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Abstract

Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across
tumour types. The primary goals of this study were to investigate whether ALDH is expressed in liposarcomas, and
whether CSCs can be identified in the ALDH™9" subpopulation. We have demonstrated that ALDH is indeed expressed
in 10 out of 10 liposarcoma patient samples. Using a liposarcoma xenograft model, we have identified a small
population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem
cell medium. This potential CSC population, which makes up for 0, 1-1, 7% of the cells, displayed increased self-
renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.

Introduction
CSCs are described as a small population of tumour
cells possessing stem-like properties, such as the ability
to self-renew, as well as to differentiate into more
mature cells that make up the bulk of the tumour,
which usually to some extent resembles normal tissue.
These cells are also referred to as tumour initiating [1].
The CSCs are in many aspects similar to normal stem
cells, and are thought to arise either when normal stem
cells gain oncogenic mutations, which confer enhanced
proliferation and lack of homeostatic control mechan-
isms, or alternatively when a progenitor or differentiated
cell acquires mutations conferring de-differentiation to a
malignant stem-like cell [2]. Since the integrity of stem
cells is of critical importance for the organism, several
mechanisms that ensure the survival of stem cells have
evolved. These mechanisms include enhanced activity of
membrane pumps which remove toxic substances [3],
and enhanced activity of enzymes such as aldehyde
dehydrogenase (ALDH), which confer resistance to toxic
agents [4,5]. ALDHI was also found to be implicated in
regulating the stem cell fate in hematopoietic stem cells
(HSCs) [6]. Properties and functions of normal stem
cells can also be employed to enrich CSCs. In this
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respect, the Aldefluor assay, originally optimised to
detect ALDH1 expression in HSCs [7] has been used to
successfully enrich CSCs from breast cancer [8], leuke-
mia [9], prostate cancer [10], colon cancer [11], bladder
cancer [12] and liver cancer [13]. Because the Aldefluor
substrate probably is not specific for this isoform [14],
we refer only to ALDH-activity. ALDH-activity has also
been associated with increased tumourigenicity in osteo-
sarcoma [15]. Furthermore, several groups have reported
that expression of ALDH is associated with high grade
and poor prognosis in lung cancer [16], leukemia [9],
ovarian cancer [17], breast cancer [8,18], colon cancer
[11], prostate cancer [10], bladder cancer [12] and head
and neck cancer [19]. ALDH expression has also been
correlated with resistance to chemotherapy [19,20].

The surface molecule CD133, also known as AC133
and prominin-1, is expressed on normal stem cells [21]
and on CSCs identified in a range of cancers [22],
including cancer of the brain [23,24], colon [25,26], pan-
creas [27] and liver [28]. The majority of research con-
cerning CD133 has been focused on epithelial cancers,
but CD133 expressing-cells have also been observed in
mesenchymal tumours. Recently, Tirino et al., reported
that CD133 is expressed in all of 21 primary bone sar-
coma samples analysed (0, 21-7, 85%). Interestingly, the
CD133" cells displayed CSC characteristics, such as
increased ability to generate tumours in vivo and form
spheres in vitro. The CD133" cells were also able to
repopulate the culture with CD133" cells, and were able
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to undergo differentiation [29]. Others have also
reported that a subset of Ewing sarcoma primary
tumours [30,31] and synovial sarcoma primary tumours
[32] harbour CD133-expressing cells. In addition, several
osteosarcoma cell lines contain subpopulations of cells
(typically 3-5%), which are positive for CD133 [33].

Since the markers which are commonly used to isolate
CSC populations do not uniquely identify CSCs, CSC
enrichment can be improved by combining several mar-
kers. For instance, the enrichment of CSC populations
from liver cancer cell lines using only CD133 was
doubled when CD133 was used in combination with
ALDH [13,28]. Similarly, Ginestier et al demonstrated
that breast CSCs could be better enriched by combining
Aldefluor with the markers CD44" CD24" lin’, originally
used by Al-Hajj and co-workers [34].

In this article we confirm that ALDH is expressed in
liposarcoma primary material. Using a liposarcoma
xenograft model system we show that ALDH is also
expressed in this system, and that the combined use of
Aldefluor and CD133 enables enrichment of a small cell
population by flow cytometry. The Aldefluor™e"
CD133"8" cells have CSC characteristics, such as
increased ability to form spheroids in soft agar, and
increased tumourigenicity in vivo.

Materials and methods

Ethics statement

The use of surplus patient material for cancer research
is based on general written information and consent
from the patients, combined with approval from the
Regional Ethics Committee of Southern Norway for
each project (Permit S-06133). All procedures involving
animals were performed according to protocols
approved by the National Animal Research Authority in
compliance with the European Convention for the Pro-
tection of Vertebrates Used for Scientific Purposes
(approval ID 1499, http://www.fdu.no).

Immunohistochemical analyses of liposarcoma patient
samples

Ten formalin-fixed and paraffin-embedded liposarcoma
patient samples were obtained from the Department of
Pathology at Oslo University Hospital (The Norwegian
Radium Hospital). More specifically, the samples
included 3 well-differentiated liposarcomas (grade 1-2),
3 de-differentiated liposarcomas (grade 4), 2 myxoid and
round cell liposarcomas (grade 3-4) and 2 pleomorphic
liposarcomas (grade 4). Four um thick sections were
made and processed for immunohistochemistry using
the Dako EnVision™ Flex+ System (K8012, Dako Cor-
poration) and Dakoautostainer. Sections were deparaffi-
nized and epitopes unmasked using PT-Link (Dako) and
EnVision™ Flex target retrieval solution, low pH. After
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blocking endogenous peroxidase with 0.03% hydrogen
peroxide (H,O,) for 5 minutes, the sections were incu-
bated with monoclonal mouse antibodies ALDH
(1:3000, BD Transduction Laboratories™) and CD133/1
(AC133) (1:25, Miltenyi Biotec Inc.) over night at 4°C.
Subsequently, the slides were incubated with EnVision™
Flex+ Mouse linker (15 min) and EnVision™ Flex/HRP
enzyme (30 min). Tissue was stained for 10 minutes
with 3’3-diaminobenzidine tetrahydrochloride (DAB)
and then counterstained with haematoxylin, dehydrated
and mounted in Diatex. Normal liver and the CaCO2
cell line (American Type Culture Collection No. HTB37
(Rockville, MD)) have been included as positive controls
for ALDH and CD133, respectively. Negative controls
included replacement of monoclonal antibodies with
mouse myeloma protein of the same subclass and con-
centration as monoclonal antibodies. The immunoreac-
tivity was evaluated according to the number of
positively stained tumour cells (0 = none; 1 < 10%; 2 =
10 - 50%; 3 > 50%).

Xenograft cell culture

The ATCC liposarcoma cell line SW872 (HTB92) (ori-
ginally generated from a surgical specimen with histo-
pathology of undifferentiated malignant liposarcoma.)
was utilized to establish a xenograft in locally bred athy-
mic NCR nu/nu mice (nude mice). The xenograft was
then passaged to a new mouse before the tumour
reached maximum 2 ¢cm?, In order to extract cells from
the xenografts, typically 6 - 8 tumors were minced in
Hank’s buffered saline solution (Invitrogen). The tissue-
pieces were then incubated in 5 U/ml collagenase 4
(Worthington’s) in DMEM:F12 (Gibco) for 45 minutes
to 1 hour at 37°C. Cells were collected by passing the
mixture through a 70 um filter. The cells were subse-
quently maintained in either standard RPMI (Lonza)
containing 10% fetal bovine serum (PAA laboratories
Gmbh), 1x glutamax (Gibco) and 1 pg/ml penicillin/
streptomycin (Lonza) or in stem cell (SC)-medium (70%
mouse embryonic fibroblast conditioned medium (R&D
systems) mixed with 30% of human embryonic stem cell
medium (containing 20% “knock-out” serum replace-
ment (Invitrogen), 1% non essential amino acids
(Gibco), 4 ng/ml bFGF (Invitrogen), 0, 1 mM f-mercap-
toethanol (Sigma), 1x glutamax (Gibco) in DMEM:F12
(Gibco))). The cells were maintained in culture for 10-
14- days before analyses were performed. Adherent cells
were dissociated when sub-confluent using TrypLE
(Invitrogen).

Phenotypic analysis and cell sorting using flow cytometry
Spheroid-shaped aggregates were dissociated by 45 min-
utes incubation in TrypLE (Invitrogen) at 37°C. Adher-
ent cells were detached by a shorter incubation in
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TrypLE. Aldefluor staining (Stem Cell Technology) was
performed at the concentration of 1 x 10° cells/ml
Aldefluor assay buffer, according to the protocol recom-
mended by the manufacturer. On all occasions the
monoclonal mouse antibody TRA-1-85-APC (1:20, R&D
systems), which recognizes an epitope found on all
human cells, was included. On some occasions the cells
were subsequently labeled with one of the following
monoclonal mouse antibodies CD44-PE (1:10), CD90-PE
(1:20), CD73-PE (1:10) (All from BD Pharmingen),
CD105-PE (1:20, eBioscience), CD133/2(293C)-PE (1:10,
Miltenyie Biotec. Inc), STRO-1-PE (1:20, Santa Cruz
Biotec) or fibroblast growth factor receptor (FGFR)1
(M19B2) (1:100, Abcam). Cells stained with FGFR1 anti-
body were subsequently labeled with Alexa Fluor 647
donkey anti-mouse IgG (H+L) (1 pg/million cells, Invi-
trogen-Molecular Probes). The cells were incubated on
ice for 40 minutes. The cells were then washed and fil-
tered through a 40 um filter, and subsequently analyzed
or sorted by flow cytometry. Analyses were performed
using a FACS ARIA-2 (Becton Dickenson). Viable sing-
lets which were TRA-1-85" were sorted into the follow-
ing four fractions: Aldefluor™&" CD133"€", Aldefluor™e"
CD133"Y, Aldefluor'¥ CD133"" and Aldefluor'"
CD133"€", The flow cytometry sorted cells were subject
to viability analysis by trypan blue staining, before sub-
sequent experiments were performed.

Spheroid assay in soft agar

One thousand cells from each flow cytometry sorted
subpopulation were plated in 0, 3% soft agar (Difco) in
SC-medium in 35 mm non-adhesive dishes. Two hun-
dred and fifty pul SC-medium was added once a week.
Uniform spheroids of minimum 50 pm were counted
approximately four weeks post plating.

Adipocytic differentiation and Oil red O staining

Cells were grown in standard RPMI (Lonza) containing
10% fetal bovine serum (PAA laboratories Gmbh), 1x
glutamax (Gibco) and 1 pug/ml penicillin/streptomycin
(Lonza), supplemented with an adipocytic differentiation
cocktail (50 uM Indomethacin, 1 pM Dexamethason, 0,
5 mM isobutyl-methyl-xanthine (IBMX)). Following 21
days in culture, the cells were fixed in 70% ethanol and
subsequently stained in 0, 3% oil red O, and analyzed in
a fluorescence microscope (Olympus I1X81). Lipid dro-
plets in mature adipocytes appeared red.

In vivo tumourigenicity

Serial dilutions (100 - 25 000 cells) of each sorted sub-
population were injected subcutaneously into the flanks
of locally bred athymic NCR nu/nu mice (nude mice).
TRA-1-85" (human specific epitope) cells were injected
as unselected controls. The cells were diluted in a final
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volume of 100 pl DMEM:F12 (Gibco). Viability of the
injected cells was confirmed by trypan blue (Sigma)
staining prior to injection.

Results

Aldehyde dehydrogenase is expressed in primary human
liposarcomas

Immunohistochemical analyses of ALDHI expression in
liposarcoma patient samples confirmed that 10 out of
10 samples expressed ALDH1. More specifically, 8 out
of 10 samples expressed ALDH1 in more than 50% of
the tumour cells. One patient sample displayed ALDH1
expression in 10 - 50% of the tumour cells, and for one
patient sample, less than 10% of the tumour cells were
ALDHI1 positive (Figure 1, Table 1). The samples repre-
sented a range of liposarcoma sub-types (well-differen-
tiated, de-differentiated, myxoid/round celled and
pleomorphic liposarcoma). We were not able to find any
correlations between particular liposarcoma subtypes
and the level of ALDHI1 expression in this small and
diverse panel.

Aldehyde dehydrogenase is expressed in the liposarcoma
xenograft SW872

Having confirmed that ALDH1 is indeed expressed in
human liposarcomas, we wanted to investigate whether
liposarcoma ALDH-positive cells could be associated
with CSC activity. We preferred to use a xenograft
model, because the passing of the xenograft from
mouse to mouse ensures that the growth conditions
are physiological and that tumour initiating cells are
present. Aldefluor analysis of cells extracted from the
SW872 liposarcoma xenograft showed that the SW872

Figure 1 ALDH1 expression in liposarcoma patient samples.
ALDH1 was expressed in 10 out of 10 primary liposarcoma tumors

analysed by immunohistochemsitry. (A) Well differentiated-, (B) De-
differentiated-, (C) Myx/roundcell- and (D) Pleomorphic-liposarcoma.
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Table 1 CD133 and ALDH1 expression in liposarcoma patient samples.

Diagnosis Tumour site Age Pre-treatment Grade CD133 ALDH1
Cytoplasm Nucleus

Well-diff. Retroperitoneal 36 No treatment 1 0 3 3
Well-diff. Retroperitoneal 57 No treatment 2 0 3 3
Myx/roundcell Thigh 41 No treatment 3 0 3 3
Myx/roundcell Thigh 79 Chemotherapy 4 0 3 3
De-diff. Thigh 79 No treatment 4 0 3 3
De-diff. Retroperitoneal 60 No treatment 4 0 1 1
Well-diff. Comp * Retroperitoneal 64 No treatment 0 3 3
De-diff. Comp* Retroperitoneal 64 No treatment 4 0 3 3
Pleomorphic Truncus 67 No treatment 4 0 3 3
Pleomorphic Retroperitoneal 58 No treatment 4 0 3 2
Well-diff. Leg 31 No treatment 1 0 2 2

Ten liposarcomas diagnosed as well-differentiated (well-diff.), myxoid/roundcelled (myx/roundcell), de-differenitated (de-diff) or pleomorphic were included in the
analyses. Tumour location, patient age, treatment prior to sample collection and tumour grade are also displayed. CD133 and ALDH1 expression was scored as
follows: 0 = negative, 1 = less than 10% of the tumour cells scored positive, 2 = 10-50% of the rumour cells scored positive, 3 = more than 50% of the tumour
cells scored positive. *For one of the tumors, a de-differentiated and a well-differentiated component was analysed.

xenograft cells, like the liposarcoma patient samples,
displayed ALDH activity (11% of the cells were Alde-
fluor™e": Figure 2B), making xenograft-derived SW872
cells a suitable model for further analyses of ALDH-

positive cells.

Cellular growth pattern, morphology and expression of
stem cell markers are affected by the culturing medium
In order to maintain the extracted cells in a culturing
medium best suited for enriching CSCs, we first investi-
gated the effect of different culturing media on the
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Figure 2 Characterisation of SW872 xenograft-derived cells following culturing in RPMI or stem cell medium. (A) Different morpholgy
was observed dependent on the culturing medium. The cells appeared adherent when cultured in standard RPMI supplemented with fetal
bovine serum (upper panel) and grew as detached spheroids when cultured in SC-medium (lower panel). (B) Flow diagrams are shown for
control (DEAB) samples (left), and Aldefluor sample (right). 26% of the cells displayed Aldefluor activity when maintained in SC-medium (lower
panel), compared to 13% of the cells when maintained in RPMI (upper panel). Aldefluor intensity is displayed along the X-axis. (C) Average
Aldefluor™ cells following culturing in SC-medium (35%) (black) (n = 10) or RPMI (11%) (grey) (n = 3).
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expression of ALDH and other stem cell markers. The
extracted xenograft cells were therefore maintained for
10-14 days in either standard RPMI medium containing
fetal bovine serum (RPMI) or stem cell medium (SC-
medium) containing “knock-out” serum replacement,
mouse embryonic fibroblast (MEF) conditioned medium
and basic fibroblast growth factor (bFGF), commonly
included in embryonic stem cell medium to prevent dif-
ferentiation [35]. The cellular morphology was highly
dependent on the culturing medium. Cells maintained
in RPMI exhibited an adherent morphology and cells
maintained in SC-medium attached to each other and
grew as large aggregated spheroids in 3D suspension
(Figure 2A). Cellular growth as spheroids in suspension
has previously been associated with stem-ness and
tumor initiating activity [36,37]. Interestingly, when the
cells had been maintained in SC-medium, a larger per-
centage of the cells displayed ALDH activity (average
35% Aldefluor positive cells), compared to the average
11% observed when the cells were maintained in RPMI.
The ALDH inhibitor diethylamino-benzaldehyde
(DEAB) could block this activity (Figure 2B). Further-
more, when cells were initially incubated in RPMI for 6
days and then transferred into SC-medium for the
remaining period, the percentage of cells displaying
Aldefluor activity increased (data not shown). These
findings indicate that the cells comprise a degree of
plasticity, and that cells which have the capacity to
become more stem-like may do so in the presence of
growth factors in the SC-medium. For instance, FGF
signaling is implicated in regulation of self-renewal and

Table 2 Phenotypic analyses of SW872.
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differentiation. Since bFGF binds to and activates FGF
Receptor 1 (FGFR1) [38], we decided to investigate
FGFR1 membrane expression in SW872. Interestingly,
we found that FGFR1 was highly expressed in the
SW872 cell line. Furthermore, expression of FGFR1 was
induced during culturing of xenograft-derived SW872
cells in SC-medium (86, 8%) compared to culturing in
RPMI (62, 8%) (Table 2), indicating that activation of
FGFR1 may result in expansion of CSCs. According to
the CSC theory, the CSC population represent a small
sub-population within the tumor [2]. In keeping with
this theory, others have shown that a smaller, better
enriched CSC population is isolated by flow cytometric
cell sorting when combining the Aldefluor assay with
antibody staining of CSC surface antigens [8,13]. Thus,
we would expect the large Aldefluor™®" cell population
observed after culturing the cells in SC-medium to be
heterogeneous, and the CSCs to represent a smaller
population within the Aldefluor™®" cell population.

In the case of liposarcoma, a likely cell of origin for
the CSC would be a mesenchymal progenitor or stem
cell (MSC). To our knowledge, no surface marker is
known to uniquely identify MSCs, so we first tested the
cell surface expression of the following markers, which
are known to be expressed on MSCs: CD44, CD73,
CD105, CD90 and STRO-1 [39,40]. We also included
the stem cell and CSC marker CD133 in our screen
[41]. In addition we performed phenotypic analyses of
the original SW872 cell line (Table 2). With the aim to
identify a small Aldefluor™®" surface marker™s" (double-
positive) cell population, we performed the Aldefluor

Sws872 Xenograft-derived cells Xenograft-derived cells Cell line
Surface marker SC-medium RPMI RPMI
FGFR-1"i9h 36, 8 62,8 43,4
Aldefluour™e" 35,0 11,0 0,2
cDoonieh 93,3 89, 4 41,6
CD44Mion 97,9 98,3 99, 9
CD105"9 97,5 95,6 82, 1
STRO-1M9n 0,5 0,7 0,3
cD73Mah 2,6 4,4 27, 4
CD133"9h 0,6 0,3 0,3
Aldefluour™d" CDooMo" 41,9 55 ND
Aldefluour™d" CD44Mo" 39,8 3,7 ND
Aldefluour™" CD105"9" 44,8 2,8 ND
Aldefluour™d" STRO-1h9n 0,2 0,1 ND
Aldefluour™d" cp73Mo" 1,3 3,2 ND
Aldefluour™e cp133M9h 0,1 0 ND

The table displays the average percentages of cells scored as Aldelfuor™d"

, surface marker

hish or Aldelfuor™d" surface marker™9" in the respective culturing

medium, as determined by flow cytometry (minimum two parallels were performed). The SW872 cell line was not subjected to co-staining as only 0, 2% of the

cells were scored as Aldefluor™eh.
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assay in combination with antibody staining against each
surface marker. When testing Aldefluor in combination
with CD90, CD44 or CD105 staining, we found that
dual expression was observed in a small percentage of
the cells following culturing in RPMI. The percentage of
double-positive cells increased dramatically to approxi-
mately 40% due to an increasing number of cells expres-
sing ALDH when the cells were maintained in SC-
medium (Table 2). Next we tested Aldefluor in combi-
nation with STRO-1 or CD73 staining, and found that a
relatively small percentage of cells were double-positive,
independent of medium. Finally, we tested Aldefluor in
combination with CD133 and found that no cells were
double-positive when the cells were incubated in RPMIL.
However, interestingly we found that 0, 1% of the cells
displayed an Aldefluor™®" CD133"&" phenotype when
maintained in SC-medium. Because CSCs are expected
to represent a small fraction of the tumour cells, using
CD90, CD44 or CD105 in combination with Aldefluor
would not be likely to result in sufficient enrichment of
CSCs. On the contrary, CD73, STRO-1 and CD133
might be suitable as CSC-markers, since these markers,
when combined with Aldefluor, identified a small popu-
lation of SW872 xenograft-derived cells. The Aldefluor-
high €D133M€" phenotype was consistently observed in a
small population (0, 1 - 1, 7%, n = 9) of cells cultured in
SC-medium. The Aldefluor™®" CD133"&" subpopulation
disappeared when cells were cultured in RPMI, indicat-
ing that the combined expression of these two stem cell
markers had been induced by factors in the stem cell
media. Subsequently, we were interested in evaluating
whether cells with an Aldefluor™®" CD133"€" phenotype
comprised a CSC-potential. We therefore decided to
perform further characterization of this subpopulation
with respect to CSC abilities.

Aldefluor"®" €D133"9" cells have an enhanced ability to
form spheroids

Using flow cytometry, we isolated 4 subpopulations
based on ALDH and CD133 expression. In order to
investigate the different cell population’s stem-like abil-
ity to self-renew, we performed spheroid assays in soft
agar. The Aldefluor™&" CD133"€" cell population gener-
ated well-defined, round spheroids of approximately 50
pum in size (Figure 3A), at a frequency of up to 1 out of
4 cells. All the other three subpopulations generated
spheroids at a significantly lower frequency (Figure 3B).

Aldefluor™®" CD133"9" cells have the ability to
differentiate into adipocytes

According to the theory, a CSC has the ability to both
generate more CSCs through self-renewal, and to
undergo partial differentiation generating heterogeneous
cancer cells, which make up the bulk of the tumour.
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Liposarcomas are in part composed of adipocytes and a
potential liposarcoma CSC should therefore have the
capacity to differentiate into adipocytes. When culturing
the sorted cell populations in the presence of an adipo-
cytic differentiation cocktail, we found that the Alde-
fluor™e" CD133M8M cells were able to differentiate into
mature adipocytes more efficiently than the other sorted
cell populations (Figure 4).

Aldefluor"®" €D133M9" cells form tumors more efficiently
in vivo

One of the hallmarks of CSCs is the increased ability to
form tumors in vivo. Following flow cytometry, serial
dilutions (100, 1000, 5000 and 25 000 cells) of the four
sorted subpopulations were injected into immunodefi-
cient nude mice. The Aldefluor™s" CD133"e" cells pro-
duced tumors more efficiently in nude mice compared
to the other sorted cell populations (Table 3). As few as
100 Aldefluor™®" CD133M&" cells were sufficient to gen-
erate tumors in 14% of the mice, whilst no tumors were
formed when the other subpopulations were injected at
this cell dilution. When injecting 5000 cells of the Alde-
fluor™e" CD133M8" subpopulation, the majority of the
injections (66%) resulted in tumour formation. We were
unable to obtain sufficient number of cells to inject 25
000 Aldefluor™®" CD133"¢" cells.

Discussion

In this study, we initially chose to focus on Aldefluor as
a CSC marker for several reasons. Firstly, the Aldefluor
assay has been used to successfully isolate CSCs from
several malignancies [8-13,15]. Secondly, we found
ALDH1 a clinically relevant marker, identifying subpo-
pulations of cancer cells in all liposarcoma patient sam-
ples analyzed. ALDH expression has proven a useful
marker for cancers of several tissues [8-12,16-19,42].
Thirdly, the Aldefluor assay is less cytotoxic compared
to other CSC isolation methods (e.g. side population
assay), and since an intact cell membrane is required,
only viable cells are isolated. Although the analyses of
these phenotypes require separation of individual cells
and short term in vitro culturing, we chose to use a
xenograft-derived cell model to better mimic the 3D
growth conditions and stroma interactions of in vivo
human tumors. Furthermore, the continuous passaging
of the xenograft ensured the presence of tumour-initiat-
ing cells. Moreover, in vitro conditions are not necessa-
rily favorable for maintaining stem-ness, and we
therefore compared the effects of two different culturing
medium. Morphological observations and Aldefluor ana-
lyses of the SW872 xenograft-derived cells maintained
in SC or RPMI medium indicated that the SC-medium
was the more favourable for maintaining/inducing the
CSC phenotype in vitro. The cells displayed an adherent
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Figure 3 Aldefluour™d" cD133"9" swg72 xenograft-derived cells form spheroids more effciently in soft agar. (A) Typical round-shaped
spheroid of 50 um formed from single Aldefluour™@" CD133"9" cell. (B) Aldefluor™9" CD133"9" cells formed spheroids with a frequency of up

cellular morphology when maintained in RPMI, while
the cells grew as detached, round “spheroid"-aggregates
when the cells were maintained in SC-medium, a
growth-pattern that has been associated with stem-ness
[23,43]. Furthermore, the fact that the percentage of
cells which displayed ALDH activity was significantly
higher when the cells were maintained in SC-medium
also indicated that the SC-medium is favorable for
enrichment of CSCs. Moreover, the observed increase in
number of cells displaying high Aldefluor activity follow-
ing a change of medium from RPMI to SC, indicates
that a subpopulation of the bulk cells have a potential
to become more “stem-like” in response to certain sti-
muli. It is likely that the 3D cell-cell contacts, as well as
the mixture of growth factors in the SC-medium main-
tain and induce CSC self-renewal. Since a large percen-
tage of the SW872 cells express FGFR1, and the
percentage of cells expressing FGFR1 is further
increased following culturing in SC-medium (containing

bFGF), it is possible that CSCs are enriched through
FGEFR activation.

A large percentage of the SW872 liposarcoma xeno-
graft-derived cells were Aldefluor positive, making it
unlikely that ALDH as a single marker could be used to
identify a pure CSC population. Others have shown that
the use of Aldefluor in combination with other stem cell
markers improves the enrichment of CSCs [8,13,42]. A
likely cell of origin for the sarcoma-CSC is an MSC-like
stem or progenitor cell. However, since no markers are
known to uniquely identify MSCs, we investigated a
range of markers expressed on MSCs. We also included
the stem cell and CSC marker CD133 [22-28,31].
Although several of the Aldefluor"®" surface marker"e"
subpopulations identified in this screen might enrich for
CSCs, the Aldefluor™®" CD133"€" cells seemed particu-
larly promising. This small subpopulation was only
observed in the 3D spheroid culture (SC-medium), indi-
cating that the phenotype was either selectively induced
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Figure 4 Aldefluour"9" CD133M9" SW872 xenograft-derived cells differentiate into adipocytes. (A) Accumulation of lipid droplets
indicative of mature adipocytes was observed following culturing of Aldefluour™®" CD133"9" sorted SW872 cells in medium supplemented with
adipocytic differentiation cocktail (visualized by oil red O staining). (B) Aldefluour™" CD133"9" sorted SW872 cells did not differentiate as

efficiently when maintained in standard RPMI medium.

by factors in the SC-medium, or was dependent on the
growth pattern.

The functional analysis of the sorted subpopulations
of SW872 cells demonstrated that the Aldefluor™s"
CD133Me" cells had a highly increased ability to form
spheroids in soft agar, indicating that these cells have an
increased ability to self-renew compared to the other
sorted cell populations. Interestingly, the Aldefluor"®"
CD133"e" cells had higher capacity to differentiate into
adipocytes. Whether the Aldefluor™&" CD133"¢" cells
have multi-lineage potential was not tested. However,
since the Aldefluor™&" CD133"&" CSC is likely to origi-
nate from a MSC, it would be interesting to investigate
the ability of these cells to differentiate into other
mesenchymal cell types, such as osteoblasts and chon-
drocytes. Our in vivo tumourigenicity assay showed that
the Aldefluor™&" CD133"¢" subpopulation overall gener-
ated tumors more efficiently compared to the other

Table 3 In vivo tumourigenicity of SW872 xenograft-
derived subpopulations.

Cells injected 25 000 5 000 1000 100
Aldefluor™eh €D133M9" ND 2/3 414 2/14
Aldefluor™ah €D133"" 2/12 3/16 2/14 0/14
Aldefluor® cD133M9n 0/6 1/16 0/18 0/16
Aldefluor® CD133°% 2/14 7/14 7/18 0/14
TRA-1-85" (Control) 2/12 2/12 8/16 0/10

The table displays the total number of tumors formed, divided by the total
number of injections performed. 100 - 25 000 cells of each group were
injected subcutaneously into immunodeficient mice. Tumourigenicity was not
determined (ND) for 25 000 Aldefluor™d" CD133M9" cells. TRA-1-85" represent
viable, single SW872 cells. The results are accumulated over three individual
experiments.

subpopulations when injected subcutaneously into nude
mice, in particular at low cell numbers. However, at
higher cell numbers tumors were also generated by
some of the other subpopulations. Re-analyses of each
isolated subpopulation was done by a second round of
flow cytometry to determine the purity of the isolated
fractions. As demonstrated in Figure 5, the Aldefluor™e®
CD133"€" subpopulation was only enriched to 33% pur-
ity, with a large percentage of tumour cells from the
other subpopulations “diluting” the CSC population.
The Aldefluor™#"CD133"" flow sorted subpopulations
was clearly “contaminated” with a few Aldefluor™e"
CD133"e" cells, which likely contributed to tumour for-
mation at high cell numbers. The purity of the flow
sorting may be compromised by variability in expression
and staining, but also by inherent “noise” in the flow
sorter. The fact that the Aldefluor™&" CD133"¢" cell
population is only enriched also partly explains why
tumors are not formed in all Aldefluor™&" CD133M"
injections. Furthermore, when separating the cells into
subpopulations, the CSCs may lack the support of cells
that are required to make up a “niche” in vivo.

ALDH1 was expressed in all the liposarcoma patient
samples analyzed by IHC. Although the level of expres-
sion varied from less than 10% of the tumor cells
expressing ALDH1 to more than 50% of the tumor cells
expressing ALDHI1, we were not able to correlate the
differences in level of expression with any particular fac-
tors; neither sub-type, tumor location, patient age or
tumor grade. Furthermore, we were unable to confirm
CD133 expression in the same panel (data not shown).
There are several problems associated with CD133
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Figure 5 Flow cytometry and purity testing of sorted fractions. (A) Viable, single, human (TRA-1-85+) SW872 xenograft-derived cells (98, 8%)
were sorted on the basis of (B) Aldefluor (X-axis) and CD133 (Y-axis) activity. In this representative experiment the subpopulations in the culture
were as follows: 79% Aldefluor'™ CD133'°", 6% Aldefluor® CD133"9", 14% Aldefluor™®" CD133°" and 0, 9% Aldefluor™®" CD133"9". The 4 flow
sorted subpopulations were subject to subsequent purity testing: (C) Aldefluor™" CD133"9": 33% pure, (D) Aldefluor™" CD133'Y: 71% pure
and containing 0, 3% potential CSCs (E) Aldefluor® CD133"9M: 55% pure and (F) Aldefluor®” CD133'°": 96% pure.

immunohistochemical expression analysis [41]. Several
groups have reported that the antibodies binding CD133
detect only the glycosylated epitopes [44]. However,
Kemper et al demonstrated that bacterially expressed
CD133 or CD133 glycosylation mutants were indeed
recognized by the CD133 antibody AC133 used here.
Instead the authors concluded that the accessibility of
the AC133 epitope varied [45]. Although we cannot
confirm CD133 expression in our primary material,
CD133 might still be present on the surface, but unde-
tectable by the AC133 antibody due to epitope masking.
Alternatively, expression of CD133 may only be present
in very few cells or at a frequency below the detection
level of immunohistochemistry. This is consistent with
Suva et al and Tirino et al who both show that CD133
positive cells are extremely rare in sarcoma patient
material [29,31].

Conclusion

In conclusion, we have demonstrated that ALDHI is
expressed in liposarcoma patient samples, although
we were unable to confirm CD133 expression in the

same material. We have performed extensive phenoty-
pic analyses of liposarcoma xenograft-derived cells
using Aldefluor and surface markers, and as a result
identified a CSC-like subpopulation of cells expres-
sing both ALDH and CD133 when cultured as spher-
oids in SC-medium. Furthermore, we have
demonstrated that this phenotype is associated with
stem-like abilities, such as increased ability to self-
renew and to form tumours in immunodeficient mice.
Although it remains to be validated whether Aldefluor
and CD133 in combination can be used to isolate
CSCs from liposarcomas and sarcomas in general,
these markers have proven useful for isolating CSCs
across tumor types [13], and may be used as targets
for novel CSC-specific therapies. Ongoing work
includes specifically targeting and killing the CSC
population in our model system.

List of abbreviations

CSC: cancer stem cell; bFGF: basic fibroblast growth factor; FGFR: fibroblast
growth factor receptor; HSC: hematopoietic stem cell; MSC: mesenchymal
stem cell; ALDH: aldehyde dehydrogenase.



Stratford et al. Clinical Sarcoma Research 2011, 1:8
http://www.clinicalsarcomaresearch.com/content/1/1/8

Acknowledgements

We thank Alexandr Kristian, Hege Christin Svensson, Petros Gebregziabher
and Mette Fersund for technical assistance with the tumourigenicity assays
and immunohistochemical analysis. The work was supported by a grant
from the Norwegian Research Council.

Author details

'Cancer Stem Cell Innovation Centre and Department of Tumor Biology,
Institute of Cancer Research, Oslo University Hospital, The Norwegian
Radium Hospital, PO Box 4953 Nydalen, Oslo, NO-0424, Norway.
’Department of Pathology, Oslo University Hospital, The Norwegian Radium
Hospital, PO Box 4953 Nydalen, Oslo, NO-0424, Norway. 3Departmen‘[ of
Molecular Bioscience, University of Oslo, PO-Box 1041 Blindern, Oslo, NO-
0316, Norway.

Authors’ contributions

EWS, EM and OM designed the study and wrote the manuscript. EWS, ABW
and SL performed the practical work, apart from the flow cytometry which
was done by RC and the immunohistochemistry performed by RH. RH and
BB performed pathological analyses. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 5 April 2011 Accepted: 1 August 2011
Published: 1 August 2011

References

1. Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP: Cancer stem cells
- old concepts, new insights. Cell Death Differ 2008, 15:947-958.

2. Bomken S, Fiser K, Heidenreich O, Vormoor J: Understanding the cancer
stem cell. Br J Cancer 103:439-445.

3. Kondo T: Stem cell-like cancer cells in cancer cell lines. Cancer Biomark
2007, 3:245-250.

4. Colvin M, Russo JE, Hilton J, Dulik DM, Fenselau C: Enzymatic mechanisms
of resistance to alkylating agents in tumor cells and normal tissues. Adv
Enzyme Regul 1988, 27:211-221.

5. Russo JE, Hilton J, Colvin OM: The role of aldehyde dehydrogenase
isozymes in cellular resistance to the alkylating agent
cyclophosphamide. Prog Clin Biol Res 1989, 290:65-79.

6. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, et al: Inhibition of
aldehyde dehydrogenase and retinoid signaling induces the expansion
of human hematopoietic stem cells. Proc Natl Acad Sci USA 2006,
103:11707-11712.

7. Douville J, Beaulieu R, Balicki D: ALDH1 as a functional marker of cancer
stem and progenitor cells. Stem Cells Dev 2009, 18:17-25.

8. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, et al: ALDH1
is a marker of normal and malignant human mammary stem cells and a
predictor of poor clinical outcome. Cell Stem Cell 2007, 1:555-567.

9. Ran D, Schubert M, Pietsch L, Taubert |, Wuchter P, et al: Aldehyde
dehydrogenase activity among primary leukemia cells is associated with
stem cell features and correlates with adverse clinical outcomes. Exp
Hematol 2009, 37:1423-1434.

10. LiT,SuY, MeiY, Leng Q, Leng B, et al: ALDH1A1 is a marker for
malignant prostate stem cells and predictor of prostate cancer patients’
outcome. Lab Invest 90:234-244.

11, Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, et al: Aldehyde
dehydrogenase 1 is a marker for normal and malignant human colonic
stem cells (SC) and tracks SC overpopulation during colon
tumorigenesis. Cancer Res 2009, 69:3382-3389.

12. Su'Y, Qiu Q, Zhang X, Jiang Z, Leng Q, et al: Aldehyde dehydrogenase 1
Al-positive cell population is enriched in tumor-initiating cells and
associated with progression of bladder cancer. Cancer Epidemiol
Biomarkers Prev 19:327-337.

13. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, et al: Aldehyde dehydrogenase
discriminates the CD133 liver cancer stem cell populations. Mol Cancer
Res 2008, 6:1146-1153.

14.  Yokota A, Takeuchi H, Maeda N, Ohoka Y, Kato C, et al: GM-CSF and IL-4
synergistically trigger dendritic cells to acquire retinoic acid-producing
capacity. Int Immunol 2009, 21:361-377.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Page 10 of 11

Wang L, Park P, Zhang H, La Marca F, Lin CY: Prospective identification of
tumorigenic osteosarcoma cancer stem cells in 05S99-1 cells based on
high aldehyde dehydrogenase activity. Int J Cancer 128:294-303.

Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, et al: Aldehyde
dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer.
Mol Cancer Res 2009, 7:330-338.

Deng S, Yang X, Lassus H, Liang S, Kaur S, et al: Distinct expression levels
and patterns of stem cell marker, aldehyde dehydrogenase isoform 1
(ALDH1), in human epithelial cancers. PLoS One 5:¢10277.
Charafe-Jauffret E, Ginestier C, lovino F, Tarpin C, Diebel M, et al: Aldehyde
dehydrogenase 1-positive cancer stem cells mediate metastasis and
poor clinical outcome in inflammatory breast cancer. Clin Cancer Res
16:45-55.

Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, et al: Aldehyde
dehydrogenase 1 is a putative marker for cancer stem cells in head and
neck squamous cancer. Biochem Biophys Res Commun 2009, 385:307-313.
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, et al: Association of breast
cancer stem cells identified by aldehyde dehydrogenase 1 expression
with resistance to sequential Paclitaxel and epirubicin-based
chemotherapy for breast cancers. Clin Cancer Res 2009, 15:4234-4241.

Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, et al: AC133, a
novel marker for human hematopoietic stem and progenitor cells. Blood
1997, 90:5002-5012.

Wu' Y, Wu PY: CD133 as a marker for cancer stem cells: progresses and
concerns. Stem Cells Dev 2009, 18:1127-1134.

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, et al: Identification of
a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821-5828.
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, et al: Identification of
human brain tumour initiating cells. Nature 2004, 432:396-401.

O'Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell
capable of initiating tumour growth in immunodeficient mice. Nature
2007, 445:106-110.

Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, et al:
Identification and expansion of human colon-cancer-initiating cells.
Nature 2007, 445:111-115.

Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, et al- Distinct
populations of cancer stem cells determine tumor growth and
metastatic activity in human pancreatic cancer. Cell Stem Cell 2007,
1:313-323.

Ma S, Chan KW, Hu L, Lee TK, Wo JY, et al: Identification and
characterization of tumorigenic liver cancer stem/progenitor cells.
Gastroenterology 2007, 132:2542-2556.

Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, et al Human primary
bone sarcomas contain CD133+ cancer stem cells displaying high
tumorigenicity in vivo. Faseb J 25:2022-2030.

Jiang X, Gwye Y, Russell D, Cao C, Douglas D, et al: CD133 expression in
chemo-resistant Ewing sarcoma cells. BMC Cancer 10:116.

Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, et al: Identification of
cancer stem cells in Ewing’s sarcoma. Cancer Res 2009, 69:1776-1781.
Terry J, Nielsen T: Expression of CD133 in synovial sarcoma. App!
Immunohistochem Mol Morphol 18:159-165.

Tirino V, Desiderio V, d'’Aquino R, De Francesco F, Pirozzi G, et al: Detection
and characterization of CD133+ cancer stem cells in human solid
tumors. PLoS One 2008, 3:e3469.

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF:
Prospective identification of tumorigenic breast cancer cells. Proc Nat/
Acad Sci USA 2003, 100:3983-3988.

Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, et al: Clonally
derived human embryonic stem cell lines maintain pluripotency and
proliferative potential for prolonged periods of culture. Dev Biol 2000,
227:271-278.

Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, et al: Tumor stem cells derived
from glioblastomas cultured in bFGF and EGF more closely mirror the
phenotype and genotype of primary tumors than do serum-cultured
cell lines. Cancer Cell 2006, 9:391-403.

Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al: Isolation and
in vitro propagation of tumorigenic breast cancer cells with stem/
progenitor cell properties. Cancer Res 2005, 65:5506-5511.

Villegas SN, Canham M, Brickman JM: FGF signalling as a mediator of
lineage transitions-evidence from embryonic stem cell differentiation. J
Cell Biochem 110:10-20.


http://www.ncbi.nlm.nih.gov/pubmed/18259194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18259194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17917153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3074628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3074628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2726824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2726824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2726824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16857736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16857736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16857736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18573038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18573038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19819294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19819294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19819294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18644979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18644979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19276181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19276181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19509181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19509181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19509181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19509181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9389720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9389720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19409053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19409053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14522905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14522905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15549107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15549107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17122772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17122772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17122771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18941626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18941626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18941626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12629218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11071754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11071754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11071754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16697959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16697959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16697959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16697959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994920?dopt=Abstract

Stratford et al. Clinical Sarcoma Research 2011, 1:8
http://www.clinicalsarcomaresearch.com/content/1/1/8

39.

40.

41.

42.

43.

44,

45.

Chamberlain G, Fox J, Ashton B, Middleton J: Concise review:
mesenchymal stem cells: their phenotype, differentiation capacity,
immunological features, and potential for homing. Stem Cells 2007,
25:2739-2749.

Park PC, Selvarajah S, Bayani J, Zielenska M, Squire JA: Stem cell
enrichment approaches. Semin Cancer Biol 2007, 17:257-264.

Bidlingmaier S, Zhu X, Liu B: The utility and limitations of glycosylated
human CD133 epitopes in defining cancer stem cells. J Mol Med 2008,
86:1025-1032.

Keysar SB, Jimeno A: More than markers: biological significance of cancer
stem cell-defining molecules. Mol Cancer Ther 9:2450-2457.

Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, et al: Colon
cancer stem cells dictate tumor growth and resist cell death by
production of interleukin-4. Cell Stem Cell 2007, 1:389-402.

Mizrak D, Brittan M, Alison MR: CD133: molecule of the moment. J Pathol
2008, 214:3-9.

Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, et al: The
AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell
differentiation. Cancer Res 70:719-729.

doi:10.1186/2045-3329-1-8

Cite this article as: Stratford et al: Liposarcoma cells with aldefluor and
CD133 activity have a cancer stem cell potential. Clinical Sarcoma
Research 2011 1:8.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolMed Central



http://www.ncbi.nlm.nih.gov/pubmed/17656645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17656645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17656645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16814562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16814562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18067118?dopt=Abstract

	Abstract
	Introduction
	Materials and methods
	Ethics statement
	Immunohistochemical analyses of liposarcoma patient samples
	Xenograft cell culture
	Phenotypic analysis and cell sorting using flow cytometry
	Spheroid assay in soft agar
	Adipocytic differentiation and Oil red O staining
	In vivo tumourigenicity

	Results
	Aldehyde dehydrogenase is expressed in primary human liposarcomas
	Aldehyde dehydrogenase is expressed in the liposarcoma xenograft SW872
	Cellular growth pattern, morphology and expression of stem cell markers are affected by the culturing medium
	Aldefluorhigh CD133high cells have an enhanced ability to form spheroids
	Aldefluorhigh CD133high cells have the ability to differentiate into adipocytes
	Aldefluorhigh CD133high cells form tumors more efficiently in vivo

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

