
Improving optimal sequence
alignments through a
SIMD-accelerated library

Jakob Tobias Frielingsdorf
Master’s Thesis Spring 2015

Abstract

The recent years have seen an increasing demand in fast sequence align-
ments, fuelled by a rapidly growing amount of sequence data. Meanwhile,
with growing computing power optimal sequence alignment algorithms
came back into the focus of these analyses.

This work presents a new library for fast database searches based on
optimal sequence alignments. It performs database searches accelerated
on multiple threads and single instruction multiple data (SIMD) opera-
tions. The library implements Rognes’ approach for accelerating database
searches, while being designed for extensibility. A modular structure al-
lows for an easy integration of new and improved algorithms. Addition-
ally, the application programmable interface (API) of the library is designed
for easy use and flexibility, allowing an extensive configuration of the com-
putations.

Besides the modular structure, the key features are the database searches
based on SIMD instructions. These are optimised for the widely used
streaming SIMD extensions (SSE) and the more recent advanced vector ex-
tensions (AVX) implementing twice as wide registers.

The focus of this thesis is the evaluation of the performance of libssa and
of the optimised implementation of the database searches, with emphasis
on the benefits of the computation on AVX over SSE. It presents that AVX
significantly improves the performance by up to 1.83 times over SSE.

iii

Acknowledgements

I would like to thank my supervisor Torbjørn Rognes for a lot of interesting
discussions and valuable feedback which helped to improve this work.

Lukas and Olli deserve a special thanks for proofreading parts of my thesis.
Both provided me with useful comments. Another big thanks goes to my
friends and family for moral support.

On a personal note I would like to thank my dear Julia for her love and
encouragement.

Jakob Tobias Frielingsdorf
University of Oslo
May, 2015

iv

Contents

1 Introduction 1

2 Background & Theory 3
2.1 Biological background . 3
2.2 Sequence alignment . 4

2.2.1 Applications of sequence alignment 5
2.2.2 Sequence translations 5
2.2.3 Algorithms for sequence alignment 6

2.3 Parallelisation of sequence alignment 15
2.3.1 Flynn’s Taxonomy . 15
2.3.2 Levels of parallelisation 15
2.3.3 CPU . 16
2.3.4 Parallelising sequence alignments on CPUs 17

2.4 API design in C . 18
2.4.1 General design rules 19
2.4.2 Design rules for implementations in C 20
2.4.3 Existing sequence alignment APIs 21

2.5 Measuring performance . 23
2.5.1 Measuring speed . 23
2.5.2 Amdahl’s Law . 23

2.6 Testing . 24

3 Design 27
3.1 Design of the API . 27

3.1.1 Use cases . 27
3.1.2 Alignment API . 28
3.1.3 Database API . 30

3.2 Design of the library . 30
3.3 Parallelisation of sequence alignment 32

3.3.1 Threads . 32
3.3.2 Non vectorised sequence alignments 33
3.3.3 Vectorised alignments 33

4 Implementation 37
4.1 Configuration and internal formats 37

4.1.1 Data types . 37
4.1.2 Sequences . 38

v

4.1.3 Scoring schemes . 39
4.1.4 Gap penalties . 40
4.1.5 Validation of the configuration 40

4.2 Database integration . 41
4.3 Controlling database searches and alignments 41

4.3.1 Thread pool . 42
4.3.2 Min-max-heap . 42

4.4 Database searches . 43
4.4.1 64 bit implementation 44
4.4.2 8 and 16 bit implementations 45

4.5 Computing alignments . 54
4.6 Testing . 55
4.7 Measuring performance . 56

5 Results and discussion 59
5.1 Evaluating performance . 59

5.1.1 Collecting results . 59
5.1.2 Base test run . 61
5.1.3 Query lengths, bit widths, and SIMD capabilities . . 63
5.1.4 Thread counts . 69
5.1.5 Chunk sizes . 71
5.1.6 Comparison of alignment tools 74
5.1.7 Tests . 77

5.2 Evaluating optimisations . 78
5.2.1 Search columns . 78
5.2.2 Memory management 80
5.2.3 Optimisations done by the compiler 82

5.3 Exploiting open source . 85

6 Future work 89
6.1 New and improved algorithms 89

6.1.1 Needleman-Wunsch-Sellers algorithm 89
6.1.2 Different gap penalties 89
6.1.3 Optimising alignments 89

6.2 Error handling . 90
6.3 Creating the temporary score profile 91

6.3.1 Compute on 8 bit . 91
6.3.2 Different implementation for nucleotide sequences . 92
6.3.3 Filling for only match/mismatch values 92

6.4 Other work . 92

7 Conclusion 95

Bibliography 97

A Number of search columns for different databases 99

B Reproducing performance results 101

vi

C Installing and running libssa 103

vii

Chapter 1

Introduction

Sequence alignments are an important part of the analysis of genomic data.
They help to discover similarities in genomic sequences and form a base
for further analyses and research. Especially in the recent years the cost for
sequencing genomic and protein data is as low as ever before. The effect
is a rapidly growing amount of sequence data fuelling the demand for fast
analyses.

Algorithms for optimally solving the problem of sequence alignments exist
since the 1970s. In the past, the biggest challenge of these algorithms was
their quadratic complexity in time and memory. A solution were heuristic
algorithms solving the problem good but not optimally.

One of the applications based on sequence alignments are database
searches. Here, a database is searched for sequences, that are similar to a
query sequence. Since the beginning of the 1990s heuristics were the main
kind of algorithms used for such applications.

With growing computing power and more advanced hardware, optimal
sequence alignment algorithms came back into focus. One technique that
is used to speed up these algorithms are single instruction multiple data
(SIMD) operations. CPUs implement this feature since the middle of the
1990s. It allows for computing on multiple data elements in parallel and
was used to develop different approaches to accelerate optimal sequence
alignments.

In software development it is common practice to implement tasks in li-
braries, which are then used in multiple programs. This allows for re-using
an implementation of a task in different programs, thus speeding up the
development of these. This thesis describes a new library for database
searches using optimal sequence alignment algorithms called libssa (li-
brary for SIMD accelerated optimal Sequence Alignments). It implements
the searches based on global and local alignments using the Needleman-
Wunsch and Smith-Waterman algorithms. The focus of the library lies on
fast implementations of the database search and algorithms as well as on

1

providing a modular structure, which allows for an easy extension of the
library.

Two of the SIMD instruction sets, which implement the SIMD operations in
modern CPUs, are the streaming SIMD extensions (SSE) and the advanced
vector extensions (AVX). The main difference of both is the amount of
data elements, which can be computed in parallel. AVX allows for twice
as many data elements than SSE. The research question of this thesis is
whether an implementation of the optimal sequence alignment algorithms
based on AVX instructions performs better than an implementation based
on SSE instructions. In addition to the quantitative analysis of the library’s
performance, it is going to be compared to existing implementations of
database searches.

2

Chapter 2

Background & Theory

2.1 Biological background

The entire genetic information of an organism is stored in the genome. En-
coded in DNA (Deoxyribonucleic acid), it describes the features and prop-
erties of the organism. DNA is a molecule which consists of two com-
plementing nucleotide sequences that form a double helix. This struc-
ture is formed by bonds between the nucleotides of the complementing
sequences. The four different nucleotides or nucleobases, which DNA is
build of, are: adenine (A), guanine (G), cytosine (C), and thymine (T). Ade-
nine and guanine, and cytosine and thymine are complementary to each
other.

The structure of cells and nearly all cell functions in the body of an or-
ganism are built of or executed by proteins. The blueprints for building
proteins are encoded in genes, the coding entities of the genome. These are
transcribed into RNA (Ribonucleic acid), an intermediary molecule similar
to DNA, which guides the synthesis of protein molecules. RNA is build
of the nucleotides adenine (A), guanine (G), cytosine (C) and uracil (U).
Uracil substitutes the thymine of DNA. The RNA then are translated into a
chain of amino acids, which forms a protein. The translation from RNA to
amino acids is described in the genetic code (see figure 2.1). Each of the 20
amino acids that occur in an organism is described by a triplet of RNA nu-
cleotides, a so called codon. This code is universal for all organisms. [Sung,
2010, chapter 1]

The actual process of the protein biosynthesis is more complex than de-
scribed here. The focus here was to introduce terms used in the next
chapters, which describe different approaches and algorithms for sequence
alignments.

3

Figure 2.1: The figure shows the genetic code for the translation from RNA bases to
amino acids. The black triangle marks the start codon, while the black circles mark
the stop codons. Both indicate the beginning and end of genes in the DNA. Source:
Wikimedia - https://commons.wikimedia.org/wiki/File:Aminoacids_table.svg

2.2 Sequence alignment

Sequence alignments are used to explore the evolutionary or functional re-
lations of genomic sequences. They are tools to measure similarity between
sequences, which can give information about common ancestors or similar
functions. The important issues here are the biological relevance, and the
speed of the alignments.

The biological relevance is an issue, since the similarity is only an indicator
of the similar functions of two sequences. The functional similarity has to
be confirmed later by experiments.

The speed of an alignment on the other hand is important, since genomic
sequences can be either very long or the amount of sequences to compare
is very high. Sung illustrates this in his book in the following way: "using a
3.0 GHz PC with 4GB RAM, it takes more than 15 hours to align a sequence
of 1000 nucleotides with the whole human genome", using the Smith-
Waterman optimal alignment algorithm [Sung, 2010, p. 111]. The human
genome, which has about 3 billion base pairs, is more of an average sized
genome. The smallest known genome of a free living organism has about
600 000 base pairs (Mycoplasma genitalium), in contrast to the largest known
genome with about 670 billion base pairs (Amoeba dubia) [Sung, 2010, p. 10].

4

https://commons.wikimedia.org/wiki/File:Aminoacids_table.svg

2.2.1 Applications of sequence alignment

Sequence alignments are used in a variety of genomic research and
analyses. This section gives an overview of common applications based on
sequence alignments to illustrate what the algorithms described in section
2.2.3 are used for.

Database searches One of the most widely used applications is to search
for similar sequences in a sequence database. These databases contain nu-
cleotide or protein sequences of multiple different species. The result of
such a search is a list of sequences, which are similar to the query sequence.
This can help to identify the functions of unknown sequences assuming
that similar sequences have a similar function.

Current databases contain millions of different sequences, with its number
growing rapidly. In 2008 for example, the International Nucleotide
Sequence Databases (INSD)1 contained 110 million sequences with 200
million base pairs for more than 204 000 named organisms. Current
numbers for GenBank, one of the databases collaborating in INSD, are
found on their website2. [Sung, 2010, p. 109]

Clustering Another application is the clustering of genomic sequences
into operational taxonomy units (OTU). Here the sequences are clustered
based on their similarity.

Sequence assembly Current sequencing technologies cannot read ge-
nomic sequences of more than a couple of hundred base pairs. A solution
to this is to multiply the sequence first by PCR, cut these into small pieces,
sequence them, and then assemble these pieces to get the continuous se-
quence. The assembly of the small pieces, or short reads, often involves
alignments. The alignments indicate overlapping reads, which are assem-
bled to longer reads, to get the whole sequence.

Short read mapping The task of short read mapping is similar to the task
of sequence assembly: the sequencing and reading of a genomic or protein
sequence. The difference here is that a reference sequence has already been
read. The short reads can then be aligned to the reference sequence, to find
their position on the longer reference sequence.

2.2.2 Sequence translations

Proteins are build from the information encoded in the genes, of an organ-
isms DNA. On a simple level, the nucleotides of a gene are translated to the
amino acids of a protein. The translation is done using the genetic code.
These translations can be done manually to align a nucleotide to a protein

1http://www.insdc.org, last visited 10.04.2014
2https://www.ncbi.nlm.nih.gov/genbank/statistics, last visited 10.04.2014

5

http://www.insdc.org
https://www.ncbi.nlm.nih.gov/genbank/statistics

sequence. The nucleotide sequence is then translated and both sequences
are aligned as protein sequences. [Sung, 2010, chapter 1]

The translations are done using the genetic code, shown in figure 2.1, where
a triplet of nucleotides is translated to an amino acid. The translations are
done in up to 3 reading frames and up to 2 strands.

The 2 strands are the complementary strands DNA is made of. This is re-
sembled with the translation of the nucleotide sequence done twice. Once
as it is provided and once as the reverse complement, mimicking the sec-
ond strand of the DNA. RNA occurs usually as only one strand. Therefore
only the provided strand is translated.

The 3 reading frames are used since it is often not known at which position,
of the nucleotide sequence, the protein sequence starts. Figure 2.2 shows
how the frames are used, to translate the RNA sequence into the 3 possible
protein sequences.

Figure 2.2: Shows the translation of a RNA sequence to all 3 reading frames, using
the genetic code. The amino acids are shown in the one letter representation, with
STOP being a stop codon.

The translation of a nucleotide sequence results in up to 6 possible amino
acid sequences. These are then aligned to amino acid sequences.

2.2.3 Algorithms for sequence alignment

Based on the applications described in section 2.2.1 there are different kinds
of sequence alignments. Each kind is based on an algorithm that returns the
best result for it. The focus here is on optimal algorithms, which are later
to be implemented by the API. Therefore algorithms based on heuristics or
filters are not mentioned.

The base for the different kinds of sequence alignments is formed by the
string edit problem. It computes the minimum number of operations to
transform one string into another. The operations are:

• Insertion of a symbol

• Deletion of a symbol

• Substitution of a symbol

6

In sequence alignments, an insertion or deletion is a gap in the alignment
of two sequences. A gap in the first sequence is called an insert while a gap
in the second sequence is called a delete. If two aligned symbols are the
same it is called a match, otherwise it is called a mismatch, which is equal
to a substitution. [Sung, 2010, p. 30, 31]

Using these operations, the edit distance for the strings or sequences abc
to abbd would be 2: one insertion of the symbol b and one substitution of
the symbol c with d. One possible alignment of the two sequences looks as
follows:

Sequence 1: ab-c

||

Sequence 2: abbd

The two vertical bar symbols denote a match, the inserted symbol b results
in a gap in sequence 1, and the last position is a mismatch. Another possible
alignment would be a mismatch at position 3 and an insertion of the sym-
bol d, at position 4. Often there are multiple ways to transform one string
into another, with an equally short distance. This is behaviour is common
to sequences alignments as well and in both all alignments or conversions,
with the same distance, are equally good.

Another representation of sequence alignments are CIGAR strings (Com-
pact Idiosyncratic Gapped Alignment Report). These describe the positions
and lengths of deletions, insertions, and substitutions. The CIGAR string
for the alignment above is 2M1I1M: 2 matches, 1 insertion, and 1 mismatch.
A compressed form are CIGAR strings omitting the count if it is only 1:
2MIM. [Li et al., 2009]

Global sequence alignments

Global sequence alignments are used to align entire sequences. They
basically implement the string edit problem, calculating all possible
transformations from sequence A to sequence B, while keeping the
transformation with the lowest distance as alignment. The difference lies in
the calculation of the score. Instead of adding up the operations to calculate
the distance, the score is increased in case of a match, while mismatches
and gaps are penalised. The result is a score indicating similarity, where a
higher score implies a higher similarity. [Sung, 2010, p. 30ff]

Needleman-Wunsch: The most commonly used optimal alignment algo-
rithm for global alignments is the Needleman-Wunsch algorithm [Needle-
man and Wunsch, 1970]. It is a dynamic programming algorithm that first
calculates a matrix with the optimal alignment scores. In a second step it
calculates the optimal alignment using the matrix. [Sung, 2010, p. 32]

This part describes the Needleman-Wunsch algorithm with linear gap costs
only, while later other gap costs are described. Linear gap costs define the

7

penalty for a gap to be linear to the length of the gap. Hence the penalty
for a gap of length n with costs R is g = n ∗ R.

The following describes the computation of the alignment scores in the
matrix H. The first row and column, for i = 0 and j = 0, are initialised with
the scores for aligning a sequences with an empty sequence, like shown in
equation 2.1. The variable i is the index in sequence A, while j is the index
in sequence B.

H0,0 = 0, H0,j = H0,j−1 + R, Hi,0 = Hi−1,0 + R (2.1)

Each cell, of the alignment matrix, is calculated based on previous cells.
Hence the equations for each cell are defined recursively, based on the pre-
vious cells.

The cells starting at index 1, 1 are calculated using equation 2.2. The
value of the cell, at index i, j, is calculated as the maximum of a match
or mismatch, a deletion, and an insertion. An insert adds the gap costs
R to the value in the left cell. A delete adds the gap costs R to the value
in the upper cell. While a match or mismatch adds the value for a match
or mismatch to the upper left cell. The value for a match or mismatch is
calculated using the function V (i, j), which returns the value for a match,
if the symbols in both sequences at the indices i and j match. Otherwise
the function returns the mismatch costs. This is done until the values for
all cells are computed.

Hi,j = max


Hi−1,j−1 +V(i, j) match/mismatch
Hi−1,j +R insert
Hi,j−1 +R delete

(2.2)

Table 2.1 shows an example of the alignment matrix calculated for the se-
quences TACGGGTAT and GGACGTACG. The alignment values are computed
using gap costs of R = −1, a match value of 1, and a mismatch value of
−1. The score for the optimal global alignment is obtained from the cell at
the bottom right corner of the matrix, which is -1.

The optimal alignment is gained by backtracking from the bottom right
corner to the top left corner. To reduce computing time for the alignment,
it is common practice to save the directions in a second matrix, like shown
in table 2.2. The value in each cell is a bitmap. The right most bit, at index
1, encodes an insertion, the second bit encodes a deletion, and the third
bit encodes a match or mismatch. A set bit states that a cell was reached
through the encoded action.

The global alignment obtained from table 2.2 is the following:

Sequence 1: -TACGGGTA-T

|| |||

Sequence 2: GGAC--GTACG

8

G G A C G T A C G
0 -1 -2 -3 -4 -5 -6 -7 -8 -9

T -1 -1 -2 -3 -4 -5 -4 -5 -6 -7
A -2 -2 -2 -1 -2 -3 -4 -3 -4 -5
C -3 -3 -3 -2 0 -1 -2 -3 -2 -3
G -4 -2 -2 -3 -1 1 0 -1 -2 -1
G -5 -3 -1 -2 -2 0 0 -1 -2 -1
G -6 -4 -2 -2 -3 -1 -1 -1 -2 -1
T -7 -5 -3 -3 -3 -2 0 -1 -2 -2
A -8 -6 -4 -2 -3 -3 -1 1 0 -1
T -9 -7 -5 -3 -3 -4 -2 0 0 -1

Table 2.1: Matrix showing the alignment score for the global alignment of the
sequences: TACGGGTAT and GGACGTACG. The cells in bold face where used to gain
the optimal alignment.

G G A C G T A C G
000 001 001 001 001 001 001 001 001 001

T 010 100 101 101 101 101 100 001 001 001
A 010 110 100 100 001 001 001 100 001 001
C 010 110 110 010 100 001 001 001 100 001
G 010 100 100 011 010 100 001 001 001 100
G 010 110 100 001 010 110 100 101 101 100
G 010 110 110 100 111 110 110 100 101 100
T 010 010 010 110 100 010 100 001 101 010
A 010 010 010 100 001 010 010 100 001 001
T 010 010 010 010 100 111 110 010 100 101

Table 2.2: Matrix showing the directions for the global alignment of the sequences:
TACGGGTAT and GGACGTACG. The directions are encoded as set bits. Bit 1 set is a gap
in the first sequence, bit 2 set is a gap in the second sequence, and bit 3 set is a
match or mismatch. To keep it simple, only the lower three bits are shown.

Needleman-Wunsch as described by Sellers: Optimal global alignments
are often described as a problem of maximising the alignment score. A high
score implies a high similarity. Another way to describe similarity, is to de-
fine it by the edit-distance like in the original string-edit problem. In 1974
Sellers [Sellers, 1974] showed that similarity defined by the edit-distance is
equivalent to the similarity defined by a maximised score.

Using the edit-distance is done by exchanging the scoring system in the
Needleman-Wunsch. The original Needleman-Wunsch decreases the score
for mismatches and gaps, and increases it for matches. The Needleman-
Wunsch using Sellers scoring system increases the score, or cost for
mismatches and gaps and adds 0 for matches. This results in a score of
0 for two identical sequences, in contrast to a high score implying a high
diversity.

9

Local sequence alignments

Local sequence alignments are used to find similar nucleotide or protein
sequences in a database. It aligns a sequence against another one ignoring
gaps in the beginning and end, and focusing on regions with a high
similarity. Like the global alignment problem the local alignment problem
is also based on the string edit problem. The differences are the scoring
functions and the finding of the optimal alignment. [Sung, 2010, p. 39ff]

Smith-Waterman: The Smith-Waterman algorithm [Smith and Water-
man, 1981] is a variation of the Needleman-Wunsch algorithm. It computes
a local alignment of two sequences. Similar to the Needleman-Wunsch al-
gorithm the Smith-Waterman first calculates the optimal alignment scores
in a matrix. In a second step it computes the optimal local alignment using
the matrix. [Sung, 2010, p. 39ff]

The differences between both algorithms are the initialisation of the first
row and column, the computation of the scores, and the position of the op-
timal alignment score. The description here is reduced to linear gap costs,
like the description of the Needleman-Wunsch algorithm. Other gap costs
are described further down.

In the Smith-Waterman the alignment score, for aligning an empty
sequence to a non empty sequence, is 0. Hence the first row and column
are initialised with 0, like shown in equation 2.3.

H0,0 = 0, H0,j = 0, Hi,0 = 0 (2.3)

The rest of the cells is calculated in the same order like in the Needleman-
Wunsch algorithm, from the top left corner to the bottom right corner, start-
ing at index 1, 1. Equation 2.4 shows the computation of the cells. The value
of the cell, at index i, j, is calculated as the maximum of 0, a match or mis-
match, a deletion, and an insertion. An insert adds the gap costs R to the
value in the left cell. A delete adds the gap costs R to the value in the upper
cell. While a match or mismatch adds the value for a match or mismatch to
the upper left cell. The value for a match or mismatch is calculated using
the function V (i, j), which returns the value for a match, if the symbols in
both sequences at the indices i and j match. Otherwise the function returns
the mismatch costs. This is done until the values for all cells are computed.

The difference to the Needleman-Wunsch algorithm is the 0, as a fourth
parameter of the maximum function. This parameter reduces the impact
of too many mismatches and gaps on the alignment score. This way areas
with a higher amount of matches are highlighted.

10

Hi,j = max


0
Hi−1,j−1 +V(i, j) match/mismatch
Hi−1,j +R delete
Hi,j−1 +R insert

(2.4)

Table 2.3 shows an example of the alignment matrix computed for the se-
quences TACGGGTAT) and GGACGTACG. The alignment values are computed
using gap costs of R = −1, a match value of 1, and a mismatch value of
−1. The score for the optimal local alignment is the highest value found in
the matrix: H (4, 9) = 4.

G G A C G T A C G
0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 1 0 0 0
A 0 0 0 1 0 0 0 2 1 0
C 0 0 0 0 2 1 0 1 3 2
G 0 1 1 0 1 3 2 1 2 4
G 0 1 2 1 0 2 2 1 1 3
G 0 1 2 1 0 1 1 1 0 2
T 0 0 1 1 0 0 2 1 0 1
A 0 0 0 2 1 0 1 3 2 1
T 0 0 0 1 1 0 1 2 2 1

Table 2.3: Matrix showing the alignment score for the local alignment of the
sequences: TACGGGTAT and GGACGTACG. The cells in bold face where used to gain
the optimal alignment.

The optimal alignment is retrieved by backtracking from the cell with the
highest value to the next cell with value 0. The rest of both sequences is dis-
carded. Similar to the global alignment, the computing time is reduced by
saving the directions in a second matrix, as shown in table 2.4. The value
in each cell is a bitmap. The right most bit, at index 1, encodes an insertion,
the second bit encodes a deletion, and the third bit encodes a match or mis-
match. A set bit states that a cell was reached through the encoded action.

The local alignment, obtained from table 2.4 is the following:

Sequence 1: TACG

||||

Sequence 2: TACG

Semi-Global sequence alignments

Semi-global alignments are similar to global alignments. They are used
to align two sequences in whole, but use a different scoring system for
the alignments. Depending on the application, they ignore gaps in the
beginning or end of the sequences. Table 2.5 shows the different kinds of

11

G G A C G T A C G
000 000 000 000 000 000 000 000 000 000

T 000 000 000 000 000 000 100 001 000 000
A 000 000 000 100 001 000 010 100 001 001
C 000 000 000 010 100 001 001 010 100 001
G 000 100 100 001 010 100 001 001 010 100
G 000 100 100 001 011 110 100 101 010 110
G 000 100 100 101 101 110 110 100 111 110
T 000 010 010 100 101 010 100 001 101 010
A 000 000 010 100 001 001 010 100 001 001
T 000 000 000 010 100 101 100 010 100 101

Table 2.4: Matrix showing the directions for the local alignment of the sequences:
TACGGGTAT and GGACGTACG. The directions are encoded as set bits. Bit 1 set is a gap
in the first sequence, bit 2 set is a gap in the second sequence, and bit 3 set is a
match or mismatch. To keep it simple, only the lower three bits are shown.

semi-global alignments and their difference to global alignments. [Sung,
2010, p. 41, 42]

Spaces Action
In the beginning of A Initialise first row with 0
In the ending of A Look for the maximum in the last row
In the beginning of B Initialise first column with 0
In the ending of B Look for the maximum in the last column

Table 2.5: Table showing actions for ignoring spaces in the beginning or end of
two sequences A and B, in semi-global alignments. Source: [Sung, 2010, p. 42]

Gap penalties

Sequence alignments face the challenge of representing best the biologi-
cal data, in different applications. To adapt them to different applications,
sequence alignment algorithms are configured with different gap penalties.

Three commonly used gap penalties are constant, linear, and affine gap
penalties. Constant gap penalties are independent from the length of the
gap. Linear gap penalties grow linearly to the length of the gap and affine
gap penalties apply different costs for opening and extending a gap.

The costs g for a gap with constant penalties R are g = R. Independent
from the length. With linear gap penalties, for a gap of length n, the costs
are g = n ∗ R, while they are g = Q + n ∗ R for affine gap penalties. With Q
being the penalty for opening a gap, and R being the penalty for extending
a gap.

12

Sequence alignments, with constant and linear gap penalties, can be com-
puted in time O(n ∗ m), for two sequences of length m and n. With affine
gap penalties the time increases to O(n ∗ m ∗ (n + m)), since for each cell
the algorithm has to check if a gap is extended or a new one is opened. In
1982 Gotoh [Gotoh, 1982] described a method to compute optimal sequence
alignments, with affine gap penalties, in time O(n ∗ m). His version uses
two additional matrices (E and F) to keep track of opened gaps. E keeps
track of gaps in the query sequence and F of gaps in the database sequence.

Equation 2.5, 2.6, and 2.7 show the computation of the alignment scores
for the Smith-Waterman algorithm with affine gap penalties using Gotoh’s
method. In all three matrices the first row and column, at the indices i = 0
and j = 0, are set to 0. The values in E are calculated as the maximum of
the previous value in H plus the costs Q for opening a gap and the the pre-
vious value in E plus the costs R for extending a gap. The values in F are
computed the same way, except for gaps in the other sequence. The values
in H are computed like in the Smith-Waterman with linear gap costs, ex-
cept the values in E and F are used as the gap costs.

The difference to linear gap costs are the two additional matrices and the
additional penalty for opening a gap. The rest of the computations are the
same.

Hi,j =



max


Hi−1,j−1 + V(i, j)

Ei,j
Fi,j
0

∣∣∣∣ i > 0⋂
j > 0

0
∣∣∣∣ i = 0
∩

j = 0

(2.5)

Ei,j =

 max
{

Hi,j−1 + Q
Ei,j−1 + R

∣∣∣∣i > 0

0 |i = 0
(2.6)

Fi,j =

 max
{

Hi−1,j + Q
Fi−1,j + R

∣∣∣∣j > 0

0 |j = 0
(2.7)

The Needleman-Wunsch algorithm, with affine gap costs, is computed
similarly to the Smith-Waterman algorithm, with affine gap costs. The
differences are the initialisation of the first row and column and the 0 as
a fourth parameter. In the Needleman-Wunsch the values g, in the first
row and column, are initialised to g = Q + i ∗ R and g = Q + j ∗ R, with i
and j being the indices in the first row and column. The fourth parameter 0
is omitted, like in the Needleman-Wunsch algorithm with linear gap costs,
as described earlier.

13

Similarity matrices:

Another way to configure alignment algorithms is to define the scores for
matches and mismatches in similarity matrices. They define scores, repre-
senting the physical and functional similarity between the nucleotides and
amino acids, of genomic and protein sequences.

The two mainly used types of similarity matrices for are point accepted
mutation matrices (PAM) and block substitution matrices (BLOSUM). Both
define a similarity for amino acids. PAM matrices are based on point
accepted mutations, which either do not change the function of a protein
or that are not fatal. These are empirically generated from phylogenetic
trees of highly similar sequences [Henikoff and Henikoff, 1992]. BLOSUM
matrices are constructed directly from observed alignments by comparing
a number of divergent sequences. [Sung, 2010, p. 51, 51]

Time and memory requirements

To compute the optimal alignment of two sequences, algorithms, like the
Needleman-Wunsch or Smith-Waterman, compare every residue of one
sequence to every residue of the other sequence. Having two sequences
of length m and n this takes at least O(n ∗m) time, and O(n ∗m) memory
if the alignment should be returned. Since the global and local alignment
problems are difficult to improve, people have tried to identify cases where
they can be solved efficiently [Sung, 2010, p. 34ff].

Time: Computing an optimal alignment with linear or constant gap
penalties takes O(n ∗m) time. If the algorithm uses affine gap penalties, the
computing time is at least O(n ∗m ∗ (n + m)); for every cell in the matrix,
the algorithm has to check if the previous cells horizontally and vertically
already opened a gap, or if a new gap is opened. Hence the extension
(n + m) to the runtime. In 1982 Gotoh [Gotoh, 1982] introduced a method
to reduce the runtime to O(n ∗m). His extension are two matrices F and E,
which hold the information about horizontally or vertically opened gaps.

Memory: To compute only the alignment score of two sequences the
minimal memory requirements are O(min(m, n)). The matrix is calculated
row by row or column by column. Hence only one row or column is kept
in memory. If the alignment should be computed as well, the minimal
space requirement is O(n ∗m). In 1975 Hirschberg described a linear space
approach to finding the longest common subsequence [Hirschberg, 1975].
This was used by Myers and Miller to develop a linear space version of
Gotoh’s algorithm [Myers and Miller, 1988]. Their algorithm uses a divide
and conquer approach to reduce the memory requirements. The runtime
is still O(n ∗m) in theory, while in practice the runtime is about two times
higher than the non space efficient optimal alignment algorithms.

14

Banded alignments: Another way to reduce the runtime of alignments
are banded alignments. Here the maximum number of insertions or
deletions is restricted. This results in an alignment algorithm which fills
out only the middle band of the alignment matrix. The runtime for this
variant of the Smith-Waterman or Needleman-Wunsch is O((n + m) ∗ d).
For two sequences of length m and n, and a maximum number of insertions
or deletions of d. [Sung, 2010, p. 34, 35]

2.3 Parallelisation of sequence alignment

One of the challenges of optimal sequence alignment algorithms is the
number of calculations, which have to be processed. Algorithms like
the Needleman-Wunsch and Smith-Waterman have a quadratic time
complexity, making them computational demanding for large scale data
processing. Parallelisation is a method to reduce the computing time by
running multiple calculations in parallel.

2.3.1 Flynn’s Taxonomy

In 1966 Michael J. Flynn proposed a classification of computer architec-
tures, based on the types of information handled by a processor: instruc-
tions and data [Flynn, 1972]. Based on these two independent dimensions,
Flynn’s taxonomy defines four different computer architectures:

• Single Instruction, Single Data stream (SISD)

• Single Instruction, Multiple Data streams (SIMD)

• Multiple Instructions, Single Data stream (MISD)

• Multiple Instructions, Multiple Data streams (MIMD)

SISD architectures are the traditional computer architectures. They operate
sequentially, using one control unit, one processing unit, and one memory
unit. SIMD architectures have more than processing unit. These are
used to exploit data parallelism by executing one instruction on multiple
data streams at the same time. MISD architectures, on the other hand,
implement multiple processing units to execute different instructions on
one data stream. MIMD architectures can process different instructions on
different data streams, independent from each other. These architectures
implement multiple processors where each has its own control unit.

2.3.2 Levels of parallelisation

Based on Flynn’s taxonomy one can define two kinds of application paral-
lelism: Data-Level Parallelism (DLP) and Task-Level Parallelism (TLP). In
DLP many data elements are processes in parallel while in TLP many tasks
are processed in parallel.

15

The kind of application parallelism determines which kind of computer
architecture is best used, for the optimal performance. An application
exploiting DLP benefits most from a SIMD or MIMD architecture, which
both operate on multiple data streams. On the other hand a TLP exploiting
application benefits most from a MISD or MIMD architecture. Although
a MISD architecture would only help, if the tasks operate all on the same
data. [Hennessy and Patterson, 2012]

2.3.3 CPU

Modern CPUs implement multiple techniques to enable parallelism and
to speed up the execution of programs. They implement a MIMD architec-
ture, integrating multiple independent cores, with each being implemented
as a SIMD architecture.

Each core of a CPU can run one thread or process at a time, with each of
these executing its own independent task. On Intel(R) CPUs, a technique
called hyper-threading3 enables the execution of two threads simultane-
ously on the same core. The second thread is then executed on the execu-
tion units which are not used by the first thread. This technique can boost
the overall performance, if more threads are executing than cores are avail-
able.

Intel Turbo Boost4 is another technique to speed up the execution. It can
increase the clock rate of a core, above the base operating frequency. The
increased clock rate is limited by the current working load and thermal lim-
its of the CPU, and with multiple cores working, the effect decreases.

A third technique on CPUs are SIMD operations. These are used for ex-
ploiting data level parallelism, like illustrated in figure 2.3. Here the data
is loaded in vector R1 and R2, both vectors are multiplied, and afterwards
stored in the vector R3. This processes the 4 data pairs in the vectors R1
and R2 in parallel.

SIMD operations exist for multiple purposes, like for example matrix cal-
culations for graphics processing. Implemented are these in instruction
sets, with each instruction set bundling the operations for a different pur-
pose. Recent CPUs implement among others the MMX, SSE, and AVX in-
structions sets, which operate on different CPU registers of different width.
MMX on the 64 bit wide MMX registers, SSE on the 128 bit wide XMM reg-
isters, and AVX on the 256 bit wide YMM registers. For each instruction
set different extensions were implemented. The most recent are SSE4.1 and
AVX2.5

3http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-
threading/hyper-threading-technology.html, last visited 10.2.2015

4http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-
boost/turbo-boost-technology.html, last visited 10.2.2015

5https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-

16

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms

Figure 2.3: The illustration of multiplying 4 numbers with 3 using SIMD
operations. The CPU loads 4 integers at once, multiplies them all in one SIMD-
multiplication, and stores them all at once back to the result vector. In theory, the
speed up is about 75%.
Source: "SIMD cpu diagram1" by Decora at en.wikipedia. Licensed under CC BY-
SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:SIMD_
cpu_diagram1.svg

Intel intrinsic instructions are C-style functions, which provide access
to the instructions implemented in the SIMD instruction sets. These
functions wrap the calls to the SIMD instructions to prevent directly
writing assembly.

2.3.4 Parallelising sequence alignments on CPUs

The challenge with parallelising dynamic programming algorithms like the
Needleman-Wunsch and Smith-Waterman is that the calculations are inter-
dependent. Each cell of an alignment matrix is calculated based on the
values of its preceding cells (see section 2.2.3). Figure 2.4 shows different
approaches of parallelising sequence alignments, by grouping multiple cell
calculations in a SIMD vector.

The approach (A), by Wozniak [1997], in figure 2.4, describes a vectorisa-
tion along the anti diagonal. Here the values of the cells do not depend on
values calculated in the same vector. Although loading the data gets more
complex due to the loading of non-consecutive data. The second approach
(B) was described in 2000 by Rognes and Seeberg [Rognes and Seeberg,

intel-integrated-performance-primitives-to-accelerate-algorithms, last visited 10.2.2015

17

https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://commons.wikimedia.org/wiki/File:SIMD_cpu_diagram1.svg
https://commons.wikimedia.org/wiki/File:SIMD_cpu_diagram1.svg
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms

Figure 2.4: Different approaches to the vectorisation of sequence alignments.
Alignment matrices are shown with the elements that form the first five vectors
processed indicated in black, blue, red, green and yellow. For simplicity, vectors
of only 4 elements are shown, while normally more elements would be used.
Source: [Rognes, 2011]

2000]. It implements a sequence alignment along the query sequence, tak-
ing into account that cells in one vector depend on previous cells in the
same vector. For local alignments, computed with the Smith-Waterman,
it has been shown that this data dependency in a vector is the exception.
To further reduce the data dependency, Farrar [2007] proposed approach
(C). He shows that his striped approach reduces the data dependency even
more and speeds up the alignments. In 2011 Rognes proposed another ap-
proach (D), computing multiple sequence alignments in parallel, instead of
parallelising one sequence alignment [Rognes, 2011].

All the different approaches shown in figure 2.4 were proposed and
implemented for local alignments using the Smith-Waterman algorithm
with Gotoh’s modification. Approach (A) and (D) can be applied to global
alignments without further adjustments. (B) and (C) cannot be applied
to global alignments without checking the data dependencies first. The
difference here is that local alignments do not take gaps into account, at the
beginning and the end of the sequences. This could be the reason for the
reduced data dependency along the vertical vectors.

2.4 API design in C

Sequence alignments are used in variety of applications (see section 2.2.1).
To speed up the development of an application it is common practise
to implement the functionality for the different features, like sequence
alignments, in libraries. This modular approach allows to use once

18

implemented features in more than one application. The Application
Programmable Interface (API) specifies the public functions of the library,
and how it can be integrated in an application. It provides access to the
functionality while hiding its implementation details. Interfaces describe
a contract between the clients of an API and the implementation. The
implementation provides the functionality, and the clients must use it in
accordance to the rules described in the API. [Hanson, 1996, p. 24]

2.4.1 General design rules

A well designed API follows some general design rules:

• Keep it simple, stupid
This is a universal principle and applies not only to software
development. It is the base for the following design rules and
encourages to create a clear and easily understandable API.6

• Keep it consistent
Well designed APIs are consistent in their implementation. If a user
understands how to call one function of the API, he immediately
knows how to call the other functions. This includes having the same
structure for all functions, as well as using only one or a limited set
of design patterns. The structure of functions includes, among others
naming, how to pass arguments or return values, and the ordering of
parameters.7

• Do not make the client do, what the API can do
If every client has to prepare parameters in the same way before
providing them to the API, the API might as well prepare these
parameters itself. This helps to reduce boiler plate code, and thus
to improve the code calling the API.8

• Provide a good documentation
A well designed API does not need a lot of documentation, its
provided functions speak for itself. The documentation provides
a fast entry point into using the API. This includes sample code,
showing example requests and responses for calling the functions,
and explanations of the error handling.9

• Provide a test-suite
A provided test-suite can check, if a library runs correctly on a system.
It helps to check, if possible errors occur within the library or the
calling application. Additionally it documents the usage of the API.10

6https://stackover�ow.com/questions/2619854/best-practices-and-guidelines-for-
designing-an-api, last visited 2.4.2014

7https://programmers.stackexchange.com/questions/100792/api-design-pitfalls-in-c, last
visited 2.4.2014

8http://lcsd05.cs.tamu.edu/slides/keynote.pdf, last visited 2.4.2014
9http://blog.programmableweb.com/2010/08/12/web-api-documentation-best-

practices/, last visited 2.4.2014
10http://davidz25.blogspot.no/2011/07/writing-c-library-part-4.html, last visited 2.4.2014

19

https://stackoverflow.com/questions/2619854/best-practices-and-guidelines-for-designing-an-api
https://stackoverflow.com/questions/2619854/best-practices-and-guidelines-for-designing-an-api
https://programmers.stackexchange.com/questions/100792/api-design-pitfalls-in-c
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://blog.programmableweb.com/2010/08/12/web-api-documentation-best-practices/
http://blog.programmableweb.com/2010/08/12/web-api-documentation-best-practices/
http://davidz25.blogspot.no/2011/07/writing-c-library-part-4.html

2.4.2 Design rules for implementations in C

Every programming language provides its own linguistic mechanisms for
implementing interfaces or APIs. Some languages have more advanced
and some only limited support. The C programming language provides
only one way of implementing APIs, and thus separating interfaces from
the implementation: header files. A header file describes the macros, types,
data structures, variables, and functions, usable by clients. These are im-
plemented in .c files, which include the header file. This way an interface
can have multiple implementations, for e.g. different platforms, while the
implementation is hidden to the clients. [Hanson, 1996, p. 15 + 18]

Design pattern are a good way of keeping an interface simple and
understandable. Every developer, who knows the pattern, understands
the interface easier. One design pattern for C APIs is the "opaque pointer"
pattern, also known as PIMPL ("pointer to implementation idiom"). This
pattern describes, how to exchange data with the client using a struct,
without exposing its actual implementation. The header file provides
only the declaration of the struct (see listing 2.1). Hence the client has
no knowledge about the struct, regarding its size or members. The API
provides accessor-functions to the members of the struct. The actual
implementation then is located in the .c file, implementing the functions
provided by the API (see listing 2.2). 111213

Listing 2.1: Example for an opaque pointer header file
1 /* obj.h */

2 struct obj;

3

4 /*

5 * The compiler considers struct obj an incomplete type.

6 * Incomplete types can be used in declarations.

7 */

8 size_t obj_size(void);

9

10 int obj_setid(struct obj *, int);

11

12 int obj_getid(struct obj *, int *);

Listing 2.2: Example for an opaque pointer c file
1 /* obj.c */

2

3 #include "obj.h"

4

5 struct obj {

6 int id;

7 };

8

9 /*

11http://www.gotw.ca/gotw/028.htm, last visited 3.4.2014
12http://www.qnx.com/developers/articles/article_302_2.html, last visited 3.4.2014
13http://www.drdobbs.com/cpp/making-pimpl-easy/205918714?pgno=5, last visited

3.4.2014

20

http://www.gotw.ca/gotw/028.htm
http://www.qnx.com/developers/articles/article_302_2.html
http://www.drdobbs.com/cpp/making-pimpl-easy/205918714?pgno=5

10 * The caller will handle allocation.

11 * Provide the required information only

12 */

13 size_t obj_size(void) {

14 return sizeof(struct obj);

15 }

16

17 int obj_setid(struct obj *o, int i) {

18 if(o == NULL) return -1;

19 o->id = i;

20 return 0;

21 }

22

23 int obj_getid(struct obj *o, int *i) {

24 if(o == NULL || i == NULL) return -1;

25 *i = o->id;

26 return 0;

27 }

2.4.3 Existing sequence alignment APIs

Optimal sequence alignment algorithms have existed since the 1970s.
The Needleman-Wunsch algorithm for example was first described in
1970 [Needleman and Wunsch, 1970], and the Smith-Waterman in 1981
[Smith and Waterman, 1981]. In the past a lot of different libraries where
developed implementing optimal alignments. Two of the more recent
libraries, implemented in C and C++, are SSW and Opal.

SSW: SSW [Zhao et al., 2013] implements the Smith-Waterman algorithm
using Farrars approach [Farrar, 2007]: the algorithm is running in parallel
on multiple cores using SIMD instructions. The library is implemented in
C under the MIT license14 and the the source code can be downloaded from
GitHub15. The API of SSW contains four functions:

• ssw_init

Reads in the query sequence and creates a profile for it. The profile is
returned as a pointer to a struct.

• init_destroy

Frees the memory allocated for the profile struct.

• ssw_align

Aligns a sequence to a reference sequence using the profile by means
of the Smith-Waterman algorithm. The alignment can be configured
via parameters. It returns the alignment as a pointer to a struct.

• align_destroy

Frees the memory allocated for the alignment.

14http://opensource.org/licenses/MIT, last visited 20.4.2015
15https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library, last visited

20.4.2015

21

http://opensource.org/licenses/MIT
https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library

Additionally the API provides two structs:

• s_profile

Contains data for the profile of the query sequence.

• s_align

Contains the alignment information of both sequences.

The struct s_profile is only used internally during the calculation of the
alignment. Hence it is implemented using the opaque pointer pattern.
The memory for both structs is allocated internally, and the API provides
functions to free it.

Opal: Opal implements optimal sequence alignments based on Rognes’
approach [Rognes, 2011]. It implements the Smith-Waterman, the
Needleman-Wunsch, and two modes of semi-global alignments, based on
the Needleman-Wunsch algorithm. The difference to Rognes implemen-
tation is the support of AVX2 instructions using 256 bit wide registers to
compute twice as many sequences in parallel. It is developed in C++ under
the MIT license with the source code being available on GitHub16. The API
of Opal contains five functions:

• opalInitSearchResult

Allocates and initialises the struct OpalSearchResult, which is
passed to other functions.

• opalSearchResultIsEmpty

Returns the value of scoreSet of OpalSearchResult.

• opalSearchResultSetScore

Sets the value of score in OpalSearchResult.

• opalSearchDatabase

Searches a database for a query sequence using one of the three global
alignment modes.

• opalSearchDatabaseCharSW

Searches a database for a query sequence using local alignments.

Additionally the API provides one struct:

• OpalSearchResult

Contains information about the score and alignment of the query
sequence with one database sequence.

In addition to the functions and structs, the API provides a couple of con-
stants controlling the behaviour of the function.

The development of Opal started in December 2013, at about the same
time as the development of libssa . When we became aware of Opal we

16https://github.com/Martinsos/opal, last visited 20.4.2015

22

https://github.com/Martinsos/opal

decided to continue the development of libssa. The reasons were that Opal
implements less features, than were planed for libssa, and it implements
Rognes’ approach a bit different than libssa. Chapter 5.1.6 gives a more
detailed overview of the differences between Opal and libssa and discusses
the performance of both.

2.5 Measuring performance

Computer programs can be compared in various ways by comparing
the usability, the provided features, or the performance. For sequence
alignments and database searches the runtime performance is most
important. Here one wants to compare the runtimes of different alignment
programs and configurations to find the best.

2.5.1 Measuring speed

The runtime performance of software can be measured either as the time,
a program needs to complete, or the throughput. The number of tasks the
program is completing during a certain amount of time. [Hennessy and
Patterson, 2012, p. 48 ff]

The speed of a program is first of all the number of CPU clock ticks it
needs to run. This number can converted to CPU time, using equation
2.8. This measures only the time the CPU is operating which excludes the
time it is waiting on other components, like input or output devices (I/O).
[Hennessy and Patterson, 2012, p. 49]

CPU time =
CPU clock cycles for a program

Clock rate
(2.8)

The problem of CPU time is that it is an isolated measure, ignoring other
factors affecting the actual response time. The response time, or wall clock
time, is the elapsed time a program needs to run a query. This is the time
a user of a program will notice. It includes all input/output activities, disc
and memory accesses, and any operating system overhead.

Another measurement of speed is throughput. This number defines how
many tasks can be completed in a given amount of time. In the case
of optimal sequence alignments throughput is often measured in GCUPS
(giga cell updates per second). This number shows how many times a
billion cells of a sequence alignment matrix can be calculated. Rognes,
among others, uses this measurement [Rognes, 2011].

2.5.2 Amdahl’s Law

Amdahl’s law defines a metric to compute the effect of an optimisation on
the overall performance. It shows that the performance gain is limited by
the fraction of time the improved code can be used. [Hill and Marty, 2008]

23

Equation 2.9 shows the computation of the overall speedup by improving
a fraction f of a computation by a speedup S.

Speedupenhanced (f , S) =
1

(1− f) + f
S

(2.9)

This equation serves as a guide, to how much speedup an improvement
of the code, will give. It gives an idea, where to focus on, when trying to
improve the speed of a program.

2.6 Testing

Tests are an integral part of software development. They reduce the risk of
software failures and check if the software meets the requirements. Test-
ing should be introduced in the software development process at an early
stage. This way, the software can be designed for easy testing and defects
can be found early before they get too complicated to fix.17 [Martin, 2009,
chapter 9]

Testing is done on different levels, of a software:

• Unit level
Any function or module of a program that can be tested separately.

• Integration level
Interfaces between components or interactions with other systems.

• System level
The behaviour of the whole software as defined by the requirements.

• Acceptance level
Is done by the customer using the software.

Each of these levels implements different types of tests:

• Functional testing
Tests the behaviour of a system and what it should do.

• Non-functional testing
Measures the characteristics of a software, e.g. response time,
usability, etc.

• Structural testing
Measures the thoroughness of testing through assessment of code
coverage.

• Tests related to changes
These are added when a defect has been detected and fixed. They
confirm that the defect has been removed.

17http://www.istqb.de/downloads/�nish/16/15.html, last visited 15.2.2015

24

http://www.istqb.de/downloads/finish/16/15.html

For the development of a library, tests at unit, integration, and system level
should be implemented. The tests at acceptance level, are later on per-
formed by developers integrating this library into their software. The tests
at unit level should cover all implemented functions and the features they
include. The tests at integration level probe the connections between mod-
ules, like the integration of a database into the library. The tests at system
level test the public functions provided in the API. These test the library
from the users point of view.

For all these tests, the code coverage is measured to find untested functions
and statements. Additionally, by measuring the code coverage, one can
find implemented but unused source code. This is done by measuring the
code coverage for the system tests and looking at the source code, anno-
tated with coverage markers. Using C and GCC as a compiler, this is done
using gcov and lcov. Gcov is a code coverage analysis tool, integrated in
GCC, which is enabled by the compiler flag --coverage. Lcov generates
a html report from the gcov analysis data showing the percentage of exe-
cuted lines per file and function.

Non-functional tests should be implemented, if the requirements specify
these, e.g. the maximum runtime or amount of used memory. These
can also be used to find bottlenecks and starting points for optimisations.
Chapter 2.5 describes measurements for these.

25

26

Chapter 3

Design

This chapter illustrates the design idea for the implementation of the se-
quence alignment library. The actual implementation details are described
in the next chapter.

This first part, of this chapter section 3.1, describes the use cases and
the functions of the API. It shows how the library is integrated in other
programs and how databases are integrated into this library. The next part,
section 3.2, describes the modular design of the library and how it can be
extended to, for example, support more sequence alignment algorithms.
Section 3.3 then describes the core part of the library, the parallelised
sequence alignments.

3.1 Design of the API

The main purpose of an API is to document the publicly available functions
of a library. It should show only, what is needed to use the library. The API
of libssa takes a similar approach as the APIs described in chapter 2.4.3,
while extending it, to offer a greater flexibility.

3.1.1 Use cases

To guide the design process of the API, a couple of use cases have been
defined:

• Database searches using global alignments

• Database searches using local alignments

• Processing sequences in FASTA format1

• Support for nucleotide and amino acid sequences

• Support for translating nucleotide sequences to amino acid se-
quences, using different genetic codes2

1http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml, last visited 23.4.2015
2http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi, last visited 23.4.2015

27

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

• Results as scores only

• Results as scores and CIGAR strings

In addition to the functional requirements defined by the use cases a couple
of non function requirements were defined.

One goal of the library is to evaluate the improvement of database searches
through parallelisation. For this purpose, a number of non-functional
requirements were defined, in addition to the functional requirements
defined by the use cases. The non-functional requirements are all related
to the database searches. These should run on multiple threads and they
should be vectorised using both SSE and AVX instructions. The vectorised
algorithms should be implemented in two versions, using 8 and 16 bit wide
integers for the computation of the alignment scores.

3.1.2 Alignment API

The API is based on the functional and non-functional requirements, de-
scribed earlier. The main idea behind the API is to have functions, initial-
ising the library and functions, executing the database searches and align-
ments. This way, the initialisation is only done once and afterwards multi-
ple searches can be performed without a constant reinitialisation. Another
advantage of this design is a reduced amount of parameters per function.
Each function is responsible only for one task like, for example, the initiali-
sation of the score matrix.

Some functions carry a flag as a parameter, defining how to interpret other
parameters. This is done as a trade-off between having too many functions
and grouping functions of the same task. In the following, lists of all func-
tions of the API grouped by their main task with a short description and
the flags, are provided.

The first group of functions initialises the library. They set parameters, that
are usually used for multiple different searches like the database, which
does not need to be initialised for each search, but once in the beginning:

• init_score_matrix

Initialises a score matrix.
Flag: mode - defines if the second parameter is a file name, a matrix as
a string, or a constant for a build-in matrix

• init_constant_scores

Initialises constant match and mismatch scores to use instead of a
score matrix.

• init_gap_penalties

Initialises the gap penalties.

28

• init_symbol_translation

Initialises the translation of symbols, if the query or database is
translated to a protein sequence.

• init_db

Initialises the external database.

• init_sequence_fasta

Initialises a FASTA formatted query sequence. Flag: mode - defines if
the second parameter is a file name or a FASTA formatted sequence
as a string

The second group of functions performs the database searches, using an
optimal alignment algorithm:

• sw_align

Aligns a query sequence to a database using the Smith-Waterman
algorithm.

• nw_align

Aligns a query sequence to a database using the Needleman-Wunsch
algorithm.

The last group of functions does not affect the alignment results. This group
contains functions for deallocating memory used for storing alignment
results and input data. Furthermore it contains functions to change the
technical behaviour of the library, like turning on error reporting or setting
the maximum number of used threads:

• set_simd_compute_mode

Sets the maximally used SIMD capabilities. This can restrict the
library to use the SSE implementation even if the AVX2 instruction
set is available.

• set_output_mode

Sets the output mode. This can either be stdout or no output.

• set_chunk_size

Sets the number of sequences in a database chunk.

• set_thread_count

Sets the number of threads, used by the alignment functions.

• free_sequence

Deallocates memory used for a query sequence.

• free_alignment

Deallocates memory used for storing alignment results.

• ssa_exit

Terminates the library and database and deallocates all used memory.

29

In addition to these functions, the API provides two data structures for
initialised data and the results of the sequence alignments. The first
structure stores the query sequence profile and the second structure stores a
list of the highest scoring sequence alignments. The data for each alignment
contains both sequences, the score, and the CIGAR string and position of
the computed alignment.

3.1.3 Database API

The library provides a second API, which is used to integrate external
databases into libssa. This second API is a C header file which is
implemented by database libraries to use these with libssa:

• ssa_db_init

Initialises the database.

• ssa_db_close

Closes the database connection.

• ssa_db_get_sequence_count

Returns the number of sequences in the database.

• ssa_db_get_sequence

Returns a sequence from the database.

Database sequences are returned from the database through a data
structure, defined in the database API. This structure contains the sequence
as an ASCII string, its length, and the database ID. The ID is a unique
identifier of the sequence in the database.

3.2 Design of the library

The structure of the library was designed, for an incremental build model.
It is composed of different modules, which are implemented and tested
independently. This way, new algorithms or different implementations of
one algorithm can be integrated easily. In addition to that, it supports loose
coupling of components, like the database, which is not tied to this library
and exchangeable. This simplifies the integration of libssa, into programs
which already implement a database for sequences.

Figure 3.1 gives an overview of the implemented modules and their con-
nections. Each colour shows a different level of modules, where each mod-
ule is only connected to its previous and next level to keep dependencies
low. The modules shown in yellow are the public functions of the API,
as described in chapter 3.1.2. The modules shown in orange implement
the actual alignment functions with different characteristics. The modules
in between call the alignment functions based on the parameters passed
through the public API. The manager module initialises the searcher and
aligner with the alignment function called from the public API. After-
wards it starts the searcher module, waits until it is finished and either

30

calls the aligner module, for computing the alignments, or returns the
results of the searcher module directly. Both run in multiple threads,
managed by the manager module. During the initialisation, the searcher

module chooses one of the search functions, based on the set SIMD ca-
pabilities and bit width. Each search function has a fall-back to the next
higher bit width, if the alignment score exceeds the current bit width. The
search functions return the highest scoring database sequences including
the scores. The aligner module takes the result of the search functions and
computes a CIGAR string, representing the actual alignment.

Figure 3.1: The graph shows the modular design of libssa. Each colour shows a
different level of abstraction. The API functions, shown in yellow, make requests
to the manager module. This delegates the requests to the searcher and aligner

modules, which themselves delegate these further down to the database search
and alignment algorithms. The database, shown in grey, is integrated as an
external library.

The database, shown in grey, is integrated through a second API (see chap-
ter 3.1.3). This API has to be implemented by a database library, that
is used with libssa. The database library is then linked to libssa dur-
ing compile time. Figure 3.2 shows the integration of a database into
libssa. The database is initialised through a function of the public API,
while the db_adapter module encapsulates the database accesses and pre-
pares the database sequences. The searcher and aligner modules call the
db_adapter only, without having any knowledge about the database.

31

Figure 3.2: The graph shows the integration of an external database into libssa.
Each colour shows a different level of abstraction. The database is here initialised
through an API function. The db_adapter module wraps all requests to the
external database library.

3.3 Parallelisation of sequence alignment

The main focus of the library lies on fast optimal sequence alignments. Lib-
ssa implements these following Rognes’ approach, as described in chapter
2.3.4: multiple sequence alignments are computed in parallel. The paral-
lelism here is implemented on two levels. The first level distributes the
database sequences to multiple threads while the second level aligns the
query sequence against multiple database sequences in parallel, using the
SIMD capabilities of the CPU.

This is the same approach to parallelism as proposed by Rognes and as
implemented in SWIPE3 and VSEARCH4. The key difference in libssa is
the modularisation. Libssa is developed to be extend with new algorithms
and improved implementations of the current algorithms, while SWIPE
and VSEARCH are implemented with only one algorithm in mind.

3.3.1 Threads

On the first level of parallelisation, the workload is distributed to multiple
threads. This parallelisation is implemented in a separate module and
applied to database searches and the computation of alignments. Hence
the workload is either the database sequences, a query sequence is searched
in, or the pairs of database and query sequence, for which an alignment is
computed. Figure 3.3 outlines the implementation design for both cases.
First the threads are initialised with data common to all. This data contains
among others the query sequence and the used algorithm and bit width.
Afterwards a number of threads is started and the manager module waits
for their termination. Each thread processes its workload in chunks until an
empty chunk is reached which signals that no work is left. For each chunk,
the configured algorithm, shown in green, is called. Upon termination,
each thread returns a result list. In the manager module, these are combined

3https://github.com/torognes/swipe, last visited 15.4.2015
4https://github.com/torognes/vsearch/, last visited 15.4.2015

32

https://github.com/torognes/swipe
https://github.com/torognes/vsearch/

into a global result list. Each thread produces as many results as returned
in the global result list while the global result list contains the best results
of all thread results.

Figure 3.3: The chart shows the data flow and the communications between
the searcher and aligner threads and the manager module. First the threads
are initialised with some common data. Afterwards these are started and each
thread processes chunks of data, based on the common data. Meanwhile the
manager module waits until the threads are finished and collects their results upon
termination.

3.3.2 Non vectorised sequence alignments

One task of libssa is to asses the performance improvements of computing
sequence alignments using SIMD vectors. Therefore a non vectorised ver-
sion of the Smith-Waterman and Needleman-Wunsch algorithm is added
to libssa, to perform as a baseline for evaluating the performance of the
vectorised database searches. The non vectorised searches are executed on
the first level of parallelisation, on multiple threads.

Additionally do they perform as fallbacks, if the vectorised versions cannot
be used. This can be the case if the used computer does not implement the
required SIMD capabilities.

3.3.3 Vectorised alignments

The second level of parallelisation is realised using SIMD instructions (see
chapter 2.3.3). This is done by splitting up the SIMD vectors into multi-
ple channels. Each channel computes the alignment of one database se-
quence and the query sequence. The computations are done in parallel.
Here, libssa implements Rognes’ approach for vectorising sequence align-
ments from 2011 [Rognes, 2011]: one query sequence is aligned to multiple
database sequences in parallel. The design of the implementation follows
the implementations of Rognes’ approach in SWIPE and VSEARCH.

33

Figure 3.4 shows the flow chart for aligning one query sequence to a chunk
of database sequences. In the first iteration, all channels are empty and no
sequence has ended. Each channel is filled with a sequence until all chan-
nels are filled, no sequence is left. The remaining channels are set to 0. In
the next step, the search window over the loaded database sequences is set
to the next block of four residues, of each channel (shown in green). This
block is used to compute a temporary score profile (shown in blue) which
is used to align the block to the query sequence (shown in orange).

After each alignment of a block, the algorithm checks if a sequence in a
channel has ended. If so, the alignment score for that sequence is saved
and a new sequence is loaded. Afterwards, the search window is moved to
the next block, a new score profile is computed, and this block is aligned. If
no sequence ended, the search window is moved to the next block, a new
score profile is computed, and this block is aligned.

Splitting the algorithm in two states reduces the amount of instructions
executed during the alignment. The simple state, executed when no se-
quences have ended, simply moves the search window to the next block,
computes a new score profile, and aligns the block to the query. Whereas
the complex state additionally saves the alignment scores of the finished
sequences, loads new sequences, and initialises the alignment of the new
sequences.

Figure 3.5 shows the database sequences, lain out in eight channels and
blocks of four symbols. Each block resembles one state of the database
search window. The vectors shown in yellow, orange, green and blue
are aligned in the first block in this order. The cells in red highlight the
last residues of database sequences while cells containing a dash denote
padding of database sequences. The padding is used to fill up sequences
not ending at a block.

To speed up the computation, a temporary alignment profile is created.
This profile contains the scores for aligning the database residues of one
block to the query sequence. It allows for a fast loading of the scores into
the vectors used for computing the alignments. Figure 3.6 illustrates the
creation of this profile. The score matrix is reduced to the nucleotides A, C,
G, and T, to simplify the illustration, and the block of database sequences
shows only eight channels, where later more channels are used. The num-
bers in bold face mark the positions of the four residues and the colours
mark the columns of the score matrix representing one residue and their
positions in the score profile. The profile then consists of the columns, of
the score matrix, representing the residues of the sequence block. Each col-
umn contains the scores for aligning the database residue to all possible
query residues.

The alignment of the database sequences to the query sequence is done
block wise. Each database residue of a block is aligned to each query

34

Figure 3.4: The flow chart shows a database search in one chunk. The processing is
done in two states, while the actions shown in green, blue, and orange are common
two both states.

Figure 3.5: Layout of the database sequences by channels and blocks. Cells in red
indicate the last residues of sequences and dashes indicate padding. The columns
shown in yellow, orange, green, and blue show the order of processing, in one
search block. The yellow column is processed in the first vector.

residue, before loading the next block. Here the formulas for global and
local alignments with the Gotoh extension, as described in chapter 2.2.3,
are applied. The vectors of substitution scores from the score profile match
here to the value V in the Gotoh formula in chapter 2.2.3.

35

Figure 3.6: Creation of the database profile for a block of four residues of eight
database sequences using a reduced score matrix. The columns of the score matrix
are selected and placed in the score profile, based on the residues in the search
block. The vector, marked with a bold border, denotes the vector, that would be
loaded to align the query residue C to the first vector of database residues.

An important part of the implementation over multiple channels is the ini-
tialisation of new sequences. Since every value is kept in a SIMD vector,
one has to make sure that the values for the H, E, and F matrices are ini-
tialised according to the algorithms. This requires access to the separate
channels to initialise only the affected ones. The same goes for the score
of the alignments. Here only the score of the terminated sequences is read
and reset, while the rest of the scores are unaffected.

36

Chapter 4

Implementation

This chapter describes the implementation details of the sequence align-
ment library. The first part describes the different configuration functions
and the internal data formats. The second part introduces the integration
of an external database into libssa, followed by details of the central mod-
ule. This module initialises and starts database searches and alignments.
The next part, section 4.4, describes the implementation of the database
searches, followed by details of the computation of alignments. The final
two parts, present testing of libssa and benchmarking.

Some parts of the implementation were taken from other open source
projects. These parts are mentioned here, while a complete discussion is
given in chapter 5.3.

4.1 Configuration and internal formats

This section focuses on the configuration steps and how the configured data
is stored internally. Emphasis is on the API functions, for initialising the
library. The database search and alignment functions are described in the
following chapters.

4.1.1 Data types

In libssa a couple of C data types were chosen as a convention for certain
types of data. This was done to unify the code and to reduce errors. Besides
this, libssa declares a number of C structs, for storing and exchanging data.
Internal data types are declared in the header file libssa_datatypes.h,
while external data types are declared in the header file libssa.h.

In libssa, all sequence data is stored in arrays of the type char. The
length of the sequences is stored in a variable of type size_t. This is the
standard data type, for the size of an object or sequence, as defined by the
C99 ISO/IEC 9899 standard1. It might be different on each system, but

1http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=
57853, last visited 4.4.2015

37

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57853

it is defined to be big enough, to hold the maximum size of any object,
allocatable on that system. In libssa size_t is used for the size of all arrays
and objects. Alignment scores are always stored in variables of type signed
long, when returned to the user. Although internally they might be stored
in smaller data types, depending on the algorithm.

4.1.2 Sequences

Libssa uses FASTA2 as input format for query sequences and ASCII strings
for database sequences. In both the sequence data is represented in the
standard IUB/IUPAC amino acid and nucleic acid codes3:

• 17 Nucleotides: -ACGTUMRWSYKVHDBN

• 28 Amino acids: -ARNDCQEGHILKMFPSTWYVBZX

Internally, these sequences are represented as sequences of integers, in the
range of 0 to 15 for nucleic acids and 0 to 28 for amino acids. Here libssa
does not distinguish between the nucleotides U (uracil) and T (thymine),
as both cannot occur in the same sequence. Therefore the internal format
only uses 16 different nucleotide codes. The translation to internal codes is
done to directly use them later as indices in the score matrix.

Unknown symbols are set to 0 – the representation of the gap symbol –
during the mapping to the internal format. If unknown symbols are found
a warning is shown.

Query sequence The query sequence is read in FASTA format and stored
as a sequence profile. It is then read from a file or a string. The file allows
for a header to be present, while the string only contains the sequence leav-
ing the header field of the profile empty. The computed profile contains
the sequence in its internal representation in the selected translation mode,
the length of the sequence, the header string, and the length of the header
string. Only the sequences used for the selected mode are stored.

The query profile is implemented in the opaque pointer pattern, allowing
for storage of the profile on the user side while hiding the implementation.

Symbol translation Libssa implements 5 different modes for aligning
sequences where the query and database sequences are translated, if
necessary (see chapter 2.2.2). It is, for example, possible, to search for a
nucleotide sequence in a protein database and vice versa. To configure
this, the symbol type, the used strands, and the genetic codes of the
query sequence and the database are set. The following list shows the
implemented modes and the constants (in the file libssa.h) for selecting
these:

2http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml, last visited 23.4.2015
3http://pac.iupac.org/publications/pac/pdf/1972/pdf/3104x0639.pdf, last visited

23.4.2015

38

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
http://pac.iupac.org/publications/pac/pdf/1972/pdf/3104x0639.pdf

• NUCLEOTIDE

Aligns a nucleotide query against a nucleotide database.

• AMINOACID

Aligns an amino acid query against an amino acid database.

• TRANS_QUERY

Translates a nucleotide query and aligns it to an amino acid database.

• TRANS_DB

Aligns an amino acid query to a translated nucleotide database.

• TRANS_BOTH

Translates a nucleotide query and aligns it to a translated nucleotide
database.

The translation is done on the internal integer representation. It is ei-
ther done for the provided strand, the complementary strand, or for both
strands. For all strands, all 3 reading frames are translated, resulting in up
to 6 translations of a sequence.

For translations, libssa implements the list of genetic codes, provided by the
NCBI4. This list contains genetic codes, for 19 different groups of biological
organisms and organelles. In libssa the codes are identified by the numbers
used at the NCBI, while different codes can be used for translating the
query and database sequences. The implementation of translations was
taken from the SWIPE project5 and adapted to libssa.

4.1.3 Scoring schemes

Libssa implements two scoring schemes: constant match and mismatch
scores, and substitution matrices. Constant scores are passed to the
library through the function init_constant_scoring in the range of
−128 to +127. Substitution matrices are passed to the library using the
function init_score_matrix as a file or string, or by selecting one of the im-
plemented matrices: BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80,
BLOSUM90, PAM30, PAM70, or PAM250.

Listing 4.1 shows an extract from the BLOSUM90 matrix in the format
readable by libssa. Lines starting in # and blank lines are ignored. Lines
starting in a space or tab character set the order of symbols (line 2 of the
listing), and the rest of the lines set the values. Matrices up to 32 x 32
symbols with scores in the range of−128 to +127 are supported. Internally,
the symbols are translated into the internal representation where each
symbol has a value equal to its index in the score matrix. Therefore the
order of symbols provided by a user is not important to libssa.

4http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi, last visited 12.4.2015
5https://github.com/torognes/swipe, last visited 10.4.2015

39

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://github.com/torognes/swipe

Listing 4.1: Part of the BLOSUM90 substitution matrix, in a format that is read by
libssa.

1 # Entries for the BLOSUM90 matrix at a scale of ln(2) /2.0.

2 A R N D C Q E G H I L K M F

3 A 5 -2 -2 -3 -1 -1 -1 0 -2 -2 -2 -1 -2 -3 ...

4 R -2 6 -1 -3 -5 1 -1 -3 0 -4 -3 2 -2 -4

5 ...

Internally, the library uses only substitution matrices. Constant scores
are converted into matrices. For each search range (8, 16, and 64 bit)
a separate matrix is allocated and initialised. This avoids conversions
between variables in different bit width during the computations.

4.1.4 Gap penalties

Libssa implements linear and affine gap costs, in the range of−128 to +127.
Both are initialised through the same function (init_gap_penalties) to
keep the API simple. The function takes two signed 8 bit integers as pa-
rameters: one for the gap opening and one for the gap extension costs.

Internally the gap costs are applied using the formula Cgap = Q + n ∗ R,
with Cgap as the costs for a gap of length n, and Q as the gap opening and
R as the gap extension costs. If Q is set to 0, this formula calculates linear
gap costs instead of affine gap costs.

The range of −128 to +127 was chosen, for two reasons: usually gap costs
are much lower and secondly using gap costs of a higher range would make
8 bit searches impossible, as these would overflow at the first gap.

4.1.5 Validation of the configuration

Database searches are executed in two phases in libssa. First a search is ini-
tialised and secondly the search is performed. Each module validates the
configuration up front to prevent errors due to a wrong or missing initiali-
sation.

The concept here is to validate the configuration as early as possible to re-
duce the amount of testing in modules further down the hierarchy, since
they are more likely to be executed more often. Hence performance is im-
proved by moving the validation upwards. Each module implements a test
on the data that is set during the initialisation. If the data is not present, an
error is thrown and the computation is terminated.

Another advantage of early validation is a reduction in the amount of code
testing for errors. C does not have a simple exception handling strategy
and adding an error return value or parameter to many functions, bloats
up the code.

40

4.2 Database integration

Libssa is designed to work with any database implementation, that imple-
ments a header file provided by libssa: libssa_extern_db.h. The functions
of this header file are called by the db_adapter module to load and prepare
database sequences. The prepared sequences are then used in the database
searches and alignments.

The struct seqinfo (see listing 4.2) represents the minimum amount of data
needed, to perform a database search or alignment. ID is a unique identifier
used to identify the sequence in the database. Libssa shows this ID in the
results of a search. Seqlen contains the length of the sequence and seq

contains the sequence as an ASCII string without the header (see chapter
4.1.2).

Listing 4.2: Data struct for exchanging database sequences
1 struct seqinfo {

2 size_t ID;

3 size_t seqlen;

4 char * seq;

5 };

Libsdb is a reference implementation, of an external database library. It
is available on GitHub6 under the AGPL v3 license7. It implements the
minimal features, required by libssa, as defined in libssa_extern_db.h.
The databases are read in FASTA format and stored in memory. The ID of a
sequence is implemented as the index of the sequence, in the database file,
starting from zero.

4.3 Controlling database searches and alignments

The central module controlling the database searches and alignments is the
manager module. Its task is to start the database searches and alignments
on multiple threads and to collect the results afterwards.

The module works in two phases, like all modules of libssa. First it is ini-
tialised by the calling module and initialises the modules it is going to call,
secondly it performs the actual database searches and alignments. The ini-
tialisation is done using the functions init_for_sw and init_for_nw, de-
pending on the used algorithm. Afterwards a database search and align-
ment is started using the function m_run.

The variable align_type controls whether CIGAR strings are computed for
the search results or only the alignment scores are returned. If it is set to
COMPUTE_SCORE, the database search is done and only the alignment scores
are returned. For the additional computation of CIGAR strings, it is set to

6https://github.com/RonnySoak/libsdb, last visited 5.4.2015
7http://www.gnu.org/licenses/agpl.html, last visited 5.4.2015

41

https://github.com/RonnySoak/libsdb
http://www.gnu.org/licenses/agpl.html

COMPUTE_ALIGNMENT. The flag is set via the alignment functions of the API
which receives it as a parameter.

The manager module delegates the thread handling to a separate module
implementing a thread pool. It does the same with the collection of results
which is delegated to a min-max-heap. This way the actual handling of
threads and results becomes transparent to the manager module which not
only simplifies the implementation, it also makes it easy to exchange these.

4.3.1 Thread pool

A simple thread pool is implemented, using the pthread library for exe-
cuting computations in parallel. The number of threads can be specified
by the user through the API function set_threads. If it is not specified, a
number of threads equal to the number of logical cores is used. Once cre-
ated threads are re-used until the thread pool is terminated or the number
of threads changes.

After the initialisation, the function start_threads is used to execute the
threads. The function wait_for_threads is afterwards used to wait for the
termination of the threads and to collect the results of each.

The pthread library requires the functions implementing the threads to
have an argument of type void *. The return values of threads are collected
in a variable of type void **. This allows for a simplification of the pthread
API, but makes the user responsible of checking the parameters, since a
void pointer can contain basically any data. In libssa, this is done by
documenting the type of the parameter. This is sufficient, since this part
is internally used only and not exposed to the user.

4.3.2 Min-max-heap

A priority queue, implemented as a min-max-heap [Atkinson et al., 1986],
was chosen, for collecting the best sequences. The implementation was
taken from the VSEARCH project, since it was already developed for time
and memory efficiency.

The implementation was then adapted to libssa by changing the data stored
in an element of the heap and a set of unit tests was added. Listing 4.3
shows the data structure for an element. This is the minimum amount
of data needed to identify a query and database sequence combination.
The database sequence is identified using the db_id, dframe, and dstrand.
The information about the strand and frame is used, if the database is
translated for the search, while db_id is the ID of a sequence as defined
by the database library. The version of the query is identified by query_id,
which identifies the used translation of the query. The field score stores the
computed score of the alignment. The score is the information the values
are sorted by.

42

Listing 4.3: Data struct for elements of the min-max-heap
1 typedef struct {

2 size_t db_id;

3 uint8_t db_frame;

4 uint8_t db_strand;

5 uint8_t query_id;

6 long score;

7 } elem_t;

The implemented version is a minimums heap keeping the element with
the lowest score at the top. New elements are added at the right position
and elements with a lower score are shifted towards the top. If the heap is
full, the element at the top is removed. The size of the heap is configured
by the parameter hit_count of the alignment functions.

Each thread maintains its own priority queue for collection the highest
scoring sequence pairs. The manager module retrieves these priority
queues, upon termination of the threads and combines them to a global
result. The size of each priority queue is the same to ensure the collection
of the best results, even if these are collected in only one thread. The global
result list then keeps the best n sequences, where n is equal to the value of
the parameter hit_count.

4.4 Database searches

Database searches compute the alignment scores and return the best match-
ing sequence pairs. This part describes the implementation details of the
searches, focusing on the 8 and 16 bit SIMD implementations, which fol-
low the general design as described in chapter 3.3.3.

The database searches are implemented in a modular structure like shown
in figure 3.1 on page 31. This structure implements the searcher module on
the highest level, with specialised search modules, focused on different bit
widths, on the next level. These again delegate the work to the different im-
plementations of the sequence alignment algorithms. The modules for the
different bit widths retrieve chunks of sequences from the database, pass
these to the alignment algorithms, and collect the best scoring sequences
in local min-max-heaps. The local results are then returned to the manager

module through the searcher module.

All the modules performing the database searches are implemented as a
plug-in structure using C function pointers. In the initialisation phase,
each module selects the module on the next lower level based on the pa-
rameters bit width and search type. The bit width is either 8, 16, or 64
and the search type Smith-Waterman or Needleman-Wunsch. Using func-
tion pointers moves the decision which implementation to take into the ini-
tialisation phase, while generalising the source code for the search phase.
The modules on one level are all implemented the same way. All public

43

functions have the same signature, the actual implementation then is spe-
cialised.

The searches in different bit widths are implemented to use the SIMD
vectors best. The challenge here is to pack as many computations as
possible in a vector, which is achieved using 8 bit integers. The problem is,
that these only have a range of 0 to 255 unsigned or −128 to +127 signed.
This is easily exceeded, depending on the match and mismatch costs, the
gap penalties, and the length of the sequences. Therefore the different bit
widths are implemented, serving as fallbacks for computations exceeding
a bit width:

• 8 bit SIMD (range: 0 to 255 or −128 to +127)

• 16 bit SIMD (range: 0 to 65 535 or −32 768 to +32 767)

• 64 bit serial (range: 0 to 264 or −263 to +263 − 1)

In the 8 and 16 bit versions over- and underflows are detected and the af-
fected sequences are re-computed with the next higher bit width. An over-
flow using 64 bit integers is practically impossible, since the number of base
pairs in the longest known genome (see chapter 2.2), is still more than 7 or-
ders of magnitude lower than 263.

For each bit width two sequence alignment algorithms are implemented,
the Needleman-Wunsch and the Smith-Waterman, doing global and local
alignments. For the 8 and 16 bit SIMD implementations two versions of
each algorithm are implemented, one using the SSE and one the AVX in-
struction set.

When a search is started, one bit width, one SIMD version, and one
algorithm is selected. The database search is then started in this bit width.
If necessary, overflowing sequences are re-computed in the next higher bit
width with the same SIMD version and algorithm. The re-computation is
simply done by delegating the computation to the search module with the
next higher bit width. This was already initialised beforehand using the
same SIMD version and algorithm.

4.4.1 64 bit implementation

The 64 bit versions of the local and global alignments compute the scores
sequentially. For each chunk one score is computed after the other and then
added to the min-max-heap. The Smith-Waterman implementation is taken
from the SWIPE project, while the Needleman-Wunsch implementation is
derived from the Needleman-Wunsch-Sellers implementation in SWARM.
Both are adapted to libssa regarding the parameter lists. Neither is
optimised with SIMD instructions, since they only serve as fallbacks if the
16 bit range is exceeded.

44

4.4.2 8 and 16 bit implementations

The implementations for 8 and 16 bit searches is based on the 16 bit
Needleman-Wunsch implementation of VSEARCH. It implements Rognes’
approach from 2011[Rognes, 2011] using SSE2 instructions and was taken
as a reference to implement four versions (8/16 bit and SSE/AVX) of both
algorithms, the Smith-Waterman and the Needleman-Wunsch.

All versions follow the same general procedure as described in chapter
3.3.3. This is possible, since all used integer vector operations, are available
in the SSE and AVX instruction sets. The difference between the 8 and 16
bit implementations is the number of channels per vector and the available
score range.

Source code organisation The source code for the vectorised database
searches is located in the following files in the sub directories 8, 16, and
simd of the source folder algo:

• search_simd_nw.c

8 and 16 bit Needleman-Wunsch implementation, for SSE and AVX
instruction sets.

• search_simd_sw.c

8 and 16 bit Smith-Waterman implementation, for SSE and AVX
instruction sets.

• search_16_util.h and search_16_util.c

Utility functions and API for the 16 bit implementations.

• search_8_util.h and search_8_util.c

Utility functions and API for the 8 bit implementations.

The main challenges, of this part of the library are to implement it as effi-
cient as possible and with as little code repetitions. The efficient implemen-
tation is described further down, while the reduction of code repetitions is
done here on file level.

The 8 and 16 bit versions for both instruction sets follow the same gen-
eral procedure. Hence it is possible to implement them in one file using
C macros while still keeping it readable. At compile time these are re-
solved with the actual types and functions of the selected version, which
again are selected using conditional preprocessor macros. The macros for
the conditionals are defined using compiler arguments. The argument
-DSEARCH_8_BIT sets the macro SEARCH_8_BIT for choosing between the 8
and 16 bit versions, while the compiler flag -mavx2 sets the macro __AVX2__

for choosing between the AVX and SSE versions. The flag -mavx2 tells the
compiler to optimise for a CPU implementing the AVX2 instruction set.

Each of the files is compiled optimised for the minimally required instruc-
tion set. The idea here is to make the library usable, even if the CPU does

45

not implement, for example, AVX instructions. In this case the SSE versions
can still be used. The minimum requirements for the 16 bit SSE database
searches is SSE2, for the 8 bit SSE searches SSE4.1, and for the 8 and 16 bit
AVX searches it is AVX2.

Listing 4.4 shows an example of the preprocessor macros for setting the
intrinsics function for a saturated addition. In the implementation the first
parameter of the define (_mmxxx_adds_epiYY) is used, which is resolved by
the preprocessor to the second parameter. All of the functions set like this,
follow a common naming scheme: _mm marks a function as an intrinsics
function, xxx shows that this function has an 128 bit (SSE) and 256 bit (AVX)
version, and YY indicates that this function has an 8 and 16 bit version.

Listing 4.4: Preprocessor macros for setting the functions for the selected version.
1 #ifdef SEARCH_8_BIT

2 #ifdef __AVX2__

3 #define _mmxxx_adds_epiYY _mm256_adds_epi8 // 8 bit AVX

4 #else

5 #define _mmxxx_adds_epiYY _mm_adds_epi8 // 8 bit SSE

6 #endif /* __AVX2__ */

7 #else

8 #ifdef __AVX2__

9 #define _mmxxx_adds_epiYY _mm256_adds_epi16 // 16 bit AVX

10 #else

11 #define _mmxxx_adds_epiYY _mm_adds_epi16 // 16 bit SSE

12 #endif /* __AVX2__ */

13 #endif /* SEARCH_8_BIT */

Compilers are most effective at optimising loops when the number of
iterations is constant and known at compile time. To support this, a couple
of constants were added to the conditional macros. These set, for example,
the number of channels, which is constant to one bit width and instruction
set, but different for other configurations.

Parallelisation over multiple channels The number of available channels
depends on the selected instruction set and the bit width. The SSE
instruction set uses the 128 bit wide XMM registers of the CPU while the
AVX instructions set uses the 256 bit wide YMM registers. Based on this,
the number of channels is 8 in the 16 bit SSE version, 16 in the 8 bit SSE and
16 bit AVX versions, and 32 in the 8 bit AVX version.

Score ranges and saturation arithmetic For the 8 and 16 bit searches the
available score ranges are −128 to +127 using 8 bit and −32 768 to +32 767
using 16 bit. If an alignment score exceeds these, it is recalculated using a
higher bit width to get an exact result, due to the greater score range. To
prevent wrong results from such over- or underflows, saturation arithmetic
is used in combination with an overflow detection. Saturation arithmetic
prevents a wrap around, that occurs in modular arithmetic, which is usu-
ally implemented in programming languages. Using modular arithmetic

46

with unsigned 8 bit values, adding 200 and 70 results in 14, using satura-
tion arithmetic the result is 255, which corresponds to the upper unsigned
limit.

Using Intel’s intrinsics, one can choose between saturation arithmetic and
modular arithmetic for all basic arithmetic functions. Libssa uses only sat-
uration arithmetic when operating on vectors.

One property of the alignment scores, of the Smith-Waterman algorithm is,
they can never be lower than 0. This makes only half of the score range us-
able, when using signed arithmetic. To use the full range, one has to either
use unsigned arithmetic, or treat the lower limit as 0 and convert the score
back afterwards.

Using unsigned arithmetic one has to add a bias to the score matrices to
convert the values to unsigned numbers. This bias is then subtracted every
time after applying a value of the score matrix to maintain the actual values
in the score matrix.

Using signed arithmetic, one treats the lower limit as 0 during the compu-
tation. Afterwards the final score is converted back. For using the lower
limit as 0, the alignment matrix is initialised with the lower limit instead of
0. The rest of the of the computations are unchanged.

Libssa implements the Smith-Waterman using signed arithmetic. This
requires one instruction less in each cell computation while the same score
matrix can be used for both algorithms, the Smith-Waterman and the
Needleman-Wunsch.

Core code for computing one cell The computation on cell level is done
on SIMD vectors on up to 32 channels. Listing 4.5 shows the code for com-
puting one cell of the alignment matrix using the Smith-Waterman algo-
rithm with Gotoh’s modification (see chapter 2.2.3). At first, the vector of
previous values in the H matrix is updated with the substitution scores in
V. Saturation arithmetic ensures that no value exceeds the upper or lower
limit of the score range. Afterwards these values are compared to the val-
ues in the E and F matrices to check for the extension of gaps and the highest
values of the matrix of each channel are kept. The scores in the current cell
are then compared to the maximum scores in S of the current alignment. If
a value in a channel is higher, S is updated to the value of the correspond-
ing channel in H. N saves the scores of the current cell to be used as H values
in the computations of the following cells. Afterwards, the values in E and
F are updated for the computations of the following cells.

This implementation somewhat differs from the description of the algo-
rithm. The original algorithm, as described earlier, prepares the scores,
checks for the maximum and stores the maximum in the current cell. This

47

implementation initialises the first line and row separately before the align-
ment. During the computation of each cell, it uses the previously set values
and sets the values for the next cells. This way each cell is computed the
same way, without having a separate implementation for the first row and
column. Compared to the description in chapter 2.2.3, this implementation
omits the cases for i = 0 and j = 0. These are done before, as the initialisa-
tion of the first row and column.

Listing 4.5: Core code for computing one cell of the Smith-Waterman algorithm
1 #define ALIGNCORE(H, N, E, F, V, QR , R, S) \

2 H = _mmxxx_adds_epiYY(H, V); /* H = H + V */ \

3 H = _mmxxx_max_epiYY(H, F); /* H = MAX(H, F) */ \

4 H = _mmxxx_max_epiYY(H, E); /* H = MAX(H, E) */ \

5 S = _mmxxx_max_epiYY(H, S); /* S = MAX(H, S) */ \

6 N = H; /* N = H */ \

7 H = _mmxxx_subs_epiYY(H, QR); /* H = H - QR */ \

8 F = _mmxxx_subs_epiYY(F, R); /* F = F - R */ \

9 F = _mmxxx_max_epiYY(F, H); /* F = MAX(F, H) */ \

10 E = _mmxxx_subs_epiYY(E, R); /* E = E - R */ \

11 E = _mmxxx_max_epiYY(E, H); /* E = MAX(E, H) */

Listing 4.6 shows the computation of one cell of the alignment matrix,
using the Needleman-Wunsch algorithm with Gotoh’s modification. The
difference to the implementation of the Smith-Waterman are the overflow
detection and the retrieval of the alignment score. The alignment score
of the Smith-Waterman algorithm is the maximum score of the whole
alignment matrix (line 5 in listing 4.5). The alignment score of the
Needleman-Wunsch algorithm is the last computed value of the alignment
matrix, which is retrieved outside the cell computation. The Smith-
Waterman algorithm does not need an overflow detection at the lower end.
The overflow detection at the upper end is done using S, the maximum
score of the alignment. For the overflow detection in the Needleman-
Wunsch, two SIMD vectors were added, h_min and h_max. These store the
minimum and maximum values computed in the alignment of a search
block (line 5 and 6 in listing 4.6).

Listing 4.6: Core code for computing one cell of the Needleman-Wunsch algorithm
1 #define ALIGNCORE(H, N, E, F, V, QR , R, H_MIN , H_MAX) \

2 H = _mmxxx_adds_epiYY(H, V); /* H = H + V */ \

3 H = _mmxxx_max_epiYY(H, F); /* H = MAX(H, F) */ \

4 H = _mmxxx_max_epiYY(H, E); /* H = MAX(H, E) */ \

5 H_MIN = _mmxxx_min_epiYY(H_MIN , H); /* underflow check */ \

6 H_MAX = _mmxxx_max_epiYY(H_MAX , H); /* overflow check */ \

7 N = H; /* N = H */ \

8 H = _mmxxx_subs_epiYY(H, QR); /* H = H - QR */ \

9 F = _mmxxx_subs_epiYY(F, R); /* F = F - R */ \

10 F = _mmxxx_max_epiYY(F, H); /* F = MAX(F, H) */ \

11 E = _mmxxx_subs_epiYY(E, R); /* E = E - R */ \

12 E = _mmxxx_max_epiYY(E, H); /* E = MAX(E, H) */

Processing database sequences in blocks The macros for the cell com-
putations are called during the alignment of a search block to the query

48

sequence. For each query residue, the macros are executed 4 times, once
for each position in the search block. Chapter 5.2.1 further discusses the
size of the search blocks and the two states.

This part is implemented the same way in both algorithms, in the functions
aligncolumns_first and aligncolumns_rest. These functions implement
the two states as described in chapter 3.3.3. Aligncolumns_first imple-
ments the state where new sequences start while aligncolumns_rest the
other one.

Initialisations for new sequences One difference of both algorithms is
the initialisation of the H, E, and F values for new sequences. The Smith-
Waterman algorithm initialises these to 0, while the Needleman-Wunsch
algorithm initialises these with the costs for a gap.

The computation at this step is done on multiple database sequences, as
shown in figure 3.5 on page 35. Here libssa uses masked vector operations
to initialise only the new sequences.

Figure 4.1 shows the operations to initialise selected channels in the Smith-
Waterman algorithm. Here the mask M is set to the lower limit of the bit
width in all channels that are reset, and to the upper limit otherwise. The
channels in the H vector are then reset by computing the minimum between
the channels in M and H . The result is afterwards stored in H. The same is
done for the E values.

Figure 4.1: Initialisation of selected channels in the Smith-Waterman algorithm
using the mask M. Initialised channels are shown in yellow.

Figure 4.2 shows the operations to initialise selected channels in the
Needleman-Wunsch algorithm. Here the mask M is set to the unsigned up-
per limit of the bit width in all channels that are reset and to 0 otherwise.
The channels are then reset by subtracting the mask from the H vector. The
subtraction is done unsigned and in saturation arithmetic. Afterwards, the
gap costs are added to all channels that were reset. For this a second mask
is created. This mask is set to the gap costs for the current position in the
query sequence in all channels that are initialised. The same is done for the
E vector.

In both algorithms the masks are initialised when the channels are
refilled. At this point all channels are processed sequentially. Hence
the algorithm knows which channels contain new sequences. During the

49

Figure 4.2: Initialisation of selected channels in the Needleman-Wunsch algorithm
using the mask M. Reset channels are shown in yellow.

actual alignment, the algorithms compute on all channels uniformly in
parallel.

Storage of the H, E, and F values Another aspect of efficiency, besides
throughput, is memory usage. Here one wants to keep as little data as
needed. This is important for sequences alignments, since the alignment
matrices grow exponentially with the lengths of the aligned sequences.
Here libssa reduces the memory usage by storing only those cells, which
are needed to compute the next cells.

Each value in the matrices H, E, and F depends on a previous value. H(i, j)

depends on H(i-1, j-1), E(i, j) depends on E(i, j-1), and F(i, j)

depends on F(i-1, j), with i being the index in the query sequence and j

being the index in the database sequence. To reduce the memory usage,
only those values are kept which are needed to compute the next cells.
Since the computations are done column-wise on 4 database residues in
a row, the kept values are the last computed column of H and E to continue
the alignments from the last search block. Additionally 4 cells of H and F

are kept for the values from above, which are initialised as values of the
first row.

Temporary score profiles The vector V, shown in listing 4.5 and 4.6, stores
the substitution scores of query and database residues. These are pre-
computed and stored in a temporary score profile. The advantages here
are the possible re-use of each score vector and the optimised computation
of it.

Nucleotide sequences consist of 16 different symbols while protein se-
quences have 28 different symbols. As a consequence there are only 16 and
28 different substitution scores exist, respectively, for aligning one database
residue to all query residues. Hence pre computing these vectors of sub-
stitution scores allows for reusing them during the alignment of the whole
query sequence to the database residues of one search block.

The temporary score profile provides the data for the V vectors. This profile
contains 32 vectors for each of the 4 positions in the search block. The 32
vectors match the 32 possible symbols in the score matrices which resemble
the symbols occurring in the sequences. 32 was chosen as it is the smallest

50

two’s complement greater or equal to the number of symbols in nucleotide
and amino acid sequences. Padding the matrices to the next two’s comple-
ment supports the creation of the score profile on SIMD vectors as one can
see in the next paragraph. Loading the substitution scores for one query
residue is now one load operation of the matching vector of the score pro-
file.

Figure 3.6 on page 36 illustrates a way of filling the score profile. The ac-
tual implementation loads lines instead of columns and stores them trans-
posed. Loading the lines, transposing, and storing them is done in SIMD
vectors. This way all channels are processed at the same time which would
not be possible if the values would be copied column-wise. The matrices
are stored line-wise in memory, hence loading a column requires multiple
load operations in contrast to one load operation for loading a line. Figure
4.3 shows the different ways of filling the score profile for the implemented
versions. In the simplest case, the 8 bit search using AVX instructions, 32
lines are loaded and transposed in one pass. In the other implementations,
the transpose operation is split depending on the number of integers fitting
into one register. Selecting the matching lines and storing them in trans-
posed representation is done 4 times, once for each position in the search
block.

Figure 4.3: Illustration of the transpose operations performed for different bit
widths and SIMD instruction sets. Each square, labelled with A to D, is a transpose
operation.

Here one can see the importance of the matrix dimensions of 32 by 32 val-
ues. The transpose operations shown in figure 4.3 would be the same when
the dimensions would be 28 by 28, the minimum size for amino acid se-
quences. The difference is that each last transpose operation would then be
padded to 32. Padding the matrices from the beginning reduces the work
done when the score profiles are build.

51

The implementations for creating the score profile are found in the
dprofile_fill functions in the search_util files. These implement the
transpose operations using a series of unpack operations as illustrated in
figure 4.4. Here, the integers of each vector are shuffled between the vec-
tors to reorder them in a column and thus transposing the lines. There are
two kinds of unpack operations, one on the lower half and one on the up-
per half of the vectors. Both store the data interleaved in a new vector.

Figure 4.4: Visualisation of the unpack operations on the low and high halves of
two SIMD vectors. Unpacking is done by taking the low or high halves of two
vectors and storing them interleaved in a new vector.

In the implementations, one can notice the use of multiple for loops. These
are all declared with a constant number of iterations, so the compiler can
optimise the code by unrolling the loops. The source code on the other
hand becomes shorter and better readable using the loops.

Loading sequences and storing alignment scores The temporary score
profile provides the substitution scores for the database residues in one
search block. The step before the computation of it prepares this search
block by loading the database sequences into the channels and setting the
search block to the current position.

Figure 3.5 on page 35 shows the iterations of a search block over the se-
quences in multiple channels. The block is moved by loading the next 4
residues of each sequence into it. The handling of entire sequences follows
the flow chart shown in figure 3.4 on page 35. The action shown in green
loads the residues into the blocks, while the yellow actions prepare the se-
quences in the channels.

The preparation of sequences in the channels covers loading new se-
quences, storing the alignment scores of finished sequences, and the over-
flow handling. The handling of overflows is described in the next part,
while this paragraph focuses on the loading and storing.

The database sequences are loaded sequentially. They are stored in con-
tiguous memory regions, unrelated to each other. Hence it is not possible
to load one residue of each database sequence into one vector in one step.
SSE and AVX implement load operations for contiguous memory only. Al-
though AVX2 implements gather operations to load non contiguous data,
these are restricted to 32 and 64 bit integers and single and double precision

52

floating point numbers. Therefore the sequences are loaded sequentially
for both instructions sets.

When the alignment of a sequence in a channel is finished, the score is
stored in the thread-local min-max-heap as described in chapter 4.3.2. This
is done in the loop iterating over the channels to move the search block
and exchange sequences. The finished sequence is then removed from
the channel and exchanged with a new sequence until all sequences of the
current chunk are processed.

Overflow detection Another reason, for loading a new sequence besides
a completed alignment is an overflow of the alignment score. This occurs
when the score computed for a cell of the alignment matrix exceeds the
score range.

In sequence alignments, overflows can occur at any cell of the matrices.
They can easily be hidden by following calculations, such that the final
score does not exceed the limit even if one score in between exceeds it.
The final score is then, of course, incorrect. The detected overflows are per
search block. Here the highest and the lowest computed score are collected
and afterwards checked for overflows.

In saturation arithmetic overflows do not wrap around. Calculations ex-
ceeding the upper or lower limit result in a value equal to the correspond-
ing limit. Overflows are now detected by comparing the collected highest
and lowest scores to the upper and lower limit of the bit width. Scores
equal to the respective limit are treated as overflows. Each sequence where
an overflow occurred is added to an overflow list to re-align it with the next
higher bit width.

Collecting the minimal and maximal scores is realised differently for the
Smith-Waterman and the Needleman-Wunsch algorithm. In the Smith-
Waterman algorithm overflows are only possible at the upper limit since
the scores can never be lower than 0. The overflows at the upper limit
are detected using the score of the local alignment, which is the maximal
score of the whole alignment matrix. Listing 4.7 shows the instructions
used to detect overflows and to force a sequence change, in the affected
channel. Score_max holds the maximum value of the current score range,
while S.v holds the maximum score of the alignment matrix. The intrinsic
_mmxxx_cmpeq_epiYY sets each overflown channel in overflow.v to 0x f f .
Afterwards _mmxxx_movemask_epi8 adds up the most significant bits of
overflow.v, resulting in a value greater than 0 if at least one channel is
overflown.

Listing 4.7: Instructions for detecting overflows in the Smith-Waterman algorithm.
1 overflow.v = _mmxxx_cmpeq_epiYY(S.v, score_max);

2 change_sequences |= _mmxxx_movemask_epi8(overflow.v);

53

In the Needleman-Wunsch algorithm, overflows are detected at both
limits. Listing 4.8 shows the instructions used to detect these, and
to force a sequence change in a channel. Score_min and score_max

are vectors holding the minimal and maximal possible values of the
current score range, while h_min and h_max hold the last computed
minimum and maximum scores. The instructions _mmxxx_cmpgt_epiYY

and _mmxxx_cmpeq_epiYY compare the last computed minimum and
maximum scores to the respective limit. Each overflown channel in
overflow.v is set to 0x f f and afterwards _mmxxx_movemask_epi8 adds up
the most significant bits of overflow.v, resulting in a value greater than 0
if at least one channel is overflown.

Listing 4.8: Instructions for detecting over- an underflows in the Needleman-
Wunsch algorithm.

1 overflow.v = _mmxxx_cmpgt_epiYY(score_min , h_min);

2 overflow.v = _mmxxx_or_si(_mmxxx_cmpeq_epiYY(h_max , score_max

), overflow.v);

3 change_sequences |= _mmxxx_movemask_epi8(overflow.v);

The variable change_sequences states, whether a sequence in at least one
channel needs to be changed. This flag is evaluated in each iteration of the
main loop processing the sequences of a chunk. It is used to switch between
the two states described in chapter 3.3.3.

4.5 Computing alignments

The implementation, for computing alignments, was partly taken from the
SWIPE and the SSW projects. Computing the directions is implemented as
in SWIPE while computing the CIGAR string is implemented as in SSW.

Alignments are computed on multiple threads, where each thread does the
computation in 64 bit mode without using SIMD instructions. The align-
ments are performed based on the result of the database search, on the
highest scoring pairs of query and database sequences. To process these,
each thread receives a pair at a time, computes the CIGAR string, and stores
it in a result list. This is done until all pairs are processed. Afterwards the
local results are combined in the manager module.

For local alignments, the region of the alignment is found first. This region
is defined as the part of the alignment matrix between the highest scoring
cell and a trace back to the first found cell with a value of 0. If the highest
score occurs multiple times in the alignment matrix, the first one is used.
For global alignments this is not done, since the region of interest is the
whole alignment.

The CIGAR string is computed during a trace back from the end of the
alignment regio, to the start. For this operation a direction matrix is com-
puted first as already described in chapter 2.2.3. Afterwards the CIGAR
string is computed while tracing back the directions. The CIGAR string is

54

then stored in the compressed form and is computed using only match (M),
delete (D), and insert (I) actions.

The computation of alignments is not optimised. It is implemented in 64 bit
mode and stores the whole direction matrix in memory. For two sequences
of length m and n, this matrix uses m ∗ n bytes of memory. By replacing the
file align.c and cigar.c, one could replace this implementation with, for
example, a linear memory aligner as described by Myers and Miller [1988]

4.6 Testing

During the development of the library, a test suite was implemented. It
contains unit tests for all non static functions, a set of integration tests for
the external database library, and a set of system tests. Additionally a set
of programs was developed for measuring the performance. These are de-
scribed in chapter 4.7 and are used to execute performance tests.

The unit tests are developed to cover as many statements and branches
as possible. They include positive and negative test cases. The integra-
tion test cases cover the API, which is used to integrate external databases
(libssa_extern_db.h), while the system tests cover the functions, imple-
mented by the public API (libssa.h). They test the interaction of a user
with the API.

Another aspect covered by unit tests is the functionality of sequence align-
ments. Here one has to make sure that the computation of sequence align-
ment is correct. This includes the alignment scores as well as the CIGAR
strings. The base of these is a set of local and global sequence alignments
where the results are confirmed by hand. These tests include nucleotide
and protein sequences of up to about 15 residues. The results for longer
sequences are confirmed by computing these on the different implemen-
tations of the algorithms in libssa. The 8 and 16 bit implementations are
fundamentally different from the 64 bit implementations. An error in one
implementation does not need to be present in another one. Chapter 5.1.7
discusses more thoroughly the challenge of finding meaningful tests.

All test cases are implemented using the Check unit testing framework,
version 0.9.108, available under the LGPL v3 license 9. For each header file
in the source folder a test file in the test folder exists, which implements
the test case for the corresponding header file. These are named like the
header file with test_ as prefix while the folder structure in the test folder
resembles the folder structure in the source folder. Additional test data,
like database and query files, is located in the testdata sub folder of the
test folder.

8http://check.sourceforge.net/, last visited 1.4.2015
9http://www.gnu.org/licenses/lgpl.html, last visited 1.4.2015

55

http://check.sourceforge.net/
http://www.gnu.org/licenses/lgpl.html

Each test file implements a function for registering the test case in the test
suite. Their declarations are collected in the header file tests.h and called
in the function libssa_suite of the file check_libssa.c. This function col-
lects all test cases to create the test suite, which is then executed.

Each test case contains a number of positive and negative tests, checking
the correctness of the public functions in the corresponding header file.
For each test, a new child process is forked off. This allows a signal or
early exit to be caught and reported without taking down the whole test
suite execution. Additionally a time limit is set, for the whole test case
to prevent infinite runtimes. All test cases run with the default time of
4 seconds except for the system test test_bigger_databases.c. Here the
time-out is set to 30 seconds. Depending on the system the tests are run on,
this time-out needs to be set to a higher value.

4.7 Measuring performance

A set of tools is implemented, to measure the performance of the library.
The focus here is on the runtime performance. They are located in the
benchmark sub folder of the library.

This chapter describes some implementation details of the implemented
tools. The execution of these is described in chapter B, which gives a de-
tailed introduction to reproducing the performance results described in
chapter 5.1.

All of the implemented tools measure the wall clock time. Using CPU clock
ticks as measurement would make it easier to compare different runs of the
library with the same configuration since CPU clock ticks are independent
from other programs running on the same computer. On the hand this
measure would make it more difficult to compare different configurations.
For example, if a run with multiple threads is compared to a run with one
thread, the number of CPU clock ticks is higher at the run with multiple
threads, although the wall clock time is lower.

Overall runtime The overall runtime is measured using the example ap-
plication for libssa and a set of shell scripts. The example application runs
a database search configured by command line parameters, while the shell
scripts call the application in different configurations, measuring and log-
ging the runtime.

The important shell scripts are runner.sh and aligner_comparison.sh.
The first one executes a command a given number of times and prints the
runtime to both stdout and a file. The second shell script runs the exam-
ple application in a couple of selected configurations. Each run is carried
out a given number of times using runner.sh. The results are printed to
a file as comma separated values. The script aligner_comparison.sh runs

56

a benchmark for different alignment tools to compare their runtime. The
additional shell scripts are wrappers for executing the various tools.

The runtime is measured using the Linux command date with a precision
of nanoseconds10. The measured time is the difference between a call to
date before starting the program and a call to date after the program is
finished.

Runtime of the alignment functions only The runtime of only the
database searches is measured using different tools. They are implemented
in C and call libssa directly. Each tool iterates through a set of configura-
tions and runs a database search in each of it.

The measured runtime is limited to the runtime of the database searches
only, excluding the computation of the CIGAR strings. Also the time spent
setting up the database searches is excluded. The runtime is measured
using the function gettimeofday from the header file sys/time.h11. This
function returns the wall clock time with a precision of microseconds. The
measured time is the difference between a call to gettimeofday before
starting the database search and a call to gettimeofday after the program
is finished.

10http://man7.org/linux/man-pages/man1/date.1.html, last visited 5.3.2015
11http://man7.org/linux/man-pages/man2/gettimeofday.2.html, last visited 5.3.2015

57

http://man7.org/linux/man-pages/man1/date.1.html
http://man7.org/linux/man-pages/man2/gettimeofday.2.html

58

Chapter 5

Results and discussion

This chapter evaluates the implementation of libssa and discusses various
improvements that were made during the implementation. Furthermore
it evaluates the performance improvements of using the AVX instruction
set over the SSE instruction set. The first part, chapter 5.1, evaluates the
performance of libssa, while the second part, chapter 5.2, discusses the
optimisations that were applied to libssa. At the end chapter 5.3 gives an
overview of the source code, which was taken from different open source
projects and re-used in libssa.

5.1 Evaluating performance

This chapter introduces and evaluates performance results collected using
the set of benchmarks described in chapter 4.7. The results were collected
as CSV (comma separated value) files and evaluated using the program-
ming language R. Appendix B describes how to reproduce them.

All results were gathered on a Dell laptop equipped with an Intel(R)
Core(TM) i7-4800MQ CPU, 8 GB of memory, and a 500 GB hard disk. The
CPU has 4 physical cores and 8 hyper-threads. The processor frequency
is 2.7 GHz with a maximum turbo boost frequency of 3.7 GHz1. The
operating system is a 64 bit Linux Mint version 17 running the standard
Linux kernel version 3.13.0.

5.1.1 Collecting results

Database searches performed with libssa can be configured in several ways.
Each parameter can be can used in combination with any other parameter.
As an exception, setting the SIMD capabilities has no effect on the 64 bit
searches and the 8 bit searches requires at least SSE4.1. Following is a list
of all parameters and their possible values:

• Number of used threads: n ∈N

1http://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-
to-3_70-GHz, last visited 3.4.2015

59

http://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
http://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz

• Chunk size: n ∈N

• SIMD capability: SSE2, SSE4.1, AVX2

• Bit width: 8, 16, 64

• Search algorithm: Needleman-Wunsch (NW), Smith-Waterman (SW)

• Database: any DNA/RNA or protein database

• Query sequence: any FASTA formatted DNA/RNA or protein
sequence

• Gap costs: −128 to +127 for opening and extending

• Substitution matrix: BLOSUM, PAM, user defined

Libssa sets no limits to the size of the database. Since it is processed in
chunks, it can have an arbitrary size. Chapter 5.1.5 evaluates this parame-
ter and gives advice on optimal values for it. The situation is similar for the
number of threads. It is only limited by the operating system and the hard-
ware, however, chapter 5.1.4 gives advice on an optimal number of threads.

While measuring the performance, only a difference between SSE and AVX
is made. Benchmarks are performed for SSE searches are done with a SIMD
capability of SSE4.1. The intention here is to show the improvement of us-
ing the wider AVX vectors, not to compare the different versions of the SSE
and AVX instruction sets.

Two different databases are used in the tests. The UniProtKB/Swiss-Prot
database2 in version 3/2015 and the Rfam database3 in version 11. The
Swiss-Prot database is a subset of manually annotated protein sequences of
the UniProtKB database. It contains 547 964 sequences with a total number
of 195 174 196 amino acids. The Rfam database contains RNA sequences
of various families. It contains 383 004 sequences with a total number of
52 830 109 nucleotides.

Most of the tests are performed on protein sequences only, using the
UniProtKB/Swiss-Prot database. This is done, since internally both kinds
of sequences are treated the same. In the current implementation, the only
difference between nucleotide and amino acid sequences is the size of the
alphabet. The nucleotide alphabet contains 16 symbols while the amino
acid alphabet contains 28 symbols (see chapter 4.1.2). The algorithms
themselves do not distinguish between both kinds of sequences and the
size of the score matrices is the same for both as well. The implemented
test suite ensures the correct handling of nucleotide sequences, while the
benchmark in chapter 5.1.5 shows some performance data for these.

2http://www.uniprot.org/uniprot/, last visited 3.4.2015
3http://rfam.xfam.org/, last visited 3.4.2015

60

http://www.uniprot.org/uniprot/
http://rfam.xfam.org/

5.1.2 Base test run

To asses the performance of libssa, a number of test runs are carried
out. In the beginning, a basic test run is executed to get an overview
of the performance which is later used to reduce the number of tested
configurations in the following benchmarks.

Configuration This test run only measures the runtime of the database
searches, excluding the initialisations steps and the computation of the
CIGAR strings. The following list shows the the configuration dates that
are used in all combinations:

• Number of threads: 1, 8

• Chunk size: 1000 sequences

• SIMD capabilities: SSE, AVX

• Bit width: 8, 16, 64

• Search algorithm: Needleman-Wunsch, Smith-Waterman

• Database: UniProtKB/Swiss-Prot

• Query sequences: O74807, P19930, Q3ZAI3, P18080

• Gap costs: −3 opening and −1 extending a gap

• Substitution matrix: BLOSUM50

The gap gap opening and extension costs of −3 and −1 used in this test
run are an example of possible gap costs. They have only little influence
the performance, which is discussed in chapter 5.1.3.

The database searches are run 10 times in each of these configurations. This
is done to detect variations induced by the system the test is running on. 4
query sequences of varying length are tested to get a better picture of the
performance for different query sequence lengths. The lengths of the used
sequences range from 110 to 513 residues.

Variation of timing results Executing a program on a computer multiple
times often results in variations of the runtime. These variations can be a
sign of inefficient programming, or they can be induced by other applica-
tions, running on the same system, the operating system itself, or the hard-
ware. The influence of other running programs can be reduced by simply
terminating them. The effect of other influencing factors is evaluated using
box plots, showing the variation in the runtime of each of the 10 times each
configuration is run.

Figure 5.1 and 5.2 show the box plots illustrating the variations over the
runtimes. The data is here reduced to the query sequence P19930. Other se-
quences exhibit a similar variation. The highest standard deviation for the

61

searches on 1 thread is 1.63 seconds using the 64 bit Needleman-Wunsch.
For the searches on 8 threads it is 0.08 seconds using the 64 bit Smith-
Waterman.

All box plots exhibit only little to no variation, which indicates that the
runtime is less influenced by the system the database searches are executed
on. Due to this, the following plots only show the average runtime over 10
runs.

●●

●

●●

●

SSE41, SW, 8 bit
SSE41, SW, 16 bit

AVX2, SW, 8 bit
AVX2, SW, 16 bit

SSE41, NW, 8 bit
SSE41, NW, 16 bit

AVX2, NW, 8 bit
AVX2, NW, 16 bit

4 5 6 7 8

Variation of timing results using 1 thread

Time (seconds)

●

SSE41, SW, 8 bit
SSE41, SW, 16 bit

AVX2, SW, 8 bit
AVX2, SW, 16 bit

SSE41, NW, 8 bit
SSE41, NW, 16 bit

AVX2, NW, 8 bit
AVX2, NW, 16 bit

1.0 1.2 1.4 1.6 1.8 2.0 2.2

Variation of timing results using 8 threads

Time (seconds)

Figure 5.1: Boxplots of the variations in the runtime, for the 8 and 16 bit searches,
in different configurations. The circles show outliers to the runtimes while the
vertical bars are collapsed boxplots illustrating the little variation.

Results for 8/16 bit and AVX/SSE Figure 5.3 shows the runtimes for the
8 and 16 bit searches computed on SSE and AVX. These exhibit a vary-
ing correlation between the 8 and 16 bit searches for shorter and longer
query sequences. 8 bit Needleman-Wunsch searches seem to be slower for
shorter sequences than the 16 bit counterparts, while they are equally fast
for longer sequences. The Smith-Waterman searches show an opposite be-
haviour, being faster for shorter queries and slower for longer queries.

The base test run covers only 4 query sequences with lengths ranging from
110 to 513 residues. The next section discusses a second test run which

62

●SW, 1 thread

NW, 1 thread

SW, 8 threads

NW, 8 threads

40 60 80 100 120

Variation of timing results in the 64 bit searches

Time (seconds)

Figure 5.2: Boxplot of the variations in the runtime, for the 64 bit searches, in
different configurations. The circles show outliers to the runtimes while the
vertical bars are collapsed boxplots illustrating the little variation.

covers a wider range of query lengths. This test run evaluates the varying
behaviour of the results shown here.

●

●

●

●

2
5

10
20

Runtimes per configuration and query sequence

Query length (residues)

T
im

e
(s

ec
on

ds
)

110 195 390 513

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SSE, SW, 8 bit
SSE, SW, 16 bit
AVX, SW, 8 bit
AVX, SW, 16 bit
SSE, NW, 8 bit
SSE, NW, 16 bit
AVX, NW, 8 bit
AVX, NW, 16 bit

Figure 5.3: Chart of the runtime of different database searches per query sequence.
Each curve shows a run with a different configuration.

5.1.3 Query lengths, bit widths, and SIMD capabilities

The results of the base test run suggest an influence of the length of query
sequences on the performance of other parameters like the bit width and
the used SIMD capabilities. The expectation here is that the 8 bit searches
are faster than the 16 bit searches, with the same statement holding for the
computations on the wider AVX registers with respect to the computation
on the SSE registers. The length of the query sequence itself should effect
the performance, since the size of the computed alignment matrices is
based on it and with this the number of computed cells per alignment.

63

This benchmark evaluates the performance of different parameters in
correlation to different query lengths. The tested parameters are the bit
width, both algorithms, and the SIMD capabilities.

Configuration This test run uses 36 query sequences of lengths rang-
ing from 24 to 5 478 amino acid residues. These are taken from the
UniProtKB/Swiss-Prot database. The benchmark is then run on 8 and 16
bit on 8 threads. The rest of the configurations are the same as in the base
test run (see chapter 5.1.2).

Results Figure 5.4 shows the results of the Smith-Waterman database
searches for 8 and 16 bit and both instruction sets SSE and AVX. The 16
bit searches show a constant gain in runtime over growing query lengths.
The 8 bit searches, on the other hand, start with a flat performance curve for
short query sequences, up to around 200 residues. At around 200 residues,
the performance drops below the 16 bit performance. From there on the 8
bit performance curve follows the 16 bit curve with a slightly higher run-
time.

●

● ●

● ●
●

●●
●

●
●●

●
●●●●

●●●●
●●

●
●

●●

●
●

●
● ●

●● ●●

20 50 100 200 500 1000 2000 5000

0.
2

0.
5

2.
0

5.
0

20
.0

50
.0

Performance per query length

Query length (residues)

T
im

e
(s

ec
on

ds
)

●

● ●

●
●

●
●●●

● ●●
●

●●●●
●●●●

●●
●

●

●●

●
●

●
●

●
●● ●●

●

● ●

● ● ●

●●
●

●
●●

●
●●●●

●●●●
●●

●
●

●●

●
●

●
● ●

●● ●●

●

● ●

●
●

●
●●●

● ●●
●

●●●●
●●●●

●●
●

●

●●

●
●

●
●

●
●● ●●

SSE, SW, 8 bit
SSE, SW, 16 bit
AVX, SW, 8 bit
AVX, SW, 16 bit

Figure 5.4: Visualization of the runtime of Smith-Waterman database searches
using query sequences of varying length.

Figure 5.5 shows the results of the Needleman-Wunsch database searches,
for 8 and 16 bit and both instruction sets SSE and AVX. Here the 16 bit per-
formance curve starts rather flat until around 100 residues and grows from
there on linear to the query length. The 8 bit searches are slower than the
16 bit searches until a query length of around 120 residues. From there on
both bit widths are equally fast.

Tables 5.1 and 5.2 show the number of overflows per query length for the
Needleman-Wunsch and the Smith-Waterman algorithm. Both tables are

64

●

● ●

● ●
●

●●●
● ●●

●
●●●●

●●●●
●●

●
●

●●

●
●

●
●

●
●● ●●

20 50 100 200 500 1000 2000 5000

0.
2

0.
5

2.
0

5.
0

20
.0

50
.0

Performance per query length

Query length (residues)

T
im

e
(s

ec
on

ds
)

●

● ●

●
●

●
●●●

● ●●
●

●●●●
●●●●

●●
●

●

●●

●
●

●
●

●
●● ●●

●

● ●

● ● ●
●●●

● ●●
●

●●●●
●●●●

●●
●

●

●●

●
●

●
●

●
●● ●●

●

● ●

●
●

●
●●●

● ●●
●

●●●●
●●●●

●●
●

●

●●

●
●

●
●

●
●● ●●

SSE, NW, 8 bit
SSE, NW, 16 bit
AVX, NW, 8 bit
AVX, NW, 16 bit

Figure 5.5: Visualization of the runtime of Needleman-Wunsch database searches
using query sequences of varying length.

reduced to the query lengths where the performance curves, of the respec-
tive database searches, change their behaviour.

Query length 24 70 110 127 144
Overflows 460 448 460 456 461 645 542 349 547 964

Table 5.1: Number of overflows per query length from 8 to 16 bit, using the
Needleman-Wunsch algorithm.

Query length 189 195 222 246 255
Overflows 5 516 55 916 163 402 239 087 257 297

Table 5.2: Number of overflows per query length from 8 to 16 bit, using the Smith-
Waterman algorithm.

Figure 5.6 and 5.7 depict the improvement ratio of database searches on
AVX registers and 8 bit searches, respectively. The ratios are computed by
dividing the runtimes of the AVX and the 8 bit searches by the runtimes of
the SSE and 16 bit searches. A ratio of 1 indicates that both configurations
are equally fast, while a lower ratio shows that the configuration, which is
supposed to be faster, is actually slower. A higher ratio indicates an im-
provement in the performance for the more advanced configuration.

In figure 5.6, all curves exhibit a rather constant ratio of about 1.8 for query
sequences longer than 250 residues. For shorter query sequences the curves
for the 8 and 16 bit Needleman-Wunsch and the 16 bit Smith-Waterman
show an increase in the ratio from about 1.4 to 1.8. The curve for the 8 bit
Smith-Waterman searches starts lower at about 1.04 and grows from there

65

on to about 1.8, at a length of around 250 residues.

●

●
●

●

●

●

●
●

●

●

●●
●

●●●● ●●●●●● ● ● ●●

●

● ● ● ● ●● ●●

20 50 100 200 500 1000 2000 5000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Improvement ratio of AVX over SSE per query length

Query length (residues)

Im
pr

ov
em

en
t (

ra
tio

)

●

● ●

● ●
●

●●●
● ●● ●

●●●● ●●●●●● ● ● ●●
● ●

● ● ● ●● ●●

●

●
●

●
●

●
●●●

● ●● ●
●●●● ●●●

●

●● ●
● ●● ● ● ● ● ● ●● ●●

●

●
●

● ● ●
●●● ● ●● ● ●●●● ●●●●●● ●

●
●● ● ● ● ● ● ●● ●●

SW, 8 bit
SW, 16 bit
NW, 8 bit
NW, 16 bit

Figure 5.6: Visualization of the improvement ratio of database searches using AVX
over the SSE instruction set for query sequences of varying length.

●

● ●

●

●

●

●

●

●

●

●
●

● ●●●● ●●●●●● ● ● ●● ● ● ● ●

●
●● ●●

20 50 100 200 500 1000 2000 5000

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Improvement ratio of 8 bit over 16 bit per query length

Query length (residues)

Im
pr

ov
em

en
t (

ra
tio

)

●

● ●

●
●

●

●

●

●

●

●●

● ●●●● ●●●●●● ● ● ●● ●
● ● ●

●
●● ●●

● ● ● ●

● ● ●●● ● ●● ● ●●●● ●●●●●● ● ● ●● ● ● ● ● ● ●● ●●

●
● ● ●

● ● ●●● ● ●● ● ●●●● ●●●
●

●● ● ● ●● ● ● ● ● ● ●● ●●

SSE, SW
AVX, SW
SSE, NW
AVX, NW

Figure 5.7: Visualization of the improvement ratio of 8 bit database searches for
query sequences of varying length.

The curves in figure 5.7 show a different behaviour for the Smith-Waterman
and the Needleman-Wunsch database searches. For shorter query lengths,
until about 200 residues, the 8 bit Smith-Waterman searches are performing
better, while for longer query sequences they perform worse, than the 16 bit
searches. The 8 bit Needleman-Wunsch searches perform worse for shorter
query lengths until about 100 residues, while they perform about as good

66

as as the 16 bit searches for longer query sequences.

Discussion Both diagrams, in figure 5.4 and 5.5, show a correlation of the
runtime performance to the query length regarding the bit width and the
algorithm. The performance improvement of AVX over SSE is about con-
stant for longer query sequence lengths while it varies for shorter queries.

In figure 5.6 one can see that the performance of the database searches gen-
erally improves when the computation is done on the wider AVX registers.
The ratio of improvement starts low, increases until a length of around 250
residues, and is constant from there on.

A reason for the lower ratio of improvement is the computation of the score
profile. The runtime for computing one score profile is constant over the
query lengths. This means for shorter query lengths the computation takes
up a bigger portion of the overall runtime. In the computation on AVX this
portion is even bigger since the throughput of the database search is twice
as high. The tables 5.3 and 5.4 present the percentages of the four most
used functions of 8 bit database searches using the 24 residue long query
sequence P56980. Here one can see that the dprofile_fill functions takes
up more CPU cycles in the AVX search than in the SSE search.

CPU cycles Function
45,77% dprofile_fill_8_avx2

33,38% search_8_avx2_sw

10,56% db_read

8,42% us_map_sequence

Table 5.3: Percentages of the four most used functions, of an 8 bit AVX Smith-
Waterman database search, for the query sequence P56980.

CPU cycles Function
46,44% search_8_sse41_sw

34,66% dprofile_fill_8_sse41

9,52% db_read

8,08% us_map_sequence

Table 5.4: Percentages of the four most used functions, of an 8 bit SSE Smith-
Waterman database search, for the query sequence P56980.

The lower ratio for shorter queries for the 8 bit Smith-Waterman searches
is based on the number of overflows. Table 5.1 presents 460 448 overflows
for the 24 residue long sequence P56980 using the Needleman-Wunsch al-
gorithm. Using the Smith-Waterman algorithm, no overflows occur for this
sequence. This means for this sequence the 16 bit search takes up the big-
ger portion of the runtime, when the Needleman-Wunsch is used, which is
why the 8 bit Needleman-Wunsch searches show a behaviour closer to the

67

16 bit searches. The Smith-Waterman searches show a different behaviour,
between 8 and 16 bit searches, due to less overflows.

The sequences P01111 and P05013 are both 189 residues long. Figure 5.6
and 5.7 both show different ratios for for both sequences, despite the fact
that they are of the same length. This is again caused by overflows, with
them occurring 21 756 times for the sequence P01111, but only 5 516 time
P05013, resulting in a better ratio for P05013.

The improvement of 8 bit searches over 16 bit searches clearly depends on
the query length as one can see in figure 5.7. For short query sequence
lengths 8 bit Smith-Waterman database searches are faster than their 16 bit
counterparts. Needleman-Wunsch database searches show, on the other
hand, a diametrical behaviour, being slower for shorter query sequences.
The tables 5.1 and 5.2 indicate a correlation to the overflows in the compu-
tations from 8 to 16 bit. If most of the alignments are re-computed using 16
bit, it becomes more efficient to do the computation directly in 16 bit.

For the Needleman-Wunsch the minimum length of a sequence at which
it is more efficient to do the computation directly in 16 bit can be calcu-
lated. This algorithm initialises the first row and column of the alignment
matrix with the scores for aligning a sequence to an empty sequence (see
chapter 2.2.3). So is, for example, the score for the alignment of the query
sequence O74807, with a length of 110 residues, to an empty sequence
−3 + 110 ∗ (−1) = −113, if the gap opening cost −3 is and the gap exten-
sion cost −1. This equation, gapO + length ∗ gapE = score, for the align-
ment score of a sequence to an empty sequence can be rearranged to calcu-
late the minimum length, at which a 16 bit search becomes more efficient:
length = (score− gapO) /gapE. The 8 bit searches underflow at a score of
−128. Therefore the minimum length, with a gap opening cost of −3 and
a gap extension cost of −1, is (−128− (−3)) / (−1) = 125. The chart in
figure 5.7 supports this as the ratio jumps at a length of about 120 residues
from around 0.83 to about 1.

The rapid overflow behaviour at 8 bit of the Needleman-Wunsch algo-
rithm is the reason of the high number of overflows for even short query
sequences. These overflows occur, among others, when the database se-
quences are longer than 125 residues, considering the configured gap open-
ing and extension costs of this test run. In the UniProtKB/Swiss-Prot
database most of the sequences are longer than 125 residues, as the average
sequence length is 356 residues.

In the vectorised database searches the alignments are done column-wise
along the query sequence. When the query sequence is too long and it
overflows, like described earlier, the overflow happens on the first aligned
column. After that column the overflow is noticed, the database sequences
in all channels are marked for realignment, and the next set of database
sequences is tried. Computing the first column for all database sequences

68

does not take so long compared to the complete alignments. Therefore the
ratio between 8 and 16 bit for longer query sequences is almost 1.

Concluding one can say that database searches using an 8 bit score
range are only beneficial if the average length of the query and database
sequences is short. For the Needleman-Wunsch algorithm the limit is at
a length of about 100 residues, while for the Smith-Waterman it is at a
length of about 200 residues, using a database with an average sequence
length of about 356 residues, such as the UniProtKB/Swiss-Prot database.
Additionally one can see that the computation on the wider AVX registers
improves the performance of the library. Even with a smaller improvement
at shorter query sequence lengths. The lower benefit in those cases could
potentially be improved by a more advanced algorithm for computing the
score profiles.

5.1.4 Thread counts

Another parameter of libssa is the number of threads the computation is
performed on. The expectation here is that the performance increases when
the database searches are done on more than one thread. This is evaluated
using a benchmark testing a number of constant configurations against
different thread configurations. This benchmark is run twice to evaluate the
effects of hyper-threading. One run is done with enabled hyper-threading
and one with disabled hyper-threading.

Configurations The tested configurations are reduced to the Smith-
Waterman database search of the sequence P18080 in the UniProtKB/Swiss-
Prot database. The search is done using the sequential 64 bit implementa-
tion and the vectorised 8 bit AVX implementation. Each of these configura-
tions is run with 8 different thread configurations in the test with enabled
hyper-threading and 4 different thread configurations in the test with dis-
abled hyper-threading. This setup was chosen since the CPU of the test
system implements 4 cores with 8 hyper-threads.

Results Figures 5.8 and 5.9 show the results of the test runs, with enabled
and with disabled hyper-threading. In both figures, the variation in the
runtime is shown as a box plot, while the blue and orange curves mark the
average runtime, per thread configuration, for the 8 and 64 bit searches.
The y-axis is shown in log-scale.

Table 5.5 shows the ratios of improvement per test run, for running a
database search with the maximum number of threads over the minimum
number of threads. These are calculated by dividing the mean runtime
with the lower thread count by the mean runtime with the higher thread
count.

69

●

●●

●

●

●

●●

●

●

5

10

20

50

100

200

Runtime variation (HT activated)

Threads (count)

T
im

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8

●

●

●

● ●
● ● ●

●

●

●

●
●

● ● ●

8 bit
64 bit

Figure 5.8: The box plot shows the runtime variation, using different thread
configurations with enabled hyper-threading. The blue and orange lines mark
the average runtime of the 8 and 64 bit search.

●

●●

●

5

10

20

50

100

200

Runtime variation

Threads (count)

T
im

e
(s

ec
on

ds
)

1 2 3 4

●

●

●

●

●

●

●

●

8 bit
64 bit

Figure 5.9: The box plot shows the runtime variation, using different thread
configurations with disabled hyper-threading. The blue and orange lines mark
the average runtime of the 8 and 64 bit search.

8 bit 64 bit
no HT: 1 vs. 4 threads 3.20 3.53

HT: 1 vs. 4 threads 2.88 2.99
HT: 1 vs. 8 threads 3.32 3.97

Table 5.5: Ratio of improvement per thread count and bit width

70

Discussion In both graphs one can see that libssa scales good to multiple
threads. Although hyper-threading induces a variation to the runtime.

The variation in the test run with enabled hyper-threading is caused by
a sub-optimal distribution of some of the threads to the cores and hyper-
threads. If two threads are running on the same core, the second thread
can only use the execution units the first thread is not using. This results
in time spend waiting for the second thread which increases the runtime.
The variation occurs since the threads are not always distributed in such
a way. This is supported by the variation being present in only the thread
configurations, that can be distributed sub-optimally.

The implementation leaves the distribution of the threads to the scheduler
of the operating system. Hence the variation shown in these test cases
might not occur on every system.

A benchmark of the libssa example program using the benchmarking tool
perf4 shows that the database searches account for about 99% of the run-
time, when the searches are done in 64 bit, and for about 87.5%, for 8
bit searches. Using Amdahl’s law, one can calculate the theoretical per-
formance gain of using multiple threads. Equation 5.1 and 5.2 show the
calculation and result when 4 threads are used. The actual results, in table
5.5, show a difference of 0.35, for the 64 bit searches and −0.29, for the 8 bit
searches, on 4 threads with disabled hyper-threading.

Speedupenhanced (0.99, 4) =
1

(1− 0.99) + 0.99
4

= 3.88 (5.1)

Speedupenhanced (0.875, 4) =
1

(1− 0.875) + 0.875
4

= 2.91 (5.2)

Table 5.5 and the theoretical results from Amdahl’s law show that libssa
scales good to multiple threads, especially when considering that the used
CPU implements the turbo boost technique. The executions on 1 thread are
most likely done on a higher clock rate, which reduces the improvement of
multiple threads.

Concluding one can say that for a most stable performance, hyper-
threading should be disabled. If it is enabled then all possible hyper-
threads should be used, to get the best performance.

5.1.5 Chunk sizes

One of the parameters that can be set in libssa is the size of the database
chunks. These are processed by the threads, one at a time (see chapter
3.3.1). To evaluate the influence of this parameter on the performance,

4https://perf.wiki.kernel.org/index.php/Main_Page, last visited 23.4.2015

71

https://perf.wiki.kernel.org/index.php/Main_Page

a benchmark is run using a number of constant test configurations with
different chunk size configurations. The goal of it is to find a range of chunk
sizes where libssa performs best.

Configurations The number of configurations tested against the chunk
sizes include two databases of different sizes and average sequence
lengths (UniProtKB/Swiss-Prot and Rfam), as well as two different thread
configurations (1 thread and 8 threads). For each database, a sequence of
about average length is chosen and the database searches are done using
the 8 bit Smith-Waterman and Needleman-Wunsch algorithms. The query
sequences are P19930 for the Uniprot database and 5S_rRNA for the Rfam
database. Both were chosen as they are of about average length compared
to their databases. Each of these configurations is run with 11 different
chunk sizes: 10, 100, 500, 1 000, 1 500, 2 500, 5 000, 10 000, 25 000, 50 000,
100 000.

Results Figure 5.10 shows the results of the benchmark for both databases
in both thread configurations. Both axes of the charts are shown log scaled.
The lowest average runtime when using 1 thread is at a chunk size of
5 000 sequences for the UniProt database and at a chunk size of 1 500
sequences for the Rfam database. When using 8 threads, the lowest average
runtime is at a chunk size of 500 sequences for the Rfam database, and
5 000 sequences, for the UniProtKB/Swiss-Prot database. Table 5.6 shows
the exact values for the lowest runtimes.

1 thread 8 threads
Rfam 1.372 s 0.389 s

UniProtKB/Swiss-Prot 5.033 s 1.45 s

Table 5.6: Lowest average runtimes per configuration

Discussion Both charts in figure 5.10 show a performance drop to the
lower end, of the chunk sizes. This has two reasons. First of all, a chunk
size of 10 fills only 10 of the 32 available channels, reducing the effect of the
computation over multiple channels. Secondly, the initialisation of a new
chunk contains some processing overhead. This reduces the performance,
if it is done too often.

The second performance drop, shown for the test run using 8 threads, oc-
curs due to too big chunk sizes. These are so big that some threads are
doing nothing. The Rfam database, for example, contains only 383 004 se-
quences. This means, when using 8 threads and a chunk size of 100 000
only 4 threads are working on a chunk, and 4 threads are waiting.

When only 1 thread is used, the chunk sizes have no upper limit, except
one set by the hardware. Although if the chunk size becomes bigger than
the size of the database, more memory is allocated than needed. This does

72

●

●
● ● ● ● ● ● ● ● ●

1
2

5
10

20

Average runtime using 1 thread

Chunk sizes (number of DB sequences / chunk)

T
im

e
(s

ec
on

ds
)

10 100 500 1000 2500 5000 25000 100000

●

●
● ● ● ● ● ● ● ● ●

UniProtKB/Swiss−Prot
Rfam

●

● ● ● ● ● ● ●
● ●

●

0.
5

1.
0

2.
0

5.
0

Average runtime using 8 threads

Chunk sizes (number of DB sequences / chunk)

T
im

e
(s

ec
on

ds
)

10 100 500 1000 2500 5000 25000 100000

●

●
● ● ● ● ● ●

● ●
●

UniProtKB/Swiss−Prot
Rfam

Figure 5.10: Average runtime of libssa, per chunk size, using different thread and
database configurations. The dotted lines mark the shortest runtimes per database
configuration.

not necessarily affect the performance of libssa but should be considered
when using libssa in combination with other programs.

The optimal range of chunk sizes for both thread and database configura-
tions is from 500 to 5 000 sequences. Table 5.7 shows the absolute differ-
ence between the lowest and highest runtimes, in that range. The default
chunk size in libssa of 1000 sequences was chosen to be inside this range of
high performance. Furthermore it supports smaller databases and ensures
a good distribution of the workload to the threads.

1 thread 8 threads
Rfam 0.0039 s 0.0126 s

UniProtKB/Swiss-Prot 0.1764 s 0.0305 s

Table 5.7: Absolute differences between the lowest and highest runtimes, using
chunk sizes of 500 to 5 000 sequences.

73

5.1.6 Comparison of alignment tools

To get a better picture of the performance of libssa, the runtime is compared
to different database search tools. For a better comparison, only tools were
chosen, which implement the database searches based on optimal align-
ments using SIMD vectors. These tools are SWIPE, Opal, and SSW, with
SWIPE and Opal implementing Rognes’ approach and SSW implementing
Farrar’s approach (see chapter 2.3.4 and 2.4.3).

The comparison of Needleman-Wunsch database searches is only done be-
tween libssa and Opal, as SSW and SWIPE do not implement Needleman-
Wunsch searches.

Configuration The focus of this test run is an evaluation of the runtime
performance of libssa in comparison to similar database search tools.
Therefore a configuration is chosen, which can be set in all compared tools.
These are then run in the lowest available bit width and in all available
SIMD configurations against four query sequences of varying length. The
base configuration is the following:

• Database: UniProtKB/Swiss-Prot

• Gap open and extension costs: −3 and −1

• Substitution matrix: BLOSUM50

• query sequences: O74807, P19930, Q3ZAI3, and P18080

The gap costs of −3 and −1 for opening and extending a gap are chosen as
they were already used by the developers of Opal for comparing sequence
alignment tools. However, these should not have an influence on the per-
formance of the tested tools.

For each program the source code was downloaded and compiled on
the test system using the provided make files. The source code was
downloaded on 8 April 2015.

Results Figure 5.11 and 5.12 show the runtimes of the different alignment
tools per query sequence for the Smith-Waterman and Needleman-Wunsch
algorithms. Both axes in the charts are log scaled. All of the curves exhibit
a similar behaviour, the runtime increases with growing sequence lengths.

Additionally, table 5.8 and 5.9 show the average improvements of libssa
over the competing tools for both algorithms. These are calculated by
dividing the average runtime of the compared tool by the runtime of libssa.

Discussion In both charts one can see that libssa performs better than the
competing alignment tools. For the Smith-Waterman it is at least 1.38 times
faster than Swipe, the next fastest tool. Using the Needleman-Wunsch al-
gorithm, the SSE version of libssa is as fast as the AVX version of Opal.

74

●

●

●

●

2
5

10
20

50
Runtimes of different alignment tools

Query length (residues)

T
im

e
(s

ec
on

ds
)

110 195 390 513

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

OpAl (AVX2)
OpAl (SSE4.1)
libssa (AVX2)
libssa (SSE4.1)
SWIPE
SSW

Figure 5.11: Chart displaying the runtimes per query length of different alignment
tools using the Smith-Waterman algorithm.

●

●

●

●

5
10

20

Runtimes of different alignment tools

Query length (residues)

T
im

e
(s

ec
on

ds
)

110 195 390 513

●

●

●

●

●

●

●

●

●

●

●

●

OpAl (AVX2)
OpAl (SSE4.1)
libssa (AVX2)
libssa (SSE4.1)

Figure 5.12: Chart displaying the runtimes per query length of different alignment
tools using the Needleman-Wunsch algorithm.

libssa (SSE) libssa (AVX)
Opal (SSE) 2.82 4.75
Opal (AVX) 1.58 2.66

SSW 2.03 3.41
SWIPE 1.38 2.32

Table 5.8: Ratio of improvement of libssa over comparable tools using the Smith-
Waterman. The values in bold face mark the ratios between tools of the same
SIMD configuration.

Comparing the SSE and the AVX versions to each other, one can see that
libssa is at least 1.78 times as fast as Opal.

75

libssa (SSE) libssa (AVX)
Opal (SSE) 1.87 3.29
Opal (AVX) 1.01 1.78

Table 5.9: Ratio of improvement of libssa over comparable tools using the
Needleman-Wunsch. The values in bold face mark the ratios between tools of
the same SIMD configuration.

SSW implements Farrar’s approach [Farrar, 2007], which was already
proven to be slower by Rognes when he proposed his approach in 2011.
Libssa confirms these results.

Opal and SWIPE implement Rognes’ approach from 2011 like libssa. Swipe
and Libssa are implemented in C, while Opal is implemented in C++. Since
all are implemented in an equally fast programming language, the differ-
ences in the runtime are most likely due to differences in the implementa-
tion.

In SWIPE, the core cell computation is implemented using manually writ-
ten inline assembly, while libssa and Opal use Intel’s intrinsics functions
here. These can be better optimised by the compiler than manually writ-
ten assembly. Another inefficient part of SWIPE is the overflow handling.
These are detected after a chunk was searched through, while in libssa
these are detected on the first search block they occur on. Affected se-
quences are then marked as overflown and exchanged with the next se-
quences.

The main difference to Opal is the size of the search blocks. Opal imple-
ments a size of 1, while libssa uses a size of 4. Wider search blocks re-
sult in less executions of the checks for overflows and finished sequences.
Additionally Opal implements only 1 state, meaning the initialisations and
checking for finished sequences are done every time. Furthermore Opal im-
plements less parts of the algorithm using SIMD operations. The most im-
portant of them are the filling of the score profile and the overflow checks,
which are done sequentially instead of being performed on SIMD registers.

Two conclusions can be drawn from this comparison. First of all the wider
AVX registers speed up the execution of the database searches independent
from the implementation. If the implementation is equal for both parts, the
part done on AVX registers is faster. Secondly one can see that libssa is
more efficient than competing tools, implementing optimal alignments for
database searches. The increase in efficiency is based on more vectorisation
and a more advanced algorithm.

76

5.1.7 Tests

An important part of modern software development are tests. They give
confidence in the software working correctly and in that all use cases are
implemented. This part discusses the test suite that was implemented for
libssa. First an overview of the code coverage of the test suite is given, fol-
lowed by a discussion of meaningful tests and a discussion of a common
mistake in test development.

The code coverage is a measurement for the completeness of tests. It mea-
sures the percentage of lines in the source code, that are covered by at least
one test case. In libssa the code coverage is measured using the tool gcov,
integrated in GCC. This tool instruments the source code and collects in-
formation on the execution of code segments. This is done during the exe-
cution of the test suite. Afterwards an HTML report is generated using the
tool lcov.

The current average code coverage for all source code files in the src direc-
tory is 98.4%, while 99.2% of all functions are covered by tests. These tests
include positive and negative tests, to check as many lines as possible.

Some of the untested lines contain instructions to abort the program, in case
of a programmer’s error. These could happen, if, for example, a module is
used that was not initialised before. This error occurs when a programmer
does not follow the rules defined by a module or function. These should be
visible as soon as possible so the programmer can fix these. They are inten-
tionally left untested, except for the function for terminating the program
(fatal in util.c) was tested.

An important part of software testing is finding meaningful tests. The prob-
lem is, when a test suite is only build for statement coverage, it does not
test the correctness of the implemented algorithms. Even when it has a
code coverage of 100%. In libssa most of the tests check the results of the
algorithms as well. In case of the sequence alignments, these results are the
computed alignment scores and the CIGAR strings. For a set of short se-
quences, these results were confirmed by hand. For longer sequences they
are confirmed by the other implementations of the same algorithm in a dif-
ferent bit width. The hypothesis here is that it is less likely for an error to
be present in both implementations.

The optimal method of testing would be to have external testers not known
to the implementation, but with a good knowledge of the algorithms. Most
likely they would come up with test cases that were not thought of during
the development of libssa. This should be improved in the future. Either
by finding external testers or by spending more time on finding test cases.

A common mistake in testing is to call each tested function only once per
test. The test then checks that this function can be called exactly once. Its

77

behaviour when it is called twice or more times, remains untested. A bug
like this happened during the development of libssa in the thread_pool

module. In each test it was initialised with a number of threads that were
used, and afterwards the module was terminated. Later, when the bench-
mark of the multi-threading performance was executed, a segmentation
fault occurred. At this point, the benchmark had changed the number of
threads from 1 to 2. The thread_pool module was terminated and ini-
tialised with the new number of threads. The problem was that internally
the memory used for the threads was released, but the variable was not re-
set to 0. When the module was initialised again, it checked the variable for
0, noticed that it was not 0, and proceeded to use it. Here the segmentation
fault occurred, because memory was used that was not allocated.

Here one can see the importance of a well designed test suite and that a
program can still have bugs, even when all tests run successfully. This
makes tests at system and acceptance level even more important. These
usually test a program from a different perspective, finding errors the
programmer did not see.

5.2 Evaluating optimisations

This chapter presents a couple of optimisations, that were done during the
development of the library. It covers optimisations of the algorithms as
well as the implementation. Chapter 5.2.1 focuses on the algorithm while
chapter 5.2.2 and 5.2.3 focus on the efficient implementation.

5.2.1 Search columns

A main feature of the vectorised database searches is the column-wise
alignment of database sequence to the query sequence. The implementa-
tion follows Rognes [2011] approach using columns that are four residues
wide with each column being aligned in one of two states: one where new
sequences start, and one where only previous sequences are continued (see
chapters 2.2.3).

During the implementation of an algorithm, one often has to decide,
whether the implementation should be fast or easily readable and main-
tainable. When comparing the implementations for both states, one no-
tices that each state is implemented in its own function and the main
loop is divided into both states (see the files search_simd_nw.c and
search_simd_sw.c and the chapters 3.3.3 and 4.4.2). Here one state is more
complex by additionally saving the scores of the finished sequences and
loading and initialising new sequences, while the other state computes only
the alignment. Removing the less complex state would give the same re-
sults and optimise the readability and maintainability, but it would also
increase the number of instructions carried out, when no new sequences
start.

78

Figure 5.13: 8 bit AVX2 search (32
channels) on the Rfam database

Figure 5.14: 8 bit AVX2 search (32
channels) on the UniProtKB/Swiss-
Prot database

Figure 5.15: 16 bit SSE search (8 chan-
nels) on the Rfam database

Figure 5.16: 16 bit SSE search (8
channels) on the UniProtKB/Swiss-
Prot database

One criterion for deciding whether to keep both states or favour a simpler
implementation with only one state is the number of executions of each
state. If the simpler and possibly faster state is executed a lot less than
the more complex state, an implementation with only one state might be
favourable.

Table A.1 in appendix A presents the theoretical number of executions
of both states. It shows the maximum number of executions of the state
no sequences ended and the minimum number of executions of the state
sequences ended. It presents these for the optimal case, when no padding
is applied, and for the worst case, when each sequence is fully padded
by 3 symbols. The number of columns is calculated by dividing the to-
tal number of residues by the number of channel, while a block column
packs four columns. These resemble the columns searched by the algo-
rithm for one search block. They can either be computed in the state no

sequences ended or sequences ended. In the worst case, each sequence
starts at its own block column resulting in the shown number of executions
of the state sequences ended. The number of executions for the state no

sequences ended is the difference between the number of block columns
and the number of executions of the other state.

The differences, Table A.1, between the Rfam and the Swiss-Prot database
are the number of sequences, the total number of residues, and the average
sequence lengths: 138 residues in the Rfam database and 356 residues in
the Swiss-Prot database.

Figure 5.13 to 5.16 illustrate another approach for deciding whether to im-
plement two states. They illustrate the actual numbers of executions of both
states. These are presented for database searches using local alignments on
the Rfam and the UniProtKB/Swiss-Prot database with the maximum and
minimum number of channels. The function aligncolumns_first imple-
ments the state with new sequences while aligncolumns_rest implements
the other one. The charts in figure 5.13 to 5.16 are created using the pro-

79

gram VampirTrace5 for tracing the executions and Vampir6 for displaying
the results.

Comparing table A.1 and figure 5.13 to 5.16 one notices that the more com-
plex state aligncolumns_first is always executed less times than its the-
oretical maximum. At the same time the simpler state is executed more
often. Furthermore the difference between the number of calls in both
states is less when more channels are used. Taking the average number
of residues (138 in Rfam and 356 in Swiss-Prot) into consideration, one can
see that using two states becomes more effective for databases with longer
sequences.

Libssa is implemented using two states. These form a core part of the
database searches, hence partially performing these in a simpler state,
using less instructions, is expected to speed up the computation. The
comparison to Opal partially confirms this, as it is implemented using only
one state. Although it is not a complete confirmation since this is not the
only difference to libssa, as shown in chapter 5.1.6.

5.2.2 Memory management

Memory management is an important part of software development. One
has to make sure that no memory leaks occur and that the memory is used
efficiently. In C and C++, the memory used for data can be divided into
three different parts7:

• Static memory: This is used for variables defined outside of functions
which are declared using the static keyword. The life cycle of these
variables is the whole runtime of the program.

• Automatic memory: This is used for variables declared inside of
functions without the static keyword. These are put on the stack,
their lifetime is the runtime of the function.

• Dynamic memory: This memory is located on the heap and can be
allocated using one of the malloc functions. This memory is valid
until a call to free deallocates it.

When deciding in which space to place a variable, the important factors are
the lifetime and the size of the data. Memory on the stack is fast, but its size
is finite. The heap on the other hand contains usually more memory, but its
allocation and deallocations causes some overhead. Another problem, es-
pecially with heap memory, are memory leaks. These occur, when memory
is allocated, but never deallocated. Tools like valgrind help finding these,

5http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/
vampirtrace, last visited 20.3.2015

6https://www.vampir.eu/, last visited 20.3.2015
7http://www.design-reuse.com/articles/25090/dynamic-memory-allocation-

fragmentation-c.html, last visited 21.3.2015

80

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace
https://www.vampir.eu/
http://www.design-reuse.com/articles/25090/dynamic-memory-allocation-fragmentation-c.html
http://www.design-reuse.com/articles/25090/dynamic-memory-allocation-fragmentation-c.html

however preventing them is the task of the developer.

The following paragraphs describe some improvements that were made in
memory management and their effects. The main concept, behind these
improvements was to re-use memory instead of allocating new memory
and to keep short living objects on the stack.

Storage of sequences in chunks Each database sequence, that is searched
for or aligned to a query sequence, is converted from ASCII format to an
integer representation. See chapter 4.1.2 for more details on this.

In a first version of the db_adapter module new memory was allocated for
each database sequence. The mapped sequence and some additional infor-
mation were stored in it, the data was used in the database search, and the
memory was freed afterwards. Additionally memory was allocated once
for the chunk object and the list pointers to the sequence data. As an ex-
ample 1 + 1 + 100 000 + 100 000 = 200 002 calls to malloc were done for a
database of 100 000 sequences. One for allocating the chunk struct, one for
allocating the array of sequence data pointers, and two for each sequence
data struct and the mapped sequence.

The current version, of the db_adapter module allocates memory for each
chunk and each sequence in it once, stores the sequence data in it, and re-
uses it for the next chunk. For a database of 100 000 sequences and a chunk
size of 1 000, this results in 1 + 1 + 1 000 + 1 000 = 2 002 allocations. One for
allocating the chunk struct, one for allocating the array of sequence data
pointers and two for each sequence data struct and the mapped sequence
of the chunk. Since every sequence has a different size, a call to realloc is
done for the mapped sequence memory for each database sequence. This
adds 100 000 calls to realloc for the example.

Even if calls to realloc are as slow as calls to malloc, the improved version
uses 98 000 allocations (49%) less than the previous version. In a next
step, the number of reallocations could be reduced by allocating enough
memory for each sequence to hold the longest sequence in the memory.
This way no reallocations need to be done. The drawback is that more
memory than needed would be used.

Storage of new elements in the result heap The results of a database
search are kept in a priority queue (see chapter 4.3.2). In the first version,
the memory for a new element was allocated on the heap. The new ele-
ment was then initialised, passed to the queue which stored a copy of the
element, and the elements memory was freed afterwards. The result of it
were allocations of heap memory in the number of searched database se-
quences.

The current implementation, allocates the new elements on the stack,

81

instead of the heap. This way no calls to malloc and free are done.
The differences in the runtime are shown in figure 5.17. On the left the
data is shown before and on the right after the changes. The function
add_to_minheap contains the allocation, initialisation, and freeing of the
elements on the heap. The difference in runtime, for the function xrealloc

might be due to less calls to malloc. Allocating, the new elements for the
result queue on the stack might have reduced the overhead for allocating
and reallocating memory on the heap. This could speed up dynamic
memory allocations outside the scope of the function add_to_minheap.

Figure 5.17: Accumulated exclusive runtime of selected functions. On the left side
are the runtimes before and the right side after the changes.

Storage of elements in the overflow lists A third part that was improved
in terms of memory management, are the overflow lists (see chapter 4.4.2).
In the first version, these were implemented as a linked list, where new
items are added to the end when an overflow was detected. This linked list
was then converted to a chunk and re-computed with a higher bit width.
Elements added to the list were allocated on the heap.

In database searches, where only a few overflows occur, this implementa-
tion is memory efficient as it does not preallocate memory that is not used
later on. However, in some cases overflows occur in greater numbers, as
one can see in table 5.1 on page 65. The current implementation ensures a
more constant performance by allocating a second database chunk that is
filled when overflows are detected. The overhead for allocating this chunk
is small as it only consists of two allocations: one for the data structure and
one for the list of pointers to database sequences. This list is filled during
the search with the pointers to database sequences where an overflow oc-
curred. This way, the overflow list does not need to be converted, as it is
already a chunk data structure, which can be processed by the database
search functions.

5.2.3 Optimisations done by the compiler

Modern compilers are good at writing optimised machine code. Often it
is enough to implement the software in a readable and maintainable way,
and the optimisation is done by the compiler. The dprofile_fill functions

82

which compute the temporary score profiles (see chapter 4.4.2) are an ex-
ample where optimisations can be left to the compiler, yet they also show
the limits of it.

Listing 5.1 shows a part of the dprofile_fill_8_sse41 function, for
creating the score profile for the 8 bit SSE search. By using constants like
CHANNELS_8_BIT and CDEPTH_8_BIT, the compiler was able to roll out all
of the loops, omitting the instructions used for the loops. In the same step,
most of the calculations, like x+ 1, could be changed to the actual numbers,
based on the constants. Unrolling these loops manually would make the
code more prone to errors and harder to read and maintain.

Listing 5.1: Part of dprofile_fill_8_sse41
1 for(int x = 0; x < CHANNELS_8_BIT; x++) {

2 xmm[x] = _mm_load_si128((__m128i *) (score_matrix_8 + d.a[

x] + i));

3 }

4 // transpose matrix

5 for(int x = 0; x < CHANNELS_8_BIT; x += 2) {

6 xmm_t[x + 0] = _mm_unpacklo_epi8(xmm[x + 0], xmm[x + 1]);

7 xmm_t[x + 1] = _mm_unpackhi_epi8(xmm[x + 0], xmm[x + 1]);

8 }

9 ...

10 // store matrix

11 for(int x = 0; x < CHANNELS_8_BIT; x++) {

12 _mm_store_si128((dprofile + CDEPTH_8_BIT * (i + x) + j),

xmm[x]);

13 }

Listing 5.2 shows a loop the compiler could not completely optimise. This
loop iterates over all 32 channels filling an integer array with the contents
of the search block shifted by five. The integers in d are later used as indices
to the score matrix.

Listing 5.2: Original source code for dprofile_fill_8_avx2
1 int d[CHANNELS_8_BIT];

2

3 for(int i = 0; i < CHANNELS_8_BIT; i++)

4 d[i] = dseq_search_window[j * CHANNELS_8_BIT + i] << 5;

Listing 5.3 shows the compiler optimised assembly code for the code in list-
ing 5.2. It was generated using the GCC option -S along with -O3 for best
optimisation. The compiler manages to unroll and partially optimise the
loop. It uses the 128 bit wide XMM registers to vectorise 4 times 8 itera-
tions of the loop. 8 iterations fit into one registers, since the indices stored
in d are maximally 16 bit wide and 8 of these can be processed in one SSE
register.

A better optimisation is done manually, as shown in Listing 5.4. This
version uses the 256 bit wide AVX registers to load 16 values instead of
8. This way the loop is processed in two iterations using less than half of
the instructions of the compiler optimised version. The assembly code to
the manually optimised loop is shown in listing 5.5.

83

Listing 5.3: Assembly for original code of dprofile_fill_8_avx2
1 .L19:

2 vmovdqu (%rsi ,%r8), %xmm0

3 xorl %eax , %eax

4 movq score_matrix_8 (%rip), %rcx

5 vinserti128 0x1 , 16(%rsi ,%r8), %ymm0 , %ymm0

6 vpmovzxbw %xmm0 , %ymm1

7 vextracti128 0x1, %ymm0 , %xmm0

8 vpmovzxwd %xmm1 , %ymm2

9 vextracti128 0x1, %ymm1 , %xmm1

10 vpmovzxbw %xmm0 , %ymm0

11 vpslld $5 , %ymm2 , %ymm2

12 vmovdqa %ymm2 , -2192(% rbp)

13 vpmovzxwd %xmm1 , %ymm1

14 vpslld $5 , %ymm1 , %ymm1

15 vmovdqa %ymm1 , -2160(% rbp)

16 vpmovzxwd %xmm0 , %ymm1

17 vextracti128 0x1, %ymm0 , %xmm0

18 vpslld $5 , %ymm1 , %ymm1

19 vmovdqa %ymm1 , -2128(% rbp)

20 vpmovzxwd %xmm0 , %ymm0

21 vpslld $5 , %ymm0 , %ymm0

22 vmovdqa %ymm0 , -2096(% rbp)

23 .p2align 4,,10

24 .p2align 3

25 .L20:

Listing 5.4: Optimised source code for dprofile_fill_8_avx2
1 union {

2 __m256i v[2];

3 int16_t a[CHANNELS_8_BIT];

4 } d;

5

6 for(int i = 0; i < 2; ++i) {

7 __m256i tmp = _mm256_loadu_si256((__m256i *) (

dseq_search_window + (j * CHANNELS_8_BIT + i * (

CHANNELS_8_BIT / 2))));

8

9 _mm256_store_si256(&d.v[i], _mm256_slli_epi16(tmp , 5));

10 }

Listing 5.5: Assembly for optimised code of dprofile_fill_8_avx2
1 .L18:

2 vmovdqu (%rsi), %ymm0

3 movq score_matrix_8 (%rip), %r8

4 xorl %eax , %eax

5 vpsllw $5 , %ymm0 , %ymm0

6 vmovdqa %ymm0 , -2128(% rbp)

7 vmovdqu 32(% rsi), %ymm0

8 vpsllw $5 , %ymm0 , %ymm0

9 vmovdqa %ymm0 , -2096(% rbp)

10 .p2align 4,,10

11 .p2align 3

12 .L16:

84

A fast method for finding optimisation possibilities, like shown above, is
the GCC option -fopt-info-missed. This option prints information on
missed optimisation opportunities, like the following:

search_8_util.c:239:41: note: Failed to SLP the basic block.

search_8_util.c:239:41: note: not vectorized: failed to find SLP

opportunities in basic block.

SLP (Superlevel Word Parallelism) is an approach to parallelism looking
for vectorisation opportunities in straight line code. GCC uses this method
to find loops that can be vectorised. [Rosen et al., 2007]

5.3 Exploiting open source

One of the advantages of open source software is that it can be re-used in
other software. However, some of the open source licenses require the new
software to be released as open source as well. Additionally, the external
source code should be marked as taken from another project. This chapter
discusses the source code taken from other open source projects.

The source code re-used in libssa is mostly released under the AGPL v3
license8 and part of it under the MIT license9. The MIT license is a per-
missive non-copy-left license, meaning source code released under it can
be used in any other project. The APGL v3 on the other hand is a copy-left
license, requiring the new software to be released as open source as well.
Libssa complies to this, as it is released under the AGPL v3. The source
code taken from other projects is marked with a comment in the source
code.

The parts of libssa that are based on other projects are the reading of query
sequences, the internal format and translations, and parts of the database
searches and alignments. All were taken from the following projects:
SWIPE, SWARM, VSEARCH, and SSW. These are all released under the
AGPL v3, except SSW, which is released under the MIT license.

The reading of query sequences is based on the implementation in SWIPE.
Reading the FASTA sequence from a file and converting it to the internal
format is taken from there, while libssa additionally reads in sequences
from a string.

The idea of the internal format is implemented in SWIPE, SWARM, and
VSEARCH. Libssa re-uses the implementation from SWIPE and gener-
alises it. In libssa, the conversion to the internal format is implemented in
the module util_sequence, which does the conversions for database and
query sequences. In the other programs, this conversion is implemented

8http://www.gnu.org/licenses/agpl.html, last visited 20.4.2015
9http://opensource.org/licenses/MIT, last visited 20.4.2015

85

http://www.gnu.org/licenses/agpl.html
http://opensource.org/licenses/MIT

twice, for the query and for the database sequences.

The translation of nucleotide to amino acid sequences is implemented in
the util_sequence module as well. This part is also taken from SWIPE
and generalised the same way as the conversion to the internal format. All
functions were changed to increase the readability. They work now on se-
quence structures instead of pairs of a string and a length parameter.

For the database searches, the 64 bit Smith-Waterman implementation is
taken from SWIPE, while the 64 bit Needleman-Wunsch implementation is
derived from the Needleman-Wunsch-Sellers implementation in SWARM.
The concept for the vectorised database searches is based the vectorised
16 bit Needleman-Wunsch implementation in VSEARCH. This algorithm
was first reduced and optimised before an 8 bit version and the 8 and 16
bit Smith-Waterman implementations were derived from it. In VSEARCH,
the database search is coupled in a much tighter way with the database.
Here the search algorithm is initialised with a list of sequence numbers and
the algorithm retrieves the sequences directly from the database. These are
stored in the internal format. In libssa the alignment algorithms do not
have any knowledge of where the sequences come from. They work on
chunks of sequences only, provided by the outer layer which itself has no
knowledge on the alignment algorithms. Another part that was changed is
the computation of the CIGAR string, which is done during the vectorised
global alignment in VSEARCH. In libssa, the computation of the CIGAR
strings is done in a separate module.

The computation of the score profile is also taken from VSEARCH. Al-
though SWIPE and SWARM implement similar approaches. The changes
in libssa include adapting it to the AVX instruction set and generalising it.
In libssa, 4 different versions are implemented for the different bit widths
and instruction sets, while all 4 versions follow the same design. Also the
design of using loops with a constant number of iterations is new in libssa.

The min-max-heap implementation in libssa is the one from VSEARCH.
Here the structure for an element of the heap was changed and a set of
tests was added.

The computation of the alignment is based on the implementations in
SWIPE and SSW. The changes here are mostly adapting the code to libssa
and modularising it. The part from SSW was taken since it is more clearly
implemented, although SWIPE implements a similar algorithm.

SWIPE, SWARM, and VSEARCH use a similar concept, for splitting the
workload on multiple threads like libssa. They all implement a concept
of dividing the total workload into chunks, that are processed by worker
threads. The difference to libssa is the encapsulation of the threads. In lib-
ssa, the thread_pool module wraps the calls to the pthread API and encap-
sulates the functions for managing the threads. This follows the modular

86

design of libssa and makes the source code more readable and maintain-
able.

Another difference in the multi-threading implementations is the collection
of results from the database searches. Libssa omits the synchronisation by
maintaining local result lists per thread. These are returned to the main
thread, which aggregates them to a global result list. In SWIPE, for exam-
ple, results are collected in the main thread. When a worker thread reports
a result, it acquires a lock on the result list, adds the new result, and releases
the lock. Using a lock synchronises the worker threads and introduces time
spend waiting. A lock-free implementation like in libssa is usually faster.

All source code taken from other projects had to be adapted to the design of
libssa. Often it was implemented in a non modular way, where the different
tasks were woven into each other, making it hard to replace or optimise cer-
tain parts. Another changed aspect are custom type definitions like BYTE,
WORD, and CELL for integers in different bit width. Libssa uses the standard
data types defined in stdint.h, like int8_t. For these types, the name al-
ready tells the size and signedness, making the source code easier to read,
especially for developers who are not familiar with the project. Here, for
example, one immediately knows the bit width of a type and what can be
calculated using it.

For some implementations, from other projects, the main effort was
to understand the source code and to make it more readable and
maintainable. Sometimes it is easier to re-implement a part, like the
handling of multiple threads, instead of reusing other code. The re-
implemented part will immediately fit into the design of ones code, while
external code always needs to be adapted.

87

88

Chapter 6

Future work

6.1 New and improved algorithms

Libssa is developed to add new algorithms. Here one only has to exchange
an existing implementation or add a new algorithm to the modular
structure.

6.1.1 Needleman-Wunsch-Sellers algorithm

In the current version libssa implements two optimal alignment algo-
rithms: the Needleman-Wunsch and the Smith-Waterman. Another algo-
rithm that is used is Sellers’ version of the Needleman-Wunsch algorithm,
which is for example used in SWARM. By implementing this algorithm in
libssa the database search parts of SWARM could be replaced with libssa,
potentially speeding up the computations in SWARM.

Chapter 2.2.3 describes the algorithm. An implementation of it would be
mostly similar to the Needleman-Wunsch implementations in libssa with
an exception to the score system which would be exchanged by Sellers’
score system.

6.1.2 Different gap penalties

The Needleman-Wunsch algorithm in VSEARCH uses different gap penal-
ties at both ends of both sequences and inside the alignment. This can be
used to compute semi-global alignments.

Libssa applies in the current version the same gap costs to all parts of the
alignment. Adding different gap costs for different part would make libssa
useful in possibly more projects.

6.1.3 Optimising alignments

The computation of CIGAR strings is not optimised in libssa. It is done non
vectorised on 64 bit and the whole direction matrix is kept in memory. For
long sequences this can become a performance issue due to the quadratic

89

memory requirements.

Myers and Miller [1988] described an algorithm computing the CIGAR
string with linear memory consumption. The algorithm is already imple-
mented in SWIPE and VSEARCH from where it could be adapted to libssa.

Here one has to decide whether to always use the linear memory aligner. It
does have lower memory requirements, but it also has a higher runtime.
Another option would be to implement an algorithm deciding when to
use it, for example when the sequences become to long for the non linear
aligner. One could also add a parameter to the API for the user to decide
which alignment algorithm to use.

Another potential optimisation of the alignments is doing them on SIMD
vectors. Here one could re-use the vectorised database searches and add
instructions for gathering the direction matrix. This matrix is then used to
compute the CIGAR string of the alignment. Computing the alignments on
SIMD vectors would speed up the computation of CIGAR strings if a high
number of alignments is to be computed.

6.2 Error handling

A good error handling strategy is to validate user input and assert pro-
grammer input. If a programmer writes code violating the constraints set
by a program an error should be raised that cannot be overseen. This is
done with assertions which abort a program if they fail. At the same time,
input from a user should be validated to provide a meaningful error mes-
sage and to prevent an abortion of the program.1

Libssa implements this approach partially. The user input is validated and
error messages are shown. Also programmer’s input is asserted. The part
that is not yet optimally implemented is when the allocation of memory
fails. Here the program terminates, while it should return gracefully clean-
ing up all previously allocated and initialised data.

Here one could use the functions setjmp2 and longjmp3 of the header file
setjmp.h. These can be used to implement a basic try and catch for C. If
this is used on different levels, each level could catch errors, clean up all
used data, and then return with a meaningful error message. The imple-
mentation of the try and catch can be done using macros, which would
keep the source code readable and allow for a consistent implementation
throughout the library.

1https://programmers.stackexchange.com/questions/64926/should-a-method-validate-
its-parameters, last visited 28.4.2015

2http://man7.org/linux/man-pages/man3/setjmp.3.html, last visited 28.4.2015
3http://man7.org/linux/man-pages/man3/longjmp.3.html, last visited 28.4.2015

90

https://programmers.stackexchange.com/questions/64926/should-a-method-validate-its-parameters
https://programmers.stackexchange.com/questions/64926/should-a-method-validate-its-parameters
http://man7.org/linux/man-pages/man3/setjmp.3.html
http://man7.org/linux/man-pages/man3/longjmp.3.html

The error messages are best implemented as enumerations. These provide
more information than a simple integer constant, while being more efficient
than directly returning the error messages. The user then asks the API for
the error message to that enum.

A good error handling is defensive, while it still does not hide errors. Errors
that should be fixed during the development of the program should abort
the execution. When the program is used on the other hand an error should
never terminate it. It should give feedback on what went wrong and how
to avoid it.

6.3 Creating the temporary score profile

An important part of the database searches is the creation of the tempo-
rary score profile. For each version of the database searches (SSE/AVX and
8 bit/16 bit) a separate version for filling the score profile is implemented.
Chapter 4.4.2 describes these and their integration in the search algorithms.
This section proposes three possible improvements of these functions, to
further reduce the runtimes.

The current implementation creates the score profile by selecting the
matching lines of the score matrix, transposing these, and storing them
in the score profile. Each version computes on the same bit width as the
respective database search. Equation 6.1 shows the number of instructions
for each of the implemented versions.

Depth Prepare indices Transpose
C8bitSSE = 4 ∗ (2 ∗ 8 + 2 ∗ 6 ∗ 16) = 832
C8bitAVX = 4 ∗ (2 ∗ 10 + 7 ∗ 32) = 976
C16bitSSE = 4 ∗ (7 + 4 ∗ 5 ∗ 8) = 668
C16bitAVX = 4 ∗ (8 + 2 ∗ 6 ∗ 16) = 800

(6.1)

6.3.1 Compute on 8 bit

All values of the substitution matrices are inside the 8 bit range. Common
scores, such as the ones of the BLOSUM and PAM matrices are in the range
of −20 to +20. Therefore it would be possible to load and transpose the
scores in 8 bit, and store them unpacked in 16 bit.

If the computations are done on 8 bit instead of 16 bit twice as many substi-
tution scores are loaded into the registers. Hence also twice the amount of
data is transposed in one step. This would reduce the number of transpose
operations by a factor of 2, improving the performance of this part of the
computation.

91

This way, only two versions for the transpose operation would be
implemented: an 8 bit SSE and an 8 bit AVX version. The 16 bit
implementations would use the 8 bit transpose implementations and
afterwards unpack the transposed data to store it in 16 bit.

6.3.2 Different implementation for nucleotide sequences

During the database searches libssa does not distinguish between nu-
cleotide and protein sequences. For nucleotide sequences which have
only 16 different symbols this mean half of the score matrix and profile
is padding. Only one half contains meaningful data.

A possible optimisation would be implementing separate versions of
creating the score profile, for nucleotide and protein sequences. The
nucleotide version would then compute on only the first 16 by 16 symbols
of the score matrices, possibly reducing the amount of used instructions
by half. Equation 6.2 shows the possible numbers of instructions for
the improved version. Here one can see a possible reduction, of the
instructions counts by a factor of 2. The calculations for the indices is
not reduced in the improved version. Therefore are the instruction counts
reduced by only almost a half.

Depth Prepare indices Transpose
C8bitSSE = 4 ∗ (2 ∗ 8 + 1 ∗ 6 ∗ 16) = 448
C8bitAVX = 4 ∗ (2 ∗ 10 + 6 ∗ 32) = 528
C16bitSSE = 4 ∗ (7 + 2 ∗ 5 ∗ 8) = 348
C16bitAVX = 4 ∗ (8 + 1 ∗ 6 ∗ 16) = 416

(6.2)

6.3.3 Filling for only match/mismatch values

Another improvement is to compute the score profile different if constant
match and mismatch scores are used. In this case the internally used score
matrix is filled with the mismatch costs, except the main diagonal which
contains the match scores.

In this case it could be faster to use memset to set the whole score profile
to the mismatch scores and then change only these values where a match
occurs. This would result in 128 set operations for a 5 residue wide search
block with 32 channels, which is far less than the 976 instructions the
current implementation uses.

6.4 Other work

The current version of libssa is written in C and optimised for systems run-
ning one or more CPUs on a local node. This could be improved to broaden

92

the audience of libssa.

The first optimisation could be wrapper tools, making libssa available to
programs implemented in other programming languages. These are im-
plemented in the target language and wrap all calls to libssa, such that the
program using libssa only needs to call the functions of the wrapper with-
out writing any C code.

The second optimisation could be extending libssa, such that it can
distribute the computations on multiple nodes of a cluster. One technique
that could be used here is message passing interface (MPI), with Open MPI4

as the implementation of it.

4https://www.open-mpi.org/

93

https://www.open-mpi.org/

94

Chapter 7

Conclusion

In this thesis a new library for database searches using optimal sequence
alignment algorithms was presented. The main feature of the library is its
modular structure, which allows to easily integrate new algorithms and
exchange existing implementations with new versions. Each module is im-
plemented as efficient as possible to speed up the database searches.

Two algorithms were implemented as a proof-of-concept for an efficient
implementation of optimal sequence alignments. These and the overall
database search are based on SIMD instructions implementing Rognes’ ap-
proach. Libssa increases the already good performance of SWIPE, the ref-
erence implementation of Rognes’ approach.

Furthermore libssa was used to show an increase in performance when
the database searches are performed using AVX instructions compared to a
computation on SSE instructions. For this purpose two versions of each al-
gorithm are implemented. The benefit is that libssa can accelerate database
searches on systems implementing SSE only, as well as on systems imple-
menting AVX.

In comparison to similar libraries and tools, libssa shows a significantly
improved performance. It is more than twice as fast using local alignments
and about 1.8 times as fast using global alignments.

95

96

Bibliography

M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps
and generalized priority queues. Communications of the ACM, 29:996–
1000, 1986. doi: 10.1145/6617.6621.

M. Farrar. Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics, 23:156–161, 2007. doi:
10.1093/bioinformatics/btl582.

M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, September 1972.

O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162:705–708, 1982. doi: 10.1016/0022-
2836(82)90398-9.

D. R. Hanson. C Interfaces and Implementations: Techniques for Creating
Reusable Software. Addison-Wesley Professional Computing Series.
ADDISON WESLEY Publishing Company Incorporated, 1996. ISBN
9780201498417.

S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences, 89:10915–10919,
1992. doi: 10.1073/pnas.89.22.10915.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5
edition, 2012. ISBN 9870123838728.

M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, 2008. doi: 10.1109/MC.2008.209.

D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6):341–343, 1975.
doi: 10.1145/360825.360861.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Sub-
group. The sequence alignment/map format and SAMtools. Bioinformat-
ics, 25(16):2078–2079, 2009. doi: 10.1093/bioinformatics/btp352.

97

R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2009. ISBN
9780132350884.

E. W. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in the Biosciences, 4:11–17, 1988.

S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443 – 453, 1970. doi: 10.1016/0022-
2836(70)90057-4.

T. Rognes. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinformatics, 12(1):221, 2011. doi: 10.1186/
1471-2105-12-221.

T. Rognes and E. Seeberg. Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microproces-
sors. Bioinformatics, 16:699–706, 2000. doi: 10.1093/bioinformatics/16.
8.699.

I. Rosen, D. Nuzman, and A. Zaks. Loop-aware SLP in GCC. Proceedings of
the GCC Developers’ Summit, pages 131–142, 2007.

P. H. Sellers. On the theory and computation of evolutionary distances.
SIAM Journal on Applied Mathematics, 26(4):787–793, 1974. doi: 10.1137/
0126070.

T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195–197, 1981. doi:
10.1016/0022-2836(81)90087-5.

W. K. Sung. Algorithms in Bioinformatics: A Practical Introduction. CRC
Mathematical and Computational Biology. Chapman & Hall/CRC Press,
2010. ISBN 9781420070330.

A. Wozniak. Using video-oriented instructions to speed up sequence
comparison. Computer Applications in the Biosciences, 13:145–150, 1997.

M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth. SSW library: An SIMD
Smith-Waterman C/C++ library for use in genomic applications. PLOS
ONE, 8(12):e82138, 2013. doi: 10.1371/journal.pone.0082138.

98

Appendix A

Number of search columns for
different databases

See table A.1 on the next page.

99

R
fa

m
ve

rs
io

n
11

U
ni

Pr
ot

K
B/

Sw
is

s-
Pr

ot
R

el
ea

se
20

15
_0

3
Se

qu
en

ce
s

38
3

00
4

38
3

00
4

38
3

00
4

54
7

96
4

54
7

96
4

54
7

96
4

To
ta

lr
es

id
ue

s
52

83
0

10
9

52
83

0
10

9
52

83
0

10
9

19
5

01
4

75
7

19
5

01
4

75
7

19
5

01
4

75
To

ta
lr

es
id

ue
s

(m
ax

pa
dd

in
g)

53
97

9
12

1
53

97
9

12
1

53
97

9
12

1
19

6
65

8
64

9
19

6
65

8
64

9
19

6
65

8
64

C
ha

nn
el

s
32

16
8

32
16

8
Si

ze
of

se
ar

ch
bl

oc
k

4
4

4
4

4
4

C
ol

um
ns

1
65

0
94

1
3

30
1

88
2

6
60

3
76

4
6

09
4

21
1

12
18

8
42

2
24

37
6

84
5

C
ol

um
ns

(m
ax

pa
dd

in
g)

1
68

6
84

8
3

37
3

69
5

6
74

7
39

0
6

14
5

58
3

12
29

1
16

6
24

58
2

33
1

Bl
oc

k
co

lu
m

ns
41

2
73

5
82

5
47

1
1

65
0

94
1

1
52

3
55

3
3

04
7

10
6

6
09

4
21

1
Bl

oc
k

co
lu

m
ns

(m
ax

pa
dd

in
g)

42
1

71
2

84
3

42
4

1
68

6
84

8
1

53
6

39
6

3
07

2
79

2
6

14
5

58
3

Ex
ec

ut
io

ns
of

st
at

e
n
o

s
e
q
u
e
n
c
e
s

e
n
d
e
d

29
73

1
44

2
46

7
1

26
7

93
7

97
5

58
9

2
49

9
14

2
5

54
6

24
7

Ex
ec

ut
io

ns
of

st
at

e
s
e
q
u
e
n
c
e
s
e
n
d
e
d

38
3

00
4

38
3

00
4

38
3

00
4

54
7

96
4

54
7

96
4

54
7

96
4

Ex
ec

ut
io

ns
of

st
at

e
n
o

s
e
q
u
e
n
c
e
s

e
n
d
e
d

(m
ax

pa
dd

in
g)

38
70

8
46

0
42

0
1

30
3

84
4

98
8

43
2

2
52

4
82

8
5

59
7

61
9

Ex
ec

ut
io

ns
of

st
at

e
s
e
q
u
e
n
c
e
s
e
n
d
e
d

(m
ax

pa
dd

in
g)

38
3

00
4

38
3

00
4

38
3

00
4

54
7

96
4

54
7

96
4

54
7

96
4

Ta
bl

e
A

.1
:

Th
e

ta
bl

e
sh

ow
s

th
e

th
eo

re
ti

ca
l

m
ax

im
al

nu
m

be
r

of
ex

ec
ut

io
ns

of
th

e
st

at
e
n
o

s
e
q
u
e
n
c
e
s

e
n
d
e
d

an
d

th
e

th
eo

re
ti

ca
l

m
in

im
al

nu
m

be
r

of
ex

ec
ut

io
ns

of
th

e
st

at
e
s
e
q
u
e
n
c
e
s

e
n
d
e
d

.
Th

e
nu

m
be

rs
ar

e
sh

ow
n

fo
r

th
e

R
fa

m
da

ta
ba

se
in

ve
rs

io
n

11
an

d
th

e
U

ni
Pr

ot
K

B/
Sw

is
s-

Pr
ot

da
ta

ba
se

R
el

ea
se

20
15

_0
3,

fo
r

di
ff

er
en

t
ch

an
ne

ln
um

be
rs

.
Th

e
nu

m
be

r
of

co
lu

m
ns

is
ca

lc
ul

at
ed

,b
y

di
st

ri
bu

ti
on

th
e

re
si

du
es

eq
ua

lly
to

al
lc

ha
nn

el
s.

Bl
oc

k
co

lu
m

ns
ar

e,
fo

ur
re

si
du

es
w

id
e.

100

Appendix B

Reproducing performance
results

The performance results as shown in chapter 5.1 can be reproduced using
the a set of tools and scripts provided by libssa. These are located in the
sub directory benchmark in the libssa project folder:

• data: Contains the test data

• results: All test result are written here.

• src: Contains the C files implementing the benchmarks.

• scripts: Contains the R scripts to evaluate the results.

• aligner_comparison: Contains shell scripts for running benchmarks
on different alignment tools.

• Makefile: Makefile for building all benchmarks.

The benchmarks are first build using the target all of the Makefile. This
produces a binary for each benchmark in the directory benchmark. These
run without any parameters and produce a comma separated value (CSV)
file, in the directory results. The name of this file contains the benchmarks
name and the current date and time. This file is then evaluated using the
provided R scripts. Before these can be used, the constants in the script
evaluate_config.r should be changed to reflect the current system. These
set among others the output folder for the generated diagrams.

The following benchmarks measuring the runtime of different configura-
tions are implemented:

• base_test_run: measures selected configurations to get an overview
of the performance

• chunks: measures different chunk configurations

• queries: measures different query configurations

• threads: measures different thread configurations

101

The directory aligner_comparison contains a benchmark comparing libssa
to a set of other alignment tools. This benchmark generates the data shown
in chapter 5.1.6. This directory contains a set of run-scripts wrapping the
calls to the alignment tools, and two shell scripts for executing the bench-
mark. The script runner.sh runs a command n times, where n and the com-
mand are specified as parameters and the script aligner_comparison.sh
executes the benchmark.

The sub folder data contains some of the test data used in the benchmarks.
The UniProtKB/Swiss-Prot and the Rfam database are not added to this
folder to keep the size of the GIT repository small. The UniProt and the
Rfam database are available online.

The code coverage results are reproduced using the make target
test_coverage of the makefile in the project folder. Before the target is
run the compiler option �coverage is set using the variable DEBUG_FLAGS.
This target then runs first the test suite and afterwards creates the code cov-
erage report in the directory coverage_data. The file index.html in the sub
folder cov_tests shows the code coverage report.

102

Appendix C

Installing and running libssa

The source code for libssa is hosted on Github: https://github.com/
RonnySoak/libssa. From there it can be downloaded and used on any Linux
system. It was developed and tested on a 64 bit Linux Mint with a Kernel
version 3.13.0. However, it should run on any recent 32/64 bit Linux.

Build is libssa using the Makefile in the project folder. The target all com-
piles libssa, the tests, and an example application. The requirements for
this are an installation of GCC and a suitable database library. The require-
ments for the database library are described in chapter 4.2 and it is config-
ured in the Makefile in the variables DATABASE_LIB, DATABASE_LIB_FILE,
and DATABASE_LIB_FOLDER. For the development GCC was used in the ver-
sion 4.9.2, but any GCC of at least version 4 should compile libssa.

When the compilation was successful the target check can be used to run
the test suite. If all is set up correctly it should run without errors. Some of
these test might fail if the CPU does not implement the SSE2, SSE4.1, and
AVX2 instruction sets. These test cases can be identified by their names
which have "sse" or "avx" as part of the name.

Libsdb can be used as a reference implementation of a database library.
This library was developed alongside libssa and is available on Github
as well: https://github.com/RonnySoak/libsdb. Libsdb is licensed under the
AGPL v3, like libssa.

The folder tests/testdata contains some FASTA sequences and databases,
which can be used to test out the library. For this an example pro-
gram is provided in the src folder. This is compiled with the target
libssa_example and the binary is found in the project folder. The exam-
ple application is configured using a set of command line parameters. A
call to ./libssa_example gives an overview on these.

103

https://github.com/RonnySoak/libssa
https://github.com/RonnySoak/libssa
https://github.com/RonnySoak/libsdb

	Introduction
	Background & Theory
	Biological background
	Sequence alignment
	Applications of sequence alignment
	Sequence translations
	Algorithms for sequence alignment

	Parallelisation of sequence alignment
	Flynn's Taxonomy
	Levels of parallelisation
	CPU
	Parallelising sequence alignments on CPUs

	API design in C
	General design rules
	Design rules for implementations in C
	Existing sequence alignment APIs

	Measuring performance
	Measuring speed
	Amdahl's Law

	Testing

	Design
	Design of the API
	Use cases
	Alignment API
	Database API

	Design of the library
	Parallelisation of sequence alignment
	Threads
	Non vectorised sequence alignments
	Vectorised alignments

	Implementation
	Configuration and internal formats
	Data types
	Sequences
	Scoring schemes
	Gap penalties
	Validation of the configuration

	Database integration
	Controlling database searches and alignments
	Thread pool
	Min-max-heap

	Database searches
	64 bit implementation
	8 and 16 bit implementations

	Computing alignments
	Testing
	Measuring performance

	Results and discussion
	Evaluating performance
	Collecting results
	Base test run
	Query lengths, bit widths, and SIMD capabilities
	Thread counts
	Chunk sizes
	Comparison of alignment tools
	Tests

	Evaluating optimisations
	Search columns
	Memory management
	Optimisations done by the compiler

	Exploiting open source

	Future work
	New and improved algorithms
	Needleman-Wunsch-Sellers algorithm
	Different gap penalties
	Optimising alignments

	Error handling
	Creating the temporary score profile
	Compute on 8 bit
	Different implementation for nucleotide sequences
	Filling for only match/mismatch values

	Other work

	Conclusion
	Bibliography
	Number of search columns for different databases
	Reproducing performance results
	Installing and running libssa

