
UNIVERSITY OF OSLO
Department of
Geosciences

On the Vertical
Partition of Kinetic
Energy in the Ocean.
A Comparison
between Flat and
Steep Bottom Modes

Master Thesis in
Geosciences
Meteorology and
Oceanography

Helle Kristine Fuhr

22 June 2015





Abstract

Observational data from 61 moorings was used to decompose vertical velocity
fields into its modal components using two different approaches, one assuming
a flat bottom ocean and one assuming an ocean with rough topography. Also an
analytical solution with idealized stratification was calculated. The modes were
compared to the most dominant empirical orthogonal functions (EOFs). To be able
to predict the vertical structure of the kinetic energy is of great relevance when in-
terpreting surface velocity fields measured by altimeters. The results show that the
most dominant EOF on average accounts for 75% of the variance and resembles
the shape of a first baroclinic steep bottom mode. We are able to predict the struc-
ture in the pycnocline layer fairly well for the mooring located in the mid-latitudes
as long as they are not too close to the coast or in shallow areas. For the high
latitudes the picture is more complicated. An analysis of the flat bottom mode is
also carried out and gives results in agreement with previous studies finding the
barotropic and first baroclinic modes to account for most of the column-averaged
kinetic energy. The question remains if we should interpret the dominant EOF as a
coupling between the barotropic and first baroclinic mode, or as the first baroclinic
steep bottom mode. If the latter is true only one mode is needed for interpret-
ing altimeter data and the dominant elements for the kinetic energy will be the first
baroclinic mode, and a bottom trapped topographic wave which is independent and
do not have to be correlated to the baroclinic modes.
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Chapter 1

Introduction

"How inappropriate to call this planet Earth when it is clearly Ocean."
-Arthur C. Clarke

70% of the Earth is covered by the ocean. The ocean stores vast amounts of ther-
mal energy and is therefore an important factor for the climate on Earth. The heat
is carried from the Equator towards the poles by currents. The currents are either
wind driven, or set up by density differences. The wind driven circulation is fairly
well understood. Sverdrup [1947] related the curl of the wind stress to the transport
in the upper ocean, and Stommel [1948] showed that there is an asymmetry in the
ocean gyres resulting in a western boundary current. The two theories combined
explains the general picture we see when looking at the World Ocean from above.

In 1992 NASA and the French space agency (CNES) launched the oceanographic
satellite TOPEX/ Poseidon, a satellite designed to observe sea surface height (SSH).
The mission revolutionized oceanography providing scientists with global cover-
age of the SSHs every 10 days. 23 years later over 4000 publications from 20
different countries have been related to altimeter data from TOPEX/ Poseidon, and
the succeeding satellites Jason 1 and Jason 2 [NASA, n.d.]. The 4th generation
oceanographic satellite, Jason 3, is scheduled to be launched 22 July 2015.

The altimeter data together with sea surface temperatures (SSTs) and sea surface
salinities (SSSs) from satellite data is used used to e.g. keep track of sea level rise
by monitoring the total volume of the ocean, look at seasonal heating and cooling
of the ocean, follow how the heat is transported with the circulation patterns and to
track ocean eddies [NASA, n.d.]. The forecasting models have also improved after
global altimeter data became available. From the altimeter data one can calculate
the slope of the sea surface and the surface geostrophic currents can be found. The
satellite data is of great value for understanding the ocean surface and its circula-
tions patterns. The interior circulation however, is less documented. Measurements
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2 CHAPTER 1. INTRODUCTION

of the vertical current profile are tedious and expensive. The spatial and temporal
coverage of the ocean surface is not achievable for the interior ocean. This has
motivated several studies on how to extrapolate the surface geostrophic current to
below the surface.

In literature there are two main approaches on how to extrapolate the surface sig-
nal below the surface. One method is to use vertical modes. Wunsch [1997] found
that much of the World Ocean is dominated by the barotropic and first baroclinic
mode. Another result, that has remained a corner stone for interpreting altimeter
data, is that the SSH to a first approximation reflects the first baroclinic mode. This
is consistent with Wunsch & Stammer [1997] who observed that the length scale of
zero crossing of the spatial autocorrelation of the SSH and the first Rossby defor-
mation is proportional. Thus, the first baroclinic mode processes are dominating
the observed SSH fluctuations. Scott & Arbic [2007] finds a surface energy budget
that is very similar to the first baroclinic mode energy budget, using a two-layered
model of quasigeostrophic turbulence. This is supported by Smith & Vallis [2001]
who used simulations to look at quasigeostrophic turbulence. When simulating an
oceanlike stratification their findings showed that the first baroclinic mode domi-
nates over the barotropic mode contribution to the surface kinetic energy.

The second approach is based on surface quasigeostrophic (SQG) theory. The
three-dimensional circulation in the upper ocean is assumed to be in geostrophic
balance, and the potential vorticity (PV) in the interior of the fluid is assumed to be
zero. The surface boundary is observed from the satellites, via surface temperature
anomalies. By matching the surface boundary conditions to a reference solution,
an approximation to the 3D circulation is found. The method was explored by
Lapeyre & Klein [2006] who used simulations of the Antarctic Circumpolar Cur-
rent, and LaCasce & Mahadevan [2006] who applied the SQG approximation to
in situ observations in several regions. Both studies assumed a constant Brunt-
Väisälä frequency, and they found that the SQG model gives reasonable results for
the qualitative structure of the subsurface flow. However, it consistently underes-
timated the strength. LaCasce [2012] looked at a modified version of the SQG
model with a more realistic stratification where the Brunt-Väisälä frequency was
assumed to decay exponentially with depth. This made matters worse weakening
the velocities even further.

Scott & Furnival [2012] introduced a modified version of the SQG approach, using
a surface boundary condition that matches the SSHs rather than the SSTs. This
changed the surface boundary condition from Neumann to Dirichlet. The result-
ing set of basis functions was compared with the traditional first baroclinc and
barotropic mode and a phase locked linear combination of those two modes. They
found the new basis functions to preform the best below 1200 m. A combination
between the SQG method and the barotropic and first baroclinic modes was inves-
tigated by Wang et al. [2013]. They used model simulations of the North Atlantic
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to test the approach and the subsurface velocity fields and density fields was suc-
cessfully predicted down to about 1000 m depth.

LaCasce & Wang [2015] (unpublished) are looking into the influence of topog-
raphy using steep bottom modes with exponential stratification. The anticipation
is that the first baroclinic steep bottom mode is sufficient to predict the subsurface
flow. In this thesis we are applying this idea to in situ observations. We are looking
at steep bottom modes using realistic stratification, and compare this to an analyt-
ical solution using exponential stratification. We also look at flat bottom modes
and compare our results to Wunsch [1997]. EOFs are used to find patterns in the
vertical structure, which is compared to the two sets of dynamical modes.

Background theory on ocean stratification and the governing equations is presented
in chapter 2. In chapter 3 the reader is introduced to the data sets and methods used
for the thesis. Results and discussion are presented in chapter 4 before a summary
and some concluding remarks are given in chapter 5.

1.1 Motivation

Figure 1.1: Typical EOFs for the horizon-
tal velocity component, 1 being the mode
of interest representing the most domi-
nant structure. Source: Wunsch [1997]

The ultimate goal is to be able
to construct a full three-dimensional
wavenumber and frequency spectrum
from the sea surface information ob-
tained from satellites. A method that
successfully reconstructs the subsur-
face fields from altimeter data will
broaden our understanding of the
ocean tremendously. The focus for
this thesis will be on the mechanisms
that sets the vertical structure in the
ocean.

Wunsch [1997], hereafter referred to as
W97, used observational data from 103
moorings located mostly in the north-
ern hemisphere and with greatest cov-
erage in the Atlantic ocean to analyze
the vertical partition of kinetic energy.
The analysis of the vertical structure
was done separately for the velocity
components in east-west direction, u,
and north-south direction, v. The data
was filtered to a once per day value,
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and the time means were removed. Linear dynamical modes was calculated from
annual mean climatology, assuming a flat bottom. The velocities was projected
onto the modes using a linear mode fit described in section 3.3. The surface ki-
netic energy was calculated separately and compared to global surface geostrophic
kinetic energy estimated from local slopes of three years of TOPEX/ Poseidon data.

The study concludes that the barotropic and first baroclinic modes are the two
dominant ones over much of the World Ocean. This has later been supported by
analysis of observations by Argo float data [Cabanes et al., 2008], observations
from satellite data [Chelton et al., 2011] and by model simulations [Smith & Val-
lis, 2001]. The altimeter is, according to W97, to a first approximation reflecting
the movement of the thermocline, as the surface kinetic energy is dominated by the
first baroclinic mode. Even though there are several limitations pointed out in the
study, this result is extensively used in literature. It is argued that the barotropic
and first baroclinic modes are canceling each other below the thermocline, and that
the barotropic mode is more important below the thermocline. Together the two
modes should account for as much as 90% of the water column-average kinetic
energies. W97 shows using empirical orthogonal functions (EOFs) (see figure 1.1)
that the barotropic and baroclinic modes are the most dominant ones by saying that
the most dominant EOF looks like a linear combination of the two modes. We
will argue that the dominant function might depict the first baroclinic steep bottom
mode.

When using steep bottom modes one is assuming that the flow at the bottom is
zero. This changes the bottom boundary condition, forcing the modes to go to zero
at the bottom. The barotropic mode vanishes and is replaced by a bottom trapped
topographic wave [Pedlosky, 1979]. The first baroclinic mode has no zero crossing.
W97 claims that the EOFs in figure 1.1 are typical results both in his investigation
and in literature. We see that the structure of function 1 is similar to what we would
expect from steep bottom modes. Function 2 could be a topographic wave. The
aim of this thesis is to answer if the dominant function from the EOFs should be
interpreted as a coupling between the barotropic and first baroclinic mode, or if
this simply represents the first baroclinic steep bottom mode.



Chapter 2

The Oceans Vertical Structure

The stratification of the ocean determines the dynamical modes, which tells us
something about what the vertical velocity profile look like. In this chapter a brief
introduction of ocean stratification is given before the governing equations are in-
troduced. We look at analytical solutions for flat and steep bottom modes assuming
both constant and exponential stratification. When using stratification from obser-
vations we have to rely on numerical methods to solve the problem. This will be
introduced in chapter 3.

2.1 The Density Structure

Figure 2.1: Conceptual diagram of the
vertical structure of the upper ocean, and
the forcing and physics that govern its
existence. Source: Sprintall & Cronin
[2001]

The ocean is divided into layers depen-
dent on the density. The layering of the
ocean is called stratification. In real-
ity the ocean is continuously stratified.
However, when describing the ocean
we often divide into three layers: the
mixed layer, the pycnocline layer and
the deep layer. At high latitudes, the
structure differs from the normal and
we do not always see a three layered
structure. The depth of the layers are
dependent on temperature and salinity,
and might change with seasons. The
surface of the ocean is heated by the
sun and becomes warmer, and hence
lighter, than the deep waters. Fresh wa-
ter input is also contributing to mak-
ing the upper layers less dense. Grav-
ity separates the layers such that the
heavier waters lies below lighter water

5



6 CHAPTER 2. THE OCEANS VERTICAL STRUCTURE

[Sprintall & Cronin, 2001].

The density gradient between the surface layer and the deep layer is called the
pycnocline. This is the region where the density is increasing rapidly with depth.
In most of the ocean the density structure is set by temperature differences, mak-
ing the pycnocline a thermocline. At high latitudes the salinity is more important
than temperature in determining the density, making the pycnocline a halocline. In
some areas a seasonal pycnocline can appear due to surface heating from the sun
in mid-latitudes, or fresh water input from rainfall, rivers or ice melt in subpolar
regions (see figure 2.1). For this thesis, when referring to the pycnocline we mean
the permanent pycnocline that is present regardless of season. When talking about
the surface layer, we are referring to the layer above the pycnocline.

The pycnocline is important for determining the physical and biological properties
in the ocean and the strong density gradient inhibits vertical motion across the pyc-
nocline. The surface layer is influenced by the air-sea exchanges of wind and heat.
Turbulent mixing, waves, and strong surface currents are induced. Below the base
of the pycnocline the waters has not seen the surface for a long time [Sprintall &
Cronin, 2001]. The density increases steadily with depth. Within this deep layer
the waters no longer feel the winds at the surface and motion is often slow through-
out most of the water column. The velocities can be intensified towards the bottom
due to bottom currents or topographic waves.

Figure 2.2: A parcel displaced vertically
a distance δz without altering the back-
ground field. The equations denotes the
density of the parcel and the background
field respectively. Source: Vallis [2006]

To understand the property of the pycn-
ocline it is useful to introduce the con-
cept of stability. We consider a wa-
ter column initially at rest in a con-
stant gravity field. A small parcel is
then moved vertically a small distance
without altering the background pres-
sure field. If the parcel is lighter than
its new surroundings it will accelerate
upwards until it reaches waters with
the same density. The fluid is then
statically unstable with lighter waters
above heavier water. If, however, the
parcel is heavier than its surroundings
the parcel will sink back towards its
original position and oscillate around
this depth. Such a fluid is statically sta-
ble. To help us quantify the stability we
use the Brunt-Väisälä frequency, N2.
If N2 < 0 the water column is unsta-
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ble, if N2 = 0 it is neutrally stable and if N2 > 0 it is stable.

Figure 2.2 shows how this is expressed mathematically. Following Vallis [2006]
a parcel is displaced adiabatically a distance δz. The potential density ρθ of the
parcel is conserved. The parcel is displaced vertically from z to z + δz. The pres-
sure at z + δz is used as the reference level. The difference in density between the
parcel and its surroundings is then

δρ = ρθ(z + δz)− ρ̃θ(z + δz) = ρθ(z)− ρ̃θ(z + δz) (2.1)

= ρ̃θ(z)− ρ̃θ(z + δz) = −∂ρ̃θ
∂z

δz,

where ρ is the in situ density of the parcel and the density of the environment is
noted with a tilde. The upward force on the parcel we displaced is

F = −gδρ = g
∂ρ̃θ
∂z

δz. (2.2)

Newton’s second law gives

∂2δz

∂t2
=
g

ρ

(
∂ρ̃θ
∂z

)
δz = −N2δz, (2.3)

where
N2 = − g

ρ̃θ

∂ρ̃θ
∂z

. (2.4)

Density variations in the ocean are usually small compared to the mean density.
The Bousinessq approximation is therefore considered to be valid for the ocean,
saying that the density is constant except in the buoyancy term. This is the same as
saying that we have an incompressible fluid. The Brunt-Väisälä frequency is then
approximated to

N2 = − g

ρc

∂ρ̃θ
∂z

, (2.5)

where ρc denotes a constant density. The Brunt-Väisälä frequency is a key factor
in determining the shape of the baroclinic modes. In the following section we will
introduce the governing equations, ending at the eigenvalue problem giving us the
vertical structure in terms of dynamical modes.

2.2 Baroclinic modes

The following theory is based on the books by Pedlosky [1979] and Vallis [2006]
and on the compendium "Atmosphere-Ocean dynamics" by LaCasce [2014].

In a barotropic flow the isobars are parallel with the isopycnals resulting in the
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same velocity throughout the water column. A baroclinic flow has different speed,
and can also change direction throughout the water column. Calculating the dy-
namical modes says something about the vertical structure of the ocean. The modes
originate from the governing equations.

The velocities in the ocean are governed by the momentum equation

D

Dt
~u+ fk̂ × ~u = −1

ρ
∇p− gk̂ + ~F , (2.6)

where the first term on the left hand side D
Dt~u = ∂t + ~u · ∇~u describes the acceler-

ations and the second term is related to the rotation of the earth and describes the
Coriolis force. The first term on the right hand side represent the pressure forcing
and the second term is the forcing due to gravity. The last term represent friction.
Separating the momentum equation into its components gives

∂tu+ u∂xu+ v∂yu+ w∂zu− fv =
1

ρ
∂xp+ Fx (2.7)

∂tv + u∂xv + v∂yv + w∂zv + fu =
1

ρ
∂yp+ Fy (2.8)

∂tw + u∂xw + v∂yw + w∂zw = −1

ρ
∂zp− g + Fz (2.9)

where u, v and w is the velocities in x, y, z direction respectively, f is the Corio-
lis parameter, ρ is the density, p is the pressure, g is the gravity and F is the friction.

Vorticity is a measure for the rotation of a fluid. Since we are living on a rotating
earth we have to consider our equations both in a fixed frame and in a rotational
frame. We divide the vorticity into relative vorticity

~ζ = ∇× ~u = (∂yw − ∂zv, ∂zu− ∂xw, ∂xv − ∂yu) (2.10)

and the rotational term, or the planetary vorticity, 2~Ω. Adding the two terms to-
gether gives the absolute vorticity

~ζa = ∇× (~u+ ~Ω× ~r) = ~ζ + 2~Ω. (2.11)

By doing a scaling analysis we find that on a synoptic scale the horizontal velocities
are much bigger than the vertical velocities, thus the vertical component of the
vorticity is the most important

ζa · k̂ = (∂xv − ∂yu) = 2Ω sin(θ) = ζ + f, (2.12)

where f is the Coriolis parameter. We also assume that friction is small, that the
fluid is incompressible (Boussinesq approximation), and we are making use of the
β-plane approximation. The momentum equation is then, in x direction reduced to

∂tu+ u∂xu+ v∂yu− fv =
1

ρc
∂xp (2.13)
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and in y direction we have

∂tv + u∂xv + v∂yv + fu =
1

ρc
∂yp. (2.14)

We take the x derivative of 2.14 and subtract the y derivative of 2.13 to get the
vorticity equation

DH

Dt
(ζ + f) = −(ζ + f)(∂xu+ ∂yv) = (ζ + f)∂zw (2.15)

where DH
Dt = ∂t + u∂x + v∂y. By integrating the vorticity equation over depth

we can show that for a barotropic fluid, in the absence of friction, the potential
vorticity (PV) is conserved. This is also true for a baroclinic fluid by choosing a
scalar field that is a function of density and pressure alone. No such restrictions are
necessary for a barotropic fluid.

The quasi-geostrophic vorticity equation is commonly used on synoptic scales.
A geostrophic current is one where there is a balance between the pressure gradient
force and the Coriolis force. The velocity is divided into a geostrophic component
and an ageostrophic component

~u = ~ug + ~ua (2.16)

where we assume that ~ua � ~ug. In other words, we assume that the Rossby
number ε is small. We also assume that |βy| � f and that the bottom topography
is weak. The streamfunction is defined as

ψ =
p

ρcf0
. (2.17)

The velocity and vorticity can then be expressed by

u = −∂yψ, v = ∂xψ, ζg = ∇2ψ. (2.18)

By implementing the streamfunction and the assumptions above the vorticity equa-
tion can be expressed by

(∂t − ∂yψ∂x + ∂xψ∂y)(∇2ψ + f) = f0∂zw. (2.19)

This equation has two unknowns, namely ψ and w. In order to solve the problem
for a baroclinic flow where vertical shears are present, we need a second equation.

The density equation is based on the assumption that the vertical velocities are
small, which gives a balance between the pressure gradient and the gravity force in
the vertical. This is known as hydrostatic balance and is considered to be a good
approximation on synoptic scale. The thermodynamic equation for the ocean is

Dρ

Dt
= ∂tρ+ ~u · ∇ρ = 0. (2.20)
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Since we have assumed hydrostatic balance we can divide the pressure and the
density into a stationary background field, and a moving part

p = p0(z) + p(x, y, z, t) ρ = ρ0(z) + ρ′(x, y, z, t). (2.21)

The background field is assumed to be much larger than the perturbations. Sub-
stituting this into the thermodynamic equation and making use of the hydrostatic
balance gives the density equation

(∂t − ∂yψ∂x + ∂xψ∂y)∂zψ +
N2

f0
w = 0. (2.22)

We have here used the Brunt-Väisälä frequecy N2 introduced in equation 2.5. In
this thesis we will assume a stable stratified ocean, meaning that N2 is real and
positive.

The density equation has two unknowns, ψ and w. Hence, the density equation
and the vorticity equation 2.19 can be combined. We first multiply the density
equation by f2

0 /N
2 and then take the derivative with respect to z. After some

algebra we get the following expression for the density equation

(∂t + ~ug · ∇)[∂z(
f0

N2
∂zψ)] = −f0∂zw. (2.23)

When we combine this with the vorticity equation, the terms on the right hand side
cancels out and we are left with one equation with one unknown

(∂t + ~ug · ∇)[∇2ψ + ∂z(
f2

0

N2
∂zψ) + βy] = 0. (2.24)

This equation is known as the quasi-geostrophic vorticity (QGPV) equation. When
a fluid is advected by the geostrophic flow the QGPV is conserved. The first term
represent the quasi-geostrophic relative velocity, the second term is the stretching
vorticity related to the vertical gradients in the density and the third term is the
planetary vorticity.

In order to solve for the vertical modes the QGPV equation has to be linearized,
assuming constant background flow which gives

(∂t + U∂x)[∇2ψ + ∂z(
f2

0

N2
∂zψ) + β∂xψ] = 0, (2.25)

where U is the mean zonal flow. This is a wave equation that can be solved using
Fourier transform. The wave solution is then an infinite series of sinusoidal waves.
For a linear equation individual wave solutions can be added together to obtain the
full solution. Because of the linearity of the equation we can consider the solution
for one single wave. The choice of wave solution is dependent on the boundary
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conditions.

For this thesis we will assume rigid lid at the surface, z = 0. Hence, we as-
sume that the density is constant at the surface boundary. We take the constant to
be zero, giving

∂zψ = 0, z = 0. (2.26)

At the bottom boundary, z = −H , we want to look at two different cases. For the
flat bottom case we use the same assumption as for the surface, giving

∂zψ = 0, z = −H. (2.27)

For the steep bottom case we assume that the topography is prohibiting flow at the
bottom, so that

ψ = 0, z = −H. (2.28)

The coefficients in the PV equation are constant with time and in x- and y-direction.
Since the Brunt-Väisälä frequency is varying in z-direction an appropriate choice
of wave solution will be

ψ = Re{ψ̂(z)ei(kx+ly−ωt}. (2.29)

Substitution into the linearized QGPV equation gives

∂z(
f2

0

N2
∂zψ̂) + λ2ψ̂ = 0 (2.30)

where

λ2 ≡ −k2 − l2 +
βk

Uk − ω
. (2.31)

This is called the Sturm-Liouville equation and is an eigenvalue problem. Solving
for the eigenvalues λ gives us the vertical dynamical modes, which determines the
vertical structure, ψ̂. The numerical solution to 2.30 is given in section 3.5.

2.2.1 Constant stratification and flat bottom

The solution for a constant N2, assuming flat bottom, is well know from literature.
Following LaCasce [2014] (lecture notes) we have

∂2
z ψ̂ +

N2λ2

f2
0

ψ̂ = 0. (2.32)

The general solution to this equation is

ψ̂ = A cos(
Nλz

f0
) +B sin(

Nλz

f0
) (2.33)



12 CHAPTER 2. THE OCEANS VERTICAL STRUCTURE

where A and B are amplitudes. The upper boundary condition requires B = 0. For
the lower boundary to be satisfied A either has to equal 0, for which we have no
wave, or the following requirement has to be met

sin
NλH

f0
= 0. (2.34)

This is true when
NλH

f0
= nπ (2.35)

for n = 0, 1, 2.... The vertical structure is then given by

ψ = A cos(kx+ ly − ωnt) cos
nπz

H
. (2.36)

If n = 0 we get a wave that is constant in the vertical. This is the barotropic mode.
If n = 1 the streamfunction is a cosine function that has one single zero crossing,
hence, is changing sign in the vertical. This is the first baroclinic mode. Figure
2.3a shows the four first baroclinic modes with constant stratification. We see that
the modes are symmetrical so that the amplitude at the surface has the same mag-
nitude as the amplitude at the bottom.

The density perturbation associated with the first baroclinic wave is largest in the
point where the horizontal velocities disappears. In our solution we have assumed
a rigid lid. If we however had allowed the surface to move up and down we would
have found a surface deviation with opposite sign to the maximum density pertur-
bation. The surface rises when density contours are pressed down.

2.2.2 Steep bottom modes

For the steep bottom modes the bottom boundary condition is changed forcing the
velocities to be zero at the bottom of the ocean. For a constant N we must have

cos
NλH

f0
= 0 (2.37)

for the boundary conditions to be satisfied. This is true when
NλH

f0
=
π

2
+ nπ (2.38)

for n = 0, 1, 2.... The vertical structure is now given by

ψ = A cos(kx+ ly − ωnt) cos
π/2 + nπz

H
. (2.39)

We no longer have a depth independent contribution, hence the barotropic mode
has vanished. The baroclinic modes have one less zero crossing than flat bottom
modes, and they show no flow at the bottom. The four first steep bottom modes are
given in figure 2.3b. Flows close to the bottom of the ocean are now considered
to be bottom trapped topographic waves [Pedlosky, 1979]. Such waves are not
orthogonal to the dynamical modes. The waves will influence the depth profile of
the currents, but the motion is independent of that set up by dynamical modes.
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(a) Flat bottom, constant N (b) Steep bottom, constant N

(c) Flat bottom, exponentialN (α =
2/H)

(d) Flat bottom, exponentialN (α =
10/H)

Figure 2.3: Baroclinic modes. Figure adapted from LaCasce [2012]

Topographic waves

A sloping bottom can induce topographic waves due to conservation of potential
vorticity. The waves are propagating with the shallow waters to the right. To ex-
amine the structure of the topographic wave we use the linearized QGPV equation
2.25, assuming zero mean flow and β = 0. For simplicity we assume that N2 is
constant. This gives

∂t(∇2ψ +
f2

0

N2
∂2
zψ) = 0 (2.40)

Following LaCasce [2014] we consider topography in it simplest form; a linear
slope with depth decreasing towards the north.

h = αy (2.41)

The bottom boundary condition is now

dg
dt
∂zψ +

N2

f0t
αv = 0 (2.42)

The boundary at the surface is not important for this problem as the wave will
be trapped near the bottom. We assume a plane-wave solution for the potential
vorticity equation

ψ = Re{ψ̂(z)ei(kx+ly−ωt)} (2.43)
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Substitution into 2.45 gives

∂2
z ψ̂ −

N2κ2

f2
0

ψ̂ = 0 (2.44)

where κ = (k2 + l2)1/2 is the total wavenumber. The solutions to this equation are
exponential. We are interested in the one that is decaying going up into the interior
of the water column. The vertical structure is then given by

ψ̂ = Ae−Nκz/|f0|. (2.45)

The e-folding scale is

H ∝ |f
2
0 |

Nκ
=
|f0|λ
2πN

(2.46)

where λ is the wavelength. This tell us that the larger the waves the further up
into the water column they are felt. If we have weak stratification and large waves
the topographic wave could be felt all the way up to the surface. This would give
a barotropic response analogous to the barotropic mode, though not orthogonal to
the barotropic modes.

2.2.3 Exponential stratification

A better approximation to the Brunt-Väisälä frequency is that of an exponential
stratification. LaCasce [2012] examined two cases of exponential stratification;
one with a vertical decay rate α = 2/H and a steeper one with α = 10/H . H
denotes the total depth. The density profile was described by

N2 = N2
0 e
αz. (2.47)

Substitution into 2.30 gives

d2ψ

dz2
− αdψ

dz
+
N2

0λ
2

f2
0

eαzψ = 0. (2.48)

By making the substitution ξ = eαz/2, we get

ξ2d
2ψ

dξ2
− ξ dψ

dξ
+

4N2
0λ

2

α2f2
0

ξ2ψ = 0 (2.49)

which is a Bessel-type equation. Imposing the boundary condition for the surface
gives the solution

ψ = Aeαz/2[Y0(2γ)J1(2γe−αz/2)− J0(2γ)Y1(2γeαz/2], (2.50)

where γ = N0λ/(αf0), Jn is Bessel functions of the first kind and Yn is Bessel
functions of second the kind (see figure 2.4. Imposing the flat bottom boundary
gives

J0(2γ)Y0(2γe−αH/2)− Y0(2γ)J0(2γe−αH/2) = 0. (2.51)
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We can only get solutions for discrete values, γn. Also for this case we get a
barotropic solution when γ = 0. Solution for the three first baroclinic modes for
two different cases of exponential stratification is given in figure 2.3c-2.3d. The
number of zero crossings are increasing with mode number. The amplitudes are no
longer symmetrical, but largest at the surface.

Let us consider a different boundary condition for the lower boundary. Following
LaCasce & Wang [2015] we let the velocity go to zero as the depths goes to infinity:

~v → 0, z → −∞. (2.52)

The velocities will then vanish with increasing depth and the solution is indepen-
dent of the sea floor slope. The solution which decays with depth is now on the
from

Fn ∝ eαz/2J1(
2N0

αf0Rn
eαz/2), (2.53)

where Fn is the new set of baroclinic modes and we have made used of the baro-
clinic Rossby radius Rn = 1/λ. Imposing the surface boundary condition gives

J0(
2N0

αf0Rn
) = 0. (2.54)

Figure 2.4 shows that the first value where J0 crosses zero is 2.4048. That gives a
Rossby radius

R1 =
N0

αf01.2024
. (2.55)

We then have an analytical solution to the vertical structure of the first baroclinic
mode:

F1 = Aeαz/2J1(2.4048eαz/2). (2.56)

Because of the lower boundary condition the equation was solved without a tran-

(a) Bessel functions of the first kind (b) Bessel functions of the second kind

Figure 2.4: Bessel functions. Source: MathWorld–A Wolfram Web Resource [Weis-
stein, n.d.]
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scendental equation. When imposing boundary condition 2.52 the Y1 term in equa-
tion 2.50 is dropped as it grows with depth. Y0(2γ) is a constant value which we
lump into A, leaving us with equation 2.56.

2.2.4 Realistic stratification

For this thesis we are interested in finding which of the two sets of modes men-
tioned above that best represents the column averaged kinetic energy of the water
column. To do this we calculate the modes with realistic stratification and project
the velocity profile onto the modes. This has to be done numerically, and the finite
difference approximation and methods used are presented in chapter 3.



Chapter 3

Data and Methods

3.1 The Datasets

For the analysis on partition of energy into dynamical modes and the modal fitting
described in section 3.5 we use current meter mooring observations. It is strongly
preferred that the data sets used are meeting the following requirements [Wunsch,
1997]:

• The instruments have to straddle the main pycnocline

• There should be an instrument in the upper 100 m of the water column

• There should be 6 or more instruments

• The duration should exceed two years

• The depth at the mooring location should be at least 4000 m

For this study we are looking at an alternative method to the flat bottom modes
studied by Wunsch, that is steep bottom modes, for which the last requirement can
be relaxed. The list of moorings fulfilling all of the conditions listed above are
few to none. To get a fair amount of moorings to analyze, it is chosen to relax the
number of instruments needed to 4, and the duration to only a 100 days. It is im-
portant to remember the limitations of this study introduced by not having longer
time series.

The records are obtained from the Global Multi-Archive Current Meter Database
(GMACMD) which Robert B Scott kindly has shared with us through personal
communication. The GMACMD has an emphasis on current meters and do not
have hydrography for all locations used for the thesis. For consistency the back-
ground stratification is calculated using temperature and salinity data from the
World Ocean Atlas 2009 (WOA09).

17
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World Ocean Atlas 2009

The WOA09 provides objectively analyzed climatology fields of in situ salinity
and temperature on a 1 degree grid. The analysis is based on historical data and is
an average of 5 decadal climatologies. The standard depth for the monthly fields
ranges down to 1500 m depth, whilst the annual field has standard depths ranging
down to 5500 m. For this thesis we want to be consistent with Wunsch [1997]
and are therefore using the annual data set. Seasonal variations in the background
stratification is thus not counted for. Down to 1500 meter the annual analysis
is defined as the average of twelve monthly mean fields, and below 1500 m the
analysis is defined as the mean of 4 seasonal fields. For more information see
publications for each of the WOA09 variables, tempereture [Locarnini et al., 2010]
and salinity [Antonov et al., 2010]. The dataset is available from the National
Centers for Environmental Information [NOAA, n.d.].

GMACMD

The GMACMD is an archive of physical oceanographic time series. Data is col-
lected from several sources and stored with a common format. The archive is
readily set up by running a couple of Matlab routines. The scripts run several
compile functions, generate time series in .mat format and organize the data into
sub archives based on the various sources from where the data was obtained. Both
compile routines and original data is easily accessed, and a large collection of func-
tions that serve as analyzing tools are included in the archive.

The sub archives used for this thesis are:

• OSU (from Oregon State University Buoy Group’s Deep Water)

• Wunsch 1997 (from Carl Wunsch)

• ZANTOPP (from Rainer Zantopp)

• NODC (from the United States National Oceanographic Data Center, now
NOAA)

• IFREMER (from the French Research Institute for Exploitation of the Sea)

• CSIRO (from the Australian Commonwealth Scientific and Research Orga-
nization)

To find data that served to our purpose proved to be more difficult than expected.
The archive contains data from more than 3000 moorings, and only 61 fulfilled our
requirements for the modal fitting. The locations of the moorings used are shown
in figure 3.1. The map also shows the surface potential density calculated form the
climatological fields of temperature and salinity.
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Figure 3.1: A map with the location of the moorings used and their given mooring
numbers.

The variables of interest obtained from the GMACMD are mainly the east-west
component, u, and the north-south component, v, of the velocity. The standard
measuring interval is originally 10 minutes. To remove major tidal effects the time
series are filtered to daily averages using one of the accompanying functions. In
addition the archive provides us with useful descriptive variables such as latitude,
longitude, duration, begin-/end time, instrument depths and sea floor depth. Moor-
ing information and the source from where the data was obtained is also included.

3.1.1 Data Processing Routines

The observational data from the GMACMD is not only obtained from several dif-
ferent sources, but also varies in time by decades. A variety of instruments are used
and observing practice might differ. This diversity might have an influence on the
quality, accuracy, representativeness and precision of the data used. Limitations
introduced by the instruments are discussed in section 3.2.1. To ensure that the
time series used do not have any suspect values we ran a set of quality checks pro-
vided by the GMACMD archive. The quality check routines relevant for this thesis
are presented below. We also removed spikes. For more information about the
GMACMD archive or the data processing routines, see Scott & Furnival [2013].
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Sea floor depth vs. bottom topography

The sea floor depth from the moorings was compared to a bottom topography file.
The sea floor topography used, SRTM30 PLUS v7.0, is on a 30 minutes (about 1
km) grid. The tolerance, tol1, was set to 1 m and hrms is a measure of the bottom
roughness.

|sea floor depth - topography depth | < tol1 · hrms. (3.1)

Velocity components vs. speed

The velocity components u and v have to be consistent with the speed time se-
ries. The tolerance was set to 0.005 for the magnitude and 0.001 for the standard
deviation.

max
j
|sj −

√
uj + vj | < tol2, (3.2)

where sj are elements of the speed time series, uj are elements of the zonal velocity
time series, and vj are elements of the meridional velocity time series.

Velocity components vs. direction

The direction computed from u and v was compared against the direction time
series. If αj is the elements from the direction time series and βj is the directions
computed from the velocity components, where j = 1, ..., n, then

δj = |αj − βj |, (3.3)

ej =

{
1 δj < tol∗3
0 δj ≤ tol∗3

1

n

n∑
j=1

ej < tol3 (3.4)

where tol∗3 = 2 degrees. tol3 = 0.1 is the fraction of time series points that must
have a direction error for the warning to be produces.

Removal of Data Spikes

To remove spikes all values were removed (set to NaN) from the time series if they
fail to satisfy

x− C · std(x) < xi < x+ C · std(x), (3.5)

where C is a constant set to a value of 5, and x is the mean of the time series.
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3.2 Instruments

The information in this section is based on the books by Emery & Thomson [1998]
and Joseph [2014].

Moorings allow scientists to obtain longer time series of oceanographic measure-
ments. A mooring consist of a long cable with an anchor at the bottom end and
a float at the other end. The float keeps the cable vertical and can either float at
the surface, or be a subsurface float. Measuring devises such as current meters,
temperature sensors and salinity sensors are attached to the mooring cable.

The data used for this thesis are, as mentioned above, collected from different
sources. The number of instruments used and the distribution throughout the water
column therefor vary. When using current meters the question of optimum spacing
is always an issue. Instruments are expensive and to cover as much of the water
column as possible one would want to have the instruments as far apart as possible.
At the same time it is often preferred to have the instruments close enough to each
other so that adjacent observations can be correlated. The spacing and number
of instruments has to be chosen based on the purpose of the project. The acoustic
profiling instruments is nowadays preferred above current meters as one instrument
can measure currents in several depths. The current time series used in this thesis
have been measured with a variety of instruments. The different current meters
used will be briefly introduced, and a list of instruments deployed at the different
moorings can be found in the appendix.

3.2.1 Mechanical sensors

All current measuring devices used are Eulerian. This means that the current meter
is fixed to a geographic position, measuring the flow of water passing this point. In
order to do analysis of the modes, a vertical velocity profile has to be known. To
get measurements in several layers a chain of current meters has to be used.

RCM4/5

The Aanderaa rotor current meter, RMC4, and its deep counterpart, RCM5, uses
a Savonius rotor to measure the current speed. A Savonius rotor consists of six
axisymmetric, curved blades orientated so that they are normal to the direction
of the flow. The speed is obtained from the average number of rotor revolutions
during a sample period. To find the direction the current meter is equipped with
a vane and a tail fin. The instrument is forced to rotate in tune with the current
direction. A magnetic compass finds the orientation of the instruments relative to
Earth’s magnetic north, and hence the direction of the flow.
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Figure 3.2: The mechanical instruments used in this thesis. a) The rotor current
meter (RCM4) coupled to a tailfin. Source: Aanderaa Instruments Model 4 Current
Meter Manual. b) The vector-averaging current meter (VACM). Source: Beardsley
[1987] c) The vector measuring current meter (VMCM). Source: Weller & Davis
[1980]

VACM

The vector averaging current meter (VACM) has proved to perform considerably
better in nonsteady flows and was therefore incorporated in the second generation
of Aanderaa rotor current meter, RCM7/8. Also this type of current meters uses a
Savonius rotor to measure the speed. To indicate flow direction a miniature vane
is used. The direction of the vane is recorded relative to the "zero" of the magnetic
compass. From the compass and vane output the cosine and sine of the flow relative
to Earth’s magnetic north is calculated. From this the east-west and north-south
direction is found. Calculations are done at each rotor count. After a selected
sample interval the vector-averaged mean of registers are stored.

VMCM

The vector measuring current meter (VMCM) is often used in combination with
other type of current meters. The instrument is preforming well in near-surface
conditions. Two propellers are oriented so that they only respond to flow parallel
to their axis of rotation. A compass senses the orientation of the instrument relative
to the magnetic north, and the north-south and east-west velocity components are
computed and averaged. The speed of the flow is calculated from the revolution
rate of the propellers.
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Limitations

One problematic issue when deploying instruments on a mooring is vertical dis-
placements. In the presence of strong currents the instruments can be deflected
vertically by several meters. The results during such events are biased as the in-
strument depth does not correspond to the actual depth. One should be aware that
in highly energetic regions the results might be distorted.

A major disadvantage with instruments using Savonius rotors (RCM4/5 and VACM)
is the contamination of the rotor speed. When there is wave action the mooring
moves up and down which can cause "rotor pumping" or over-speeding. The rotor
has an ability to accelerate about three times faster than it decelerates, causing an
overestimate of the measured velocities. Another problem is the lag in response
related to the direction vane. The lag, together with the rotor pumping makes the
instruments unsuitable for the upper ocean where there is a lot of waves, and the
mean current is small relative to the fluctuations. Bearing friction is also a common
problem to all Savonius rotors. The friction results in a relatively high threshold
for response. For the RCM4/5 the threshold is about 2 cm/s. That means that there
can be currents present that are too slow to be measured.

The VMCMs, with their open fan-type rotors (see figure 3.2) are easily affected
by fouling. Small fragments of unwanted material can freely flow into the rotors
and influence the measurements. There has been reported cases of small underesti-
mations of the velocities, but compared to the over-registration of velocities of the
Savonius rotor the error is small. The sensor threshold is about 1 cm/s.

3.2.2 Nonmechanical sensors

The mechanical sensors limitations when it comes to small structures, rapid changes
and weak/ strong currents has motivated the development of the nonmechanical
sensors. Highly sensitive sensors were developed using electromechanical, acous-
tic, laser and thermal technology. In this study data from acoustic Doppler current
profiler (ADCP) instruments are used.

ADCP

The ADCP is a profiling instrument taking advantage of the fact that seawater is
almost transparent to acoustic radiation. The technology used makes it possible for
the instrument to register velocities at a remote distance. The instrument can be
both bottom-mounted, sending signals upwards, or mounted close to the surface,
sending signals down the water column.

Figure 3.3 shows a schematics of the Doppler effect used to determine the velocity
and direction of the water column. The ADCP transmits pulses of sound waves at a
constant frequency into the water column. The waves are reflected back when they
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Figure 3.3: A schematic of the transmitted pulse from an ADCP and the received
signal and the change in frequency between the two after interaction with an object.
(Source: Sontec)

hit suspended particles in the moving water. Particles moving towards the instru-
ment will reflect waves of higher frequency and particles moving away will reflect
waves of lower frequency. If the particles are stationary or moving across the trans-
mitted signal, the frequency will not change. The difference in frequency between
the transmitted signal and the signal received is called the Doppler shift. From this
shift the velocity of the particle, and hence the water flow, can be calculated. The
traveling time gives the depth from where the signal was reflected. The instrument
is equipped with a tilt sensor and a compass. Signals are sent out in four directions.
An average of the two horizontal current components over the measure interval is
calculated. The direction is found from the tilt and converted to Earth coordinates
with help from the compass. The measurements are organized into vertical bins,
where the velocities are triangular-weighted averaged over the bin length selected.

There are several advantages using ADCPs over mechanical sensors. First the
ADCPs are making remote measurement, so the flow is not influenced by the in-
strument in any way. The instrument is free from friction, and hence the threshold
found in mechanical sensors is not an issue. Weak currents can therefore be mea-
sured more accurately. One limitation of the ADCP is that the result is strongly
dependent on the assemblage of "drifters" in the water column that can reflect the
acoustic signal. Very clear waters can be a problem, and swimming drifters and
bubbles can lead to miscalculations.
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3.3 Wunsch 1997, Linear mode fit

Wunsch uses data from 103 moorings, located mostly in the northern hemisphere
and with greatest coverage in the Atlantic ocean. The data is inhomogeneous in
both vertical and temporal coverage. Because of this the method used for modal
fitting is based on an a priori statistical hypothesis. It is assumed that the partition of
the kinetic energy is in the ration 1:1:1/2:1/4:1/8 for the barotropic through fourth
baroclinic modes. To calculate the modal coefficients Wunsch is using the Gauss-
Markov estimate

ᾱu(t) = P u(0)ATAP u(0)AT + σ2
nI)−1U(t), (3.6)

whereU (t) is a matrix of the velocity component, σ2
n is an estimate of the observa-

tional noise of current meters andA is a matrix with the barotropic through fourth
baroclinic mode. P u(0) is a diagonal matrix

P u = 〈ᾱu(t)ᾱu(t)T〉 ≡ E2
udiag([1 1 1/2 1/4 1/8])/2.88, (3.7)

where E2
u is an estimate of the total energy calculated from U . 2.88 is the sum of

a priori weights. This method produces a minimum variance estimate based on the
above-mentioned statistics. A similar calculation is made for ᾱv.

The a priori assumption of the partition of the energy ought to effect the results. No
such assumptions are used for this thesis, thus we do not consider the inhomoge-
neous vertical and temporal coverage. One should be careful drawing conclusions
from such a coarse coverage as this study provides. However, it is shown that the
method used produces much of the same results as Wunsch found. Namely that the
barotropic and first baroclinic modes dominate the water-column average kinetic
energies. Hence, we consider the results as reliable within their constraints.

3.4 The numerical solution

We want to solve the eigenvalue problem 2.30 with realistic stratification. We use
the climatological fields of temperature and salinity to calculate the potential den-
sity from which the Brunt-Väisälä frequency, N2, is found. The climatology is
using an unevenly spaced vertical grid of 33 standard depths. We give this grid the
name Zstandard. N2 is calculated on the mid depths of Zstandard, and we call this
grid ZN2. As the climatological data is available on a 1 degree grid, the calculated
N2 has to be interpolated to the mooring location with latitudes and longitudes
given by the GMACMD. A function written by Pål Erik Isachsen is used to cal-
culate the vertical baroclinic modes with the assumption of a flat bottom ocean
at rest. The function takes the Brunt-Väisälä frequency profile, the corresponding
depth vector (ZN2), the Coriolis parameter and the sea floor depth as inputs. The
horizontal velocity structure (the baroclinic modes) and an array with correspond-
ing depths are given as outputs. The modes are calculated on the mid depths of
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ZN2, lets call this grid Zmodes.

We want to solve the equation
A~ψ = λ~ψ (3.8)

where A is an n × n matrix and λ is the eigenvalue of A with the corresponding
eigenfunctions ~ψ. The coefficients of the A matrix is found from the stretching
operator Γ, which is define as

Γ ≡ d

dz
(
f2

N2

d

dz
). (3.9)

The finite difference approximation used is adapted from Smith [2007]. A stag-
gered grid is used where N2 lies one grid and ψ lies on a grid that is staggered half
a grid step. The staggered grid gives

A = Γψ =

{ f2

∆z1
( −ψ1+ψ2

N2
n∆zmn

), n = 1

− f2

∆zn
(ψn−1−ψn

N2
n∆zmn

− ψn−ψn+1
N2

n+1∆zmn+1
), n = 2....N

f2

∆zN+1
(

ψN−ψN+1

N2
n+1∆zmn+1

), n = N + 1

(3.10)

where N + 1 is defined as the total number of discrete levels. The results is
a tridagonal matrix. When solving the eigenvalue problem, the eigenfunctions
represents the baroclinic modes. We define the eigenfunctions as a matrix ~ψ =
F = [F1(Zmodes), F2(Zmodes), ..., FN(Zmodes], where F1 is the first baroclinic
mode, F2 is the second baroclinic mode and so on.

We remember that for a flat bottom ocean a Neumann type boundary condition is
used ∂ψ

∂z = 0 for z = 0,−H . A staggered grid is for this case a suitable choice. For
a steep bottom however the bottom boundary condition is changed to a Dirichlet
type where the velocities are equal to zero at the bottom of the ocean (ψ = 0 for
z = −H). The change in boundary condition makes the staggered grid unsuitable
as it gives us grid points below the sea floor. Obviously we do not have values for
N2 at this "ghost depth". With the flat bottom boundary condition the term involv-
ing this depth is defined to be zero. For the steep bottom that is not the case. When
calculating steep bottom modes we therefore have to alter the finite difference ap-
proximation to a non-staggered grid.

Errors introduced by numerical solutions

In the procedure of modal decomposition we had to do several interpolations, both
because of lack of data and because of the need for orthogonality. From text books
we know that each time we interpolate we introduce an error dependent on the
interpolation method used. The first interpolation we do is to interpolate the tem-
perature and salinity field form a one degree resolution to the latitude and longitude



3.5 Modal decomposition 27

of the moorings. Then the Brunt-Väisälä frequency has to be interpolated onto an
uniformly spaced grid to obtain orthogonality. The grid is defined using linear
spacing from the surface to the sea floor depth. The modes are calculated on the
mid depths, so that if N2 lies on ∆z, the modes will be on the grid ∆z + 1/2. In
order to project the velocities onto the modes, we had to interpolate the velocities
onto the grid used for the modes. This is problematic when we do not have veloc-
ity measurements close to the bottom. Several extrapolation methods was tested,
but they all had a tendency to introduce a zero-crossing, which is undesirable as it
introduces a higher order mode. We chose to let the lowest measurement available
be equal to the velocity at the bottom. In oceanography it is often assumed that
velocities are small and close to constant in the deep layer. However, when using
this approximation we are "forcing" part of the water column to be barotropic. The
reader should keep this in mind when interpreting the results. In table 4.1 the sea
floor depth and the depth of the deepest observation is given.

When calculating the modes it is in reality only possible to calculate as many modes
as we have records in the vertical. One can think that the water column is divided
into layers where each record represents the average velocity in its respective layer.
If we have records from 4 depths, or 4 layers, we can only calculate the barotropic
mode and 3 baroclinic modes for the flat bottom case and four baroclinic modes for
the steep bottom case. When we interpolate onto a uniformly spaced grid however,
we have chosen to use a resolution of a 100 points in the vertical. That gives us 99
baroclinic modes. We will show that the first one or two baroclinic modes in ad-
dition to the barotropic mode account for almost all of the water column-averaged
kinetic energy. The modes that only appears due to the interpolation is therefore
not significant.

We have defined a uniformly spaced grid with layers a distance δz apart. In reality
the distance between the boundary and the layer above or below for the lower and
upper boundary respectively, is infinitely small. Because of this distance between
the layers we are introducing a vertical error of the order δz. The horizontal error
is on the order of Nδ/f [Smith, 2007]. When calculating the modes on a grid that
is staggered with a distance 1/2∆z from our uniform grid, we reduce the error by
a factor of 2.

3.5 Modal decomposition

We want to decompose the velocity profiles into its modal components so that the
relative strength of the barotropic and baroclinic modes can be found. To do so the
modes should be orthonormal∫ 0

−H
Fi(z)Fj(z)dz = δij (3.11)



28 CHAPTER 3. DATA AND METHODS

where δij is the Kronecker delta and F are the baroclinic modes [Kundu et al.,
1975]. We know from linear algebra that "an n × n matrix, A, is orthogonally
diagonalizable if and only if A is a symmetric matrix" [Lay, 2012]. A matrix is
symmetric if AT = A. To fulfill this requirement the grid used to calculate the
modes had to be uniformly spaced. We therefore had to interpolated the Brunt-
Väisälä frequencies on to an evenly spaced grid, Zuniform.

We modes calculated also had to be normalized, which was done the following way

an = (
H

H
∫ 0
−H F

2
ndz

)1/2, Fn = anFn. (3.12)

where H is the total depth. The modes form a complete orthogonal basis. Un-
der the requirement of orthogonality and the assumption that f(x) is a piecewise
smooth function, f(z) can be expanded as a series

f(z) = α0 + α1F1 + α2F2 + ...+ αNFN . (3.13)

In our case f(z) represents the velocity profile of the u or v component with depth
when time means are removed. The coefficients αn are defined as

αn =
1

H

∫ 0

−H
f(z)Fndz. (3.14)

where n = 1, ..., N . In order to do the integration the velocities had to be interpo-
lated onto the same grid used for the modes. The first term on the right hand side
of equation 3.13 represents the barotropic contribution. The barotropic mode is not
properly resolved when solving the eigenvalue problem and has to be calculated
separately. We define the barotropic contribution as

α0 =
1

H

∫ 0

−H
f(z)dz. (3.15)

We are interested in knowing how many of the terms in the series 3.13 we need in
order to reproduce the velocity profiles. To help us quantify the contribution from
the different terms we find the variance.

To find the variance we make use of the Parseval identity

1

H

∫ 0

−H
f(z)2dz =

N∑
n=1

α2
n. (3.16)

This identity is the reason for why the modes should be normalized. We know from
3.11 that when taking the depth integral of the modes squared we get 1, leaving us
with only the coefficients α2

n. Each coefficient gives the contribution of the corre-
sponding mode to the column averaged kinetic energy.
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The same requirements for orthonormality has to be met also for the steep bot-
tom case. The projection of velocities however, is not as easy as for the flat bottom
case. As mentioned in the theory section the barotropic mode vanish when using
steep bottom mode and instead we have a bottom trapped topographic wave. The
topographic wave contributes to the vertical velocity profile, but the wave is not
orthogonal to the baroclinic modes. That means that the topographic wave contri-
bution cannot be included in the series expansion. We have

f(z) = Tw +

N∑
n=1

αnGn, (3.17)

where Tw is the bottom trapped topographic wave and Gn is the steep bottom
modes. Since we only have measurements for a single point in the horizontal di-
rection we cannot know the magnitude or the direction of the topographic wave.
This makes it impossible to find the contribution from the different modes to the
column-averaged kinetic energy.

By assuming that the topographic wave is large enough to be constant throughout
the whole water column and equal to the lowermost measurement, we can subtract
the "topographic wave contribution" from the velocity profile forcing it to go to
zero at the bottom. The shifted velocity profile can then be represented by only
the baroclinic modes using the same approach as for flat bottom mode. This is not
very useful for this thesis as we want to compare the contribution of the barotropic
and first baroclinic flat bottom mode to the contribution of the first baroclinic steep
bottom mode. Since there is no way of knowing the topographic wave effect on the
velocity profile we have to use a different approach.

3.6 Exponential stratification

We are interested in comparing the first baroclinic steep bottom mode to the ana-
lytic solution presented in equation 2.56. In order to solve the equation we need
to know the e-folding time. This can easily be done using MatLab. We find the
best exponential fit N = N0e

bz from the stratification, N2, where b = 1/h is the
e-folding scale. In most of the locations the stratification has a subsurface maxi-
mum (see figure 4.17). The exponential fit is done below that maximum. For this
solution we are saying that the velocities vanishes with increasing depth, meaning
that the solution is independent of the sea floor slope.

The dynamical modes discussed above are all dependent on the approximations
done and the boundary conditions chosen. A method to look at the structure of
the velocity field without making any dynamical assumptions is to use empirical
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orthogonal functions, which are only dependent on the statistics of the data [Kundu
et al., 1975].

3.7 Empirical Orthogonal Functions

The method of empirical orthogonal functions, also known as principal component
analysis is used to analyze the variability of the vertical velocity field. This gives
us a picture of the dominant velocity structures. The method also gives a measure
of the importance of the different patterns of variability. In this thesis the patterns
are referred to as the EOFs. Since the velocity field consist of real values, the
EOFs represent standing oscillations [Bjornsson & Venegas, 1997]. In our case the
standing oscillations tell us something about the horizontal velocities throughout
the water column.

Following Bjornsson & Venegas [1997] we organize the data into a matrix, U ,
where each column holds a time series of the u/v-component. The rows represent
the depth of the measurements. To make the EOFs understandable we remove the
time mean so that we can construct a covariance matrix, R = U ′U . We then solve
the eigenvalue problem

RC = CΛ. (3.18)

The diagonal matrix Λ contains the eigenvalues λj of the covariance matrix. C
holds the eigenvectors, or the EOFs, corresponding to the eigenvalues. The biggest
eigenvalue corresponds to EOF1, the second biggest to EOF2 and so on. By divid-
ing the corresponding eigenvalue by the sum of all eigenvalues we find variability
that lies in each of the EOFs.

In this thesis we are looking at the EOFs as the "true" structure and the different dy-
namical modes are superimposed on to the EOFs to see if they capture the structure
at the particular locations.



Chapter 4

Results and Discussion

In this section we are looking at the results and highlights the similarities and dif-
ferences we find in comparison with W97. We start by looking at the fitting pro-
cedure before we discuss the flat bottom case. The empirical orthogonal functions
are introduced and we compare the most dominant EOF with the baroclinic modes
found from different approaches. The results are presented by moorings, and the
location and mooring numbers are marked on figure 3.1. Basic information about
each mooring is given in table 4.1 and more detailed information is given in the
appendix.

4.1 The mode fits

The approach for mode fitting used in this thesis is different from W97. To verify
that our method is adequate, we look at the fit for mooring 42.

We want to represent the vertical structure of the ocean in terms of dynamical
modes. As we know from the theory these modes are dependent on the stratifica-
tion. Figure 4.1 shows the first through fifth baroclinic modes under the assump-
tions of a flat bottom ocean (left) and a steep bottom ocean (right). We see that the
structure in the upper 1000 m is the same for the two sets of modes. Towards the
bottom the different boundary conditions start to influence the structure, and as a
result the steep bottom modes have one zero-crossing less than the corresponding
flat bottom modes. The modes have the largest amplitude at the surface.

31
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Figure 4.1: The first through fifth baroclinic modes under the assumption of a flat
bottom ocean (left) and steep bottom ocean (right).

The velocities with the time mean removed are projected onto the modes. Figure
4.2a shows that we are in a quiet area of the ocean where there is little to no motion
below the pycnocline. The flow in the pycnocline layer is towards north-west, with
a maximum magnitude of 2.4 cm/s at 90 m depth. The velocity profiles shown are
snapshots of a representative day (measuring day no 100, May 2nd 1989).

The modal fitting is shown in figure 4.2b. The velocity perturbations of the u com-
ponent is shown as a black line. The red line shows the perturbations with the
barotropic mode subtracted for the flat bottom case and with the bottom velocity,
assumed to be the topographic wave contribution, subtracted for the steep bottom
case. When using 50 baroclinic modes we see from the blue dotted line that we
get a perfect fit. Consequently we assume that 50 layers is equivalent to a con-
tinuously stratified ocean with infinitesimally thin layers. In reality we only have
measurements from a finite number of depths much less than 50. When doing the
perfect fit we are using modes that are only available due to interpolation. In the
case shown in figure 4.2b we have measurements from 5 depths, represented by
black circles. In reality we only have 5 modes available to represent the velocity
profile. The pink dotted line shows that 5 modes gives a fairly good representa-
tion. However, in both cases the fit slightly overshots the profile. The overshooting
happens between the measuring depths, and is common for moorings which have a
poor instrument distribution throughout the water column. Because of this feature
we are using all 50 modes when doing our analysis to ensure a perfect fit.
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(a) The velocity components u and v on the 2nd of May 1989 at mooring 42

(b) The modal fit for the flat bottom case (left) and the steep bottom case (right). The
black line shows the perturbed velocity profile for the u component a). The red line is
the perturbed velocity with the barotropic mode subtracted for the flat bottom case and
the bottom velocity subtracted for the steep bottom case. The blue dotted line shows the
fit using 50 modes and the pink dotted line shows the fit using 5 modes. The measuring
depths are denoted with black circles. The black dotted line is the barotropic mode and the
assumed topographic wave contribution respectively.

Figure 4.2: The mode fit for mooring 42
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4.2 Flat bottom modes

Table 4.1 shows the percent of kinetic energy in the barotropic mode and first baro-
clinic mode for both the u and v components, calculated assuming a flat bottom
ocean. On average 46% of the column averaged kinetic energy is in the barotropic
mode and 29% of the kinetic energy is in first baroclinic mode.

Figure 4.3: A scatter plot of the percent
of the kinetic energy in the barotropic
mode (blue) and in the first baroclinic
mode (green) with sea floor depth.

In order to make a flat bottom assump-
tion the mooring should be in waters
of at least 4000 m depth [Wunsch,
1997]. For this thesis we are interested
in knowing how topography is affect-
ing the results, and have therefore in-
cluded calculations for shallower loca-
tions. Figure 4.3 shows the fraction of
kinetic energy in the barotropic mode
(blue) and in the first baroclinic mode
(green) versus the sea floor depth. The
energy partition does not seem to be in-
fluenced by the depth of the waters. In
other words, the assumption of a flat
bottom seems to give reasonable re-
sults also when the depth is shallower
than 4000 m. To convince us even fur-
ther that the bottom depth is insignificant in the comparison with W97, we calcu-
lated the average fraction of energy for all moorings that are located in waters of
3500 m or deeper (consistent with the data analyzed by Wunsch). The average was
the same for the barotropic mode, and reduced by only 1% for the baroclinic mode.

(a) The percentage in the barotropic and
first baroclinic modes together for the 61
moorings. The dashed line shows an aver-
age of 72%.

(b) The percentage in the barotropic and the
first three baroclinic modes together for the
61 moorings. The dashed line now shows
an average of 91%.
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The fraction of kinetic energy of the u component in the barotropic and first baro-
clinic mode together is shown in figure 4.4a. The dashed line shows an average
of 72%. The lowest value is 42 % and the highest is 95%. The results are plotted
against the mooring number. To get an average of over 90% we need to include the
second and third baroclinic modes. On average these modes accounts for 11% and
5% of the kinetic energy respectively. We see from figure 4.4b that for some of our
mooring locations, higher order modes account for more than 20% of the energy.
A common factor for these locations is that they have several measurements in the
upper 300 meters.

Wunsch is presenting his results by areas. In most of the areas he finds that the
barotropic and first baroclinic modes accounts for as much as 90% of the energy.
On a general basis the first baroclinic mode contributes the most. This is a con-
tradiction to what we are finding. Only one of the moorings in this study have
the same latitude, longitude and number of days as any of the moorings used in
W97. Wunsch finds the flow in this location to be 59 (47) % barotropic for the
u(v) component, whereas we find it to be 52 (52) %. For the first baroclinic mode
Wunsch finds it to account for 22 (31)% of the energy, and our result is 26 (31)%.
From this one case it looks like our method gives a slightly higher percentage in the
baroclinic mode than Wunsch’s method. This is not in agreement with the average
results which shows that we are underestimating the energy contribution from the
first baroclinic mode compared to W97.

Wunsch has an advantage in the number of mooring locations available for anal-
ysis. With several moorings from the same region you can make a representative
average for the different parts of the ocean. The characteristics of the areas with a
good coverage will have a bigger weight when looking at the ocean as one. One
should therefore be careful with drawing global conclusions when the results are
not evenly representative for all areas. The data available for this thesis is quite
spread out, and most of the moorings have been located not far of from the coast.
We also have several moorings north of 60◦N. Some of the northern regions are
found to be barotropic in character, and contributes to raising the average of the
barotropic mode.

4.2.1 Regional Dependence

We know from the Sturm-Liouville equation that the vertical structure depends
on N/f , where N is the Brunt-Väisälä frequency and f is the Coriolis parameter
[Talley et al., 2011]. At high latitudes the stratification is weak and the Coriolis
parameter is large. We would therefore expect the barotropic mode to become
more important at higher latitudes. Figure 4.5 shows the percentage of energy in
the barotropic mode and in the first baroclinic mode with latitude. We see that the
barotropic mode on average dominates over the barotropic mode. However, we do
not see an obvious trend of the modes getting more barotropic with latitude. The
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results from the Arctic ocean (latitudes close to 90◦) is proving to be less barotropic
than the Greenland Sea and Labrador Sea. The results in this thesis point towards
an area dependence more than a latitude dependence.

Figure 4.5: Percent of kinetic energy in the barotropic mode (blue) and first baro-
clinic mode with latitude

The Arctic Ocean

We have measurements from three different areas in the Arctic Ocean. The north-
ern most area have an average of 50% in the barotropic mode and 13% in the
first baroclinic mode. The moorings north of the New Siberian Islands shows a
slightly more barotropic area with an average of almost 60% against 15% in the
first baroclinic mode. In the Baufort Sea, on the other hand, the first baroclinic
mode dominates with an average of around 35% and with only 15% of the kinetic
energy in the barotropic mode.

The Greenland Sea and The Labrador Sea

Measurements form the Greenland Sea and the Labrador Sea both shows a barotropic
dominance. For the Greenland Sea the average is close to 60% and in the Labrador
Sea the average is almost 80%. The only mooring that does not show a highly
barotropic dominance is number 24. This is the easternmost mooring in the Green-
land sea and for this particular mooring the baroclinic flow contributes just as much
as the barotropic.
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The North Atlantic

Figure 4.6: Percent of kinetic energy in
the barotropic mode in the North Atlantic
found by Wunsch [1997].

We have several measurements from
the east coast of North-America. In the
Gulf of Mexico we have a barotropic
and a baroclinic flow of equal impor-
tance, both being close to 50%. Out-
side of the gulf the barotropic con-
tribution stays the same, but the first
baroclinic decreases to 30%. Further
north and close to the coast we have
a decrease in the barotropic mode to
40%. A little outside of the coast the
barotropic mode accounts for almost
60%. Figure 4.6 shows Wunsch’s re-
sults from the North Atlantic for the
barotropic mode. We see that the re-
sults we find are very much like what
is pictured in the figure.

The North Pacific

In the North Pacific the first baroclinic mode is ranging from 30 - 40%. We find that
most of the west part of the North Pacific is 30% barotropic. This is in agreement
with Wunsch. The Gulf of Alaska is 55% barotropic and we find that the mea-
surements outside of California is 50% barotropic. Unfortunately we only have
measurements east of 200◦W.

By looking closely at the results from W97 we see that several of the moorings
analyzed for this study actually lies in areas where the barotropic mode gives the
highest contribution to the energy. This might be the reason for why we do not see
a clear latitude dependence and for why our average statistics are not in agreement
with W97. Guinehut et al. [2006] is using altimeter sea level anomalies from satel-
lite data, and hydrographic height anomalies calculated from in situ temperature
and salinity to look at the vertical structure of the ocean. They find an energy par-
tition highly dependent on latitude. Cabanes et al. [2008] support this analyzing
data from argo floats. They also find that the barotropic mode is dominant south of
40◦S, from where we only have one mooring.

4.2.2 Time variations

The modal analysis has shown that the partition of energy between the different
modes is highly variable in time. Figure 4.7 shows time series of the barotropic
and first baroclinic contribution for the east-west component, at mooring 14. We
see that the two modes tend to compensate each other. When the barotropic mode
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drops, the baroclinic mode spikes. The correlation coefficient between the two
modes is r = −0.85. The result is varying from being close to 100% barotropic one
day to almost a 100% barotropic a few days later. This variability is found at almost
all our locations. For the case shown the average kinetic energy in the barotropic
mode and first baroclinic mode is 56% and 30% respectively, with corresponding
standard deviations as high as 33% and 30%.

Figure 4.7: The partition of kinetic energy in the barotropic mode (blue) and baro-
clinic mode (red) with time for mooring 14

For clarity we have only plotted the barotropic and first baroclinic mode. The
higher order modes have on a general basis decreasing averages, and monotonically
decreasing maximum peaks. For the chosen location the average kinetic energy is
6.6% in the second baroclinic mode, with a maximum peak of 82.5%. For the third
baroclinic mode the average is 4.2% and the maximum peak is 58.0%. This shows
that also the higher order modes are highly variable in time. The second baroclinic
mode the barotropic mode are slightly anti-correlated with a correlation coefficient
of -0.53. The first and second baroclinic mode together have a correlation of -0.92
with the barotropic mode. The higher order modes are not correlated in any way (r
≈ 0).

Scott & Furnival [2012] point out the shortage of variability analysis W97. They
are using data from simulations and when doing modal analysis they find the same
features as we do from the observational data, namely a barotropic mode varying
from close to 100% one day to almost zero a few days later. For this thesis we are
following Wunsch and only present mean statistics. It should however be noted
that the large variability about the mean is of great relevance when interpreting
altimeter data.
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4.2.3 Difficulties

As mentioned in section 4.5 the lack of seasonal variations for the dynamical modes
can influence the result. We have used several locations where seasonal variations
are prominent, i.e. the Labrador Sea, the Arctic and the Greenland sea. These loca-
tions are under the influence of freezing in the winter and considerable freshwater
input from land in summer. To make a conclusion about the vertical partition of
energy in areas with strong seasonality, one should analyze longer time series by
season [Wunsch, 1997]. Unfortunately our time series do not have the duration to
be analyzed by season, and the same approach has been used for all moorings.

The distribution of kinetic energy between the modes does not only change with
season, but also with years. Müller & Siedler [1992] analyzed among others, a
mooring (KIEL276, 33N, 22W) that has records for almost nine years. They find
changes in primarily the zonal component with a 3-4 years period in addition to
a directional dependent energy distribution with a period of about 200 days. That
shows that we need long time series in order for the results to be statistically sig-
nificant. Unfortunately most of the records we have available does not even cover
one year.

In addition to variabilities in time it is also a challenge that the data available is
so variable in quality and in distribution throughout the water column. During the
process of analyzing the data sets we have come upon several velocity profiles that
behave unexpectedly. When using an archive like the GMACMD, with data from
different projects and from different decades it is hard to know if unexpected val-
ues are noise, or if the results are legit. We have chosen to use data that on average
produces reasonable results and anomalous days are excluded.

As mentioned above locations with several instruments near the surface have a
tendency to have a larger percentage of kinetic energy in the higher order modes.
We know that every time the velocity profile crosses zero we introduce a new order
of modes. The surface layer has a complicated structure due to direct atmospheric
forcing. This often results in several zero-crossings, and hence more energy in
higher order modes. This typical behavior of the surface layer is not captured
when we have a poor vertical distribution of instruments.
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Table 4.1: Basic information about the moorings analyzed; latitude, longitude,
percentage of mean kinetic energy in the baroclinic and first barotropic modes of
the u and v component, sea floor depth and the deepest measuring depth.

Mooring no Latitude Longitude BT_u BC1_u BT_v BC1_v Sfdepth Deepest inst

1 32,7010 231,9380 53,8 33,9 57,3 29,4 4524 1481
2 32,1550 231,9920 60,2 14,6 52,1 23,5 4280 1419
3 45,4560 228,8230 32,5 42,7 34,6 38,4 2836 2500
4 -37,6700 167,2700 48,6 32,7 46,7 31,8 1014 1004
5 34,0370 289,9570 60,2 33,1 54,2 32,3 5366 4000
6 33,9770 289,9930 71,6 22,9 44,7 44,4 5366 4000
7 26,4890 283,5520 48,0 26,1 61,5 21,6 4850 3800
8 26,4750 283,8980 43,0 38,6 38,7 44,1 4810 3800
9 11,3800 53,0100 48,1 41,3 33,3 46,6 700 645
10 10,2000 53,6300 15,4 46,9 28,6 32,3 4305 4230
11 56,7530 307,5450 74,4 10,8 82,7 8,0 3510 3476
12 -34,5430 333,0250 29,8 36,9 25,0 37,6 4325 4310
13 42,2670 349,8500 54,3 22,5 55,6 25,2 2700 2000
14 26,4980 284,3170 55,9 30,2 44,2 41,2 4689 4000
15 26,4870 288,8330 43,7 12,1 49,3 13,0 5488 4000
16 26,5000 283,9000 57,1 26,8 54,5 25,5 4807 4000
17 41,9720 207,9930 40,0 27,2 38,9 24,6 5150 3756
18 27,9980 208,0520 36,8 34,3 37,7 40,0 5300 3919
19 41,9900 207,9450 30,2 28,1 24,3 28,0 5150 3980
20 28,0330 207,9000 11,3 50,2 30,2 47,6 5300 3984
21 -11,2670 122,9170 39,6 14,0 28,4 21,3 1895 1400
22 -11,4170 122,9830 29,5 24,6 26,2 24,8 1197 870
23 47,4230 220,7030 25,7 16,3 29,1 16,0 4224 3999
24 73,3860 359,1720 30,4 32,3 24,1 28,9 3131 2472
25 72,6200 216,4320 11,0 43,2 23,9 29,8 3339 1534
26 72,5420 216,1700 13,1 38,0 15,0 34,6 3370 1500
27 78,5130 133,9620 64,0 13,8 62,8 14,1 1761 1161
28 81,0750 138,9000 52,1 13,7 52,5 17,5 1712 1692
29 80,3200 150,0570 66,3 16,0 47,2 22,1 1699 1109
30 75,4980 348,8780 56,6 26,0 45,4 33,5 1312 1307
31 75,0780 347,8470 58,1 26,6 47,4 35,2 1263 1242
32 74,9930 350,8980 66,9 16,1 64,7 12,3 3317 3253
33 74,9710 348,4160 63,5 30,0 60,7 31,0 2300 2188
34 74,9930 349,3920 71,0 21,4 74,1 19,0 3075 2971
35 -72,5570 339,4050 35,3 28,8 40,8 41,8 3415 3411
36 89,4550 54,3290 58,7 7,9 56,3 9,3 4295 2508
37 89,2530 64,6920 46,1 21,4 49,0 19,4 4345 4336
38 89,3470 77,1200 50,3 8,0 43,5 10,3 4315 4306
39 25,8720 265,1200 52,2 40,1 37,7 55,4 3000 1500
40 25,4920 265,8400 49,5 41,9 52,6 39,0 3500 3000
41 73,8290 355,1660 73,7 21,6 63,2 28,6 3570 1503
42 21,2166 335,5767 52,1 26,5 52,3 31,3 4960 4920
43 56,9567 308,4117 82,3 8,8 73,4 13,2 3560 3545
44 57,1150 350,6367 63,5 27,0 63,6 25,8 992 892
45 41,9717 207,9933 39,9 27,2 38,9 24,6 5150 3756
46 27,9983 208,0517 36,8 34,2 37,7 40,0 5300 3919
47 41,9900 207,9450 30,3 28,1 24,3 28,0 5150 3980
48 28,0333 207,9000 10,8 52,9 36,0 44,2 5300 3984
49 55,4057 203,6668 49,9 25,5 63,0 17,9 190 172
50 55,3688 204,9375 57,5 29,7 48,7 28,8 1189 1000
51 25,4917 265,8400 49,4 41,9 52,6 39,1 3500 3000
52 55,9571 203,6227 58,3 32,2 53,5 35,0 227 202
53 45,4563 228,8227 32,5 42,8 34,6 38,6 2836 2506
54 73,8287 355,1663 73,7 21,6 63,2 28,6 3570 1503
55 36,3050 286,2718 41,3 35,1 33,9 42,6 3006 1200
56 36,2517 285,6733 32,9 48,4 45,1 38,2 2020 1900
57 36,2517 285,6733 26,2 33,6 55,6 22,6 2020 1900
58 36,2517 285,6733 39,8 27,5 49,1 28,2 2020 1900
59 37,5842 4,4983 68,8 21,9 55,3 31,4 2738 2000
60 -33,9850 114,4150 58,2 23,1 69,4 20,5 720 320
61 -23,3067 48,5700 12,9 42,7 47,3 26,8 3580 2983
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4.3 Empirical Orthogonal Functions

When projecting velocities onto dynamical modes we are making assumptions
about what the structure ought to look like. By using empirical orthogonal func-
tions we are able to look for patterns in the velocity data without making any as-
sumptions about the structure. Figure 4.8 shows EOFs for three different areas,
and their corresponding current time series for the u component in selected depths.
The moorings are chosen for their different characteristics, and the locations are
shown in figure 3.1.

The first case is from a mooring that was located near Africa from January to Oc-
tober 1989 (mooring 42). The EOFs (figure 4.8b) shows a pattern very much like
what we expect from steep bottom modes (see figure 4.1). EOF1, which accounts
for as much as 89% of the variability resembles the first baroclinic mode. The sec-
ond EOF looks like the second baroclinic mode and the third EOF like the third
baroclinic mode. We see from both the velocity time series and the plot of the
EOFs that the velocities are approaching zero towards the bottom. In this location
a pattern that resembles a topographic wave (largest velocity at the bottom with en
exponential decrease with decreasing depth), shows up in EOF5 and only accounts
for 0.4% of the variability (not shown). The velocity time series shows a good
correlation between all layers except the one at 4920 m (4.8a). The sea floor depth
is 4960 m, so the decrease in correlation could be due to friction at the bottom.
It could also be an indication of the presence of a weak topographic wave. It is
also worth noticing that the velocity in the lower levels are quite small. The instru-
ment type used for this location is not available, but considering the year (1989)
and number of instruments used (5) it is reasonable to assume that a mechanical
sensor was used. These instruments have, as discussed in chapter 3.2 a threshold
and velocities smaller than 1-2 cm might be poorly represented.

The second case is from a mooring in the South Atlantic (mooring 12). From the
EOFs we see that the most dominant EOF also in this case looks like the first baro-
clinic steep bottom mode. The EOF2 resembles a topographic wave that is domi-
nating the flow in the lower 1000 m of the water column. We know from equation
2.45 that topographic wave will not cross the zero line as EOF2 does. The crossing
could be due to noise, or it could be a coupling with a different mode. From the
velocity time series we clearly see that the bottom velocities increases towards the
bottom. It is also a bad correlation between the two deepest measurements. This
point to the existence of a topographic wave. The sea floor depth at the location
is 4325 m and the measurements were done from December 1992 to April 1994.
An ADCP was used for the upper measurements, and a vector averaging recording
current meter (RCM 8) was used for the deeper ones.

The third case is from the Labrador sea (mooring 43). The EOFs shows a profile
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(a) Velocity time series of the u component
in m/s at the location of mooring 42.

(b) The first, second and third EOF and the
explained variance for mooring 42.

(c) Velocity time series of the u component
in m/s at the location of mooring 12.

(d) The first, second and third EOF and the
explained variance for mooring 12

(e) Velocity time series of the u component
in m/s at the location of mooring 43.

(f) The first, second and third EOF and the
explained variance for mooring 43

Figure 4.8: Time series from selected depths presented to look at the correlation
and the corresponding EOFs where the 3 most dominant structures are shown.

different from the two cases above. EOF1 accounts for as much as 95% and seems
to be some kind of barotropic response. The EOF2 bear resemblance to the first
baroclinic flat bottom mode. Figure 4.8e shows a flow that is not changing much
throughout the water column. The correlation coefficient between the measure-
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ments at 50m depth and 3545 m is 0.8749. This barotropicity is consistent with
what we found form the flat bottom mode analysis. The measurements are from
June - December 1987 and the mooring lies in waters of 3560m depth.

Figure 4.9: The variance explained by
EOF1. The dashed line shows an average
of 75%.

EOFs have been computed for all of the
moorings analyzed. We find that the
structure of EOF2 and higher varies a
lot between locations. EOF1 however,
with the exception of the Labrador Sea
and some moorings in the Greenland
sea, show more or less the same shape
for all locations. It resembles the first
baroclinic steep bottom mode, and on
average accounts for 75% (see figure
4.9). The highest variance found in
EOF1 is from the Labrador Sea where
it accounts for more than 90%. The
lowest contributions are from shallow
areas where the flow is more complex
in character.

Various forms of Empirical Orthogonal Functions have been used in several stud-
ies regarding modal decomposition (e.g Kundu et al. [1975], De Mey & Robinson
[1987], Müller & Siedler [1992] and many others). The method is a great tool for
analyzing mooring data when looking at vertical structures. However, it is not ob-
vious how to extend this information to locations where moorings have not been
deployed. W97 is also doing EOF analysis and finds the most dominant structure
to be a combination between the barotropic and first baroclinic mode. Figure 1.1
shows, as mentioned in the motivation, a typical EOF1 found both in this study,
by W97 and also in literature. It is argued that the results for EOFs are misleading
as they point towards a strong coupling between the barotropic and first baroclinic
mode, which is not necessarily what is happening. We are proposing that EOF1
might be the first baroclinic steep bottom mode instead of the two coupled modes.

Another reason for why W97 did not find EOFs useful is that there is no straight-
forward way to extrapolate the EOFs to the surface. De Mey & Robinson [1987]
looked into using EOFs to extrapolate the surface signal below the surface and in
order to do so one have to rely on historical knowledge of the local current statis-
tics. For this study however, we are only interested in the structure of the EOFs.
When we know the dominant structure we can investigate if there is any way to
predict the shape of the vertical variability.



44 CHAPTER 4. RESULTS AND DISCUSSION

4.4 First baroclinic mode structures

In section 4.2 we looked at the partition of horizontal kinetic energy between the
barotropic and first baroclinic mode assuming a flat bottom with realistic stratifica-
tion. We are interested to see what effect the topography has on the vertical modes,
and for this thesis we are considering rough topography. That is, a steep bottom
slope with depth changes comparable to the length scale of the motion [Samelson,
1992]. The effect of topography on the flow is among others studied by Dick-
son [1983], who analyzed eddy kinetic energy observations from 35 moorings and
found weak abyssal flows for steep bottom slopes, which is consistent with the
steep bottom modes having no flow at the bottom of the ocean. Samelson [1992]
suggested that rough topography is a necessary (but not sufficient) condition for
the surface-intensification of kinetic energy found in both observations and numer-
ical studies. We find that the shape of the most dominant EOF often resembles the
first baroclinic steep bottom mode. If the flow of the ocean is dominated by the
first baroclinic steep bottom mode (and a topographic wave) rather than a coupling
between the barotropic and first baroclinic flat bottom mode, that is a considerable
improvement conceptually when it comes to interpreting the altimeter data.

In this section we want to investigate if there is a way to successfully predict the
vertical structure of the variability in a velocity field. We do this by comparing the
different first baroclinic modes to the most dominant EOF. The focus will be on
the steep bottom mode and the analytical solution with exponential stratification
where the velocities are assumed to vanish with increasing depth. The figures in
this section (4.10-4.14) shows the steep bottom mode and the analytical solution
with exponential stratification superimposed onto EOF1. The blue line represents
the EOF1, the pink line the first baroclinic steep bottom mode and the green line
the analytical solution. The black circles denotes the instrument depths available
for the different moorings. We start by looking at the same locations as we studied
in section 4.3.

Figure 4.10 shows that we are able to partially capture the structure at mooring 12
when using the analytical solution. This mooring has a particularly deep stratifica-
tion and the Brunt-Väisälä frequency is a factor 10 larger at the bottom than it is for
any other location used. Mooring no 43 and 42 do not have a good fit. Nonetheless,
the figures show some general results that are worth pointing out.

We see that the analytical solution has a shallower stratification than the steep bot-
tom mode. In fact there is a tendency for the steep bottom mode to be deeper than
the stratification shown by the EOFs. In the pycnocline layer the analytic solution
has a slow decrease towards zero, whereas the steep bottom mode has a steeper
decrease. We rarely get a good fit below the pycnocline layer. A common picture
is that the analytic solution decreases too rapidly (or disappears), and the steep bot-
tom mode has a too slow decreasing rate. We find that the assumption of vanishing
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motion with increasing depth results in modes that go to zero around the depth
of the bottom of the pycnocline layer, usually between 1000 - 2000m depth. The
steep bottom modes are defined to be zero at the bottom of the ocean resulting in
the slower decrease in the deep layers.

We also find that for the barotropic areas, like mooring no. 43, we do not find a
good fit for any of the methods used in this thesis.

(a) Mooring 42, u component. (b) Mooring 42, v component.

(c) Mooring 12, u component. (d) Mooring 12, v component..

(e) Mooring 43, u component. (f) Mooring 43, v component.

Figure 4.10: The dominant EOF (blue), the first baroclinic steep bottom mode
(pink) and the first baroclinic analytical solution (green) from mooring 42, 12 and
43. The u component is shown on the left hand side and the v component on the
left. The black circles denotes the measuring depths.
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4.4.1 Regional dependence

Also when comparing the different first baroclinic mode structures to EOF1 we
find that different areas gives different results. In the North Atlantic and the Pacific
we were able to find approximate fits. North of 60◦N, in shallow areas and close to
the shore however, we are not able to capture the dominant structures.

The Atlantic ocean

The measurements from the Atlantic Ocean shows varying results. In the Gulf of
Mexico and along the east coast of North America (mooring 5-8, 14-16, 39-40 and
51) we find that steep bottom modes gives a better fit than the analytical solution
which is too shallow. The zonal structure from mooring 5, 8 and 51 are shown in
figure 4.11. We have also included mooring 42 which is located on the east side of
the Atlantic for comparison.

(a) The east coast of North America (moor-
ing 5, u component).

(b) The east coast of North America (moor-
ing 8, u component).

(c) The Gulf of Mexico (mooring 51, u
component).

(d) The coast of Africa (mooring 42, u
component).

Figure 4.11: The dominant structure in the North Atlantic and the first baroclinic
modal fits.
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For mooring 5 we see that the steep bottom mode is close to capture the structure
throughout the pycnocline layer. The stratification is however a few meter too deep.
The mode has an intensification towards the surface that we do not see from the
EOF1. The mooring was deployed from May 1982 - April 1983 and the sea floor
depth is 5366 m. We only have measurements down to 4000 m, which is why the
EOF is ending at a shallower depth than the baroclinic modes. Mooring 8 shows
a very good fit between the EOF1 and the steep bottom mode in the upper 1200
meters. The measurements was recorded from October 1988 - July 1989 and the
sea floor depth is 4800 m. Also for this location we do not have measurements
from the deepest 1000 m available. In the Gulf of Mexico we get a close to perfect
fit between the the steep bottom mode and EOF1. The records are from June -
October 1985.

The remaining moorings from the adjacent areas (but different time periods) shows
the same deviation between the EOF1 and the analytical solution, making the steep
bottom mode the best fit. Mooring no. 55-58 lies in shallow waters, which will
be discusses in section 4.4.2. Unfortunately we only have one good mooring from
the east side of the North Atlantic Ocean (mooring 13 and 44 are showing complex
structures and the flow is likely to be influenced by the location very close to the
coast). Figure 4.11d shows that the analytical solution gives a better approximation
to the structure in the upper ocean. This picture is more similar to what we find for
the Pacific Ocean.

The Pacific Ocean

The moorings in the Pacific Ocean in general point towards a shallower stratifica-
tion than the results from the North Atlantic. Figure 4.12 shows the meridional
structure from mooring 45, 48 and 2, and the zonal structure for mooring 3. The
analytical solution is able to capture the structure in the upper ∼20% of the water
column quite well. The decrease towards zero however, is too steep so the structure
in the deep layer is badly represented. The steep bottom mode gives a stratification
that is too deep for all four locations. None of the moorings in the Pacific have
measurements near the bottom. Mooring 2 only have records down to 1500m even
though the ocean is deeper than 4000 meter in the area.

The structure of all the moorings in the Pacific show similar features excluding
those in the Gulf of Alaska which are located in very shallow waters. The results
from this are are too complex to be represented by a single mode. Also the moor-
ings located outside of the regions discussed shows a tendency for the analytical
solution to give a better representation of the structure in the pycnocline layer than
the steep bottom mode.
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(a) Mooring 45, v component (b) Mooring 48, v component

(c) Mooring 2, v component (d) Mooring 3, u component

Figure 4.12: The dominant structure in the North Pacific and the first baroclinic
modal fits.

The Labrador sea

We find the Labrador Sea to be barotropic and we remember from the figures 4.10e-
4.10f that the structure from mooring 43 resembles what we would expect from tra-
ditional flat bottom modes, with a barotropic mode and a first baroclinic mode with
one zero crossing. We therefore include the second EOF (red) and the superimpose
the first baroclinic flat bottom mode (light blue) onto the plot. The result is shown
in figure 4.13. As we can see the first baroclinic flat bottom mode and EOF2 do
not match, nor do the steep bottom mode or the analytical solution and EOF1. A
similar picture is obtained from mooring 11 (not shown). It seems like we are not
able to predict the dominant structures when we are in areas of barotropic character.

From the EOF1 it looks like the velocities are slowing down at the bottom. The
lowest records are in this location only 15 meter from the bottom. When flows
are dominantly barotropic the moorings are more prone to vertical displacements
[Wunsch, 1997]. One explanation for the relatively strong velocities at the low-
ermost measuring depth could be that the assigned depth does not correspond to
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the actual measuring depth due to vertical displacement. Unfortunately pressure
records are not available to confirm or refute so this remains a speculation.

Figure 4.13: The dominant zonal structures from mooring 43. The red line repre-
sents the second most dominant EOF and the light blue line is the first baroclinic
flat bottom mode.

The Arctic Ocean

The Arctic Ocean shows a complex structure throughout the water column for all
moorings. The results from mooring 26 and 38 are shown in figure 4.14. The ten-
dency in the structures resembles a first baroclinic shaped structure. Contrary to
what we have seen previously the steep bottom mode shows a stratification just as
shallow as the flat bottom mode. Both modes have a good fit in the pycnocline
layer at mooring 26. At mooring 40 shows the steep bottom modes is starting the
decrease towards zero too soon and only capture the structure in the upper few me-
ters.

Bottom currents seems to be important for the northern most locations. By ignoring
most of the measurements in the upper 200 meters for mooring 36-38 (not shown),
we find that bottom velocities are significant. When the surface intensification is
ignored the structure seems to be dominated by the structures of a topographic wave
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and a higher order mode. Unfortunately we do not have measurements towards the
bottom for any of the moorings north of the New Siberian Islands or in the Beaufort
Sea.

(a) Mooring 26, u component (b) Mooring 38, u component

Figure 4.14: The dominant structure in the Arctic and the first baroclinic modal
fits.

Based on the analysis from the different regions it seems like we are able to give a
fairly good representation of the dominant structure using the first baroclinic mode
in the mid-latitudes (northern hemisphere). If we were to say that the steep bottom
modes gives a better representation of the kinetic energy partition in the ocean, we
should think of the first baroclinic mode and the topographic wave as the two dom-
inant elements. That means that we have two dominant elements that do not have
to be correlated. The topographic waves are independent and advect energy off to
other regions where it is likely to be dissipated by bottom drag [Ferrari & Wunsch,
2009].

4.4.2 Problematic results

When analyzing flat bottom modes we argue that the depth requirements can be
relaxed as we find reasonable results when using moorings from shallower waters.
For this analysis however, shallow waters have proved to be a challenge. Intuitively
one could imagine that steep bottom modes would be representative in areas with
a lot of topography. We find the structure in shallower waters to be too complex to
be represented by one or two modes, and we do not necessarily see velocities that
goes to zero at the bottom. Figure 4.15 shows two examples, both from moorings
located close to the coast.

Due to numerical issues the calculations of the different modes are done on differ-
ent grids. The EOFs are calculated using the measuring depths available from the
respective mooring, the steep bottom modes are interpolated onto a evenly spaced
grid to obtain orthogonality, and the exponential fit is done from the standard depths
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Figure 4.15: EOF 1-4 showing the complex structures of mooring 13 and 57.

provided by the climatology. This results in slight different starting depths when
superimposing the modal structures onto the EOFs.

4.5 The climatology and seasonal changes

One major issues when it comes to the analysis of dynamical modes seems to be the
lack of variations in the density field. The near surface structure is most influenced
by seasonal changes, but also by changes over climate time scales and over shorter
time periods. The depth of the mixed layer, and hence the change in upper ocean
density structure, changes due to the large-scale background fields and complex
inflections from eddy fields [Wunsch, 2013]. The use of an annual climatology is
clearly a limitation for this study.

The annual surface temperature, salinity and potential density can be seen in figure
4.16. We see that the densest waters are found as a belt around the equator with
increasing densities towards the poles. In the Arctic we see a slight decrease in
surface density. This coincide well with what we see from the annual mean tem-
peratures everywhere but in the Arctic where we see that the salinity is determining
the density. The salinity in the Arctic and thereby also the density undergoes large
changes with season due to ice production in winter time, and ice melt and runoff
from land in summer time [Talley et al., 2011]. The annual climatology is therefore
a poor representation of the reality at high latitudes.

As discussed in previous sections the Brunt-Väisälä frequency, is calculated from
the potential density. Figure 4.17 shows the vertical profile of the two parame-
ters from mooring 42. The dots on the figures represents the climatology standard
depths, Zstandard for the potential density, and the mid-depths ZN2 for the Brunt-
Väisälä frequency. We see that the Brunt-Väisälä frequency has a maximum at a
depth of around 60 m.
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(a) Surface temperature (b) Surface salinity

(c) Surface potential density

Figure 4.16: Annual climatology

Figure 4.17: Vertical profiles of N2 and
the potential density from mooring 42.

If we look closely we see that the po-
tential density is getting steeper in the
uppermost meters. This is an indica-
tion of a surface mixed layer, where
the stratification is weak, hence the de-
crease in N2. We also recognize the
pycnocline layer which extends down
to about 1500 m, and below that the
deep layer with a close to constant den-
sity. In mid-latitudes temperature is
the dominant contributer to the density
making the pycnocline a thermocline.
Figure 4.18 shows how the temperature
might change with season. Comparing
the annual potential density profile to
monthly profiles we see that the annual
climatology tends to resemble the sum-
mer period more than the winter pe-
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riod. We remember that the amplitude of the modes are largest at the surface. This
surface intensification is dependent upon the strength of the stratification getting
more amplified with increasing stability. With a climatology that more resembles
the summer stratification this could mean that the dynamical modes used in our cal-
culations are too surface intensified to give a good representation during the winter
moths.

Figure 4.18: Typical changes in the thermocline with season in mid-latitudes.
Source: Talley et al. [2011].

One of the features we do not capture when we use annual density fields is the
change in the mixed layer depth. Figure 4.19a shows the monthly mean mixed
layer depth in January and July and the maximum mixed layer depths. Figure
4.19b shows the stratification in the Labrador Sea. We see that the stratification
used in this study have a very shallow mixed layer depth. This is what we would
expect in summer time. We see that the maximum mixed layer depth in the area
where mooring 11 and 43 are located can be as deep as 2000 m. Under such events
of deep convection the flow will be barotropic in character due to the well mixed
layer extending down to great depths.
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(a) The upper panel shows monthly averaged mixed layer depth
in January (left) and July (right). The bottom figure shows the
maximum mixed layer depth. Source: [Talley et al., 2011]

(b) Vertical profiles of N2 and the potential density from the
Labrador sea.



Chapter 5

Summary and Concluding
Remarks

Since satellite data became available a couple of decades ago there has been a huge
interest among oceanographers to find a way to successfully extrapolate surface
motion below the surface. Being able to construct a three dimensional velocity
field from altimeter data will improve our knowledge of the ocean deep circulation
substantially. The work of Wunsch [1997] has remained a cornerstone in interpret-
ing altimeter data. Under the assumption of a flat bottom ocean he found that the
kinetic energy is dominated by the barotropic and first baroclinic modes, the latter
one being more important in the surface layer. Hence the altimeters predominantly
reflects the first baroclinic mode.

The purpose of this study was to see if the topography has any effect on the par-
tition of energy. We introduced steep bottom dynamical mode assuming a bottom
slope steep enough to have depth changes comparable to the length scale of the
motion. The flow is then assumed to be zero at the bottom. A numerical scheme
was constructed imposing the boundary condition of no flow at the bottom. The
resulting baroclinic modes have one less zero crossing than traditional flat bottom
modes. Also the barotropic mode vanishes. Instead we have a bottom trapped to-
pographic wave which is not orthogonal to the baroclinic modes.

Observations of velocity profiles from 61 moorings are used to do a modal analy-
sis. The vertical velocity field are decomposed into its modal components to find
the relative strength of the different modes. We find the results from the flat bot-
tom assumption to be consistent with Wunsch [1997], despite the fact that we are
using different approaches for the modal fitting. For the steep bottom modes a con-
siderable part of the motion is found to be in the topographic wave. The wave is
independent of the baroclinic flow and there is no way of knowing the exact con-
tribution from the topographic wave on the velocity profiles. Therefore we do no
have a straightforward way to compare the results from the steep bottom modes to

55
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the flat bottom modes.

EOFs were used to look at the structure only based on the statistics of the velocity
fields, without making any assumptions about what the structure ought to look like.
We find a dominant structure consistent with what we see in literature. On average
the first EOF accounts for 75% of the variance and often resembles the first baro-
clinic steep bottom mode. That is a mode with no zero crossing, largest amplitude
at the surface and an exponential decrease towards no flow at the bottom. We also
find variability patterns that resembles a topographic wave with largest velocities
at the bottom and an exponential decrease with decreasing depth.

The goal is to find a way to extrapolate the surface velocity fields below the surface.
In order to do so we have to be able to predict the shape of the vertical profile of the
variance. To see if the steep bottom modes are a good fit the first baroclinic steep
bottom mode was superimposed onto the most dominant EOF. To have a better
basis for comparison we also included an analytical solution with idealized stratifi-
cation using an exponential fit found from the Brunt-Väisälä frequencies. We were
able to give a fairly good representation of the structure in the pycnocline layer
in the mid-latitudes. Below 1000-2000 m however, we rarely managed to capture
the flow. The analytic solution seems to be the best fit everywhere except on the
east coast of North America where the stratification found is deeper and the first
baroclinic steep bottom mode gives the best fit. In the high latitudes, when the
structure gets barotropic in character none of the modes investigated in this thesis
gives a good fit. We are also struggling to capture the flow very close to the coast
and in shallow areas as the structure becomes more complex and not representative
by only one mode.

There are several limitations with this study. First there are large uncertainties re-
lated to observational data and the diversity of the data used for this thesis might
have an influence on the quality and representativeness. We also have a poor spatial
and temporal coverage making our results far from statistical significant. We have
chosen to use an annual climatology to represent the density field, and the lack sea-
sonal variation seems to be a major problem when it comes to modal fitting. This
is most prominent at higher latitudes where there is large seasonal variations. The
climatology seems to resemble a summer stratification more than a wither stratifi-
cation which might have an effect on our results.

Further investigation has to be done to conclude if the steep bottom modes give
a better representation of the energy partition than the flat bottom modes. A con-
tinuation of the present work would be to figure out what is causing the different
results between i.e. the Atlantic Ocean and the Pacific. It would also be useful
to extend the coverage and to look at monthly or in situ stratification rather than
annual averages. To relate this study to the extrapolation of surface velocities fur-
ther investigation into the prediction of the shape of the vertical structure has to be
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done. It would also be of interest to investigate how topographic waves are inter-
acting with baroclinic modes and what effect it has on the energy partition.

The question posed in the motivation on whether the most dominant EOF should be
interpreted as a coupling between the barotropic and first baroclinic mode remain
unanswered. We have however shown that there is reason to further investigation
on the importance of the steep barotropic mode as the most dominant element
together with the topographic wave. If this turns out to be true we only need to
interpret the altimeter data as a single mode which is a substantial improvement as
opposed to the two dominant modes found by Wunsch. Also the difficulties around
the coupling between two dominant modes are avoided if the steep bottom modes
proves to be most representative. The topographic wave is independent of the
barotropic modes and the two domination elements does not have to be correlated.
The energy can then be advected off to other regions by the topographic wave,
where it is likely to be dissipated from bottom drag.
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Table 5.1: Information about the moorings analyzed; latitude, longitude, percent-
age of mean kinetic energy in the baroclinic and first barotropic modes of the u and
v component, sea floor depth and the deepest measuring depth (Deepest), duration
(D), number of instruments (M), instrument type and the source.

No Latitude Longitude BT_u BC1_u BT_v BC1_v Sfdepth Deepest D M Instrument type Source

1 32,7010 231,9380 53,8 33,9 57,3 29,4 4524 1481 388 4 Aanderaa RCM5 OSU disk 1
2 32,1550 231,9920 60,2 14,6 52,1 23,5 4280 1419 386 4 Aanderaa RCM5 OSU disk 1
3 45,4560 228,8230 32,5 42,7 34,6 38,4 2836 2500 396 6 Aanderaa RCM OSU disk 1
4 -37,6700 167,2700 48,6 32,7 46,7 31,8 1014 1004 220 4 Aanderaa RCM4/5 OSU disk 1
5 34,0370 289,9570 60,2 33,1 54,2 32,3 5366 4000 335 10 VMCM&VACM OSU disk 1
6 33,9770 289,9930 71,6 22,9 44,7 44,4 5366 4000 234 14 VACM OSU disk 1
7 26,4890 283,5520 48,0 26,1 61,5 21,6 4850 3800 569 5 VACM OSU disk 1
8 26,4750 283,8980 43,0 38,6 38,7 44,1 4810 3800 285 6 VACM&RCM OSU disk 1
9 11,3800 53,0100 48,1 41,3 33,3 46,6 700 645 573 6 RCM8 OSU disk 1
10 10,2000 53,6300 15,4 46,9 28,6 32,3 4305 4230 569 7 RCM8 OSU disk 1
11 56,7530 307,5450 74,4 10,8 82,7 8,0 3510 3476 381 6 RCM8 OSU disk 1
12 -34,5430 333,0250 29,8 36,9 25,0 37,6 4325 4310 486 21 ADCP&RCM8 OSU disk 1
13 42,2670 349,8500 54,3 22,5 55,6 25,2 2700 2000 341 4 RCM4s&RCM7 OSU disk 1
14 26,4980 284,3170 55,9 30,2 44,2 41,2 4689 4000 757 6 VACM OSU disk 1
15 26,4870 288,8330 43,7 12,1 49,3 13,0 5488 4000 376 7 VACM & Aanderaa RCM OSU disk 1
16 26,5000 283,9000 57,1 26,8 54,5 25,5 4807 4000 596 7 VACM & Aanderaa RCM OSU disk 1
17 41,9720 207,9930 40,0 27,2 38,9 24,6 5150 3756 355 7 not available OSU disk 1
18 27,9980 208,0520 36,8 34,3 37,7 40,0 5300 3919 369 10 not available OSU disk 1
19 41,9900 207,9450 30,2 28,1 24,3 28,0 5150 3980 301 10 not available OSU disk 1
20 28,0330 207,9000 11,3 50,2 30,2 47,6 5300 3984 296 10 not available OSU disk 1
21 -11,2670 122,9170 39,6 14,0 28,4 21,3 1895 1400 349 26 ADCP OSU disk 1
22 -11,4170 122,9830 29,5 24,6 26,2 24,8 1197 870 416 26 ADCP OSU disk 1
23 47,4230 220,7030 25,7 16,3 29,1 16,0 4224 3999 311 14 VMCM&RCM5 OSU disk 1
24 73,3860 359,1720 30,4 32,3 24,1 28,9 3131 2472 318 8 ADCP OSU disk 2
25 72,6200 216,4320 11,0 43,2 23,9 29,8 3339 1534 488 7 Aanderaa RCM OSU disk 2
26 72,5420 216,1700 13,1 38,0 15,0 34,6 3370 1500 344 7 Aanderaa RCM OSU disk 2
27 78,5130 133,9620 64,0 13,8 62,8 14,1 1761 1161 384 4 RCM/8 OSU disk 2
28 81,0750 138,9000 52,1 13,7 52,5 17,5 1712 1692 367 5 RCM7/8 OSU disk 2
29 80,3200 150,0570 66,3 16,0 47,2 22,1 1699 1109 367 4 RCM7/8 OSU disk 2
30 75,4980 348,8780 56,6 26,0 45,4 33,5 1312 1307 365 4 Neil Brown ACM-2/Aanderaa RCM OSU disk 2
31 75,0780 347,8470 58,1 26,6 47,4 35,2 1263 1242 365 4 Neil Brown ACM-2/Aanderaa RCM OSU disk 2
32 74,9930 350,8980 66,9 16,1 64,7 12,3 3317 3253 178 4 Aanderaa RCM OSU disk 2
33 74,9710 348,4160 63,5 30,0 60,7 31,0 2300 2188 436 4 Aanderaa RCM OSU disk 2
34 74,9930 349,3920 71,0 21,4 74,1 19,0 3075 2971 410 4 Aanderaa RCM OSU disk 2
35 -72,5570 339,4050 35,3 28,8 40,8 41,8 3415 3411 129 8 Aanderaa RCM OSU disk 2
36 89,4550 54,3290 58,7 7,9 56,3 9,3 4295 2508 361 25 ADCP OSU other
37 89,2530 64,6920 46,1 21,4 49,0 19,4 4345 4336 364 25 not available OSU other
38 89,3470 77,1200 50,3 8,0 43,5 10,3 4315 4306 719 29 not available OSU other
39 25,8720 265,1200 52,2 40,1 37,7 55,4 3000 1500 110 4 not available OSU other
40 25,4920 265,8400 49,5 41,9 52,6 39,0 3500 3000 129 5 not available OSU other
41 73,8290 355,1660 73,7 21,6 63,2 28,6 3570 1503 421 4 not available OSU other
42 21,2166 335,5767 52,1 26,5 52,3 31,3 4960 4920 277 5 not available Wunsch1997
43 56,9567 308,4117 82,3 8,8 73,4 13,2 3560 3545 143 5 not available Wunsch1997
44 57,1150 350,6367 63,5 27,0 63,6 25,8 992 892 118 4 not available Wunsch1997
45 41,9717 207,9933 39,9 27,2 38,9 24,6 5150 3756 355 7 not available NODC F015
46 27,9983 208,0517 36,8 34,2 37,7 40,0 5300 3919 369 10 not available NODC F015
47 41,9900 207,9450 30,3 28,1 24,3 28,0 5150 3980 301 10 not available NODC F015
48 28,0333 207,9000 10,8 52,9 36,0 44,2 5300 3984 296 10 not available NODC F015
49 55,4057 203,6668 49,9 25,5 63,0 17,9 190 172 295 6 not available NODC F015
50 55,3688 204,9375 57,5 29,7 48,7 28,8 1189 1000 295 7 not available NODC F015
51 25,4917 265,8400 49,4 41,9 52,6 39,1 3500 3000 129 5 not available NODC F015
52 55,9571 203,6227 58,3 32,2 53,5 35,0 227 202 331 4 not available NODC F015
53 45,4563 228,8227 32,5 42,8 34,6 38,6 2836 2506 396 6 not available NODC F015
54 73,8287 355,1663 73,7 21,6 63,2 28,6 3570 1503 421 4 not available NODC F015
55 36,3050 286,2718 41,3 35,1 33,9 42,6 3006 1200 178 4 not available NODC F015
56 36,2517 285,6733 32,9 48,4 45,1 38,2 2020 1900 211 5 not available NODC F015
57 36,2517 285,6733 26,2 33,6 55,6 22,6 2020 1900 118 5 not available NODC F015
58 36,2517 285,6733 39,8 27,5 49,1 28,2 2020 1900 168 5 not available NODC F015
59 37,5842 4,4983 68,8 21,9 55,3 31,4 2738 2000 281 4 not available IFREMER
60 -33,9850 114,4150 58,2 23,1 69,4 20,5 720 320 168 4 Aanderaa RCM8 CSIRO
61 -23,3067 48,5700 12,9 42,7 47,3 26,8 3580 2983 314 5 AACM/NWCM/VACM Zantopp
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