of Capsule Endoscopy Videos 89

optimal set of image features has been found, the whole infrastructure provided by and our tools
might be too generic. At this point, it is worth considering to develop a new set of tools which is
optimized to work only with this specific set of image features. Having defined a specific set of features,
which could be used as a well defined feature vector for a|SVM| we should re-evaluate if an|SVM]|could
handle the task in a more efficient way than a search based

Our solution currently acts as a binary only. However, most of our software is written
in a way that would allow to do classification into more than just two clusters. This could potentially
allow a more precise diagnose of disease patterns. Of course, this approach can also be used beyond the
scope of detecting lesions in[colonoscopy|videos. Various use cases, for example, in home- and industry-
automation are plausible. The image features to be used most likely heavily depend on the actual use
case. Finding the right image features for different use cases is another interesting future research topic.

For the part of our research where we are using |global image features, we have neglected any
preprocessing steps for the video frames. The preprocessing should be further researched to reduce
the amount of redundant or interfering information stored in the The information about
which image features are relevant could potentially also be used to make [camera capsules| more efficient
and record more relevant information.

90

Computer-Aided Screening of Capsule Endoscopy Videos

Appendix A

Source Code

The source code for all the tools we have developed is licensed under GNU General Public License
(GPL) version 3, and is available on Bitbucket.

The repository for the web based tagging tool can be found at:
https://bitbucket.org/zenocalbisser/medicalannotationtool

The repository for TagAndTrack, the tool for tracking image regions and creating datasets for training
classifiers, can be found at:

https://bitbucket.org/zenocalbisser/tagandtrack

The repository for OpenSea, the global image features-based classifier, can be found at:
https://bitbucket.org/mpg_projects/opensea

91

https://bitbucket.org/zenoalbisser/medicalannotationtool
https://bitbucket.org/zenoalbisser/tagandtrack
https://bitbucket.org/mpg_projects/opensea

92

Computer-Aided Screening of Capsule Endoscopy Videos

Glossary

accuracy Accuracy measures the proportion of correct results (true positives and true negatives) out of

the total number of items classified (see also Section[6.2)). 4 [0} [13} 17} 18} 21} 29} [54} [77) [78]

Application Programming Interface An Application Programming Interface (API) is a specified
interface that a library or a software program can expose to provide resources or functionality
to another piece of software. [21]

binary classifier A binary classifier is a classifier that can only make a binary decision. For any input
data the classifier will either return true or false. [13] [19] 22]

boilerplate In software engineering, boilerplate or boilerplate code is generic code that is often repeated
in many places without significant alteration. Typical examples are methods for getting and setting
instance variables, initialization code, include or import statements. [54] [64] [68]

border detection For this thesis, we refer to border detection, as the mechanism to remove any regions
along the edges of the video frame, which are irrelevant. [37] [43] 4] 6] [87]

bounding box The bounding box usually refers to the minimum bounding box. This is the rectangle of
minimal size that contains all the items in a predefined set of, for example, points or shapes in a two
dimensional coordinate system. In computer graphics, bounding boxes are usually axis-aligned.

0L 51]

camera capsule A camera capsule is a swallowable capsule that contains a camera, recording pictures

while moving through the digestive tract. BH3} [I3] [17] 21} [23] 4] 45} 91 B3] [871 [89]

capsule endoscopy Capsule endoscopy is a method for recording images of the digestive tract, using a

camera capsule instead of a conventional colonoscope. [3H3] P} [T0} [T4} T3] [T7} [18] 20} B3]
86l

cascading classifier Cascading classifiers or a classifier cascade is the concept of concatenating several
classifiers, using the output information from a classifier as additional input information for the

next classifier in the cascade. [6] @9} 54} [60] [78]

classifier A classifier is a tool or algorithm, that is capable of making classification decisions, based on

characteristics of the input object (image). [5} [6] [0] [14] [T8H20] 22] 41} A4H47] |9} [50] [53H53]
(63} [65H67) 69 711 [74} [77H831 B5H8Y]

classifier index The classifier index is the index of global image features that the search-based classifier
searches for the items most similar to the item currently being classified. [69} [73] [85] [86} [S8] [89)]

colon cancer Colon cancer is also known as colorectal cancer, rectal cancer or bowel cancer. It is the
development of an abnormal growth of cells in the colon or rectum. [T} 5} 0] 15} [T6] 23] [38]

colonoscopy Colonoscopy is the procedure of examining the large intestine (rectum and colon), usually,

using a flexible tube endoscope. I} [6] (12} [16} [I7} 211 25} [26] 30} B 1} A7 51 [66} [77] [B6H89]

93

94 Computer-Aided Screening of Capsule Endoscopy Videos

Color and Edge Directivity Descriptor Color and Edge Directivity Descriptor (CEDD) is a global
image feature. CEDD incorporates information about the color and the texture of the image in
a histogram. [82]

computed tomography Computed tomography is a procedure to create detailed pictures of inner body
parts. It is using special x-ray equipment to capture the imaging data. [2]

Computed Tomography Colonography Computed Tomography Colonography (CTC) is a non-
invasive method using special x-ray equipment to produce images of the colon.

Computer Aided Diagnosis Computer Aided Diagnosis (CAD) are computer-based systems in
medicine, which help doctors with the interpretation of medical imaging data. [4]

Content Based Image Retrieval Content Based Image Retrieval (CBIR) is the concept of using
computer vision techniques for searching digital image in a large database. The images are
searched not by name or metadata, but by image features. [3]

convex hull A convex hull in two dimensional space can be described as a set of points in a plane,
where all the points are connected by a line without any intersections or any points visited more
than once, and the line only ever bending the same direction (clockwise / counter clockwise).. [38]
43|

dlib DIib is a general purpose cross platform software library, written in C++. For this thesis, we use

dlib for it’s built-in machine learning functionality.

duodenum The duodenum is the first section of the small intestine. It is directly connected to the
stomach and is responsible for most of the chemical digestion. [I]

early fusion In machine learning, early fusion is a fusion concept, where extracted features are
combined before the learning step.

edge detection Edge detection is a method to identify points in an image, where the intensity changes
rapidly. Such points are usually organized in curves or line segments, and can for example be used

for feature extraction. [37] [39] 40l @4] [46]

endoluminal view A view from within. For example, the endoluminal view of the colon, is the view
from within the colon. 2T} 49|

endoscope An endoscope is a device with an attached light that is used to look inside a body cavity or

an organ . [I] [16] [T8] [19] [37] 46l [7§]

endoscopy Endoscopy is the procedure of examining an inner body part by using an endoscope. [3] [5]

[TOHT3} [T6} [T8} 20} 22 37, {3} 5]

False Negatives False Negatives (FN) are the items that a classifier incorrectly detectes as negative

items. [77} [78] 82H84

False Positives False Positives (FP) are the items that a classifier incorrectly detectes as positive items.

[77, 78, B2H34

feature extraction In machine learning and image processing, feature extraction is the process of
extracting data and building informative, derived values (features) from an input image. {]

F-measure .[77] see

frame reduction For this thesis, frame reduction is the process of removing the amount of frames
required to process further. This may include the removal of irrelevant or blurry video frames.

14

Computer-Aided Screening of Capsule Endoscopy Videos 95

F-score F-score (also F-measure or F1-score) is the harmonic mean of precision and recall. It is thereby
a combination of these two measures in a single number (see also Section[6.2)). [T} [T4] [77] [82H84]
B8]

Fuzzy Color and Texture Histogram Fuzzy Color and Texture Histogram (FCTH) is an image feature
combining color and texture information in a single histogram. An FCTH feature descriptor is
limited to 72 bytes per image, making the descriptor suitable for large image databases. [83|

gastrointestinal tract The gastrointestinal tract is the organ system in the human body that is
responsible for consuming and digesting food, absorbing nutrients and expelling waste. It consists
of stomach and intestines . [T} 3]

Gaussian blur . see|Gaussian filtering]

Gaussian filtering In image processing, Gaussian filtering (also called Gaussian blur or Gaussian
smoothing) is the process of convolving each point in the input image with a Gaussian kernel.
A Gaussian function thereby defines the weight for each pixel within the kernel. The closer the
pixel to the center of the kernel, the higher it’s impact. [39] 1] 42} 3]

global image feature A global image feature is a feature descriptor that describes the whole image, as
opposed to only a sub region of the image. [6] 21} [66] [67] [69] [82] [86H89] see Joint Descriptor for
CEDD and FCTH] [Fuzzy Color and Texture Histogram|, [Color and Edge Directivity Descriptor] &

ground truth Ground truth data is the data, which we use as the definition of correctness or truth. This
data is the foundation of the classifiers we are training, as the classifier will learn to distinguish
items based on the features extracted from, and the predefined classification of this data. [7] [30} [31]

[63}[65} B2} B7]

H.264 H.264 is a video coding format that is, due to its quality and compression, widely used for
distribution of video content. 28] [33]

haar-feature Haar-features are digital image features that were first described by Viola and Jones [48]] as
a machine learning approach for visual object detection, capable of processing images extremely
rapidly and achieving high detection rates. The name is derived from ”Haar Basis function”, which

was proposed by Alfréd Haar. [6] [54] [80]

haustral fold Haustral folds are folds of the mucosa within the colon.

Histogram of Oriented Gradients Histogram of Oriented Gradients (HOG) is an image feature
descriptor used in computer vision for detecting objects. HOG counts occurrences of gradient
orientation in sub-portions of an image. []

Hu-Moment In image processing, a moment is a defined weighted value, describing a certain property
or geometric interpretation of an image. Hu-Moments are a set of seven moments, which are
invariant to rotation, translation and scale and were first presented in [53]].

hyper threading Hyper-Threading is a proprietary implementation of simultaneous multithreading by
Intel. A processor capable of Hyper-Threading consists of two logical processors per core. Each
of these logical processors has its own processor architectural state, can be individually interrupted
or halted, but shares the same physical core with a second logical core.

hyperplane A hyperplane is a subspace of n-1 dimensions, if the surrounding space is n dimensional.
With regards to an SVM, the feature vectors build an n dimensional space and the SVM attempts
to separate the feature vectors by a hyperplane, which then is n-1 dimensional. [

input index . [71] see

96 Computer-Aided Screening of Capsule Endoscopy Videos

intestine The intestines are the tube running from the stomach to the anus. The intestines are responsible
for the absorption of water and nutrients. [6] [L0} [49] [0} see [small intestine| & [large intestine]

isotropic volume A volume of uniform physical properties in all directions. The physical properties are
relevant to reconstruct the three dimensional volumes in the context of virtual colonoscopy. f 22

Java Servlet A Java Servlet is a Java program that is executed on the server, in response to a client
requesting a certain resource or sending a certain request. Commonly this is used to implement
applications hosted on a web server. 28| [33]

Java Servlet container A Java Servlet container is a web server component that interacts with Java
Servlets and manages their lifecycle and access permissions.

Joint Descriptor for CEDD and FCTH Joint Descriptor for CEDD and FCTH (JCD) is a global image
feature descriptor. It is a combination of the descriptors CEDD and FCTH. [82]

kernel A kernel is a square matrix used for image processing such as blurring, sharpening or edge-
detection. It is usually used with a sliding window approach, to modify the value of the kernel’s
center pixel based on the surrounding pixels within the kernel. [T3] [T7] [T9] 39] #2]

lambda In software development, a lambda, lambda function is an anonymous function. The definition
of such a function is not bound to an identifier. In most programming languages that support this
kind of functions, lambdas can be defined inline within other functions and can be easily passed
as arguments to other functions.

laparoscopic surgery A laparoscopic surgery is a minimally invasive surgery, also called a keyhole
surgery, that is performed through a small incision. [I0]

large intestine The large intestine, also called colon, is the final section of the digestive system in the
human body. B9

late fusion In machine learning, late fusion is a fusion concept, where extracted features are processed
separately and only the results are weighted and combined. [74] [75] [82] [83] [85] [S6]

leave-one-out cross-validation Leave-one-out cross-validation is a technique to assess the generaliza-
tion of a predictive model. In our case, it describes the process where the training and testing
datasets are rotated, leaving out a single different non-overlapping item or portion for testing and
using the remaining items for training. This process is repeated until every item or portion was

used for testing exactly once. [6]

lesion A lesion is an irregularity in the tissue, usually caused by trauma or disease. In the context of this
thesis, we specifically refer to lesions in the colon, such as polyps. |} [13] [21] [26] 36| 7] [66]

Local Binary Pattern Local Binary Pattern (LBP) is a type of feature vector, used for machine learning.
It is based on the concept of splitting the image into cells and comparing each pixel within a cell
to it’s neighbors in a predefined order. 3]

Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) is a technology that uses a
powerful magnetic field and radio frequency pulses to capture pictures of inner body structures. [

max heap A max heap is a tree based data structure that satifies the heap property. In a max heap, the
heap property is satisfied if any parent is always greater than or equal to any of its children. In
contrast to a binary tree, an order of the direct children of a node do not need to be maintained.

metadata Metadata is data that describes another type of data. In photography, metadata contained in
an image can for example include exposure time, aperture or GPS-data. 21| 37, [44] [52]

Computer-Aided Screening of Capsule Endoscopy Videos 97

MJPEG Motion JPEG (MJPEG) is a very basic video compression format, where each video frame is
compressed separately as a JPEG image. [33]

mucosa The mucosa or mucous membrane is the lining in inner body cavities that are exposed to the
external environment. For this thesis, we are specifically referring to the mucosa, as the innermost
layer of the gastrointestinal tract, surrounding the lumen within the tube. [10} [T3] [T6] [T8] 41} 2]

446, 511 [62]

native Software is running native, if it is compiled to support a specific platform and operating system

and does not use virtualization or emulation. [12] 32] [33] 36] 38|

Native Client Google Native Client (NaCl) is a technology for running native code in a web browser.
The native code is running in a sandbox for security reasons and communicates with the web
browser through a plugin API. NaCl is developed by Google, and is currently available with
Chrome and Chromium. [32]

neural network Artificial neural networks are statistical learning algorithms, which are inspired by
natural neural networks, such as the human brain. They consist of a usually large number of
simple processing units, which are simulating neurons, and weighted connections in between those

units [20]]. @ 22]
neuron A neuron or nerve cell is a cell that can be electrically stimulated and transmits information

through electrical and chemical signals.

open source Open source software is software that is available under a free license and can be changed,
shared and modified by anyone. [6} [T7] [66]

OpenCV OpenCV (Open Source Computer Vision) is a library for computer vision that was originally

developed by Intel and is available under an open-source BSD license. 26| [27] [32] [33] A4
[601

OpenGL ES 2 OpenGL for Embedded Systems version 2 is a subset of the OpenGL API. OpenGL is a
standardized API for 2D and 3D computer graphics. [32]

overfitting Overfitting is the phenomenon of a classifier encoding random noise, caused by training with
too few training samples or too long training cycles . [0 [17} [22]

Pepper Plugin API Pepper Plugin API, also Pepper API, is a cross-platform API for plugins for web
browsers. It is currently an experimental feature of Chromium and Google Chrome. [32]

polyp A polyp is an abnormal protrusion from the tissue of the mucosa. It is often considered a precursor

of colon cancer. [T} [T5}[T6} [T8} [T9} 21} 22} 40} BT} 7} (491 62} [63} [66} [69} (78}, [79) [B] 33} 86} [88]

Portable Native Client Portable Native Client (PNaCl) is an addition to NaCl, which allows to compile
and run portable code in a web browser. The code is written in C and C++ and is compiled to an
LLVM-bytecode intermediate representation, instead of an architecture-specific representation. [32]

precision Precision measures the fraction of the detected-positive instances, which are true-positive.

(see also Section[6.2)). [6} [T0} [TT] [T4] [77} 82184}, [86}, [88]

priority queue A priority queue is an abstract data type that assures that the element with the highest
priority is always served / de-queued first.

PyQt PyQtis a product developed by Riverbank Computing Ltd. It provides Python bindings for Qt.

Python Python is an interpreted cross-platform programming language.

98 Computer-Aided Screening of Capsule Endoscopy Videos

Qt Qt is a cross platform development toolkit, written in C++. It is available under an open-
source license. In this thesis, we are using Qt for developing user interfaces and inter-thread

communication. 26} 27] 33 [34]

recall Recall is the fraction of all true-positive instances, which are also detected positive (see also

Section[6.2). [6} [10} [T} [14} [T9} [77, [32H{34} 86} BY

Receiver Operating Characteristic The Receiver Operating Characteristic (ROC), is an illustration of
the performance of a classifier. It plots the true positive rate against the false positive rate.

rubber-band-selection Rubber-band-selection is a selection method, where a resizable rectangle is used

to select an area on screen. MOl

Runnable In Java, Runnable is an interface that can be implemented by a class. Instances of a class
implementing this interface can be passed directly to a Java Thread instance for execution within
that same thread. [72]

sensitivity Sensitivity, also called true positive rate, measures the proportion of correctly detected
positive items among all positive items. [I5] [T8H20]

shape detection Shape detection is a method to decide, if a given shape matches any other shape in a
previously learned set of shapes. The shapes are collected by edge detection. [37] [39] 40 44} 46

Single Instruction Multiple Data Single Instruction Multiple Data (SIMD) is a class of computers
that allow data parallelization. Modern CPUs usually have support for a SIMD instruction set
extension, allowing to process multiple data objects simultaneously with a single instructions.

small intestine The small intestine is the part of the intestine in between stomach and large intestine.

k]

specificity Specificity, also called true negative rate, measures the proportion of correctly detected
negative items among all negative items.

specular highlight A reflection; a bright spot or region on a shiny object, caused by a light source. [37]

(1} 42} B4HA6l (62, 7]

supervised learning Supervised learning is a machine learning approach, where each input sample for
the training is labeled with the desired response.

Support Vector Machine Support vector machines are machine learning methods, searching for a
function that defines a hyperplane, separating the different classes of data points with a maximal

margin.

tagging Tagging is the process of annotating a video, by using rubber-band-selection to select regions
of interest and potentially manually describing or classifying them. [6] 26H{36] [55] [88]

Tamura Tamura is a combination of three image features, which correspond to human visual perception.

21 82, 831 [85} [86} [88]

tensor of inertia A tensor of inertia is a 3x3 matrix of moments of inertia, which defines a spatial
movement.

terminal ilenm The terminal ileum is the end of the small intestine towards the large intestine.
testing dataset The testing dataset is the dataset, we are using for testing a classifier.

testing index The testing index, or input index, is the index of global image features that the search-
based classifier uses as input data. It classifies all the items in this index, by searching the items
most similar in the classifier index. This is used for benchmarking of the search-based classifier.

69

Computer-Aided Screening of Capsule Endoscopy Videos 99

thyroid The thyroid or tyroid gland is a gland found in the human neck below the ”Adam’s apple”. [10]

tracking With tracking we refer to the process of following a region of interest in previous/subsequent

video frames, adjusting the size or the position of the region. 4] [6 [0 36501 [53]
B8]

training dataset The training dataset is the dataset, we are using for training a classifier. [9]

transcoding Transcoding is the direct conversion from one encoding to another. For this thesis, this
specifically refers to the conversion of a video file from one video coding format to another. [28]
29

True Negatives True Negatives (TN) are the items that a classifier correctly detectes as negative items.

77,78, B2H34

True Positives True Positives (TP) are the items that a classifier correctly detectes as positive items.

unsupervised learning Unsupervised learning is a machine learning approach, where the input samples
are not labeled with any desired response. It can be described as the attempt to find a hidden
structure in the unlabeled data, since there is no reward or error signal given to the learner to
evaluate its own results.

video segmentation Video segmentation is the process of dividing a video in smaller meaningful

segments. [9]

video shot a shot is described as sequence of frames limited by two shot boundaries or end of the video
sequence. [T1]

viewport In computer graphics, a viewport is the viewing region. It contains and limits the view on a

potentially larger scene. [29] [37] [3§]
Virtual Colonoscopy . see|Computed Tomography Colonography]

wavelet transform Wavelet transform is a concept, similar to fourier transform, but instead of
decomposing a signal into sine and cosine waves, wavelet transform decomposes a signal into
multiple non-overlapping wave-like oscillations, which begin and end at zero, and are therefore
limited in time. [I7]

WebSocket WebSocket is a protocol, standardized by the IETF, to allow full-duplex communication
channels over a single TCP connection, innitiated via HTTP. [33]

XMLHttpRequest XMLHttpRequest is a JavaScript object designed by Microsoft, now being
standardized in the W3C. It allows requesting and retrieval of data from a server without doing
a full page reload in a web browser. [33|

100 Computer-Aided Screening of Capsule Endoscopy Videos

Acronyms

ACM Association for Computing Machinery. [3} [6]

API Application Programming Interface. [21] [27] BTH33} [60] [63] see[Application Programming Interface]

CAD Computer Aided Diagnosis. f] 21} [22] see [Computer Aided Diagnoss|

CBIR Content Based Image Retrieval. [5] see[Content Based Image Retrieval|

CEDD Color and Edge Directivity Descriptor. [82} [83] see [Color and Edge Directivity Descriptor]

CT Computed Tomography. [[T3] [T6} 21]

CTC Computed Tomography Colonography. [T} @ 21} @7} see[Computed Tomography Colonography]|

DOM Document Object Model. [63]

FCTH Fuzzy Color and Texture Histogram. [83] see [Fuzzy Color and Texture Histogram|

FN False Negatives. [B2] see
FP False Positives. [77][78] [82] see

FPS frames per second. [3| [[16] 33 53} 57} [83} [36]

GCD Grand Central Dispatch. [60]

GNU GNU’s Not Unix.
GPL GNU General Public License. [6]

HOG Histogram of Oriented Gradients. [6] [36] [60H63] [B6l see Histogram of Oriented]

HTML HyperText Markup Language. [6] [71]

HTMLS5 HyperText Markup Language version 5. [f]

JCD Joint Descriptor for CEDD and FCTH. [82] [83] [85] [86] [88] see Joint Descriptor for CEDD and)|
ECTH

JPEG Joint Photographic Experts Group. [

JSON JavaScript Object Notation. 29] 33| [34] 53} [61} [69} [d]

JVM Java Virtual Machine. [68] [7]]

LBP Local Binary Pattern. [5] [I7} [I8] see [Cocal Binary Pattern|

LIRe Lucene Image Retrieval. 21} [66] [67] [73] [83]

101

102 Computer-Aided Screening of Capsule Endoscopy Videos

MIT Massachusetts Institute of Technology. [T9]

MRI Magnetic Resonance Imaging.] see[Magnetic Resonance Imaging]

NaCl Google Native Client. [32] see[Native Client

Pepper API Pepper APL. [32] see [Pepper Plugin AP]|

PNaCl Portable Native Client. 32} see[Portable Native Client]

PPAPI Pepper Plugin APL. [32] see [Pepper Plugin AP]|

ROC Receiver Operating Characteristic. [I8] [I9] see [Receiver Operating Characteristic|
ROI Region of Interest. [v} [26] 28H30} 33 50} 51} [61]
SIMD Single Instruction Multiple Data. [32] see[Single Instruction Multiple Datal

SVM Support Vector Machine. [[5] T3] 22 [B9] see[Support Vector Machine]

TBB Intel Threading Building Blocks. [54]

TLD Tracking-Learning-Detection. [T4} [33]

TN True Negatives. [77} [78] [82] see
TP True Positives. [77][78] [82] see

UI User Interface. 26] 28] [63]

WCE Wireless Capsule Endoscopy. [3]

XML Extensible Markup Language. [12} [54] [61] [64] [63]

Bibliography

[1] International Agency for Research on Cancer. World Cancer Report 2014 (International Agency for
Research on Cancer), chapter The global and regional burden of cancer. World Health Organization,
2014.

[2] S. J. Stryker, B. G. Wolff, C. E. Culp, S. D. Libbe, D. M. llstrup, and R. L. MacCarty. Natural
history of untreated colonic polyps. Gastroenterology, 93(5):1009-1013, Nov 1987.

[3] Centers for Disease Control, Prevention (CDC, et al. Vital signs: colorectal cancer screening test
use—united states, 2012. MMWR. Morbidity and mortality weekly report, 62(44):881, 2013.

[4] Michael PIGNONE and Harold C SOX. Screening for colorectal cancer: Us preventive services
task force recommendation statement. Annals of internal medicine, 149(9), 2008.

[5] Gondal G., Grotmol T., Hofstad B., Bretthauer M., Eide T. J., and Hoff G. The norwegian
colorectal cancer prevention (norccap) screening study. Scandinavian Journal of Gastroenterology,
38(6):635-642, 2003.

[6] Elisabeth Rosenthal. The $2.7 trillion medical bill. |http://www.nytimes.com/2013/
06/02/health/colonoscopies—explain-why-us—-leads—-the-world-in-
health-expenditures.html, June 2013. Accessed: 2015-04-15.

[7] PA Cataldo. Colonoscopy without sedation - A viable alternative. DISEASES OF THE COLON &
RECTUM, 39(3):257-261, MAR 1996.

[8] Espen Thiis-Evensen, Geir S. Hoff, Jostein Sauar, and Morten H. Vatn. Patient tolerance of
colonoscopy without sedation during screening examination for colorectal polyps. Gastrointestinal
Endoscopy, 52(5):606 — 610, 2000.

[9] Linda Villarosa. Done right, colonoscopy takes time, study finds.(health&fitness), 2006.

[10] Jay P Heiken, Christine M Peterson, and Christine O Menias. Virtual colonoscopy for colorectal
cancer screening: current status: Wednesday 5 october 2005, 14:00-16:00. Cancer Imaging, 5(Spec
No A):S133-S139, 2005.

[11] Luis A Alexandre, Joao Casteleiro, and Nuno Nobreinst. Polyp detection in endoscopic video using
svms. In Knowledge Discovery in Databases: PKDD 2007, pages 358-365. Springer, 2007.

[12] Baopu Li, M.Q. Meng, and Chao Hu. Motion analysis for capsule endoscopy video segmentation.
In Automation and Logistics (ICAL), 2011 IEEE International Conference on, pages 46-51, Aug
2011.

[13] Mingda Zhou, Guanqun Bao, Yishuang Geng, B. Alkandari, and Xiaoxi Li. Polyp detection and
radius measurement in small intestine using video capsule endoscopy. In Biomedical Engineering
and Informatics (BMEI), 2014 7th International Conference on, pages 237-241, Oct 2014.

[14] Nikos Deligiannis, Frederik Verbist, Athanassios lossifides, Jiirgen Slowack, Rik Van de Walle,
Peter Schelkens, and Adrian Munteanu. Wyner-ziv video coding for wireless lightweight
multimedia applications. J Wireless Com Network, 2012(1):1-20, 2012.

103

http://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html
http://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html
http://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html

104 Computer-Aided Screening of Capsule Endoscopy Videos

[15] Janne Nippi and Hiroyuki Yoshida. Feature-guided analysis for reduction of false positives in cad
of polyps for computed tomographic colonography. Medical Physics, 30(7):1592-1601, 2003.

[16] Anna K. Jerebko, James D. Malley, Marek Franaszek, and Ronald M. Summers. Multiple neural

network classification scheme for detection of colonic polyps in {CT} colonography data sets.
Academic Radiology, 10(2):154 — 160, 2003.

[17] Gabriel Kiss, Johan Van Cleynenbreugel, Maarten Thomeer, Paul Suetens, and Guy Marchal.
Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere
fitting methods. European Radiology, 12(1):77-81, 2002.

[18] D.S. Paik, C.F. Beaulieu, G.D. Rubin, B. Acar, Jr. Jeffrey, B., J. Yee, J. Dey, and S. Napel. Surface
normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung
nodules in helical ct. Medical Imaging, IEEE Transactions on, 23(6):661-675, June 2004.

[19] James J. Perumpillichira, Hiroyuki Yoshida, and Dushyant V. Sahani. Computer-aided detection
for virtual colonoscopy. Cancer Imaging, 5(5):11-16, 4 2005.

[20] David Kriesel. A brief introduction to neural networks. http://www.dkriesel.com/
_media/science/neuronalenetze—en—zeta2-2col-dkrieselcom.pdf, 2007.

[21] Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in svm classifiers. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML 00, pages
57-64, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[22] Jorge Bernal, Javier Sdnchez, and Fernando Vilarino. Towards automatic polyp detection with a
polyp appearance model. Pattern Recognition, 45(9):3166-3182, 2012.

[23] Sae Hwang, JungHwan Oh, W. Tavanapong, J. Wong, and P.C. de Groen. Polyp detection in
colonoscopy video using elliptical shape feature. In Image Processing, 2007. ICIP 2007. IEEE
International Conference on, volume 2, pages II — 465-11 — 468, Sept 2007.

[24] Danyu Liu, Yu Cao, Kihwan Kim, Sean Stanek, Bancha Doungratanaex-Chai, Kungen Lin,
Wallapak Tavanapong, Johnny S. Wong, Jung-Hwan Oh, and Piet C. de Groen. Arthemis:
Annotation software in an integrated capturing and analysis system for colonoscopy. Computer
Methods and Programs in Biomedicine, 88(2):152—-163, 2007.

[25] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling up crowdsourced video
annotation. International Journal of Computer Vision, pages 1-21. 10.1007/s11263-012-0564-1.

[26] Michael Kipp. Anvil - a generic annotation tool for multimodal dialogue. In Paul Dalsgaard, Bgrge
Lindberg, Henrik Benner, and Zheng-Hua Tan, editors, INTERSPEECH, pages 1367-1370. ISCA,
2001.

[27] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and Paul R. Young.
Computing as a discipline. Commun. ACM, 32(1):9-23, January 1989.

[28] Zeno Albisser, Michael Riegler, Pal Halvorsen, Jiang Zhou, Carsten Griwodz, Ilangko Balasing-
ham, and Cathal Gurrin. Expert driven semi-supervised elucidation tool for medical endoscopic
videos. In Proceedings of the 6th ACM Multimedia Systems Conference, MMSys ’15, pages 73-76,
New York, NY, USA, 2015. ACM.

[29] Christopher M Bishop. Information science and statistics. Springer, New York, 2006.

[30] Eero P. Simoncelli, B. Jahne, H. Haussecker, and P. Geissler. Bayesian Multi-Scale differential
optical flow. 1999.

http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf

Computer-Aided Screening of Capsule Endoscopy Videos 105

[31] Manfred Jiirgen Primus, Klaus Schoeffmann, and Laszlo Boszérmenyi. Segmentation of recorded
endoscopic videos by detecting significant motion changes. In Laszlo Czuni, editor, //th
International Workshop on Content-Based Multimedia Indexing, pages 223-228, Los Alamitos,
CA, USA, jun 2013. IEEE Computer Society.

[32] Manfred Del Fabro and Laszlo Boszormenyi. State-of-the-art and future challenges in video scene
detection: a survey. Multimedia Systems, 19(5):427-454, 2013.

[33] Michael Riegler, Mathias Lux, Vincent Charvillat, Axel Carlier, Raynor Vliegendhart, and Martha
Larson. Videojot: A multifunctional video annotation tool. In Proceedings of International
Conference on Multimedia Retrieval, ICMR ’14, pages 534:534-534:537, New York, NY, USA,
2014. ACM.

[34] Raynor Vliegendhart, Martha Larson, and Alan Hanjalic. LikeLines: collecting timecode-level
feedback for web videos through user interactions. In Proceedings of ACM MM ’12, pages 1271-
1272. ACM, 2012.

[35] Mathias Lux and Michael Riegler. Annotation of endoscopic videos on mobile devices: A bottom-
up approach. In Proceedings of the 4th ACM Multimedia Systems Conference, MMSys ’13, pages
141-145, New York, NY, USA, 2013. ACM.

[36] S. Hare, A. Saffari, and P.H.S. Torr. Struck: Structured output tracking with kernels. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 263-270, Nov 2011.

[37] Z Kalal, K Mikolajczyk, and J Matas. Tracking-learning-detection. Pattern Analysis and Machine
Intelligence, 2012.

[38] S. Tsevas, D.K. Iakovidis, D. Maroulis, and E. Pavlakis. Automatic frame reduction of wireless
capsule endoscopy video. In Biolnformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE
International Conference on, pages 1-6, Oct 2008.

[39] A.V. Mamonov, L.N. Figueiredo, P.N. Figueiredo, and Y.-H.R. Tsai. Automated polyp detection in
colon capsule endoscopy. Medical Imaging, IEEE Transactions on, 33(7):1488-1502, July 2014.

[40] DongHo Hong, Wallapak Tavanapong, Johnny Wong, JungHwan Oh, and Piet C. de Groen.
3d reconstruction of virtual colon structures from colonoscopy images. Computerized Medical
Imaging and Graphics, 38(1):22-33, 2015/04/19 2013.

[41] Stefan Ameling, Stephan Wirth, Dietrich Paulus, Gerard Lacey, and Fernando Vilarino. Texture-
based polyp detection in colonoscopy. pages 346-350, 2009.

[42] B. Giritharan, Xiaohui Yuan, Jianguo Liu, B. Buckles, JungHwan Oh, and Shou Jiang Tang.
Bleeding detection from capsule endoscopy videos. In Proceedings of the EMBS 08, pages 4780-
4783. EMBS, Aug 2008.

[43] Baopu Li and M.Q.-H. Meng. Tumor recognition in wireless capsule endoscopy images using
textural features and svm-based feature selection. Information Technology in Biomedicine, IEEE
Transactions on, 16(3):323-329, May 2012.

[44] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1-27:27, May 2011.

[45] Michael Hafner, Michael Liedlgruber, Andreas Uhl, Andreas Vécsei, and Friedrich Wrba. Color
treatment in endoscopic image classification using multi-scale local color vector patterns. Medical
Image Analysis, 16(1):75-86, 2012.

[46] M. Hafner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vecsei, and F. Wrba. Pit pattern classification
using extended local binary patterns. In Information Technology and Applications in Biomedicine,
2009. ITAB 2009. 9th International Conference on, pages 1—4, Nov 2009.

106 Computer-Aided Screening of Capsule Endoscopy Videos

[47] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1,
pages 886—893 vol. 1, June 2005.

[48] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
2013 IEEE Conference on Computer Vision and Pattern Recognition, 1:511, 2001.

[49] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.

[50] Mathias Lux and Savvas A. Chatzichristofis. Lire: Lucene image retrieval: An extensible java cbir
library. In Proceedings of the 16th ACM International Conference on Multimedia, MM ’08, pages
1085-1088, New York, NY, USA, 2008. ACM.

[51] The JSON data interchange format. Technical Report Standard ECMA-404 1st Edition / October
2013, ECMA, October 2013.

[52] John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8(6):679-698, Nov 1986.

[53] Ming-Kuei Hu. Visual pattern recognition by moment invariants. Information Theory, IRE
Transactions on, 8(2):179—-187, February 1962.

[54] Vincent Christlein, Christian Riess, Elli Angelopoulou, Georgios Evangelopoulos, and loannis
Kakadiaris. The impact of specular highlights on 3d-2d face recognition, 2013.

[55] Harvard University. Colon polyps. 01 2011. Copyright - Copyright © 2013 by Harvard University.
All rights reserved. HHP/HMS content licensing handled by Belvoir Media Group; Last updated -
2013-06-24.

[56] Pedro Domingos. A few useful things to know about machine learning. Commun. ACM, 55(10):78—
87, October 2012.

[57] Alvin L. Watne. Colon polyps. Journal of Surgical Oncology, 66(3):207-214, 1997.

[58] Mathias Lux. Lire: Open source image retrieval in java. In Proceedings of the 21st ACM
International Conference on Multimedia, pages 843-846. ACM, 2013.

[59] The Apache Software Foundation. = Apache lucene - index file formats. https://
lucene.apache.org/core/3_0_3/fileformats.html#Definitions, 2013. Ac-
cessed: 2015-07-29.

[60] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. Early versus late fusion in
semantic video analysis. In Proceedings of the 13th Annual ACM International Conference on
Multimedia, MULTIMEDIA 05, pages 399-402, New York, NY, USA, 2005. ACM.

[61] Bradley Efron and Robert Tibshirani. Improvements on cross-validation: The .632+ bootstrap
method. Journal of the American Statistical Association, 92(438):pp. 548-560, 1997.

[62] David Martin Ward Powers. Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. International Journal of Machine Learning Technology, 2(1):37-63,
2011.

[63] Savvas A. Chatzichristofis and Yiannis S. Boutalis. Cedd: Color and edge directivity descriptor:
A compact descriptor for image indexing and retrieval. In Proceedings of the 6th International
Conference on Computer Vision Systems, ICVS’08, pages 312-322, Berlin, Heidelberg, 2008.
Springer-Verlag.

https://lucene.apache.org/core/3_0_3/fileformats.html#Definitions
https://lucene.apache.org/core/3_0_3/fileformats.html#Definitions

Computer-Aided Screening of Capsule Endoscopy Videos 107

[64] S.A. Chatzichristofis and Y.S. Boutalis. Fcth: Fuzzy color and texture histogram - a low level
feature for accurate image retrieval. In Image Analysis for Multimedia Interactive Services, 2008.
WIAMIS °08. Ninth International Workshop on, pages 191-196, May 2008.

[65] Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. Textural features corresponding to visual
perception. Systems, Man and Cybernetics, IEEE Transactions on, 8(6):460-473, June 1978.

	Introduction
	Background
	Screening Methods
	Computer Aided Diagnosis
	Collecting Data for Training and Testing

	Problem Definition / Statement
	Limitations
	Research Method
	Main Contributions
	Outline

	Related Work
	Building a Training Dataset for Machine Learning
	Video Segmentation
	Video Annotation
	Object Tracking

	Frame Reduction
	Methods for Automatic Detection of Colon Cancer
	Geometrical Analysis
	Machine Learning
	Index of Global Image Features
	Virtual Colonoscopy

	Summary

	Object Tagging
	Design and Implementation
	Prototype 1: Object Tagging and Manual Tracking
	Prototype 2: Web-Based Object Tagging

	Evaluation and Discussion
	Summary

	Object Tracking
	Design and Implementation
	Object Tracking in JavaScript
	Object Tracking in Google Native Client
	Object Tracking on the Server Side
	A Native Tool for Object Tracking

	Evaluation and Discussion
	Summary

	Preprocessing and Image Filtering
	Design and Implementation
	Border Detection
	Edge Detection
	Shape Detection
	Sepecular Highlight Filtering

	Evaluation and Discussion
	Border Detection
	Edge Detection
	Shape Detection
	Specular Highlight Filtering

	Summary

	Machine Learning
	Design and Implementation
	Cascade Classifier Training
	Exporting Positive Samples from TagAndTrack
	Exporting Negative Samples
	Exporting Metadata for the Samples
	Using opencv_traincascade to Train a Classifier
	Building an OpenCV based Detector Tool
	Use a Separate Thread for Decoding
	Introduce Multiple Threads

	Histogram of Oriented Gradients Detector
	Adding HOG-training to TagAndTrack
	Visualizing the training result for a HOG detector
	Implementing a separate HOG-Trainer
	Exporting data from TagAndTrack to HOGTrainer

	Index of Global Image Features
	Global Image Feature Indexer
	Global Image Feature Classifier

	Evaluation and Discussion
	Cascade Classifier Training
	Experiment 1
	Experiment 2
	Experiment 3

	Histogram of Oriented Gradients Detector
	Index of Global Image Features
	Benchmarking single Image Features
	Finding an optimal Image Feature Subset
	Classifier Performance Evaluation
	Scalability Evaluation

	Summary

	Conclusion
	Summary
	Main Contributions
	Future Work

	Source Code
	Glossary
	Acronyms

