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Abstract
Background: Cyanobacteria produce a wealth of secondary metabolites, including the group of
small cyclic heptapeptide hepatotoxins that constitutes the microcystin family. The enzyme
complex that directs the biosynthesis of microcystin is encoded in a single large gene cluster (mcy).
mcy genes have a widespread distribution among cyanobacteria and are likely to have an ancient
origin. The notable diversity within some of the Mcy modules is generated through various
recombination events including horizontal gene transfer.

Results: A comparative analysis of the adenylation domains from the first module of McyB (McyB1)
and McyC in the microcystin synthetase complex was performed on a large number of microcystin-
producing strains from the Anabaena, Microcystis and Planktothrix genera. We found no decisive
evidence for recombination between strains from different genera. However, we detected frequent
recombination events in the mcyB and mcyC genes between strains within the same genus. Frequent
interdomain recombination events were also observed between mcyB and mcyC sequences in
Anabaena and Microcystis. Recombination and mutation rate ratios suggest that the diversification
of mcyB and mcyC genes is driven by recombination events as well as point mutations in all three
genera. Sequence analysis suggests that generally the adenylation domains of the first domain of
McyB and McyC are under purifying selection. However, we found clear evidence for positive
selection acting on a number of amino acid residues within these adenylation domains. These
include residues important for active site selectivity of the adenylation domain, strongly suggesting
selection for novel microcystin variants.

Conclusion: We provide the first clear evidence for positive selection acting on amino acid
residues involved directly in the recognition and activation of amino acids incorporated into
microcystin, indicating that the microcystin complement of a given strain may influence the ability
of a particular strain to interact with its environment.
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Background
Cyanobacteria produce a wealth of bioactive peptide
derivatives with a broad range of biological activities and
pharmacological properties [1]. Many of these are synthe-
sized on nonribosomal peptide synthetases (NRPS).
These megaenzyme complexes typically have a modular
architecture. A typical module contains specific functional
domains for activation, thioesterification, and condensa-
tion of amino acids [2]. Additional domains for the mod-
ification of activated amino acids such as epimerization,
heterocyclisation, oxidation, formylation, reduction or N-
methylation may also be present [2]. NRPS gene clusters
in some cyanobacteria can occupy up to 5 percent of the
genome [1].

The modular design of NRPS gene clusters promotes
homologous recombination, including recombination
within a gene cluster and intragenomic recombination
between different gene clusters within the same genome
or intergenomic recombination with DNA introduced
from other cyanobacteria [3-5]. The cellular consequences
of recombination will depend on several factors, includ-
ing the phenotypic effects, if any, of the introduced DNA
segment. In order to be successful, the new gene variant
should at least not be detrimental to the host. For NRPS
systems, important factors will be whether the novel pep-
tide can fulfil the biological role(s) of the original peptide
or provide new benefits to the host. Nonetheless, recom-
bination within and among NRPS gene clusters poten-
tially could constitute a mechanism for continuous
alteration of the synthetases and peptide products.

Among cyanobacterial NRPSs, the microcystin synthetase
gene clusters (mcy) have been extensively studied. Micro-
cystins are cyclic heptapeptides with common structure
cyclo-D-Ala1-X2-D-MeAsp3-Z4-Adda5-D-Glu6-Mdha7

where D-MeAsp is D-erythro-β-methyl-aspartic acid, Adda
is 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-(4E),
(6E)-decadienoic acid, D-Glu is D-iso-glutamic acid, and X
and Z are variable L-amino acids (Figure 1). Complete
gene cluster sequences are available from strains within
the Anabaena, Microcystis and Planktothrix genera [6-10].
Recombination in the mcy gene clusters has been reported
to involve equivalent modules, i.e. modules with the
same position in similar gene clusters [11-13], but also
modules in different positions in similar gene clusters or
from different gene clusters [3,14,15]. Although most
strains can produce a range of microcystin isoforms there
is a single mcy gene cluster in the genome [6-8,10,16,17],
indicating that recombination events involving equiva-
lent domains must be intergenomic.

The substrate specificity of the adenylation (A) domain is
considered to be the primary determinant of substrate
selection (for a review, see [18]). Recombination events

involving A domains might lead to changes in substrate
specificity and subsequently in the microcystin profile
[3,15]. The A domains of modules McyB1 (the first mod-
ule of the McyB protein) and McyC recognise and activate
the amino acids that are incorporated in the variable posi-
tions X and Z of microcystin (Figure 1). These A domains
have been extensively studied within Microcystis [13,15],
and Planktothrix [11,14]. Within Microcystis, recombina-
tion has lead to the presence of two types of A domains in
different strains [15]: a mainly Leu-activating A domain
and a mainly Arg-activating A domain that has a high
sequence similarity to the Arg-activating A domain in
McyC (in the following, these two types of A domains in
McyB1 are called B-type and C-like, respectively). Recom-
bination involving A domain coding regions of mcyB1
and mcyC has been detected in Microcystis [13,15] and
Anabaena [3,9].

Here, we compare McyB1 and McyC A domains in strains
from the three main microcystin-producing genera: Ana-
baena, Microcystis and Planktothrix to investigate the role of
genomic processes in the reshaping of microcystin genes,
enzyme complexes and corresponding peptides. We have
looked for signs of recombination, both between equiva-
lent and non-equivalent modules, as well as mutations
and selective forces acting on these A domains.

Organization of the mcyABC gene cluster (A)Figure 1
Organization of the mcyABC gene cluster (A). Ade-
nylation domains investigated in the present study are indi-
cated in red and green. The relative positions of primers 
(arrows) are shown. Genus-specific mcyB and mcyC primers 
are listed in Table 8. (B) The structure of microcystin-LR. 
Amino acid residues activated by the adenylation domains of 
McyB1 and McyC are indicated by red and green, respec-
tively. Mdha is N-methyl-dehydroalanine, D-MeAsp is 3-
methyl-aspartic acid and Adda is 3-amino-9-methoxy-2,6,8,-
trimethyl-10-phenyl-4,6-decandienoic acid.
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Results
In the present study, we have compared A domains of
microcystin synthetase modules McyB1 and McyC from
altogether 58 strains including 21 Anabaena, 19 Microcystis
and 18 Planktothrix strains with characterized microcystin-
isoform profiles, including two non-producers (Table 1).
The profiles made it possible to identify the amino acid
residue(s) incorporated by each of these modules.

Microcystin isoforms produced by different genera
In total, we identified 22 structural variants (Table 1),
mainly differing in the methylation status of D-Asp3 or
Dha7, but also the amino acid present at position X (Fig-
ure 1). Seven different amino acid residues were found at
position X, mainly Leu, Arg and homotyrosine (Hty), but
also Phe, homoisoleucine (Hil), homophenylalanine
(Hph) and Tyr, while only Arg was found at position Z
(Table 1).

The Anabaena strains mainly produce MC-LR variants, but
also several other isoforms, e.g. MC-RR and MC-HtyR
(Table 1). Nine Microcystis strains produce MC-RR, either
as the only isoform or together with MC-LR and/or MC-
YR. One strain produces only MC-YR isoforms, while
seven strains produce MC-LR isoforms (together with MC-
YR for two strains) (Table 1). Two of the Microcystis strains
examined here have a partial deletion of the mcy gene
cluster and do not produce microcystin [13]. Within
Planktothrix, 15 of 18 strains produce MC-RR, either as the
only isoform (5 strains), together with MC-LR (8 strains)
or together with MC-LR and MC-HtyR (2 strains). The
remaining three strains produce mainly MC-HtyR, one of
them together with MC-LR (Table 1).

Adenylation domain-encoding sequences of mcyB1 and 
mcyC
Analysis of the McyB1 sequences from Anabaena and
Planktothrix revealed the presence of a single type of A
domain with a high degree of sequence similarity to the A
domain of McyC. Among Microcystis, 7 strains were found
to possess a B-type (activating mainly Leu) and 12 strains
a C-like (activating mainly Arg – like the McyC) A domain
in McyB1 (Table 1, indicated by B and C, respectively).
Phylogenetic analyses of cyanobacterial A domains have
shown that the McyB1 sequence from Microcystis strain
PCC 7806 (which is of B-type) does not cluster with McyC
A domain sequences as do McyB1 sequences from Ana-
baena and Planktothrix, but clusters with other Leu activat-
ing A domains [3,19]. Phylogenetic analysis of 115 McyB1
and McyC A domain sequences aligned with the remain-
ing Mcy adenylation domains from Microcystis, Anabaena
and Planktothrix (acc. nos. AF183408, AJ536156 and
AJ441056, respectively) showed also that McyB1 B-type A
domains of Microcystis form a clade separate from other
McyB1 and McyC sequences (Additional file 1, Figure S1).

Therefore, in the comparisons below of McyB1 sequences
from all three genera, only the C-like McyB1 sequences of
Microcystis were included.

The variation measured as percentage divergence and
nucleotide diversity (π) within the mcyB1 sequences was
similar in Anabaena (0–6%, π = 0.032) and Microcystis (0–
6.3%, π = 0.033) and slightly lower (0–3.6%, π = 0.023)
in the Planktothrix data set. The sequence variation within
mcyC was low in Anabaena (0–2.4%, π = 0.009) and Plank-
tothrix (0–1.2%, π = 0.003) and similar to that of mcyB1 in
the Microcystis data set (0–7.1%, π = 0.035) (Table 2).
When C-like A domain encoding sequences in mcyB1 were
compared with the mcyC sequence from the same strain,
genus-specific differences in the genetic variation were
observed: 0.7–7.2% (π = 0.037) in Anabaena strains, 8.6–
12.4% (π = 0.035) in Microcystis strains and 29.8–30.8%
(π = 0.158) in Planktothrix strains (Table 2). Interestingly,
the sequences from the non-producing Microcystis strains
did not diverged from the rest, suggesting insufficient time
for any divergence or that the selective constraints still are
the same.

Variation in evolutionary rates between genera and 
between McyB1 and McyC
Phylogenetic analyses of the amino acid sequence align-
ment of the 108 McyB1 and McyC A domain sequences
yielded a similar tree topology for all methods used (ML,
Bayesian and NJ, Figure 2). Five well-supported main
clades were observed: McyB1/McyC of Anabaena, McyB1
of Microcystis, McyC of Microcystis, McyB1 of Planktothrix
and McyC of Planktothrix. All clades were genus-specific.
The McyB1 and McyC sequences from Microcystis formed
two separate clades, as did the McyB1 and McyC
sequences from Planktothrix, but the A domains of Plank-
tothrix were separated on longer branches. Interestingly,
within the Anabaena clade, no distinct, well-supported
McyC clade was inferred. Almost all Anabaena McyB1
sequences formed a clade with moderate support (PP
0.98, BS-ML 69%, BS-NJ 83%), except for the sequences
from strains 288, N-C 267/4 and 18B6. The McyB1
sequence from strain 18B6 clustered with the McyC
sequence from the same strain with moderate support (PP
0.93, BS-ML 65%, BS-NJ 84%).

Mutation rates and recombination within- and between 
McyB1 and McyC adenylation domains
The mutation rates ranged from 0.0076 to 0.0359, being
lowest in mcyC of Anabaena and Planktothrix (Table 3).
Moderate recombination levels (0.010 ≤ ρ ≤ 0.027 per
base) (Table 3) were detected in all data sets except for
mcyC from Planktothrix. Low recombination levels were
estimated for this data set, but all three permutation tests
indicated that recombination rate was not statistically sig-
nificant different from 0. Recombination rate/mutation
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Table 1: Strains compared in present study

Strain# Geographic origin Year Genes& Microcystin isoforms produced [reference]

mcyB*
mcyC

Anabaena
N-C 83/1 L. Edlandsvatnet, Norway 1981 EU009900

EU009918
[D-Asp3]MC-LR, [D-Asp3]MC-RR, MC-LR, MC-RR [56]

N-C 267/4 L. Fammestadtjønni, Norway 1990 EU009901
EU009919

MC-HtyR, MC-LR, MC-FR, [D-Asp3]MC-LR, [D-
Asp3]MC-HtyR, [D-Asp3]MC-FR, MC-HilR, MC-HphR

[56]

N-C 269/2 L. Frøylandsvatnet, Norway 1990 EU009902
EU009920

[D-Asp3]MC-LR, MC-HtyR, [D-Asp3]MC-HtyR, MC-LR, 
[D-Asp3]MC-FR, MC-FR, MC-HilR, MC-HphR, [D-
Asp3]MC-HilR, [D-Asp3]MC-HphR

[56]

N-C 269/6 L. Frøylandsvatnet, Norway 1990 EU009903
EU009921

[D-Asp3]MC-LR, MC-HtyR, [D-Asp3]MC-HtyR, MC-LR, 
[D-Asp3]MC-FR, MC-FR, MC-HilR, MC-HphR, [D-
Asp3]MC-HilR, [D-Asp3]MC-HphR

[56]

N-C 270/1 L. Arefjordsvatnet, Norway 1990 EU009904
EU009933

[D-Asp3]MC-LR, MC-LR, [D-Asp3]MC-RR, MC-RR [56]

90 L. Vesijärvi, Finland 1986 AJ536156
AJ536156

MC-LR, [D-Asp3]MC-LR, MC-RR, [D-Asp3]MC-RR, MC-
HilR, [D-Asp3]MC-HilR

[9]

1TU44S16 L. Tuusulanjärvi, Finland 2001 EU009887
EU009905

[D-Asp3]MC-LR, MC-LR [56]

1TU30S4 L. Tuusulanjärvi, Finland 2001 EU009888
EU009906

[Dha7]MC-LR, [D-Asp3, Dha7]MC-LR, [L-Ser7]MC-LR [56]

1TU31S9 L. Tuusulanjärvi, Finland 2001 EU009889
EU009907

[Dha7]MC-LR, [D-Asp3, Dha7]MC-LR, [L-Ser7]MC-LR, 
[D-Asp3, demet-N7]MC

[56]

202A1/35 L. Vesijärvi, Finland 1987 EU009890
EU009908

[D-Asp3, Dha7]MC-LR, [Dha7]MC-LR, [L-Ser7]MC-LR [56]

1TU46S11 L. Tuusulanjärvi, Finland 2001 EU009891
EU009909

[D-Asp3]MC-LR, MC-LR, [D-Asp3]MC-HilR [56]

202A2/41 L. Vesijärvi, Finland 1987 EU009892
EU009910

[D-Asp3, Dha7]MC-LR, [Dha7]MC-LR, [L-Ser7]MC-LR, 
[D-Asp3, demet-N7]MC

[56]

0TU33S16 L. Tuusulanjärvi, Finland 2000 EU009893
EU009911

[D-Asp3]MC-LR, MC-LR, [D-Asp3]MC-HilR [56]

258 L. Tuusulanjärvi, Finland 1990 EU009894
EU009912

MC-LR, [D-Asp3]MC-LR, MC-HilR, [D-Asp3]MC-HilR [56]

1TU32S11 L. Tuusulanjärvi, Finland 2001 EU009895
EU009913

[Dha7]MC-LR, [D-Asp3, Dha7]MC-LR, [L-Ser7]MC-LR [56]

BIR 246 Gulf of Finland, Baltic Sea 2004 EU009896
EU009914

[D-Asp3]MC-HtyR, MC-HtyR, [D-Asp3]MC-LR, MC-LR, 
[D-Asp3]MC-FR, MC-FR, MC-HphR, [D-Asp3]MC-
HphR, MC-HilR, D-Asp3]MC-HilR

[56]

288 Littoisten vesilaitos, Finland 1990 EU009897
EU009915

MC-HtyR, MC-LR, MC-FR, [D-Asp3]MC-LR, [D-
Asp3]MC-HtyR, MC-HphR, [D-Asp3]MC-FR,

[56]

315 Gulf of Finland, Baltic Sea 1997 EU009898
EU009916

[Dha7]MC-HtyR, [D-Asp3, Dha7]MC-HtyR, [Dha7]MC-
LR

[56]

318 Gulf of Finland, Baltic Sea 1998 EU009899
EU009917

MC-HtyR, [D-Asp3]MC-Hty, [D-Asp3]MC-LR, MC-LR [56]

66A L. Sääskjärvi, Finland 1986 EU151874
EU151867

[Dha7]MC-HtyR, [D-Asp3, Dha7]MC-HtyR, [Dha7]MC-
HphR, [Dha7]MC-LR, [L-Ser7]MC-HtyR

[56]

18B L. Vaaranlampi, Finland 1986 EU151873
EU151866

[D-Asp3 Dha7]MC-RR, [Dha7]MC-RR [56]

Microcystis
N-C 31 Little Rideau Lake, Canada 1954 EU009866 B

EF115396
MC-LR [15]

N-C 57 L. Frøylandsvatnet, Norway 1978 EU009867 C
EF115397

[Asp3, Dha7]MC-RR, [Dha7]MC-RR [15]

N-C 118/2 L. Gjersjøen, Norway 1983 EU009868 B
EF115398

[Asp3]MC-LR, MC-LR [15]

N-C 140 Bendig's Pond, Canada 1975 EU009869 B
EU009881

MC-LR, MC-desmethyl-LR This work

N-C 143 L. Akersvatnet, Norway 1984 EU009870 C
EF115399

None [15]

N-C 160/2 L. Akersvatnet, Norway 1985 EU009871 C
EU009882

None This work

N-C 161/1 L. Mosvatnet, Norway 1985 EU009872 B
EF115400

MC-YR, MC-LR [15]
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N-C 169/7 L. Arresø, Denmark 1985 EU009873 C
EF115401

MC-RR, MC-LR [15]

N-C 171/10 L. Arresø, Denmark 1985 EU009874 C
EU009883

MC-LR, MC-YR, MC-RR This work

N-C 228/1 L. Akersvatnet, Norway 1985 EU009875 C
EF115402

[Dha7]MC-RR, [Dha7]MC-LR [15]

N-C 264 L. Frøylandsvatnet, Norway 1990 EU009876 C
EF115403

[Dha7]MC-RR [15]

N-C 324/1 L. Tøråssjøen, Norway 1993 EU009877 C
EF115404

[Asp3, Dha7]MC-RR, [Dha7]MC-RR, [Dha7]MC-LR, MC-
LR

[15]

N-C 357 River Zala, Hungary 1996 EU009878 C
EU009884

MC-RR, MC-LR, MC-YR, MC-desmethyl-LR This work

N-C 496 Queen Elizabeth Channel, Uganda 2004 EU009879 C
EU009885

MC-YR, MC-desmethyl-YR This work

AB2002/24 Pilsner Pond, Kenya 2002 EU009880 B
EU009886

MC-LR, desmethyl-MC-YR, MC-YR [57]

UV027 Germany ND AF458094 C
AF458094

MC-RR [9]

PCC 7806 Braakman Reservoir, The Netherlands 1972 AF183408 B
AF183408

MC-LR, [Asp3]MC-LR [10]

K-139 Lake Kasumigaura, Japan 1985 AB019578 B
AB019578

[Dha7]MC-LR, [Asp3, Dha7]MC-LR [58]

NIES 102 Lake Kasumigaura, Japan 1982 AB092807 C MC-LR, MC-RR, MC-YR [58]

Planktothrix
3 L. Mondsee, Austria 2001 AJ749276

AJ749285
[Asp3, Mdha7]MC-RR [14]

64 L. Wörthersee, Austria 2001 AJ749277
AJ749286

[Asp3, Mdha7]MC-RR [14]

111 L. Mondsee, Austria 2001 AJ749282
AJ749291

[Asp3, Mdha7]MC-RR [14]

31/1 L. Wannsee, Germany 2001 AJ749267
AJ749294

[Asp3, Mdha7]MC-RR, [Asp3]MC-HtyR, [Asp3]MC-LR [14]

32 L. Wannsee, Germany 2001 AJ749268
AJ749295

[Asp3, Mdha7]MC-RR, [Asp3]MC-LR [14]

39 L. Wannsee, Germany 2001 AJ749269
AJ749296

[Asp3, Mdha7]MC-RR, [Asp3]MC-LR [14]

79 L. Arresø, Denmark 2001 AJ749270
AJ749297

[Asp3, Mdha7]MC-RR, [Asp3]MC-LR [14]

SAG 6.89 L. Plußsee, Plön, Germany 1969 AJ749271
AJ749298

[Asp3, Mdha7]MC-RR, [Asp3]MC-LR [14]

N-C 126/8 L. Langsjön Finland 1984 AJ441056
AJ441056

[Asp3, Mdha7]MC-RR, [Asp3]MC-LR [6]

80 L. Schwarzensee, Austria 2001 AJ749278
AJ749287

MC-HtyR [11]

82 L. Ammersee, Germany 2001 AJ749279
AJ749288

[Asp3, Dhb7]MC-RR, [Asp3]MC-HtyR, [Asp3]MC-LR [14]

108 L. Irrsee, Austria 2001 AJ749281
AJ749290

[Asp3, Dhb7]MC-RR, [Asp3]MC-LR [14]

PCC 7821 L. Gjersjøen, Norway 1971 AJ749283
AJ749292

[Asp3, Dhb7]MC-RR, [Asp3]MC-LR [14]

CCAP
1459/30

L. Plöner See, Germany ND AJ749284
AJ749293

[Asp3, Dhb7]MC-RR, [Asp3]MC-LR [14]

CCAP
1459/11A

L. Windermere, UK 1975 AJ749272
AJ749299

[Asp3, Dhb7]MC-RR [14]

CCAP
1459/21

Esthwaite Water, UK 1985 AJ749274
AJ749301

[Asp3, Dhb7]MC-RR [14]

CCAP
1460/5

L. Kasumigaura, Japan 1983 AJ749275
AJ749302

[Asp3]MC-HtyR, [Asp3]MC-LR [14]

CCAP
1459/16

Blelham Tarn, UK 1979 AJ749273
AJ749300

[Asp3]MC-HtyR, [Asp3]MC-LR [14]

# N-C, NIVA-CYA, Norwegian Institute for Water Research Cyanobacterial Culture Collection, PCC, Pasteur Culture Collection, NIES, National 
Institute for Environmental Studies Microbial Culture Collection, Japan, CCAP Culture Collection of Algae and Protozoa (Windermere, UK).
&GenBank accession numbers for the microcystin synthetase genes analyzed. For each strain, the upper acc. no. indicates mcyB sequence.
* For Microcystis strains, the type of McyB A domain, B-type or C-like is indicated by B and C, respectively.
ND – no data available

Table 1: Strains compared in present study (Continued)
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rate ratios below 1 in the Microcystis and Planktothrix data
sets (Table 3) suggest that point mutations are the main
cause of genetic variation in McyB1 and McyC A domains
from these genera. In contrast, a recombination rate/
mutation rate ratio higher than 1 in the Anabaena data sets
indicates that recombination has had a major impact on
these A domains.

Recombination events were also suggested in all data sets
by the mosaic structure of informative sites, with the
exception of mcyC from Planktothrix (Figure 3). The retic-
ulate phylogenies revealed by the split decomposition
analysis (Figures 4 and 5) were supported by Phi test
(Table 2) in all data sets except mcyC from Planktothrix.
Recombination detection programs (RDP, GENECONV
and MaxChi) identified several recombination break-
points along the entire mcyB1 sequences in Anabaena and
Planktothrix strains, while only one single putative recom-
bination event was detected within the Microcystis mcyB1
and mcyC data sets (Table 4). No recombination events
were suggested by recombination detection programs

within the mcyC alignments of Anabaena and Planktothrix.
The analyses of the combined mcyB1C data sets (Figure 6,
Table 5) suggested recombination events between mcyB1
and mcyC in Anabaena and Microcystis, but not in Plank-
tothrix.

Substrate specificity of MycB1 and McyC adenylation 
domains
McyB1 and McyC A domain sequences were aligned with
the Phe-activating A domain of GrsA [20] to identify the
binding-pocket residues. The binding pocket signatures of
McyC A domains (activating mainly Arg) were more or
less identical within the genus, while only five residues are
identical in binding pocket signatures from all three gen-
era (Table 6). Binding pocket signatures are more diverse
in McyB1 A domains, reflecting the diversity of amino
acid residues incorporated in position X (Table 6). Some
McyB1 modules with identical binding pocket signatures
incorporate a somewhat different set of amino acid resi-
dues (e.g. Microcystis strains N-C 357 and N-C 496, Table
6), indicating that other residues in the A domain or other

Table 2: Genetic information

Genus No of seq Length
(bp)

π Sequence 
variation

No of segregating 
sites/informative 

sites

Putative recombination events

Mosaic structure 
of informative 

sites

Detected by 
programs of 

RDP2 package

Detected by 
SplitsTree

(Phi test for 
recomb)

Anabaena
mcyB 21 1068 0.032 0–6% 100/79 Y Y Y, (P < 0.01)
mcyC 21 1068 0.009 0–2.4% 31/28 Y N Y, (P < 0.01)
mcyBC 42 1068 0.036 0.7–7.2%* 107/94 Y Y Y, (P < 0.01)

Microcystis
mcyB 12 1059/1062 0.033 0–6.3% 111/57 Y Y Y, (P < 0.01)
mcyC 18 1059/1062 0.035 0–7.1% 131/99 Y Y Y, (P < 0.01)
mcyBC 30 1059/1062 0.073 8.6–12.4%* 222/192 Y Y Y, (P < 0.01)

Planktothrix
mcyB 18 1080 0.023 0–3.6% 61/61 Y Y Y, (P < 0.01)
mcyC 18 1068 0.003 0–1.2% 27/0 N N N
mcyBC 36 1068/1080 0.158 29.8–30.8%* 354/353 N N Y, (P < 0.01)&

Comparison of adenylation domains between genera
mcyB1 51 1062–1080 0.206 27–34%# 487/487 N‡ N‡ N‡

mcyC 57 1068 0.161 18–29%§ 411/411 N‡ N‡ N‡

π Nucleotide diversity – the average number of nucleotide differences per site between two sequences
* Sequence variation between mcyB1 and mcyC sequences
# Sequence variation is 27–30% between Anabaena and Microcystis, 30–32% between Anabaena and Planktothrix, 32–34% between Microcystis and 
Planktothrix.
§ Sequence variation is 26–29% between Anabaena and Microcystis, 18–19% between Anabaena and Planktothrix, 23–26% between Microcystis and 
Planktothrix.
‡ Recombination detection between genera
&Recombination detected within mcyB1
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(A) Phylogenetic analysis of adenylation domains of McyB1 and McyCFigure 2
(A) Phylogenetic analysis of adenylation domains of McyB1 and McyC. The Bayesian tree is shown with support from 
maximum likelihood tree (1000 replicates and neighbor-joining tree (1000 replicates). Bayesian posterior probability/ML boot-
strap/NJ bootstrap values are shown. Only bootstrap values above 50% are shown. Adenylation domains of McyB1 and McyC 
from all genera are indicated by red and green, respectively.
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domains, such as the condensation domain influence
substrate specificity. A role of the condensation domain in
substrate selection has been suggested by several studies
(for a review, see [18]).

Adenylation domains and selective forces
An excess of synonymous over non-synonymous substitu-
tions (ω < 1) (Table 7) was observed in all data sets, indi-
cating that the A domains of McyB1 and McyC overall are
under purifying selection in all three genera. Small frac-
tions (0.3–10.4%) of codons under positive selection
were detected in all data sets except for McyC from Plank-
tothrix (Table 7). The number of potential sites under pos-
itive selection with statistical support (P > 90%) ranged
from 3 to 8 (Table 7) and their positions in the A domain
alignment are shown in Figure 7. Interestingly, in both
Anabaena data sets as well as in the Planktothrix McyB1
data set, the binding pocket residue 278 (Figure 7, Table
7) appears to be under positive selection. In the Microcystis
McyC data set, this is also the case for the amino acid res-
idue between binding pocket residues 299 and 301 (Fig-
ure 7). Among residues not present in binding pocket
signatures, site 205 in the McyC alignments in both Micro-
cystis and Anabaena and site 350 in both Microcystis data
sets (Figure 7) were suggested to be under positive selec-
tion.

Branch-site models were used to detect possible positive
selection acting on the McyB1 sequences from Anabaena
and Planktothrix strains that incorporate Hty in position X.
(Table 1, Figure 2). There were no statistically significant
differences between the log-likelihood values of the alter-
native models and the null models (data not shown),
indicating no evidence for positive selection in domains
incorporating Hty.

Discussion
This study is so far the most extensive comparative analy-
sis of microcystin synthetase adenylation domains for the

modules McyB1 and McyC. The phylogenetic trees of the
108 adenylation domain sequences showed clustering
according to module and genus (Figure 2). Our data set
revealed no signs of recombination between genera, in
agreement with previous studies on mcy genes [3,21] and
similar studies from other NRPS gene clusters [19,22].
This also is in line with other studies that show that the
rate of successful homologous recombination rapidly is
reduced with increased genetic distance [23-25].

The evolutionary history of the McyB1 A domain
It is not clear at present which of the two types of A
domains in McyB1, was present in the ancestral microcys-
tin synthetase. A B-type ancestral A domain implies that
after segregation of the genera, some Microcystis strains
and all Anabaena and Planktothrix acquired a C-like type of
A domain in McyB1, most likely through intragenomic
recombination between mcyB1 and mcyC, as suggested for
Hapalosiphon hibernicus and Anabaena strain 18B6 [3]. If
the ancestral McyB1 A domain was C-like, some Micro-
cystis strains must have obtained a novel McyB1 A
domain, presumably through recombination with a dif-
ferent NRPS gene cluster. Recently, the presence of a Leu-
activating, B-type McyB1 A domain was reported in two
Nostoc strains [3] and this may in contrast strengthen the
hypothesis that the ancestral A domain in McyB1 was B-
type. However, the B-type A domain sequences from
Microcystis and Nostoc seem to be separated by rather long
phylogenetic distances, suggesting that these A domains
were introduced in the McyB1 module by two independ-
ent recombination events [3]. Clearly, further studies are
needed to clarify the evolutionary history of the McyB1 A
domain.

Genomic processes reshaping the adenylation domains of 
McyB1 and McyC
Our results suggest that recombinations as well as point
mutations contribute to variation in the A domains of
modules McyB1 and McyC. Within Anabaena and Micro-
cystis, frequent recombination was suggested both within
and between mcyB1 and mcyC sequences (Figures 3, 4 and
5, Tables 4 and 5). The low sequence variation (0–1.2%)
within Planktothrix mcyC sequences makes it difficult to
detect recombination, since for the majority of methods,
a minimum sequence variation of 5% is necessary to
obtain substantial power [26]. The large sequence diver-
gence between Planktothrix mcyB1 and mcyC sequences
might prevent homology-driven recombination, which
requires a relatively high level of sequence similarity
between the donor and recipient DNA. In Planktothrix, the
longest identical DNA segment shared by mcyB1 and mcyC
(18 bp) may be too short for initiation of RecA-mediated
recombination [27-29]. Within Anabaena and Microcystis,
the high sequence similarity between these gene segments
appears to be maintained by frequent recombination

Table 3: Recombination and mutation rates

Genus Region analyzed ρa ΘW
a ρ/ΘW

Anabaena mcyB1 0.0234** 0.0206 1.136
Anabaena mcyC 0.0178* 0.0086 2.070
Microcystis mcyB1 0.0226** 0.0346 0.653
Microcystis mcyC 0.0273** 0.0359 0.760
Planktothrix mcyB1 0.0102** 0.0164 0.622
Planktothrix mcyC 0.0019# 0.0076 0#

a recombination rate (ρ) and mutation rate (ΘW) per base
* P < 0.05 for at least two of three permutation tests implemented in 
LDhat package
** P < 0.001 for at least two of three permutation tests implemented 
in LDhat package
# All three permutation tests suggested that recombination rate is not 
significantly different form 0.
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events. Recombination between different domains, such
as mcyB1 and mcyC, has in some cases lead to replacement
of a nearly entire A domain (in Anabaena 18B6) and in
others to replacement of a functionally important part of
the domain in McyB1 (in Microcystis N-C 264) (Figure 3).
In both cases this has resulted in a change of functionality
(i.e. amino acid activated) and subsequent production of
microcystin-RR.

Our results, together with previous reports [3,11,15], indi-
cate that various types of recombination lead to a contin-
ual restyling (remodelling) of the adenylation domains of
microcystin synthetase. Recombination within a single
domain appears to be frequent and may have little impact
on the type of amino acid activated. Recombination
between mcyB1 and mcyC appears to be frequent in some
genera and may result in changes in the microcystin pro-

Table 4: Recombination detected within mcyB1 and mcyC data sets by RPD, GENECONV and MAXCHI2

Strains involved RDP
fragment,

P value

GENECONV MaxChi,
fragment,

P value

(g = 1)
fragment,

P value

(g = 0)
fragment,

P value

Putative recombination events detected within mcyB1

Anabaena
318 (BIR246, N-C 269/2, N-C 269/6)
66A

102–594
0.0015

102–594
0.008

-- --

18B6
288

17–457
<0.001

17–457
0.013

-- 17–457
<0.001

66A (315, BIR246)
1TU30S4

828–1062
<0.001

828–1062
0.026

828–1062
<0.001

--

N-C 269/6 (N-C 269/2, 315)
18B6 (1TU44S16)

528–742
0.05

528–742
<0.001

528–742
<0.001

528–742
<0.001

N-C 83/1 (1TU31S9, 1TU30S4)
1TU46S11

777–858
<0.001

777–858
<0.001

-- --

315
288

725–997
0.016

725–997
0.0015

725–997
<0.001

725–997
<0.001

Microcystis
N-C 357 (N-C 57, N-C 143, N-C 228/1)
NIES 102

879–925
<0.001

879–925
<0.001

879–925
<0.001

879–925
<0.001

Planktothrix
CCAP 1459/30
31/1

393–606
0.026

-- -- 393–606
0.006

111 (3, 64)
SAG 6.89

755–843
0.008

607–884
0.048

607–884
0.02

--

79
CCAP 1459/30

567–843
0.0125

-- 520–877
0.013

550–843
<0.001

79
31/1

878–1050
0.016

875–1080
0.05

875–1080
0.016

--

N-C 126/8
80

-- 520–877
0.05

520–877
0.009

550–843
<0.001

Putative recombination events detected within mcyC

Anabaena -- -- -- --

Microcystis
N-C 161/1 (N-C 171/10, N-C 324/1, N-C 264)
N-C 228/1

1–203
0.0016

1–246
0.019

-- --

Planktothrix -- -- -- --

Events detected by two or more methods are listed.
Page 9 of 20
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:256 http://www.biomedcentral.com/1471-2148/8/256
file of the recombinant strains. Successful recombination
between A domain regions from different NRPS gene clus-
ters [14,15] were found to be infrequent in the strains
investigated here.

Positive selection in the adenylation domains of McyB1 
and McyC
Overall, the adenylation domains of McyB1 and McyC
seem to be under purifying selection, as shown previously

Table 5: Recombination detected between mcyB1 and mcyC by RPD, GENECONV and MAXCHI2

Strains involved RDP
fragment,

P value

GENECONV MaxChi,
fragment,

P value

(g = 1)
fragment,

P value

(g = 0)
fragment,

P value

Anabaena
McyB1 288
McyC 66A

-- 132–426,
0.001

132–429,
<0.001

132–426,
<0.001

McyB1 1TU44S16
McyC 66A 
(18B6, 90, 318, 258, 202A1/35, 1TU44S16, 1TU32S11, 288, 202A2/41, 0TU33S16, 
315, BIR246, N-C 267/4, N-C 269/2, N-C 269/6)

742–864,
<0.001

742–864,
<0.001

-- 742–864,
<0.001

McyB1 st 288
McyC 202A1/35 (202A2/41)

-- 311–432
0.0014

311–432,
0.0011

311–432,
<0.001

McyB1 1TU46S11
McyC N-C 83/1 (N-C 270/1)

742–864
<0.001

742–864
<0.001

-- --

McyB1 258
McyC N-C 269/6

-- 103–456,
0.001

103–456,
<0.001

80–599,
<0.001

Microcystis
McyB1 N-C 264
McyC N-C 31 (N-C 57, N-C 140, N-C 143, N-C 160/2)

1–279,
879–1062,

<0.001

1–279,
879–1062,

<0.001

36–210,
<0.001

--

McyB1 N-C 264
McyC N-C 31 (N-C 57, N-C 357)

707–918,
<0.001

707–918,
<0.001

795–1056
0.0013

707–918,
<0.001

McyB1 N-C 264
McyC N-C 161/1

270–795,
<0.001

262–765,
<0.001

-- 236–1056,
<0.001

McyB1 N-C 264
McyC N-C 169/7 (N-C 171/10 N-C 264, N-C 357, N-C 496)

1–279,
879–1062,

<0.001

3–270,
879–1062

<0.001

3–270,
<0.001

3–270,
<0.001

McyB1 N-C 264
McyC N-C 171/10 (N-C 324/1, UV027, N-C 140, N-C 143, N-C 160/2)

466–782,
0.00105

466–782,
0.009

466–782,
<0.001

--

McyB1 N-C 264
McyC N-C 228/1

-- 36–210,
<0.001

-- 36–210,
<0.001

McyB1 N-C 264
McyC N-C 228/1

319–766,
<0.001

319–766,
<0.001

-- 319–766,
<0.001

McyB1 N-C 169/7
McyC N-C 496

-- 238–469,
<0.001

-- 238–469,
<0.001

McyB1 N-C 264
McyC N-C 496, UV027, K-139, PCC7806

-- 3–270,
<0.001

3–270,
<0.001

3–270,
<0.001

McyB1 N-C 57
McyC N-C 143, K-139

444–769,
<0.001

444–769,
<0.001

444–769,
<0.001

--

McyB1 N-C 169/7
McyC K-139

707–915,
<0.001

707–915,
<0.001

-- --

McyB1 N-C 357
McyC N-C 264

-- 368–779,
<0.001

-- 368–779
<0.001

McyB1 N-C 357
McyC N-C 171/10

-- 879–925,
<0.001

-- 879–925,
<0.001

McyB1 N-C 228/1 (NIES102)
McyC N-C 160/2 (N-C 143)

368–779,
<0.001

368–779,
<0.001

368–792,
<0.001

--

Planktothrix -- -- -- --

Events detected by two or more methods are listed.
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for other segments of the mcy gene cluster [11,12,21],
indicating that mutations that affect the amino acid
sequence of these domains generally are deleterious.
However, the ω-values (0.2–0.49) observed in this study
are relatively high compared to ω-values reported for sev-
eral cyanobacterial house keeping genes (mainly below
0.1) [30], implying a relaxation of selective constraints.

Amino acid residues in the A domains of McyB1 and
McyC that seem to be under positive selective pressure are
located throughout the entire analyzed sequence (Figure
7). Among the positively selected amino acids, residues
included in binding pocket signatures are particularly
interesting, since they may influence the active site selec-
tivity [31,32]. The amino acid change Phe→Cys in bind-
ing pocket position 278 (Table 6) in the McyB1 sequences
of Anabaena is an example of this. According to the pep-
tide profiles of the Anabaena strains (Table 1), this change
is associated with the incorporation of Hty/Leu, rather
than only Leu (or Leu/Arg). Also, the Leu→Phe exchange
at the binding pocket position 278 in the McyB1
sequences of Planktothrix (Table 6) is associated with a
change in incorporation from Hty to Arg. One could

hypothesize that positive selection of these and other res-
idues in the synthetases reflect selection of a particular
peptide profile produced by the corresponding strains.
Such a causative relationship between these specific
genetic changes and phenotypic effects remains to be
demonstrated.

Interestingly, a binding pocket residue under positive
selection is also present in the McyC sequences of Ana-
baena (Figure 7). Since all McyC modules studied here
mainly incorporate Arg, the selection seemingly does not
concern gross substrate specificity. Other properties, like
NRPS catalytic efficiency or the ability to produce minor
variants, might be the properties selected for. Also in
McyB1 sequences from all genera there are several posi-
tively selected amino acid residues not associated with
substrate selectivity, indicating that some other property is
selected for in these A domains. This could for instance
again be changes in the catalytic efficiency or in the inter-
actions between neighboring domains and modules.

Sequence comparisons show that the A domain of McyC
is more conserved than the McyB1 A domain – also

Informative sites in Anabaena, Microcystis and Planktothrix mcyB1C data setsFigure 3
Informative sites in Anabaena, Microcystis and Planktothrix mcyB1C data sets. Informative sites are defined as posi-
tions with at least two different nucleotides in which each of the variants occurs at least twice. Identical nucleotides have the 
same colour and the colours thus display phylogenetic affinity.
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reflected by the lack of amino acid variation in position Z
of the produced peptides. Within Planktothrix, a lower
recombination rate and stronger purifying selection com-
pared to Anabaena and Microcystis indicate stronger func-
tional constraints.

Conclusion
Our results revealed no clear indications of recombina-
tion across the genera, while frequent recombination
events both within and between mcyB and mcyC
sequences were detected between strains from same
genus, except for mcyC from Planktothrix. We demonstrate
remodelling of mcyB and mcyC genes including evidence
for positive selection acting at some sites, indicating that
the microcystin variant profile of a given strain is likely to
influence the ability of the strain to interact with its envi-
ronment.

Splits decomposition analysis of adenylation domain encoding sequences of mcyB1Figure 4
Splits decomposition analysis of adenylation domain 
encoding sequences of mcyB1. Shown are Anabaena (A), 
Microcystis (B) and Planktothrix (C). Bootstrap values over 
50% are shown.

Splits decomposition analysis of adenylation domain encoding sequences of mcyCFigure 5
Splits decomposition analysis of adenylation domain 
encoding sequences of mcyC. Shown are Anabaena (A), 
Microcystis (B) and Planktothrix (C). Bootstrap values over 
50% are shown.

Splits decomposition analysis of adenylation domain encoding sequences of mcyB1 and mcyCFigure 6
Splits decomposition analysis of adenylation domain 
encoding sequences of mcyB1 and mcyC. Shown are 
Anabaena (A), Microcystis (B) and Planktothrix (C). mcyB1 and 
mcyC sequences are indicated by red and green, respectively. 
Bootstrap values above 50% are shown. Within mcyC 
sequences of Microcystis, all branches have bootstrap values 
ranging from 88–100%.
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Strain Adenylation domain of McyB1 Aden

Binding pocket residues Substrate
*

Binding pocket residues

235 236 239 278 299 301 322 330 331 235 236 239 278

Anabaena
N-C 83/1 D V W F F G L V D Leu, Arg D V W S
N-C 267/4 D V W C F G L V Y Hty, Leu, 

Phe, Hil, 
Hph

D V W S

N-C 269/2 D V W C F G L V Y Hty, Leu, 
Phe, Hil, 
Hph

D V W C

N-C 269/6 D V W C F G L V Y Hty, Leu, 
Phe, Hil, 
Hph

D V W C

N-C 270/1 D V W F F G L V D Leu, Arg D V W S
90 D V W F F G L V D Leu, Arg D V W C
1TU44S16 D V W F F G L V D Leu D V W C
1TU30S4 D V W F F G L V D Leu D V W C
1TU31S9 D V W F F G L V D Leu D V W C
202A1/35 D V W F F G L V D Leu D V W S
1TU46S11 D V W F F G L V D Leu D V W C
202A/41 D V W F F G L V D Leu D V W S
0TU33S16 D V W F F G L V D Leu D V W C
258 D V W F F G L V D Leu D V W C
1TU32S11 D V W F F G L V D Leu D V W S
BIR 246 D V W C F G L V Y Hty, Leu, 

Hil, Phe, 
Hph

D V W C

288 D V W C F G L V Y Hty, Leu, 
Phe, Hph

D V W S

315 D V W S F G L V Y Leu, Hty D V W S
318 D V W C F G L V Y Hty, Leu D V W C
66A D V W S F G L V Y Hph, Hty, 

Leu
D V W S

18B6 D V W S F G L V D Arg D V W S

Microcystis
N-C 31 D V W T
N-C 57 D G W T I G A V E Arg D V W T
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N-C 118/2 D V W T
N-C 140 D V W T
N-C 143 D G W T I G A V E None D V W T
N-C 160/2 D G W T I G A V E None D V W T
N-C 161/1 D V W T
N-C 169/7 D G W T I G A V E Arg, Leu D V W T
N-C 171/10 D G W T I G A V E Leu, Arg, 

Tyr
D V W T

N-C 228/1 D G W T I G A V E Arg, Leu D V W T
N-C 264 D V W T I G A V D Arg D V W T
N-C 324/1 D G W T I G A V E Arg, Leu D V W T
N-C 357 D G W T I G A V E Arg, Leu, 

Tyr
D V W T

N-C 496 D G W T I G A V E Tyr D V W T
AB2002-24 D V W T
UV027 D V W T I G A V E Arg D V W T
PCC7806 D V W T
K-139 D V W T
NIES102 D G W T I G A V E Leu, Arg, 

Tyr
D V W T

Planktothrix
3 D A L F F G V V D Arg D P W G
64 D A L F F G V V D Arg D P W G
111 D A L F F G V V D Arg D P W G
31/1 D A L F F G L V D Arg, Hty, 

Leu
D P W G

32 D A L F F G L V D Arg, Leu D P W G
39 D A L F F G L V D Arg, Leu D P W G
79 D A L F F G L V D Arg, Leu D P W G
SAG 6.89 D A L F F G L V D Arg, Leu D P W G
N-C 126/8 D A L F F G L V D Arg, Leu D P W G
80 D A L L F G F V A Hty D P W G
82 D A L F F G L V D Arg, Hty, 

Leu
D P W G

108 D A L F F G L V D Arg, Leu D P W G
PCC7821 D A L F F G L V D Arg, Leu D P W G
CCAP1459/30 D A L F F G L V D Arg, Leu D P W G
CCAP1459/11A D A W F F G L V D Arg D P W G
CCAP1459/21 D A W F F G L V D Arg D P W G
CCAP1460/5 D A L L F G F V A Hty, Leu D P W G
CCAP1459/16 D A L L F G F V A Hty, Leu D P W G

*According to isoforms produced

Table 6: Binding pocket signatures identified in A domain sequences. (Continued)
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Methods
Bacterial strains
Cyanobacterial strains were grown at the University of
Helsinki and Norwegian Institute of Water Research
(NIVA) under continuous white light at a photon irradi-
ance of 7 μmol m-2 s-1 in Z8 medium [33].

Mass spectrometry
Microcystins were extracted from lyophilized biomass col-
lected on glass fiber filters with 50% MeOH as extraction
agent. A detailed description of the method can be found
in Rohrlack et al. [34].

For the identification of microcystins liquid chromatogra-
phy with mass spectrometric detection (LC-MS/MS) was
used. The instrumental setup included a Waters Acquity
UPLC System equipped with a Waters Atlantis C18 col-
umn (2.1 × 150 mm, 5 μm particle size) and directly cou-
pled to a Waters Quattro Premier XE tandem quadrupole
MS/MS detector. The UPLC system was set to deliver a lin-
ear gradient from 20% to 60% acetonitrile in water, both
containing 0.1% acetic acid, within 8 minutes at a flow
rate of 0.25 mL min-1. The column and auto sampler tem-
peratures were 20 and 4°C, respectively. At all times, the
MS/MS detector was run in positive electrospray mode
(ESI+). Other general settings included a source tempera-
ture of 120°C, a desolvation temperature of 350°C, a dry-
ing gas flow rate of 800 L hour-1, a gas flow at the cone of
50 L hour-1, and standard voltages and energies suggested
by the manufacturer for the ESI+ mode.

To screen extracts for microcystins, the detector was run in
total scanning mode for the mass range from 500 to 1100
Da over the entire UPLC gradient. At this stage, the cone
voltage was 60 V and the time for one scan 2 seconds.
Afterwards, all mass signals, that represented compounds
with a molecular mass within the range of 500–1100 Da,
were analyzed in fragmentation experiments. To this end,
the detector was run in daughter ion scanning mode and
the cone voltage and collision cell settings were optimized
to obtain as many fragments of the respective compound
as possible. In all cases, argon served as collision gas.
Microcystins were identified by their typical fragmenta-
tion patterns including a number of immonium ions of
amino acids, the characteristic Adda side chain fragment
(135 Da), and a number of ring fragments. Identification
was further supported by comparing fragmentation pat-
terns with those of Microcystin LR, RR and YR standards
that have been purchased from Sigma-Aldrich and by
using the fragmentation simulation software HighChem-
Mass Frontier (version 3). The precise positions of
demethylations in microcystin molecules were not deter-
mined.

DNA extraction, PCR amplification and sequencing
For microcystin-producing Anabaena strains supplied by
the University of Helsinki strain collection, DNA was
extracted from dried cell matter with Qiagen DNeasy
Plant Mini Kit (QIAGEN GmbH, Hilden, Germany).
Strains from NIVA were lysed according to Chromczynski
and Rymaszewski [35] and PCR performed directly on the
lysate.

PCR was performed with DynaZyme II DNA polymerase
(Finnzymes, Espoo, Finland) and BD Advantage™ 2
polymerase (BD Biosciences, Palo Alto, CA, USA). Primers
used for amplification of adenylation domains from the
mcyABC operon are listed in Table 8 and their relative
positions in the mcyABC operon are shown in Figure 1.
Genus-specific primers for Microcystis and Anabaena were
designed based on the publicly available mcy gene
sequences of Microcystis aeruginosa PCC 7806 (AF183408)
and UV027 (AF458094) and Anabaena strain 90
(AJ536156). Primers used for amplifying the mcyB seg-
ment from Microcystis strains were placed as far as possible
apart from the region involved in the recombination
event between the A domain-encoding segments of mcyB
and mcyC [13,15]. The mcyB regions flanking the recom-
bination site are highly similar in all Microcystis strains
(Additional file 1, Figure S1). The PCR products were puri-
fied using E.Z.N.A Gel Extraction Kit (Omega Biotek) and
Montage™ PCR Centrifugal Filter Devices (Millipore, Bill-
erica, MA, USA). The purified PCR products were
sequenced with both external and internal primers (Table
8). Sequencing was conducted under BigDye™ terminator
cycling conditions, and sequencing reactions were puri-
fied using ethanol precipitation and separated on an
Applied Biosystems 3730xl DNA Analyzer. Chromato-
grams were examined with the program CHROMAS 2.2
(Technelysium Pty Ltd.), while editing and contig assem-
bly were performed with BIOEDIT sequence alignment edi-
tor. All sequences have been submitted to GenBank under
accession numbers EU009866–EU009922 (Table 1). Sev-
eral sequences (for Microcystis strains PCC 7806, K-139,
UV027, NIES102 and Anabaena strain 90) were retrived
from GenBank together with A domain sequences from
Planktothrix spp. generated by Kurmayer and co-workers
[11,14] (Table 1).

Sequence alignments and phylogenetic analyses
Amino acid sequences of A domains from all genera were
aligned using ClustalW [36]. The best evolution model
based on the sequence alignment was determined using
ProtTest [37]. The sequences were used to infer the phyl-
ogeny in a Bayesian framework applying the program
MrBayes v3.1 [38]. Analysis with the following parameters
was performed: JTT model, gamma distribution, running
2 million generations and sampling trees every 100 gener-
ation, burn-in 3000 trees. The maximum likelihood (ML)
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tree was estimated using PhyML [39] under the JTT model,
gamma distribution and with parameter values indicated
by ProtTest. The Neighbor joining (NJ) tree was obtained
under the JTT model and gamma distribution using MEGA

version 3 [40]. Bootstrap confidence limits were obtained
by 1000 replicates in both ML and NJ analysis. DnaSP ver-
sion 3.51 [41] was used to estimate mutation rates, based
on the number of segregating sites, using the Watterson's
estimator of Θ [42] and the average nucleotide diversity
(π) [43].

Recombination analyses and nucleotide substitution 
statistics
Recombination was investigated by split decomposition
analysis using SplitsTree version 4.8 [44] with default set-
tings (uncorrected P method) and 1000 bootstrap repli-
cates together with Phi test for recombination [45]. In
addition, the following statistical tests for detecting

recombination were used: GENECONV [46], RDP, and
MaxChi [47] analyses in the RDP version 2 b08 program
package [48]. For detecting recent and older recombina-
tion events using GENECONV G-scale values 0 and 1 were
used, respectively. Recombination was also detected by
visual analysis of informative sites (variable sites where
each variant occurs in at least two sequences) as described
by Rudi et al. [24].

The recombination rate, ρ = 2 Nr (N is the effective popu-
lation size and r is the recombination rate per nucleotide
site per generation) was estimated for each data set using
the composite likelihood method proposed by Hudson
[49] and extended to allow for finite-site mutation models
[50]. The method is based on combining the coalescent
likelihoods of all pairwise comparisons of segregating
sites. The hypothesis of no recombination was tested
using the likelihood permutation test (LPT) as in McVean

Table 7: Likelihood ratio tests of positive selection

Genus Region analyzed Model lnL Estimates of parameters ω§ Positively selected sites# LRT

Anabaena mcyB1 M7 (beta) -2249.981 p = 0.005, q = 0.01858 Not allowed 40.966***
M8 (beta and ω) -2229.498 p0 = 0.997, p = 0.005, q = 

0.021
p1 = 0.003, ω = 94.065

0.492 243W, ω = 3.717*
278C, ω = 3.935**
414L, ω = 4.053***

Anabaena mcyC M7 (beta) -1695.094 p = 0.005, q = 0.0471 Not allowed 20.476***
M8 (beta and ω) -1684.856 p0 = 0.945, p = 0.005, q = 

2.205
p1 = 0.055, ω = 6.562

0.362 125N, ω = 6.994*
148D, ω = 8.098***
151Q, ω = 7.518**
202I, ω = 6.992*
203T, ω = 7.240**
205Q, ω = 7.240***
223G, ω = 7.177**
278S, ω = 7.176**

Microcystis mcyB1 M7 (beta) -2321.128 p = 0.005, q = 0.016 Not allowed 6.729**
M8 (beta and ω) -2318.527 p0 = 0.942, p = 0.110, q = 

0.773
p1 = 0.058, ω = 2.584

0.356 350T, ω = 2.879***
352I, ω = 2.792***
389Q, ω = 2.727*
404Q, ω = 2.744*
420E, ω = 2.684*

Microcystis mcyC M7 (beta) -2674.333 p = 0.012, q = 0.0416 Not allowed 16.516***
M8 (beta and ω) -2666.075 p0 = 0.976, p = 0.015, q = 

0.0811
p1 = 0.024, ω = 4.939

0.280 158Q, ω = 3.471***
205R, ω = 3.472***
300A, ω = 3.279*
349R, ω = 3.481***
438L, ω = 3.473***

Planktothrix mcyB1 M7 (beta) -2030.973 p = 0.005, q = 0.021 Not allowed 7.93***
M8 (beta and ω) -2027.008 p0 = 0.896, p = 0.005, q = 

1.883
p1 = 0.104, ω = 2.134

0.231 259N, ω = 3.074***
262P, ω = 3.187***
278F, ω = 3.005***
347A, ω = 3.000*

Planktothrix mcyC M7 (beta) -1595.526 p = 50.84, q = 99.000 Not allowed 0.002
M8 (beta and ω) -1595.525 p0 = 1.000, p = 50.442, q = 

99.00
p1 = 0.000, ω = 0.539

0.196 None

§ calculated using estimates of parameters of best fitting model
# numbering of amino acid residues according to GrsA (swissprot: P0C061)
*90% confidence interval level
** 95% confidence interval level
*** 99% confidence interval level
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Alignment of adenylation domain sequences of McyB1 and McyC in Anabaena, Microcystis and Planktothrix strainsFigure 7
Alignment of adenylation domain sequences of McyB1 and McyC in Anabaena, Microcystis and Planktothrix 
strains. Identical amino acid residues within genus sequences are indicated by •. Positions of the conserved motifs [2] are 
shown and binding pocket residues [32] are indicated by red diamonds. Amino acid residues undergoing positive selection are 
shown in dark blue boxes. Numbering of amino acid residues according to GrsA (swissprot: P0C061).
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et al. [50] and the permutation tests which detect a
decrease in r2 and |D'|, measures of linkage disequilib-
rium, with an increase in the physical distance. Both the
composite likelihood analysis and the three permutation
tests were carried out using the LDhat package [50].

We used CODEML from the PAML v3.15 package [51] to
test for the presence of codon sites affected by positive
selection and to identify those sites under selection. A
likelihood ratio test (LRT) for positive selection [52,53]
compares two codon substitution models, one of which
accounts for positive selection and the other which does
not. The gene is inferred to be under positive selection if
(1) ML estimates suggests that there are codon(s) under
positive selection (with ω = dn/ds > 1) and (2) the LRT is
significant. Simulations by Anisimova et al. [54] showed
that high levels of recombination seem to affect dramati-
cally the accuracy of the LRT test and that recombination
often mistakenly is seen as evidence of positive selection.
LRTs of M0–M3 and M1–M2 are heavily affected, while
LRT of M7–M8 is much less (positive selection was falsely
detected in only 20% of replicates). Therefore, models M7
(beta) and M8 (beta and ω) were considered in present
study. Under the model M7 (beta), the ω ratio various
according to the beta distribution and does not allow the
positive selected sites (< ω < 1), and thus serves as the null
model by comparing with model M8 (beta and ω). Model
M8 adds an additional site class to the beta model to
account for sites under positive selection (ω > 1). A Baye-
sian approach implemented in CODEML and shown to
be robust to recombination effects [54] was used to iden-
tify residues under positive selection. The average ω for A
domain sequences was calculated using the parameters of
the best fitting model.

Branch-site models [55] were employed to test for positive
selection acting on specific branches in the phylogenetic
tree. Branches of the tree were divided a priori into fore-
ground and background lineages, and a LRT was con-
structed by comparing a model that allows positive
selection on the foreground lineages (alternative model)
with a model that does not allow such positive selection
(the null model).

Abbreviations
BS: bootstrap; LC-MS/MS: liquid chromatography with
mass spectrometric detection; MC-LR: leucine and
arginine in the positions of X and Z of microcystin; MC-
RR: arginine in the positions of X and Z of microcystin;
MC-HtyR: homotyrosine and arginine in the positions of
X and Z of microcystin; MC-YR: tyrosine and arginine in
the positions of X and Z of microcystin; ML: maximum
likelihood; NJ: neighbor joining; PP: Posterior Probabil-
ity.
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Table 8: Primers used.

Primer Sequence Annealing temp (C°)

Microcystis-mcyB-F (PCR and sequencing) 5'-CCCAAGAGCAACATCAGTTATTAGT-3' 58
Microcystis-mcyB-R (PCR and sequencing) 5'-TTCCTGTCTATCTTGCCATTGTTA-3' 57
Microcystis-mcyB-F2 (Sequencing) 5'-AACGACTCCTGAGAATTTAGCCTAT-3' 60
Microcystis-mcyB-R2 (Sequencing) 5'-GTCAATTCAGGTTGGTTGAGGT-3' 60
Microcystis-mcyC-F (PCR and sequencing)* 5'-CAAGAAAAAGGCGTAACTTCAGA-3' 55
Microcystis-mcyC-R (PCR and sequencing)* 5'-AAGGTATCTTCCCGCATAATC-3' 55
Anabaena-mcyB-F (PCR and sequencing) 5'-TGATTTGAAAAGAAAGACCCAAT-3' 56
Anabaena-mcyB-R (PCR and sequencing) 5'-ATACCCAAACAAGAGTTGCTCAT-3' 59
Anabaena-mcyB-F2 (Sequencing) 5'-ACTTATCCGCTTATCGCAGGT-3' 56
Anabaena-mcyB-R2 (Sequencing) 5'-CCCAATATGTAATTCTCCAGCA-3' 56
Anabaena-mcyC-F (PCR and sequencing) 5'-CTCAATTCTGCTACTGTTGGTTTT-3' 57
Anabaena-mcyC-R (PCR and sequencing) 5'-CTTACCCACTAAAACCTCGAACT-3' 54
Anabaena-mcyC-F2 (Sequencing) 5'-AGGTAAGCCAAAGGGAGTGAT-3' 57
Anabaena-mcyC-R2 (Sequencing) 5'-CACCTCCAATATGTAATTCTCCA-3' 57

Primers Microcystis-mcyC-F and Microcystis-mcyC-R were used in [13]
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