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Can oral infection be a risk factor for Alzheimer’s
disease?
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Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from public health

budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common

form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from

the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of

AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by

peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly

oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal

relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed

via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can

provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily,

transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is

expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the

goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to

solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as

the plausible etiology of late-onset AD (LOAD).
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A
lzheimer’s disease (AD) is a neurodegenerative

disease and the most common example of a

group of diseases that manifest as dementia. It is

associated with atrophy and specific neuronal death

particularly in the hippocampal region of the brain (1).

Research into AD pathogenesis has flagged two main

categories of the disease: the familial-onset presentation

accounts for around 2% of all AD cases and the sporadic

form of late-onset AD also referred to as LOAD con-

stitutes approximately 98% of the cases. LOAD displays

genetic susceptibility traits of which the well-known risk

factor is inheritance of the apolipoprotein (APOEo4)

gene allele (2) and, it appears to require an environmental

factor for disease expression. For example, a pathogen�
host interaction can exacerbate neurocognition in some

elderly individuals who if in their 80� years likely

become diagnosed with LOAD (3, 4). The rationale for

this review therefore is to try to explain the etiology in the

vast proportion of LOAD cases that relies on common

risk factors. Several scientists have proposed one of these

to be peripheral infections (5�11) and the accompanying

systemic and local inflammatory mediators (11�13). Of

these, the plausible risk from oral infection is the main

focus of this review.

Prevalence of AD
AD is a burden of longevity resulting from the superior

quality of healthcare provision for all. This factor is likely

to contribute to quadrupling of AD subjects living in our

society during the next 40 years (14). It is estimated that

by 2050 about 13�14 million people are likely to suffer

from AD in the United States with a rise in the total costs

estimated to be more than $1 trillion. The odds of having

a diagnosis of AD when over 85 years of age exceed

1:3 (15). One in six people over 80 years in the United

Kingdom has dementia (16). Estimates for the prevalence

of AD in the United States indicate that more than

5 million individuals who are 65 years or older currently

suffer from AD (1, 15). About 200,000 subjects have been
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diagnosed with the early-onset familial AD form and

healthcare costs for this disease are about $200 billion

per year (1). It is clear that AD is fast becoming a major

health challenge in the United States and around the

globe that will financially drain public health budgets and

caregiver services.

Neuropathological characteristics of the
AD brain
The AD brain is characterized by several neuropatholo-

gical features of which two seminal hallmarks (Fig. 1)

arise from proteostasis of the ongoing neurodegenera-

tive processes and are essential for a definitive diagnosis

of the disease post mortem (17). One of the hallmark

proteins is made up of fibrils in the form of extracellular,

insoluble plaques and consists primarily of amyloid-beta

(Ab) (18). These peptide deposits in variable sizes depend

on the secretase enzymes (a-, b-, and Y-secretases) that

cleave it from the longer amyloid precursor protein (APP).

Initial reports suggested fibrillar Ab to be neurotoxic (19)

as it has been shown to kill all types of cells by apoptosis

induction (20). However, there are two known insoluble

fibrillar Ab amyloid peptides composed of Ab40 and

Ab42 amino-acid residues which exhibit distinct physio-

logical states within the human brain. There is a general

consensus among scientists that the larger (Ab42) peptide

is the neurotoxic form as the aging brain of cognitive

intact individuals also displays Ab plaques. However, in

the cognitively intact brain they are fewer in number and

usually of the diffuse Ab40 type that appears not to bear

any, as yet known, pathological significance. In addition,

there are the soluble monomeric, dimeric, and the multi-

meric forms of Ab (21). The relative neurotoxicity of

these isoforms remains unclear (22).

More recently, the fibrillary forms of the Ab(40/42)

peptides released in the AD brain were also recognized as

‘defensin’ or innate immune defense molecules that act to

protect the host against infection (23). For example, both

of the aforementioned amyloidogenic peptides can bind

to bacterial membranes and in that way lyse bacterial

cells. Although Ab is acting as an antimicrobial peptide

(AMP), it may be a part of the brain’s ancient/modern

innate immune defense mechanism. AMPs are potent,

broad-spectrum, pore-forming agents targeting Gram-

negative and Gram-positive bacteria, enveloped viruses

and protozoans (23), thereby supporting the hypothesis

that AD has an infectious origin.

Furthermore, the senile plaques (Ab42) are recognized

as triggers that stimulate activation of microglial cells and

initiate local immune responses (24). Activated microglia

are the most important contributors of inflammation in

the central nervous system (CNS) (25). They secrete a

number of pro-inflammatory cytokines (24�26) and re-

cognize pattern-associated molecular patterns (PAMPs)

on bacteria and their cellular debris (27�30) in response

to CNS infection.

The other pathological characteristic of AD is an ac-

cumulation of intracellular hyperphosphorylated tau and

heat shock proteins constituting the neurofibrillary tangles

(NFTs). Hyperphosphorylated tau protein alters the

polymerization and stability of microtubules compromis-

ing their function (31). NFTs in AD reflect the severity

of disease; however, the significance of pathogen�host

interaction to the occurrence of NFTs in the AD brain

is poorly understood. Current genetic evidence is point-

ing to aberrant innate immune responses (32, 33) and

cholesterol lipid genes (34) having greater significance in

AD pathogenesis. A dysfunctional immune system and

predisposition to hyperlipidemia also support the role of

reduced blood flow due to the vascular lesions and in-

flammation, Ab deposition and microorganisms in AD.

In advanced AD pathology, synaptic dysfunction is

another structural defect associated with a decline in

memory (35�37). Although a circular argument, malnu-

trition plays a role in the gradual loss of synapses and

fewer teeth during life is a known risk factor for AD (38).

Neurons are capable of responding to injury by expres-

sing multiple neurotransmitters. In AD, selective loss

of cholinergic neurons in the basal forebrain (39) also

correlates with the loss of cognitive function (18, 35).

The amyloid cascade hypothesis
Several hypotheses have been advanced regarding the

development of AD. The amyloid cascade hypothesis serves

as a model particularly for the familial form of AD (40)

which is a disease caused by mutations involving the

amyloid-b protein precursor, located on chromosome

21 and presenilins 1 and 2 on chromosomes 14 and 1,

respectively, that enhance the APP gene processing toward

Ab deposition (41, 42). The model, which was first pro-

posed by Glenner and Wong (43), maintains that the

neurodegenerative disease is due to an imbalance between

NFT

x10

x40

Fig. 1. The pathological hallmarks of AD, numerous extra-

cellular amyloid-Ab plaques and intra-neuronal neurofibril-

lary tangles (NFTs). Although there are several NFTs, only

one is picked out in boxes at 10� and 40� objective lens

magnification.
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the generation and clearance of Ab. Genome-wide asso-

ciation studies (GWAS) highlighted the complement

receptor 1 (CR1) gene playing a role in AD pathogenesis

(44). One recognized role of CR1, a membrane-bound

regulatory protein, is its ability to bind C3b opsonins

(Fig. 2). It is abundantly expressed especially on ery-

throcyte membranes and as such participates in immune

complex clearance by transporting waste to the liver and

the spleen. As the CR1 gene is a risk factor for LOAD,

this suggests loss of function as a possibility for the de-

fective clearance of Ab in the brain. Other tentative

explanations suggest variation in CR1 protein isoforms

(longer and shorter forms) (45), whereby the longer form

is less involved in the disease process via its ability to bind

more C3b and facilitate more effective clearance of Ab
in the brain (46). This is a process that inevitably fails

favoring disease expression with more Ab proteostasis

buildup and complement pathway activation. The amy-

loid hypothesis has been modified several times, particu-

larly due to the finding that soluble oligomers of Ab may

contribute to early preclinical stages of the disease that

initiate the cascade leading to synaptic dysfunction,

atrophy, and neuronal loss (47).

The inflammatory hypothesis

The intrinsic model

Currently, there are two models of the inflammatory hypo-

thesis of AD, an intrinsic and an extrinsic. The intrinsic

inflammation model accounts for the intact ‘blood�brain

barrier’ (BBB) restricting entry of neurotoxic immune mole-

cules and systemic lymphocytes to the brain. As a con-

sequence, the brain glial cells are able to generate a local

and complete innate immune system when challenged by

foreign agents (26, 48�50). Historically, neuroinflamma-

tion has largely been viewed as being a downstream con-

sequence of the amyloid hypothesis, whereby the presence

of amyloidogenic peptides results in the activation of

microglia initiating pro-inflammatory cascades and the

release of potentially neurotoxic substances resulting in

degenerative changes in neurons. GWAS now implicates

innate immune genes (44, 51) as being a risk factor and

supports a primary role for the inflammatory elements of

AD pathology via inappropriate activation of the com-

plement system (52�54) in association with Ab plaques

and NFTs (55).

The extrinsic model

The extrinsic model accounts for communication of the

glial cells with the immune challenges presented via the

blood vascular system using the circumventricular organs

and the choroid plexus that are devoid of the BBB (56).

The cells from this region of the brain are fully equipped

with the CD14 receptor and the toll-like receptor 4 (TLR

4) to recognize LPS from the peripheral blood circulation

(27, 28). Hence, elements of systemic infections such as

those originating from Gram-negative, highly virulent

oral pathogens, bronchopneumonia and urinary tract

infections (3, 4, 7, 57, 58) reach all organs including the

CNS. Bacterial products entering the bloodstream trigger

the innate immune responses of host cells via pattern

recognition receptors (PPR) and TLRs that alert local

and distant cells to the infectious threat by secreting im-

mune mediators (cytokines) to confine and defeat the

foreign agents. Increased risk of dementia in the elderly

following multiple infectious episodes has been reported

(4). In addition, systemic infections appear to contribute

toward delirium in some clinically diagnosed AD patients

and such episodes can exacerbate a premorbid cogni-

tive status (3). Holmes et al. (3, 57) proposed that since

cytokines are primary mediators released by the host to

defend against infection, such secondary stimuli (IL-1b
and TNF-a) may mediate their effect on the brain and

indirectly contribute to cognitive decline.

Non-oral bacteria related to AD
Honjo et al. (59) using Bradford Hill’s criteria for as-

sessing the relationship between bacteria and disease

found Chlamydophila pneumoniae to be a likely infectious

agent related to the pathogenesis of AD. Maheshwari and

Eslick (60) reported a strong correlation between C.

pneumoniae and AD, and according to Shima et al. (61)

C. pneumoniae is currently the most plausible of all

infectious agents proposed to be involved in AD. Lim et al.

(62) suggested that the pro- and chronic inflammatory

states in AD pathogenesis may in part be due to C.

pneumoniae infection of monocytes. C. pneumoniae anti-

bodies from typical intracellular and atypical C. pneumoniae

Fig. 2. Immunofluorescence labeling (green dots) of hippo-

campal CA neurons opsonized by iC3b following mono-

infection with P. gingivalis at 24 weeks of APOo gene

knockout (ApoE�/ � ) mice. This is indirect evidence of an

oral infection having affected the host’s brain.
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antigens have been identified both in the frontal and

temporal cortices of brains from AD patients (63).

Amyloid deposit and NFTs were detected in the same

regions in apposition to one another suggesting that C.

pneumoniae infection is involved in the development of

AD pathology.

Using various techniques, Balin et al. (9) found C.

pneumoniae in 80�90% of LOAD brain tissue specimens.

C. pneumoniae infection was correlated with the APOEo4

allele expression. The same researchers subsequently

demonstrated that astroglia, microglia, neurons, endo-

thelial cells, and monocytes in the LOAD brain are

permissive to this bacterium. The mechanisms of patho-

genesis differ between actively and persistently infecting

chlamydiae and it is in the persistent state that these

organisms cause chronic disease (64, 65). C. pneumoniae

was cultured from two AD brain samples after one or

two passages in HEp-2 cells (66). Interestingly, the study

indicated that brain isolates were more related to respi-

ratory than to vascular/atheroma strains of C. pneumoniae.

This suggested that C. pneumoniae infection of the brain

was secondary to bronchopneumonia and at the end

stages of LOAD.

It has been suggested that the phages phiCPAR39 and

phiCPG1, associated with C. pneumoniae, may enter

mitochondria of the bacterial host and work as slow

viruses initiating AD (67). These authors hypothesized

that mitochondrial recruitment by C. pneumoniae phages

may be the primary initiating event in the pathogenesis of

neurodegenerative disorders.

In a meta-analysis based on 25 relevant, primarily

case-control studies, Maheshwari and Eslick (60) found

a statistically significant association between AD and

detectable evidence of infection caused by C. pneumoniae

or spirochetes. They reported over a 10-fold increased

occurrence of AD when there was evidence of spirochetal

infection (OR: 10.61; 95% CI: 3.38�33.29) and over a

fourfold increased occurrence of AD with a conservative

risk estimate (OR: 4.45; 95% CI: 2.33�8.52). There was a

fivefold increase in occurrence of AD with C. pneumoniae

infection (OR: 5.66; 95% CI: 1.83�17.51). Accordingly, a

strongly positive association between bacterial infection

and AD was shown for both types of bacteria, but it was

strongest for spirochetes.

It is generally accepted that the syphilis spirochete

Treponema pallidum can cause chronic neuropsychiatric

disorders including dementia as well as other neurode-

generative disorders (11). T. pallidum causes brain atrophy

and Ab deposition in the atrophic form of general paresis

(68, 69) and is a strong indication for involvement of

spirochetes in AD pathogenesis. Chronic diseases such

as syphilis are frequently associated with deposition of

amyloid (68, 69). Amyloid is an integral component of

spirochetes which may contribute to amyloid deposition

in AD (70). Spirochete accumulation in the cerebral

cortex in the context of syphilis will also lead to for-

mation of senile plaques, NFTs, and granulovacuolar

degeneration (71).

Miklossy (68, 69) analyzed data on the ability of spi-

rochetes to induce pathological and biological hallmarks

of AD in vitro following Koch’s and Hill’s postulates and

demonstrated a plausible causal relationship between

neurospirochetosis and AD. The data revealed a statisti-

cally significant association between spirochetes and

AD (p�1.5�1,017, OR�20, 95% CI�8�60, N�247).

When mammalian cells were exposed to spirochetes, the

pathological and biological hallmarks of AD were re-

produced in vitro (68, 69). Historical observations sup-

ported the conclusion that chronic spirochetal infections

can cause dementia and reproduce the neuropathological

hallmarks of AD (72). According to Miklossy (72), these

observations represent further evidence in support of a

causal relationship between various spirochetal infections

and AD.

Another spirochete also implicated in AD is Borrelia

burgdorferi, the causative agent of Lyme disease which is

transfected to humans via tick vectors. There are great

similarities in the clinical and pathological manifestations

of syphilis and Lyme disease (72, 73). The occurrence

of B. burgdorferi in the brains of AD patients was first

reported by MacDonald and Miranda (74) and was

confirmed later by MacDonald (75, 76), Riviere et al.

(5), and Miklossy et al. (77). Interestingly, Bu et al.

(78) found that the infectious burden consisting of B.

burgdorferi, C. pneumoniae, Helicobacter pylori, cytome-

galovirus,and herpes simplex type-1 (HSV-1) is associated

with AD. In contrast, Gutacker et al. (79) and Pappolla

et al. (80) found no evidence of an association between

B. burgdorferi and AD.

Among other bacterial species, H. pylori (monoinfec-

tion) has been found to be related to AD (59). These

authors suggested that AD pathology can be initiated

and exacerbated by some microorganisms with inflam-

matory and oxidative responses which may affect the

brain continuously and gradually over time. However,

the H. pylori status was not associated with AD in a

study from Japan, probably due to the high prevalence

of the organism in controls (81). This was refuted by

Kountouras et al. (82) who had previously found that

successful eradication of H. pylori infection was associated

with significantly lower mortality risk in AD patients

[HR (95% Cl) �0.287 (0.114�0.725), p�0.008] (83).

Oral bacteria related to AD
The oral cavity harbors an impressive range of bacterial

phylotypes (84). Molecular identification methods have

detected close to 900 different predominant bacterial

species of which 35% cannot yet be cultured (85). The

oral microbiome profiles appear to be individualized

(86), meaning that bacterial microbiomes can vary both
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qualitatively and quantitatively between individuals, although

there are also significant overlaps. Each individual can

harbor up to 200 different bacterial taxa in their mouth

and there is a large variation in the microbiota in dif-

ferent oral sites (84, 87). Furthermore, the composition

of the oral microbiota irrespective of being indigenous

or pathogenic in the oral cavity keeps changing in view

of major oral diseases (caries, gingivitis, aggressive and

chronic periodontitis, periodontal-endodontic lesions, peri-

implantitis, and mucositis) (88�94). Particularly, plaque-

induced oral diseases such as periodontitis are associated

with a change in the oral microbiota. There is a pre-

dominance of anaerobic bacteria in the oral cavity. Many

of the major periodontal microorganisms are anaerobic,

e.g. Porphyromonas gingivalis, Treponema denticola, and

Tannerella forsythia. The abundance of anaerobes tends

to increase with the development of plaque-induced oral

diseases.

Periodontal bacterial pathogens are related to AD

Major pathogens of chronic periodontitis such as P.

gingivalis, T. forsythia, and T. denticola are implicated

in the development of several inflammatory diseases at

remote organ sites. Except for T. forsythia, all three of the

above-named organisms of which T. denticola represents

a spirochete, have been found in the AD brain (5, 8).

Spirochetes are strongly neurotropic. They can spread

along nerve fibers and via lymphatics (67, 68) and have

been detected in the trigeminal nerve and trigeminal

ganglia (95). Spirochetes and their antigens as well as DNA

have been found associated with AD and are strongly

implicated as the causative agents leading to dementia

(68, 69). In 14 studies, spirochetes were detected in AD

by different authors in different laboratories and coun-

tries by means of different techniques (for reviews see

Miklossy (68, 69)). Riviere et al. (5) demonstrated the

presence of seven different oral Treponema species in 14

out of 16 AD brain specimens (Fig. 3). Spirochetes were

even cultivated from the brains of AD patients indicating

that they were viable in the brain (67, 68, 77). Miklossy

suggested a co-infection by several spirochetes in AD in-

cluding the oral varieties (T. socranskii, T. pectinovorum,

T. denticola, T. medium, T. amylovorum, and T. maltophilum)

as demonstrated by Riviere et al. (5). Spirochetes repro-

duced the biological and pathological hallmarks of AD

after exposure of mammalian neuronal and glial cells in

organotypic cultures (68, 69).

It was demonstrated that LPS from periodontal bac-

teria can access the AD brain during life while detection

in corresponding controls, with equivalent or longer

postmortem interval was absent (8). This study supports

the literature on elevated antibodies to periodontal

disease-associated bacteria such as P. gingivalis, being

found in AD patients (7). Furthermore, in 2,355 people

60 years and over, the third NHANES study found

associations between periodontitis and cognitive impair-

ment and between measures of immunoglobulin to P.

gingivalis and cognitive test performance (96, 97). In this

study, all participants were cognitively intact at baseline.

Those who went on to develop AD had higher levels of

serum antibodies to periodontal pathogens at baseline.

The study suggested a temporal relationship in that the

periodontal disease came before AD.

Other important periodontal pathogens related to AD

are Fusobacterium nucleatum and Prevotella intermedia.

In the NHANES study, antibody levels to these organ-

isms were significantly increased (a�0.05) at baseline

serum in patients with AD compared to that in controls

(97). The results were significant after controlling for

baseline age, Mini-Mental State Examination score, and

allele APOEo4 status. Noble et al. (98) found that a high

anti-Actinomyces naeslundii titer (�640 ng/ml, present in

10% of the subjects) was associated with increased risk

of AD (HR �2.0, 95% CI: 1.1�3.8). This association was

stronger after adjusting for other significant titers

(HR �3.1, 95% CI: 1.5�6.4) and confirmed that period-

ontal pathogens may be associated with AD.

Possible consequences to the brain carrying oral
bacterial pathogens

The fact that inflammation is sustained in the AD brain

suggests that local immunogenic hallmark proteins and/

or peripheral infections are key perpetrators. This is

supported by reports highlighting microorganisms and

their toxic products as well as DNA in brain tissue of AD

patients and experimental animals (see below). Bacteria

activate pathways that include the integrin receptor

CR3 (CD11b/CD18) and TLR signaling (99) and the

Fig. 3. Section of pons area of Alzheimer’s disease brain

from an 84-year-old female subject (from Ref. (5) with

permission), demonstrates metabolically active Treponema

pectinovorum oral bacteria (arrows) stained dark blue

following immunostaining with anti-T. pectinovorum using

the avidin�biotin peroxidase method.
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complement cascade (100). The NF-kB signaling path-

way for cyto/chemokine release (TNF-a, IL-8) (101)

produces free radicals, triggers nitric oxide and apoptosis

(102). The oral cavity, lungs, and gastrointestinal and

urinary tracts are plausible sources of brain microorgan-

isms. The likely passage of the microorganisms of interest

from their original sites to the brain is described below.

Infections with spirochetes can cause cerebral hypo-

perfusion (103), cerebrovascular lesions, and a severely

disturbed capillary network (68, 69). Chronic spirochetal

infections can also induce slowly progressive dementia,

cortical atrophy, chronic inflammation, and Ab deposi-

tion, indistinguishable from that occurring in AD brains

(for reviews see Refs. 68, 69, 72). Furthermore, cultured

neuronal cells exposed to spirochetes produce Ab (104).

Spirochetes are also able to form plaque-, tangle-, and

curly fiber-like lesions (72, 105). They induce a latent and

slowly progressive infection by evading host defenses.

This promotes their survival and proliferation in the

brain by blocking the complement cascade. Spirochetes

may even survive and proliferate in hosts that are

immune-competent. Interestingly, the remarkable ability

of T. pallidum to evade clearance from the immune sys-

tem has earned it the designation ‘stealth pathogen’ (106).

The activated complement cascade following spirochete

infections (11) may be used as a non-specific marker of

CNS inflammation. Spirochete�host interactions initiate

and sustain chronic inflammation triggering various

immune responses that activate the innate and adaptive

immune system, free radical production, apoptosis, and

amyloid deposition typically seen in AD brains (107).

P. gingivalis has been designated as one of the ‘key-

stone’ periodontal pathogens because it is able to establish

and maintain the periodontal disease-associated ‘inflam-

mophilic’ microbiota (108). It is able to perform this task

as it possesses an awesome variety of virulence factors,

recently reviewed by Singhrao et al. (109), to evade the

host immune defenses, thus serving two major functions:

initial survival of P. gingivalis itself via a sustainable in-

flammatory milieu and sustainment of nutritional sources

by eliminating microbial competitors (108).

The P. gingivalis endotoxin LPS demonstrates differ-

ences in the number of phosphate groups together with

both the amount of lipid A fatty acids and their specific

position. The presence of multiple lipid A structures

makes it more difficult for the innate host responses to

recognize the molecule thereby aiding the virulence of P.

gingivalis (110). The consequences of finding P. gingivalis

LPS in the host’s body, e.g. the brain (8), include priming

of immune cells for differential activation of the TLR-

mediated NF-kB signaling pathway (111) leading to

cytokine liberation, complement activation, and main-

tenance of intracerebral inflammation.

P. gingivalis evades circulating phagocytes by adhering

to erythrocytes (112). An active invasion of P. gingivalis

and infection-induced complement activation with by-

stander neural injury was detected in the brains of

ApoE�/ � mice (113). This supported previous notions

that bacterial infections can contribute to the develop-

ment of AD pathology via mechanisms involving acute-

phase proteins such as cytokines and the complement

cascade where neurons would be attacked.

Oral virus related to AD
Herpes simplex virus (HSV) is present in more than

70% of the population after 50 years of age (114�116).

It persists latently in the peripheral nervous system and

is periodically reactivated. Characteristically, HSV-1 has

been designated as the enemy within (10). Herpes viruses,

including Epstein-Barr virus and cytomegalovirus, are

found in high copy counts in aggressive periodontitis, and

may interact synergistically with periodontopathic bac-

teria in the pathogenesis of this disease (117). Periodontal

infections activated by Herpes virus may impair local

host defenses and thus increase the aggressiveness of

resident periodontopathic bacteria. The bacteria, in turn,

may augment the virulence of the herpes viruses.

High proportions of viral-associated proteins in amy-

loid-containing plaques and/or NFTs corroborate with

the involvement of HSV-1 in AD pathology (118). Notably,

De Chiara et al. (119) reported an association between

Ab accumulation in the brain and HSV infection. Itzhaki

et al. (120) suggested that not only does HSV-1 produce

the main components of amyloid plaques and NFTs (i.e.

Ab and hyperphosphorylated tau), but it also interferes

with the autophagic events that prevent degradation of

these proteins and eventually leading to their accumula-

tion in the AD brain. Furthermore, in vitro and in vivo

investigations in murine models following HSV-1 infec-

tions demonstrated Ab accumulation (121).

A number of scientists have suggested that there

is an imbalance between production and clearance of

b-amyloid in the brain, a premise first proposed by

Wisniewski et al. (122) based on the discovery of soluble

species of this protein and later confirmed by Zlokovic

et al. (123). It is now widely accepted that defective

clearance of this protein is a hallmark of AD brains

leading to its accumulation in the form of insoluble

Ab40/42 plaques. Although HSV and cytomegalovirus

have been detected in the brains of older adults with and

without AD (124�126), HSV-1 viral DNA is present in a

higher proportion of AD patients (127). It is particularly

seen in the temporal and frontal cortices which are the

brain regions that are most damaged in AD (128, 129).

The relevance of this association is still under investiga-

tion; however, a plausible role for the HSV-1 viral DNA

could be associated with the plaque maturation process.

Jamieson et al. (127) found that the virus was absent in

the brains of most young people, probably because it

enters the brain during old age either with immune
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senescence (130) or the virus itself is initially responsible

for weakening host’s immune defenses. This latter ex-

planation is likely and is supported by us and others (131).

HSV-1 is a strong risk factor for AD in the brains

of those with the APOEo4 allele (125, 132). This virus is

not only a dormant passenger but can also persist in the

latent form in neurons or replicate at a very low level in

neuroglia (133). During persistence, it may release toxic

products continuously and induce pro-inflammatory cyto-

kines at low levels which become an additional burden

to a host already challenged by age, poor diet, restricted

exercise as well as any genetic susceptibilities. Itzaki and

Wozniak (10) suggested that stress or peripheral infection

can reactivate the virus periodically from latency in the

brain. This may cause an acute but presumably localized

infection, and subsequent damage modulated by the

APOo gene can lead to formation of Ab plaques and

NFTs.

The presence of anti-HSV IgM, a sign of reactivated

infection, almost doubled the risk for AD while anti-HSV

IgG did not influence the risk (134). Kobayashi et al.

(135) suggested that the anti-HSV-1 Ig antibody avidity

index could be a useful biomarker for early diagnosis of

amnestic mild cognitive impairment, which is prodromal

to AD, as well as for AD sufferers.

Reactivation of HSV seropositivity is highly correlated

with incident-AD (136). Letenneur et al. (136) speculated

that AD pathology starts many years before frank

dementia and recurrent reactivation of HSV can act as

a potent stimulus to brain microglia, increasing cytokine

levels, and triggering a positive feedback cycle leading to

increasing accumulation of neurohistopathological changes.

In other words, infection, followed by local CNS inflam-

matory reaction is the likely primary stimulus whereas

proteostasis is a consequence of the primary event lead-

ing to the development of AD.

Hill et al. (137) suggested a role for HSV-1-induced

miRNA-146a in the evasion of HSV-1 from the comple-

ment system which is a major first-line host defense

mechanism, and the activation of key elements in the

arachidonic acid cascade known to contribute to AD-

type neuropathological changes.

Oral yeasts related to AD
Oral yeast infection represents a secondary opportunistic

infection particularly involving Candida albicans, but

increasingly non-albicans species, e.g. Candida glabrata.

With a growing population of elderly, severe systemic

fungal infections have increased dramatically in this age

group during the last 30 years (138, 139). Oral yeasts can

be found in periodontal pockets, in root canals, on the

mucosae and underneath dentures (denture stomatitis)

(140�142). Denture stomatitis is prevalent in elderly wear-

ing dentures that are heavily contaminated with yeasts

which can be a source of systemic mycosis. Disseminated

mycoses have recently been reported in AD patients

(143, 144). Fungal molecules including proteins and

polysaccharides [(1,3)-b-glucan] were detected in periph-

eral blood serum, and fungal proteins and DNA were

demonstrated by PCR in brain tissue of AD patients.

Chitin-like fungal structures have also been found in the

AD brain (145) and chitinase activity has been proposed

as a powerful biomarker of AD (146). In AD brains,

cytoplasmic material in a small number of cells was tar-

geted by antibodies with immunoreactivity to yeast cells

(147). These findings were consistent with the idea that

neurons can be infected by fungi. Interestingly, antifungal

treatment reversed the clinical symptoms of some AD

patients (148, 149).

How do oral microorganisms reach the brain?

Blood stream dissemination

The most likely pathway for dissemination of oral micro-

organisms to the brain is through the blood stream (150).

Dental treatment as well as brushing, flossing, chewing,

and use of tooth picks in a patient with periodontitis will

release a bacteremia (151). This can occur several times

during the day and has been estimated to last for up to

3 hours for oral bacteria (152). The bacteremia is usually

contained by immune cells of the body. However, in

people with reduced immune defense, e.g. older indivi-

duals, bacteria may localize to crevices of the oral cavity

and vascular channels (150).

The blood�brain barrier

An intact BBB prevents microorganisms in the blood

from accessing the brain. However, aging favors over-

growth of oral microorganisms, particularly anaerobic

bacteria and facultative yeasts that established earlier

in life and provoked pro-inflammatory responses that

weakened the BBB (16). Notably, magnetic resonance

imaging (MRI) confirmed loss of BBB integrity in a

mouse model of disseminated candidosis (153). Loss of

integrity allows microorganisms to spread through the

blood stream and quietly contribute in the pathogenesis

of AD. During immunosenescence, the innate immune sys-

tem gradually takes over for the acquired immune system.

This contributes to a rise in circulating pro-inflammatory

cytokines such as TNF-a (16). Indeed, pro-inflammatory

mediators can cross the BBB (3, 7, 154). APOEo4, TNF-a
and perhaps Ephrin Type-A Receptor 1 (EphA1) may

influence BBB integrity and thus be important for

penetration of bacteria, LPS, and other toxic bacterial

products as well as yeasts into the brains of AD patients

(16). APOEo4 affects the integrity of the BBB by acti-

vating the cyclophilin A matrix metalloproteinase MMP-

9 pathway (155).

It is also plausible to suggest that the permeability of

the BBB increases with age and thus promotes AD
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pathogenesis making the brain accessible to microorgan-

isms. Mice with a mutation in the APP gene which is

related to early-onset AD in humans, showed increased

permeability of the BBB and increased formation of

senile plaque as compared to that in control mice (156).

The changes increased with age.

Circumventricular organs and perivascular spaces

Circumventricular organs (permit polypeptide hypotha-

lamic hormones to leave the brain without disrupting the

BBB) are not dependent on the BBB (56) and may act as

another entry portal to the brain for bacteria (157). Poole

et al. (8) postulated that bacteria and their products may

also directly access the brain via the systemic circulation

through the perivascular spaces.

The olfactory hypothesis
The ‘olfactory hypothesis’ suggests the olfactory tract as

a potential route for pathogenic bacteria to enter the

brain and thereby trigger the production of Ab and NFTs

(158). The olfactory and trigeminal nerves are known to

be used by periodontal pathogens to bypass the BBB for

direct passage to the CNS (5, 150, 159, 160). Identifica-

tion of oral treponemes in the trigeminal ganglia supports

such a route of dissemination (5). Furthermore, spir-

ochetes may spread along the fila olfactoria and tractus

olfactorius (68, 69).

Olfactory unsheathing cells (OECs) engulf bacteria

and migrate toward TNF-a released by activated astro-

cytes (161). Therefore, OECs could be a vehicle for trans-

porting live bacteria into the brain (i.e. Trojan horse). The

olfactory bulb was the first area where NFTs and Ab
deposition were detected in the neuropathological trajec-

tory of AD in humans (162) and in mouse models of

AD (163).

Genetic, nutritional, and environmental factors
promoting AD
While early-onset AD is genetically determined, LOAD is

thought to result from interaction between genetic and

environmental factors (12). Several mutated genes are

associated with the familial AD, such as the amyloid beta

(Ab) precursor protein (AbPP) gene and the presenelin-1

(PSEN-1) and PSEN-2 gene (164�166). A major risk

factor for LOAD is polymorphism in the APOo4 allele

(2). Also cytokine-related genes seem to be involved in

the susceptibility to inflammation in both LOAD (167,

168) and periodontitis (169�171). Thus, polymorphisms

that increase TNF-a also increase the risk of both AD

and periodontitis (172, 173). Lambert et al. (174) found

that 20 different loci can increase host susceptibility to

AD including polymorphisms in genes associated with

interleukin-1 (IL-1) (71, 175�178) and TNFa (71, 172,

179�181). The APOo4 gene, which is one of these 20 loci,

is highly correlated with AD (182) but it is also a risk

factor for infection and increases the expression of

inflammatory mediators (11). Recently, genetic overlap

between AD, C-reactive protein (CRP) and plasma lipids

was demonstrated by using summary statistics from

GWAS of over 200,000 individuals (183). There may

also be interplay between genetic risk and environmental

risk factors such as toxins and or bacterial, viral and

fungal pathogens in LOAD reflecting its complex and

multifactorial etiology (1).

Diet with its content of essential B-vitamins, phospho-

lipids, and other micronutrients is important for forming

new nerve synapses (184). Nutritional deficiencies are

common both in elderly and in dementia subjects as

briefly discussed by Singhrao et al. (150).

Association between chronic periodontal
disease and AD
There is increasing evidence for an association between

chronic periodontitis and LOAD (185). Cross-sectional

and longitudinal studies have demonstrated that gingival

bleeding, loss of periodontal attachment, periodontal

probing depth, alveolar bone loss, and antibodies to

periodontal pathogens are significantly associated with

lower cognitive function and decline after adjustment for

co-variates (for a review see (12)). Acute-phase proteins,

including cytokines are possible indirect links between

periodontal pathogens and/or their virulence factors (12,

13). Elderly often show neglect of oral hygiene which can

stimulate recurrent chronic oral infection (150). This

again promotes inflammation which can lead to confu-

sion and dementia (3, 4, 154). In 152 subjects 50�70 years

of age who were followed for 20 years, greater levels of

periodontal inflammation correlated with lower cognitive

levels (186). Furthermore, gingival bleeding and loss

of periodontal attachment were significantly associated

with cognitive impairment in a cohort of 5,138 people

aged 20�59 years (187). In 144 nuns, those encoding

APOEo4 and who had fewer teeth experienced more rapid

cognitive decline than those with neither or either of these

risk factors (188). Clinical and epidemiological studies

showed that loss of teeth is associated with poor memory

(6, 96, 187, 189). In another study of 597 community

dwelling men followed for 32 years, tooth loss, increasing

periodontal pocket depths, and progression of alveolar

bone loss were associated with impaired cognition par-

ticularly in those over 45 years of age (190). Recently, de

Souza Rolim et al. (191) found that periodontal infec-

tions were more frequent in patients with mild AD than

in healthy subjects. Another interesting feature related

to the pathogenesis of AD is the low level of infection by

‘commensals on the loose’ (16). These ‘immuno-tolerated’

bacteria may silently multiply in sites outside of their

primary niche and an ongoing infection at their second-

ary location may have significant deleterious effects upon

the health of the elderly or demented host with an exist-

ing immunocompromised status.
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Putative treatment and prophylaxis of AD
There is no effective treatment or prophylaxis yet for

AD, but several approaches have been proposed. Efforts

in this respect are important. If we could delay onset of

dementia by only 2 years we might lower the prevalence

of AD by more than 22 million cases over the next 40

years (14). Notably, the inheritance of the APOEo4 allele

in the very old (90� ) age group appears to confer pro-

tection (192), having bypassed a period of being at risk

around 85� years of age.

If periodontal disease is implicated in AD, period-

ontitis prophylaxis could be of help. It would be interest-

ing to see if this has any effect on the initiation and

aggravation of AD but an observation period of decennia

is probably needed.

In a study of subjects with mild-to-moderate AD, a 3-

month course of doxycycline and rifampicin reduced

cognitive deterioration during a 6 months’ follow-up

interval (193). It was concluded that use of antibacterial

compounds may not have had any effect on the treatment

of C. pneumoniae but had a beneficial effect on cognitive

decline in AD (193). This might be related to prevention

or attenuation of a number of peripheral infections or

dampening down the pro-inflammatory cytokine response.

Minocycline was found to correct early, pre-plaque neu-

roinflammation and inhibit the APP cleaving enzyme

1 (BACE-1) in a transgenic model of AD-like amyloid

pathology (194). It was suggested that interfering with

inflammation could be a useful therapeutic approach in

early, pre-plaque stages of AD-like amyloid pathology.

Anti-inflammatory drugs given for at least 2 years

before the onset of dementia delayed the disease process

(195�197). It may also be beneficial to combine anti-

inflammatory agents with antibacterials (193). Examina-

tion of several available non-steroidal anti-inflammatory

drugs (NSAIDs) showed that only a few of them had any

useful Ab-modifying or other activity of therapeutic use

in LOAD (for a review see (1)).

Itzhaki and Wozniak (10, 198) suggested that antiviral

therapy and perhaps vaccination against HSV-1 in early

life could be useful. If HSV-1 is implicated in AD,

vaccination could prevent the excessive accumulation of

Ab in the brain. Vaccination with mixed HSV glycopro-

teins prior to HSV infection protected against viral

latency in mouse brains (199). Also Mori (200) main-

tained that antiviral approaches including chemotherapy

and vaccination are promising for prevention and treat-

ment of AD and remaining to be validated. Furthermore,

Carter (118) suggested that vaccination or antiviral

agents and immune suppressants may be considered as

therapeutic options before or during the early stages of

AD. Interestingly, exposure of HSV-1-infected cell cul-

tures to intravenous immunoglobulin acting via anti-b-

amyloid antibodies reduced the accumulation of Ab and

phosphorylated tau (201).

Angiotensin-converting enzyme (ACE) from Stigmatella

aurantiaca may cleave the Ab peptide similar to human

ACE and may be used as a novel form of treatment against

AD (202). Furthermore, Chiarini et al. (203) maintained

that calcilytics could halt AD progression and preserve the

patients’ cortical neurons, cognitive abilities, and eventually

life if given at minimal cognitive impairment or at earlier

stages. Studies using mice suggested the use of tau aggrega-

tion inhibitors as potential drugs for the treatment of AD

and other tauopathies (204).

Resveratrol is a polyphenol present in red wine. Its

capability of directly interfering with the toxic b-amyloid

protein aggregation in AD has recently been shown (205).

Resveratrol was found to reduce Ab-induced toxicity in a

Caenorhabditis elegans model of AD by targeting specific

proteins involved in proteostasis and thereby reducing the

amount of aggregated Ab (206). This is in concert with

our previous finding that the effect of a drinking pattern

of 2�7 times per week reduced the risk of myocardial

infarction among men who had a history of tooth extrac-

tions due to periodontal/dental infection (207).

Potent inhibitors of Ab oligomer formation or Ab-

induced cell toxicity have proven to be attractive means

for therapeutic intervention of AD. Song et al. (208)

found that the anti-Alzheimer effects of centipedegrass,

which contains several C-glycosyl flavone constituents,

occurred through inhibition of neuronal cell death by

intervening with oligomeric Ab formation and reducing

beta-site APP cleaving enzyme 1 activity. The authors

suggested that maysin, a major flavonoid of corn silk, in

centipedegrass could be an excellent therapeutic candi-

date for the prevention of AD.

Active immunization against important domains of

Alzheimer tau eliminated tau aggregation and neurofi-

brillary pathology (209). The AD type of tau hyper-

phosphorylation was abolished in transgenic mice by

vaccination across a wide range of AD phospho-epitopes.

Kontsekova et al. (209) demonstrated that active im-

munization of rats with a tau peptide encompassing the

epitope revealed by monoclonal antibody DC8E8 led

to elimination of all major hallmarks of neurofibrillary

pathology involving a 95% reduction in the AD-type

hyperphosphorylation of tau.

Conclusions
LOAD, which is the predominant form of AD, does not

seem to have a single cause. On the contrary, a multitude

of factors may be involved and they may act in concert.

Among others, both genetic and environmental factors

may be involved. Even among microorganisms, coopera-

tion may occur since the brain can hardly differentiate

between different microbial insults which collectively

contribute capacity for enhancing inflammation. Irre-

spective of the cause, systemic inflammation may predict

the onset of dementia. Organisms such as spirochetes,
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P. gingivalis, C. pneumoniae, H. pylori, Herpes simplex

type I virus, and Candida are among the prime candidate

pathogens in AD brains. In the cascade of events causing

AD, oral microorganisms may play a role, particularly

anaerobic bacteria such as treponemes, P. gingivalis,

Prevotella spp., Fusobacterium and Actinomyces, but

also facultative anaerobic Candida species. It is important

to recognize that infection can occur decades before the

manifestation of dementia. The most convincing evidence

for a causal relationship between oral bacteria and AD is

noted for spirochetes which are both neurotropic and

motile. It is likely that oral infection can be a risk factor

for AD but it is not the only one. Experiments in humans

may require long exposure time to disclose key events and

mechanisms of AD. There is, as yet, no cure for AD

despite concerted efforts and investment by industry.

Prevention of AD through long-term use of antibiotics

may be impractical and could select for resistant bacteria.

This is worrisome as the prevalence of AD and the public

expenses related to its management are expected to in-

crease greatly in the next decade.

If anaerobes of periodontitis play a major role in AD,

dental hygiene and treatment will provide the AD prophy-

laxis from an early age as periodontitis is modifiable.

However, improving oral hygiene and treating periodontal

disease in the AD patient can be challenging since patients

are often uncooperative. There is also need for training

caregivers to assist with oral care in such patients.

Vaccination against key organisms and important

domains of AD has had some beneficial effect. Also

several agents interfering directly with the pathogenesis

of AD have been tested. In order to find a cure, there is

a need for clinical diagnostic information and knowledge

of the causal agents for AD so that specific treatment

options targeting these organisms can be developed. As

for diagnostic biomarkers, increased antibody levels to

specific oral pathogens in particular to P. gingivalis may

be used as a monitoring tool years before clinical mani-

festation of AD. This is important because treatment will

probably have to start early.
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Bramanti E. Relationship between oral health and its impact

on the quality life of Alzheimer’s disease patients: a supportive

care trial. Int J Clin Exp Med 2013; 6: 766�72.

187. Stewart R, Sabbah W, Tsakos G, D’Aiuto F, Watt RG.

Oral health and cognitive function in the Third National

Health and Nutrition Examination Survey (NHANES III).

Psychosom Med 2008; 70: 936�41. doi: http://dx.doi.org/10.
1097/PSY.0b013e3181870aec

188. Stein PS, Kryscio RJ, Desrosiers M, Donegan SJ, Gibbs MB.

Tooth loss, apolipoprotein E, and decline in delayed word

recall. J Dent Res 2010; 89: 473�7. doi: http://dx.doi.org/10.
1177/0022034509357881

189. Gatz M, Mortimer JA, Fratiglioni L, Johansson B, Berg S,

Reynolds CA, et al. Potentially modifiable risk factors

for dementia in identical twins. Alzheimers Dement 2006; 2:

110�7. doi: http://dx.doi.org/10.1016/j.jalz.2006.01.002
190. Kaye EK, Valencia A, Baba N, Spiro A 3rd, Dietrich T,

Garcia RI. Tooth loss and periodontal disease predict poor

cognitive function in older men. J Am Geriatr Soc 2010; 58:

713�8. doi: http://dx.doi.org/10.1111/j.1532-5415.2010.02788.x
191. de Souza Rolim T, Fabri GM, Nitrini R, Anghinah R, Teixeira

MJ, de Siqueira JT, et al. Oral infections and orofacial pain in

Alzheimer’s disease: a case-control study. J Alzheimers Dis

2014; 38: 823�9. doi: http://dx.doi.org/10.3233/JAD-131283

192. Corrada MM, Paganini-Hill A, Berlau DJ, Kawas CH.

Apolipoprotein E genotype, dementia, and mortality in the

oldest old: the 90� study. Alzheimers Dement 2013; 9: 12�8.

193. Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH,

Mahony J, et al. A randomized, controlled trial of doxycycline

Oral microbial risk factors for Alzheimer’s disease

Citation: Journal of Oral Microbiology 2015, 7: 29143 - http://dx.doi.org/10.3402/jom.v7.29143 15
(page number not for citation purpose)

http://dx.doi.org/10.1523/JNEUROSCI.4622-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.4622-09.2010
http://dx.doi.org/10.3389/fphar.2011.00077
http://dx.doi.org/10.1631/jzus.B0920279
http://dx.doi.org/10.1016/j.brainresrev.2009.05.001
http://dx.doi.org/10.1016/j.brainresrev.2009.05.001
http://dx.doi.org/10.1016/j.humimm.2013.08.009
http://dx.doi.org/10.1016/j.humimm.2013.08.009
http://dx.doi.org/10.1038/ng.2802
http://dx.doi.org/10.1038/ng.2802
http://dx.doi.org/10.1007/s11033-012-2237-0
http://dx.doi.org/10.1016/j.brainresrev.2008.07.003
http://dx.doi.org/10.1016/j.brainresrev.2008.07.003
http://dx.doi.org/10.1016/j.jneuroim.2014.06.026
http://dx.doi.org/10.1016/j.jneuroim.2014.06.026
http://dx.doi.org/10.1016/j.jneuroim.2012.03.012
http://dx.doi.org/10.1016/j.jneuroim.2012.03.012
http://dx.doi.org/10.1016/j.jns.2008.02.021
http://dx.doi.org/10.1016/j.jns.2008.02.021
http://dx.doi.org/10.1186/1471-2377-8-9
http://dx.doi.org/10.1186/1471-2377-8-9
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015489
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015489
http://dx.doi.org/10.1179/0001551213Z.0000000006
http://dx.doi.org/10.1097/PSY.0b013e3181870aec
http://dx.doi.org/10.1097/PSY.0b013e3181870aec
http://dx.doi.org/10.1177/0022034509357881
http://dx.doi.org/10.1177/0022034509357881
http://dx.doi.org/10.1016/j.jalz.2006.01.002
http://dx.doi.org/10.1111/j.1532-5415.2010.02788.x
http://dx.doi.org/10.3233/JAD-131283
http://www.journaloforalmicrobiology.net/index.php/jom/article/view/29143
http://dx.doi.org/10.3402/jom.v7.29143


and rifampin for patients with Alzheimer’s disease. J Am

Geriatr Soc 2004; 52: 381�7.

194. Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello

AC. Minocycline corrects early, pre-plaque neuroinflammation

and inhibits BACE-1 in a transgenic model of Alzheimer’s

disease-like amyloid pathology. J Neuroinflammation 2012; 9:

62. doi: http://dx.doi.org/10.1186/1742-2094-9-62

195. in’t Veld BA, Ruitenberg A, Hofman A, Stricker BH, Breteler

MM. Antihypertensive drugs and incidence of dementia: the

Rotterdam Study. Neurobiol Aging 2001; 22: 407�12.

196. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of

Alzheimer’s disease and duration of NSAID use. Neurology

1997; 48: 626�32.

197. McGeer PL, McGeer EG. Anti-inflammatory drugs in the

fight against Alzheimer’s disease. Ann N Y Acad Sci 1996; 777:

213�20.

198. Itzhaki R, Wozniak MA. Could antivirals be used to treat

Alzheimer’s disease. Future Microbiol 2012; 7: 307�9.

199. Lin WR, Jennings R, Smith TL, Wozniak MA, Itzhaki RF.

Vaccination prevents latent HSV1 infection of mouse brain.

Neurobiol Aging 2001; 22: 699�703.

200. Mori I. ‘‘Spontaneous molecular reactivation’’ of herpes

simplex virus type 1 in the brain as a pathogenic mechanism

of Alzheimer’s disease. Med Hypotheses 2011; 77: 462.

201. Wozniak MA, Itzhaki RF. Intravenous immunoglobulin re-

duces b amyloid and abnormal tau formation caused by herpes

simplex virus type 1. J Neuroimmunol 2013; 257: 7�12. doi:
http://dx.doi.org/10.1016/j.jneuroim.2013.01.005

202. Jalkute CB, Sonawane KD. Evaluation of a possible role of

Stigmatella aurantiaca ACE in Ab peptide degradation: a

molecular modeling approach. J Mol Microbiol Biotechnol

2015; 25: 26�36. doi: http://dx.doi.org/10.1159/000370114

203. Chiarini A, Gardenal E, Whitfield JF, Chakravarthy B,

Armato U, Dal Pra I. Preventing the spread of Alzheimer’s

disease neuropathology: a role for calcilytics? Curr Pharm

Biotechnol 2015; 16: 696�706.
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