NOTE ON THE PROJECTIVE LIMIT ON SMALL CATEGORIES

by

O. A. Laudal

In the Bull. of the Amer. Math. Soc. 74 (1968) p.1129-1132) Oberst formulated a conjecture on the exactness of the projective limit functor on the category of functors on a small category with values in the category of abelian groups.

In this note we give a proof of his theorem.

Some of the lemmas seem to have been proved by Oberst and Isbel by other methods.

Theorem. Let X be a small connected category, Ab the category of abelian groups, then the two following conditions are equivalent

- (i) For all $F \in ab \underline{Ab}^{X}$ $\lim_{t \to \infty} (i)^{T} = 0 \quad \forall i \ge 1.$
- (ii) Hy cob X such that
 - (x, y)X > 3 E xV
 - 2) If x x' is in X then it can be completed to a commutative diagram x'x'
 - \mathfrak{F} ∃ ε \mathfrak{F} X(y,y) such that \mathfrak{F} \mathfrak{F} \mathfrak{F} X(y,y) \mathfrak{F} \mathfrak{F} = ε.

Proof. Since (ii) implies that

$$\lim_{\epsilon \to \infty} F = H^{O}(X(y,y),F(y)) = \{\alpha \in F(y) | F(\epsilon)(\alpha) = \alpha\}$$

= $\{F(\epsilon)(\beta) | \beta \in F(y)\}$, it is trivial to see that (ii)=> (i). To prove that (i) implies (ii), let F be the object of Ab^X defined by $F(x) = \coprod \mathbb{Z} \xi$ with $\mathbb{Z} \xi = \mathbb{Z} \ \forall \ \xi \in Ob(X/x)$

Consider the obvious epimorphism

 $\rho: F \to \mathbb{Z}$ with \mathbb{Z} the constant obj. of \underline{Ab}^{X} .

Since $\lim_{\stackrel{\leftarrow}{X}}$ is exact we have that $\rho^*: \lim_{\stackrel{\leftarrow}{X}} \mathbb{Z} \to \lim_{\stackrel{\leftarrow}{X}} \mathbb{Z} = \mathbb{Z}$ is epi.

Therefore $\exists \alpha \in \lim_{\substack{\leftarrow \\ \mathbf{y}}} \mathbf{F} \text{ with } \phi^*(\alpha) = 1.$

If $\pi_{\underline{x}}$: $\lim_{X \to \mathbb{R}} F \to F(x)$ is the canonical homomorphism, then

 $\forall x \in X$, $\alpha_{X} = \pi_{X}(\alpha) \in F(x)$ is non-zero.

Now

$$\alpha_{x} = \sum_{i,j=1}^{n,m} \alpha_{x}^{j}(y_{i})\xi_{ij}^{x}$$
 with $\xi_{ij}^{x} \in X(y_{i},x)$

and

$$\alpha_{x}^{j}(y_{i}) \in \mathbb{Z}$$
, $\sum_{i,j} \alpha_{x}^{j}(y_{i}) = 1$.

For at least one i we must have $\sum_{j=1}^{m} \alpha_{x}^{j}(y_{i}) \neq 0$ and we may assume that $\alpha_{x}^{j}(y_{i}) \neq 0$ for $1 \leq j \leq m! \leq m$.

If the diagram
$$x$$
 x^{\dagger} is in X , then $\phi^*\alpha_X = \alpha_U = \psi^*\alpha_X$,

and therefore

$$\Sigma \alpha_{x}^{j} = \Sigma \alpha_{u}^{j} = \Sigma \alpha_{x}^{j}, \quad \text{with} \quad \alpha_{\cdot}^{j} = \alpha_{\cdot}^{j}(y_{i}).$$

Since X is connected it follows that $\alpha_x^1(y_1) \neq 0$ for all $x \in X$ and furthermore there exist $\xi_{ij}^u \in X(y_1,u)$ with the corresponding $\alpha_u^j(y_i) \neq 0$.

Consequently $\exists \, \xi_{ij}^{x} \in X(y_{i}x), \, \xi_{ij}^{x'} \in X(y_{i},x')$ with $\phi \circ \xi_{ij}^{x} = \xi_{ij}^{u} = \psi \circ \xi_{ij}^{x'}$ i.e. the above diagram can be completed to

We have proved (ii) ②, and at the same time (ii) ①. We are therefore reduced to prove (ii) ③.

Let F_1 be the object of Ab^X defined by

$$F_1(x) = \coprod_{\xi \in X(y,x)} \mathbb{Z}\xi$$

with $y = y_i$ (i.e. the y_i picked above). By (ii) ① there I an epimorphism in \underline{Ab}^X

$$F_1 \rightarrow Z$$

Since by assumption \mathbb{Z} is projective as an abbject of \underline{Ab}^X \mathbb{Z} is a direct summand of F_1 , therefore \mathbb{Z} is a direct summand of $F_1(y)$, as an X(y,y)-module. But $F_1(y) = \mathbb{Z}[X(x,y)]$ and it therefore follows that the cohomology of the monoid M = X(y,y) is trivial.

Lemma A. If a monoid M is cohomological trivial then $\exists \ \epsilon \in M \text{ such that } \forall \ \xi \in M \quad \xi \epsilon = \epsilon.$

<u>Proof.</u> Look at the epimorphism $\mathbb{Z}[M] \to \mathbb{Z}$. Since cohomology is trivial, the corresponding homomorphism

$$H^{O}(M,\mathbb{Z}(M)) \rightarrow H^{O}(M,\mathbb{Z}) = \mathbb{Z}$$

is epimorphic. Now

 $H^{O}(M,\mathbb{Z}(M)) = \begin{cases} \sum_{i=1}^{m} \alpha_{i} \xi_{i} | \alpha_{i} \in \mathbb{Z}, \xi_{i} \in M \text{ such that } \forall \xi \in M \end{cases}$

The correspondence $\xi \rightarrow \sigma_{\xi} \in S(n)$ gives us a homomorphism $\sigma \colon \mathbb{M} \rightarrow S(n)$

since
$$\xi^{\dagger}\xi\xi_{i} = \xi^{\dagger}\xi_{\sigma_{\xi}}(i) = \xi_{\sigma_{\xi}}(\sigma_{\xi}(i))$$
.

Let $H = im \sigma$ and let G be the subgroup of S(n) generated by H.

Sublemma B. If $M \stackrel{\sigma}{\to} H$ is an epimorphic homomorphism of monoids and if M is cohomologically trivial then H is cohomologically trivial.

<u>Proof.</u> This follows from $H^{O}(M,-) = H^{O}(H,-)$ in the category of H-modules.

Sublemma C. If H is cohomologically trivial then G is cohomologically trivial.

<u>Proof.</u> It is well known that $H^{1}(G,-) \simeq H^{1}(H,-)$.

QED.

Sublemma D. If a group G is cohomologically trivial, then $G = \{1\}$.

Proof. As above $\exists \sum_{i=1}^{n} \alpha_{i} \xi_{i} \in \mathbb{Z}(G)$ such that $\exists i=1$ $\exists i=$

Since $\forall i,j \in \xi$ with $\sigma_{\xi}(i) = j$ we have $\alpha_{i} = \alpha_{j}$ for all i,j and $G = \{\xi_{1}, \dots, \xi_{n}\}$.

 $1 = n \cdot \alpha_1 = \#G \cdot \alpha_1$

It obvisouly follows that # G = 1 and $\alpha_1 = 1$, so $G = \{1\}$.

QED.

Combining B,C,D we find that σ_{ξ} = 1 for all $\xi \in M$, this of course means that $\forall \xi \in M$ $\xi \xi_{1} = \xi_{1}$.

Put $\varepsilon = \xi_1$ for some i, and we have proved A.

QED.

And this ends the proof of $\underline{\text{Theorem}}$ since A => (ii) $\underline{\text{3}}$.

QED.