JB-ALGEBRAS WITH TENSOR PRODUCTS
ARE C*-ALGEBRAS

by
Harald Hanche-Olsen
Oslo
JB-ALGEBRAS WITH TENSOR PRODUCTS ARE C*-ALGEBRAS

By
Harald Hanche-Olsen

In [1] Alfsen, Shultz, and Størmer have studied a class of normed Jordan algebras over the reals, named JB-algebras. These algebras generalize the Jordan algebras of self-adjoint elements of a C*-algebra, and also the more general Jordan operator algebras (JC-algebras), studied by Topping [6]. In [1] a structure theory for JB-algebras is given, generalizing the corresponding theory for finite dimensional formally real Jordan algebras by Jordan, von Neumann and Wigner [3]. It is also shown that the JB-algebras share with C*-algebras many of the basic properties needed for applications to physics, e.g. the spectral theory and the fact that the idempotents form a complete orthomodular lattice. However, we miss one important concept: the tensor product. Thus, it is of some interest to try to define a "good" notion of tensor product for some class of JB-algebras properly containing the self-adjoint parts of C*-algebras.

In this note we show that this is impossible. In fact, assume that A is a JB-algebra such that the tensor product of the real linear spaces A and $M_2(\mathbb{C})_{sa}$ (the self-adjoint 2×2-matrices over the complex numbers) can be equipped with a Jordan structure satisfying certain minimal requirements of "good behavior" relating it to the given Jordan products in the two factors, then we show that A itself is the self-adjoint part of a C*-algebra. This is derived from a general result on Jordan algebras over a field of characteristic different from two, which may be of some inde-
ependent interest.

All algebras in this note will be assumed to have an identity, denoted by 1. In a Jordan algebra \(\mathcal{A} \) (see [2] for definition and basic properties), the product of two elements \(x, y \) is denoted by \(x \cdot y \). The mapping \(y \mapsto x \cdot y \) of \(\mathcal{A} \) into itself is denoted by \(T_x \).

Two elements \(x, y \) are said to operator commute if \(T_x T_y = T_y T_x \).

It follows from the definition of the triple product [2, p. 36], that if \(x, y \in \mathcal{A} \), then

\[
(xy)_x = 2x \cdot (x \cdot y) - x^2 \cdot y ;
\]

thus, defining the map \(U_x : y \mapsto (xy)_x \) we have

\[
U_x = 2T_x^2 - T_x^2 .
\]

An associative algebra \(\mathcal{A} \) will also be considered as a Jordan algebra under the product \(a \cdot b = \frac{1}{2}(ab + ba) \). The algebra of \(2 \times 2 \)-matrices over a field \(K \) will be denoted by \(M_2(K) \), or simply \(M_2 \) when \(K \) is understood. \(M_2 \) has a basis of matrix units \(e_{ij} \), \(i, j = 1, 2 \) such that

\[
e_{11} + e_{22} = 1 , e_{ij} e_{kl} = \delta_{jk} e_{il} .
\]

Acknowledgements. The author is indebted to E.M. Alfsen for suggesting the problem. We are also grateful to F.W. Shultz for making available proposition 4.2, and for permitting us to include his proof.
2. The algebraic result.

All algebras in this section will be over a fixed field K of characteristic different from 2.

First, let us assume that A is an associative algebra. Then $A \otimes M_2$ is an associative algebra under the product defined by $(x \otimes a)(y \otimes \beta) = xy \otimes a\beta$. Considering the induced Jordan products on $A \otimes M_2$ and $A \otimes M_2$ respectively, we easily verify the formulas:

$$\begin{align*}
(2.1) & \quad (x \otimes 1) \circ (y \otimes \beta) = (xy) \otimes \beta, \\
(2.2) & \quad (1 \otimes a) \circ (y \otimes \beta) = y \otimes (a \beta).
\end{align*}$$

Assume now only that A is a Jordan algebra and that $A \otimes M_2$ is equipped with some Jordan product. Then the two formulas above are equivalent to the following four:

$$\begin{align*}
(2.3) & \quad (x \otimes 1) \circ (y \otimes 1) = (xy) \otimes 1, \\
(2.4) & \quad (1 \otimes a) \circ (1 \otimes \beta) = 1 \otimes (a \beta), \\
(2.5) & \quad (1 \otimes a) \circ (x \otimes 1) = x \otimes a, \\
(2.6) & \quad [T_1 \otimes a, T_x \otimes 1] = 0.
\end{align*}$$

Indeed, (2.3)-(2.5) are immediate consequences of (2.1) and (2.2). So is (2.6) when (2.1) is rewritten as $T_x \otimes 1(y \otimes \beta) = (xy) \otimes \beta$, and similarly for (2.2). We prove the converse implication as easily, first using (2.5) to write $y \otimes \beta = T_y \otimes 1(1 \otimes \beta) = T_1 \otimes y(1 \otimes 1)$.

Note that (2.3) states that the natural embedding $x \mapsto x \otimes 1$ of A into $A \otimes M_2$ is a Jordan homomorphism, while (2.4) is the same statement for M_2.

Finally, (2.6) states that any element of $1 \otimes M_2$ operator commutes with any element of $A \otimes 1$. Thus it seems natural to
claim that (2.3)-(2.6), or equivalently, (2.1), (2.2), should be satisfied for a "good" tensor product of Jordan algebras.

Theorem 2.1. Let \mathcal{A} be a Jordan algebra with identity over a field K of characteristic different from two. Assume that there exists a Jordan product in $\mathcal{A} \otimes M_2(K)$ satisfying (2.1) and (2.2). Then there exists a unique associative product in \mathcal{A} inducing the given Jordan products both in \mathcal{A} and in $\mathcal{A} \otimes M_2(K)$.

The remainder of this section is devoted to the proof of Theorem 2.1. Thus, the assumptions of the Theorem will be kept throughout. As noted above, the formulas (2.3)-(2.6) are also valid in the present setting.

We will make extensive use of the "linearised Jordan identity" [2; p.34]:

$$(2.7) \quad [T_{ab}, T_c] + [T_{bc}, T_a] + [T_{ca}, T_b] = 0,$$

which is valid for a, b, c in any Jordan algebra. Putting $a = c = 1 \otimes \alpha$ and $b = x \otimes 1$ in (2.7) and using (2.6) yields:

$$(2.8) \quad [T_{x \otimes \alpha}, T_{1 \otimes \alpha}] = 0,$$

Using this together with (2.1) and (2.2) we may compute:

$$(x \otimes \alpha)^* (y \otimes \alpha) = T_{x \otimes \alpha} T_{1 \otimes \alpha} (y \otimes 1) = T_{1 \otimes \alpha} T_{x \otimes \alpha} (y \otimes 1) = (x \cdot y) \otimes \alpha^2,$$

which applied to $\alpha = \epsilon_{ij}$ yields the formulas:

$$(2.9) \quad (x \otimes \epsilon_{11})^* (y \otimes \epsilon_{11}) = (x \cdot y) \otimes \epsilon_{11} \quad \text{and similarly for } \epsilon_{22},$$

$$(2.10) \quad (x \otimes \epsilon_{21})^* (y \otimes \epsilon_{21}) = 0 \quad \text{and similarly for } \epsilon_{12},$$

$$(2.11) \quad (x \otimes \epsilon_{11})^* (y \otimes \epsilon_{22}) = 0.$$

The last formula comes from (2.9), (2.1) and $\epsilon_{22} = 1 - \epsilon_{11}$.
The following lemma is the main step in the proof of the theorem.

Lemma 2.2. If \(x, y \in \mathcal{F}\), there exists \(z \in \mathcal{F}\) such that
\[
(x \otimes e_{21}) \circ (y \otimes e_{11}) = z \otimes e_{21}.
\]

Proof: Writing
\[
(x \otimes e_{21}) \circ (y \otimes e_{11}) = \sum_{i,j=1}^{2} z_{ij} \otimes e_{ij},
\]
we have to show \(z_{11} = z_{12} = z_{22} = 0\).

First, we apply \(T_{1 \otimes e_{11}}\) to both sides of (2.12). On the left-hand side we find, using (2.8) and (2.2):
\[
T_{1 \otimes e_{11}}((x \otimes e_{21}) \circ (y \otimes e_{11})) = T_{1 \otimes e_{11}}T_{y \otimes e_{11}}(x \otimes e_{21}) =
\]
\[
= T_{x \otimes e_{11}}(x \otimes e_{21}) =
\]
\[
= T_{x \otimes e_{11}}(x \otimes e_{21}) =
\]
\[
= \frac{1}{2}(x \otimes e_{21}) \circ (y \otimes e_{11}).
\]

On the righthand side we find
\[
T_{1 \otimes e_{11}}(\sum_{i,j=1}^{2} z_{ij} \otimes e_{ij}) = z_{11} \otimes e_{11} + \frac{1}{2}(z_{12} \otimes e_{12} + z_{21} \otimes e_{21}).
\]

Since the \(e_{ij}\)'s are linearly independent, \(z_{11} = z_{22} = 0\) follows.

Next, applying \(T_{1 \otimes e_{21}}\) and using the same technique, we find \(z_{12} = 0\); thus proving the lemma. \(\square\)

Note that Lemma 2.2 is also valid when \(e_{22}\) is substituted for \(e_{11}\). Thus, we may define maps \(R_x : A \to A\) and \(L_x : A \to A\) for given \(x \in A\) by
\[
(2.13) \quad R_x(y) \otimes e_{21} = 2(x \otimes e_{11}) \circ (y \otimes e_{21}),
\]
\[
(2.14) \quad L_x(y) \otimes e_{21} = 2(x \otimes e_{22}) \circ (y \otimes e_{21}).
\]
Lemma 2.3. \([R_y,L_x] = 0 \) for all \(x,y \in \mathcal{A} \).

Proof: This will follow from the identity \([T_{y \otimes e_{11}}, T_{x \otimes e_{22}}] = 0 \), which is proved as follows: Let \(a = y \otimes e_{11}, b = x \otimes e_{22}, c = 1 \otimes e_{22} \). Then \(a \cdot b = a \cdot c = 0 \) and \(b \cdot c = x \otimes e_{22} \). Applying (2.7) yields the desired equality. \(\square \)

Corollary 2.4. There exists an associative product in \(\mathcal{A} \) with 1 as an identity and such that \(xy = L_x(y) = R_y(x) \) and \(x \cdot y = \frac{1}{2}(xy + yx) \) for all \(x,y \in \mathcal{A} \).

Proof: By (2.2), (2.13) and (2.14), \(L_x(1) = R_x(1) = x \). Lemma 2.3 now guarantees existence and associativity of the product defined by \(xy = L_x(y) \). Also, \(T_{x \otimes e_{11}} + T_{x \otimes e_{22}} = T_{x \otimes 1} \), which together with (2.1) proves that \(x \cdot y = \frac{1}{2}(R_x + L_x)(y) = \frac{1}{2}(yx + xy) \). \(\square \)

Concluding proof of Theorem 2.1. Now, \(\mathcal{A} \) is shown to be an associative algebra, and so is \(\mathcal{A} \otimes M_2 \). What remains to prove is that \(a \cdot b = \frac{1}{2}(ab + ba) \) for all \(a,b \) in \(\mathcal{A} \otimes M_2 \). First, rewrite (2.13) and (2.14) as follows:

\[
(x \otimes e_{11}) \cdot (y \otimes e_{21}) = \frac{1}{2}yx \otimes e_{21},
\]

\[
(x \otimes e_{22}) \cdot (y \otimes e_{21}) = \frac{1}{2}xy \otimes e_{21}.
\]

Next, put \(a = x \otimes e_{21}, b = y \otimes e_{11}, c = 1 \otimes e_{11} \), so that \(a \cdot b = \frac{1}{2}xy \otimes e_{21}, b \cdot c = y \otimes e_{11}, a \cdot c = \frac{1}{2}x \otimes e_{21} \). Applying (2.7) we get \([T_{xy \otimes e_{21}}, T_{1 \otimes e_{11}}] + [T_{y \otimes e_{11}}, T_{x \otimes e_{21}}] = 0 \). Applying this operator identity to \(1 \otimes e_{12} \) and computing by means of previous formulas, we find

\[
(x \otimes e_{21}) \cdot (y \otimes e_{12}) = \frac{1}{2}yx \otimes e_{11} + \frac{1}{2}xy \otimes e_{22}.
\]
Now, repeat the foregoing discussion with the indices 1, 2 interchanged. The result will be another associative product on \mathcal{A} such that the analogues of the previous formulas hold. But (2.17) is invariant under this reversal of indices, thus proving that the two products are equal. Now the formulas (2.9), (2.10), (2.11), (2.15), (2.16), (2.17) together with the "reversed" analogues of (2.15), (2.16), show that the formula $a \cdot b = \frac{1}{2}(ab + ba)$ holds for all a, b of the form $x \otimes e_{ij}$, thus for all $a, b \in \mathcal{A} \otimes M_2$. This completes the proof of Theorem 2.1. □

3. The JB-algebra result.

In this section the result of the previous section will be applied to JB-algebras. First we will prove that if a JB-algebra A is the self-adjoint part of a \ast-algebra \mathcal{A}, then \mathcal{A} is in fact a C*-algebra. This result and the proof that follows is due to F.W. Shultz [5].

Lemma 3.1. Let \mathcal{A} be a complex \ast-algebra whose self-adjoint part A is a JB-algebra under the product $a \cdot b = \frac{1}{2}(ab + ba)$ and some norm. If $x \in \mathcal{A}$ then x^*x is a positive element of A.

Proof. An element a of A is easily seen to be invertible in the associative algebra \mathcal{A} iff it is invertible in the Jordan algebra A. It follows that the real part of its spectrum, defined with respect to \mathcal{A}, coincides with its spectrum $\sigma(a)$ with respect to A. Thus, by the usual argument $\sigma(x^*x) \cup \{0\} = \sigma(xx^*) \cup \{0\}$. (See e.g. [4, Prop. 1.1.8]). Also, the norm-closed real algebra $C(x^*x) \subseteq A$ generated by x^*x and 1 is isomorphic to $C_{\mathbb{R}}(X)$ for
some compact Hausdorff space X. Now the proof of [4, Thm. 1.4.4] will complete the proof of the lemma. □

Proposition 3.2. [5] Let \mathcal{A} be a complex $*$-algebra whose self-adjoint part A is a JB-algebra under the product $a \ast b = \frac{1}{2}(ab + ba)$ and some norm. Then \mathcal{A} is a C^*-algebra under the norm defined by $\|x\| = \|x^*x\|^{\frac{1}{2}}$, where the latter norm is the JB-algebra norm on A.

Proof: Obviously, on A, the new norm coincides with the JB-algebra norm. Let K be the state space of A. By Lemma 3.1, we have $p(x^*x) \geq 0$ for $x \in \mathcal{A}$, $p \in K$, so the Schwarz inequality

$$|p(y^*x)| \leq p(y^*y)^{\frac{1}{2}} p(x^*x)^{\frac{1}{2}}$$

is valid. As a special case, $|p(x)| \leq p(x^*x)^{\frac{1}{2}}$, so that if $x^*x = 0$ then $x = 0$; that is, if $\|x\| = 0$ then $x = 0$.

To prove that $\|\cdot\|$ is subadditive, we calculate:

$$\|x+y\|^2 = \|(x+y)^*(x+y)\| =$$

$$= \sup_{p \in K} p(x^*x + y^*x + x^*y + y^*y) \leq$$

$$\leq \sup_{p \in K} (p(x^*x) + 2p(x^*x)^{\frac{3}{2}} p(y^*y)^{\frac{1}{2}} + p(y^*y)) \leq$$

$$\leq \|x^*x\| + 2\|x\|^{\frac{3}{2}} \|y\|^{\frac{1}{2}} + \|y\|^2 =$$

$$= \|x\|^2 + 2\|x\| \cdot \|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

The C^*-identity $\|x^*x\| = \|x\|^2$ follows by definition. To prove submultiplicativity, note that by Lemma 4.1, the map $x \mapsto y^*xy$ is positive. Thus

$$\|xy\|^2 = \|(xy)^*xy\| = \|y^*(x^*x)y\| \leq \|y^*(\|x^*x\|^2 + 1)y\| = \|x\|^2 \cdot \|y\|^2.$$
Finally, to prove that \mathcal{J} is complete, note that the involution on \mathcal{J} is isometric. Thus, if (x_n) is a Cauchy sequence in \mathcal{J}, then $(x_n + x_n^*)$ and $(i(x_n - x_n^*))$ are both Cauchy, and therefore convergent in A. The proposition is now proved.

Theorem 3.3. Let A be a JB-algebra and assume that $A \otimes M_2(\mathbb{C})_{sa}$ can be given a Jordan structure such that (2.1) and (2.2) hold. Then A is (isometrically isomorphic to) the self-adjoint part of a C^*-algebra.

Proof: Let $\mathcal{A} = A \otimes iA$ be the complexification of A. Then \mathcal{A} is a Jordan $*$-algebra over \mathbb{C}. The involutions in \mathcal{A} and M_2 induce an involution in $\mathcal{A} \otimes M_2$ defined by $(x \otimes \alpha)^* = x^* \otimes \alpha^*$. Under this involution the self-adjoint part of $\mathcal{A} \otimes M_2$ is

$$(\mathcal{A} \otimes M_2)_{sa} = \mathcal{A}_{sa} \otimes (M_2)_{sa} = A \otimes (M_2)_{sa}.$$

Thus $\mathcal{A} \otimes M_2$ is the complexification of $A \otimes (M_2)_{sa}$, and so is a Jordan $*$-algebra under a product satisfying (2.1) and (2.2). By Theorem 2.1, there exists an associative product in \mathcal{A} inducing the given Jordan products both in \mathcal{A} and in $\mathcal{A} \otimes M_2$. In particular, for $x, y \in \mathcal{A}$ we have:

$$(xy)^* \otimes e_{12} = (xy)^* \otimes e_{21} = (xy \otimes e_{21})^* = 2((x \otimes e_{21}) \cdot (y \otimes e_{11}))^* = 2(x \otimes e_{21})^* \cdot (y \otimes e_{11})^* = 2(x^* \otimes e_{12}) \cdot (y^* \otimes e_{11}) = y^* x^* \otimes e_{12},$$

so $(xy)^* = y^* x^*$, and \mathcal{A} is a $*$-algebra. Its self-adjoint part is A, so by Proposition 3.2, \mathcal{A} is a C^*-algebra, and the proof is complete.

\square
References

