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Introduction

Tn this peper we shall sbudy the convergence of spechral sequences.
The problem is roughly the following. II in same nice abélian category
there 1s given an exact couple
i
N

&

E

D D

and if the corresponding spectral seguence is denoted by {EF} , When will
T, ®
there exist an integer T such that B ¥ ~» B 7
Our main result is the

Theorem (5,2) Suppose that D = {DP} is graded and suppose i is of

degree 1 . ILet PE . 4D be the restriction of 1) to
Y p-k D
Dp-k , bthen the following conditions sre equivalent
Lo W 0
(i) there exists an integer T, such that B =~ 7 R
(ii) for each p and each Kk we have isomorphisms
‘ pek-r , Poky puk-k’ p-k
coker{ker O -+ ker = coker{ker -+ ker & 3
{ 7P ?P ( gP }P

1mr&dmrqpp&;*cdmrqukﬂ?}:}mrwdwr7ppﬁg*cdmr??mkﬂﬂ}
o O-HK

for all k' = rg

If one of these conditions holds we shall say that [Er} converges

uniformly. Using (3.2) we prove

Corollary(?.?) I [Er} converges wniformly then there exist exact

sequences



Nz

0~ ker{H wH) +RP - coker[prl 7 -+ 0
-1 P P
(1)
] . .
0 - ljgnmi[)p = lim H™ - 1@3;'!!’1 Dp - lgén DP ~+ Lim HP - Jg;;m Dp - 0
P P Y b P b

P .
Wk B = ker D, =D
lere el[%%T ! P}

Hp = coker[DP - ;%? Dps] .
The above results generalize theorems of Serre [:8] and $hih [9]. See
also Grothendieck [4], Chap. O, §13.
If {FPC }p <0 is a complete filtration of & complex C° in the
gense of Eilenberg, Moore [3] and if the spectral sequence (E") associ-

aﬁed)converges uniformly then using (367) we prove,

s e}

E ¥ ker{H . - H}
P p

-l 23

HMC) = 1im H'
o P

where Hi is graded as a quotient-object of Lim H’(FPC’) = 0 (C°) .

This generalizes Corollary 6.% of [3]).

The first section conteins some results on the functors %&? and 1im .
In particular we prove a theorem characterizing the projective systems D
for which %&m<l)D =0,

The second section is concerned with the relationship between Y and
the filtration (H’} of 1im D and the cofiltration (H) of limD.

In the third section we prove the theorem stated above and we deduce
some corollaries,

The last section contalns some resulbts on morphisms of exact couples.

A Tirst version of this paper wes written in the spring of 1966 and



some of the results were presented to the Tnternational Congress of Mathe-

maticians in Moscow the same year., ©Since then Eckmann and Hilton have
i o wore genemt :;e:ttmj

published two papers [1], [2] on spectral sequences esmeerEed=te

Fivsspyebemy-, proving some of our resulta, such as lenms (2.1). However
their goals seem %0 be somewhat different from ours, and thelr methods do
not involve the study of the higher derived functors of %&g and  lim

s

which is essential for the results of this paper.

£1. Same results on projective and inductive lLimits.

Let ¢ be an abelian category with exact denumerable products and
sums, Demote by ¢ the category of projective systems in ¢ indexed
by the integers Z . An object D of Sy is then a sequence of morphisms

in ¢

e

Ds eee =D -+~ D - ) + ses
Pl P Pl

We know, see Roos [T7], that under these assumplbions, the functors,

Lim snd lime ¢
e N -

=+

w7,

exist together with their satelites %5@(1) and 1im(j) , and it is essy to
3 3

prove the following properties
(1) 10’ e Lim, =0 for 12
e - l)

(2) if all 71}»1 are epimorphic resgp. monomorphic then
(1)
%}m D=0 resp. 1im(i) D=0,

Definition (1.1). If D is an object of ¢, We define the completion B




resp. the cocompletion D of D by

— R . P""k =2 o P
Dp B £%m coker 7}) TeBpe QP ) lém kei%} pik

we have natural morphisms

D->D resp, D = D

Let lD(l) resp lD(l) be the kernel resp. the cokernel of this morphlsm,

and defipe inductively ~D(L) resp iD(l> as the kernel resp. cokernel of

i-1 I P2 _
(1) B(1} resp. i“lg(l) > iwlDfl)
In this way we obtain a filtration resp. & cofiltration of D
D = °D(1) < lD(l)eﬁ voe o= (1) wwi+lb(1)éﬂ vae
resp, D = D(1) ~  B(1) = wee o D(1) o D(1) e e

Since all definitions and all results in this section, except for (1.8) and
(1.10) have obvious duals we shall omit these duals.

The filtration (1) will be called the 1-§old canonical filtration of

D , and the subobject lD(E) = Lin *D{1) will be called the oo -term of

the 1-fold canonical filtration.

Inductively we define the n-fold canonical filtration of D

D = °D(n) e D(n) > ¢ e D(n) <> TD(n) es oo

l+1D(n) is the oo-~term of the (n-1)-fold canonicel filtra-

as followss

tion of TD(n) , end the subobject TD(ntl) = Lim "D(n) s called the
z

@ ~berm of the n-fold canonical filtration.

Definition (1.2) We ghall say that the n-fold canonical filtration is




AV

complete it
(1) 0 - k+lD(l) - kD(l) - kﬁﬁ}* 0 is exact for all k= 0

(11) 0/'D@#1) = Lim D/*D(n) for a1l 1SmEn .
K

Definition {(1.3) We shall say that D i steble (satisfy the Mittog-

leffler condition) if for every p there exists a rp € Z+ guch that

p=x p=k
coker ?P P = coker ?13 for all k 2 rp o

We shall.cail the manber rp the EEE%EE,Of D a8t p, and we shall say
that D is stable of wiiform heilght r 3if we can choose all rp in the
above definition equal to 1 .

The following lemma is trivial.
Iemma (1.%) If for scme n and some k , kD(n) is stable then k+lD(n)
is epimorphic and ﬂD(n) = k+lD(n) for all f 2 k+l . If, on the other
hand for some n and k , zD(n) s kD(n) for a1l £ 2 k then kD(n) is
epimorphic,

Lemma, (1.5) Suppose D 1is stable then

1nMp 2o .
=

Proof. Consider the projective system H on Z X Z defined by

. min(m,n)
Hm,n = imy maxgm,n) °

H restricted to the diagonal A In 2 X 7 is isomorphic to D and
H restricted to A = {(p, pnrp} | p e 2} is epimorphic. As both A
and A are cofinal in Z X Z the result follows from (1i) above.

QED.




Lemma (1.6) ILet D be an object of ¢, » then

)

1im ) B w0 for 120,
6.-:.

Proof, Put F = D
— myn " max(m,n

system defined on the ordered set 4 X 2 ., Since F restricted to the

)/im ﬁiﬁgiﬁ’ﬁi . Then F is a projective
7

diagonal & is zero it follows that

1in’HF @ 0 for a1l 1> 0.,
Lin >
7x7,

Now %gn(i) F dis the abutment of the spectral segquence given by:
X7

2 .. (p) .. (a) n
p,q””jé;—fm m%mm D/im %,

see [6] or [7], thus giving us iscmorphisms

D/,
lim  1dm ~ lim F
m n Sy X7,
n
1™ 1 B ooy
m ns<mn 7X7,

QED.

Theorem (1.7) Let D be an object of ¢, then the following state-

7

ments are equivalent
(i) lim(l)D = 0
-
(11) TFor all n 2 1L the n-fold canonical filtration of D is

complete and

lim(l) 1D(n+1) -0,
1o ‘

Proof, We shall prove that (i) is equivalent to (ii) with n = 1 , leaving



the more genersl ststement as an ecosy exercise.
Suppose ga_m(l)D = O , then epplying the functor 1%;@1 to the two
exact sequences

n n

O—*ker‘?m"%‘])n@ﬁ.m?g -+

. n n
Owwm'vm *Dm%coker"r«;m—vo

we eagily deduce an exact sequence
0 ~ 1:D(l) - D - D —» 0,

Using Lemma (1.6) we find Jéim(k)l) o Jéjin(k) l‘D(l) for k<2 0 8o we may

continue, proving that for all 1 the sequence
o - ) - pa) - WD -+ o
is exact and
(3) %im(k) iD(l) ~ %im<k)n for all k2 0.,
Now, let H be the projective system on 7Z X Z+® defined by

i
B o= Dn(l)

3

we know that La;m (i) H s the abutment of two spectral sequences given
7 X 7O
by

T - B C R P
o = 10 205600 o)

bsd

w150l (@) B (1)
n i

Using (3) we find 1im 11)(2) ~ 1im D and




2
' = Q for 0 0
=0 Tor RO, af
thus
110l 1o
I
72 X%
From this 1t follows that
ft ‘.2 o Wt -
B 1,0 & 0,1~ 0
ie.e.
(1) (1) . 4
L't (o) = 1 %%ngn(l) 0
(W)
Iim  Lim (1) iD m 0
PISIE I
n i

We are going to prove that for all n € m +the morphism

(5) ;%m(l) p (1) - 1t ip (1)
i

is an epimorphism. Together with (4), (5} implies

lim(l) lD = Q for every n € 2
& n

i
. N PN 1
and this gives us the isomorphism Dn/an(Q) ~ !im Dn/ Dn(l) .

Consider the diagram

0+ ®p = Jp Lim an/an > lm(l) 5

n n e
J k2 42 Ly k i

o - ®p - Jp o %gn JD/kTD ijz_i_m(l)k])
m k= 342 mwoen k

] T P oo o

o - %p »J“Lle» Lim J'”17)31/“1)1][1 > @n(l) kp
»

kS je



in which the horizontal sequences are exact. We have to prove that ¢ is
epimorphic. Bub by the commutetivity of the lower right squere, we know

that

im v o~ l;im(l) k‘D
& m

is epimorphic, and since dm v & im we find that € © % is
epimorphic, By the commutativity of the upper right square this proves
that ¢ is epimorphic.

We have therefore proved (i) ~ (i1).

To prove the converse part of the theorem, we first note that (11)

together with Iemma (1.6) proves that
(6) lim(') D f‘lim<“) D(1) for every 1 e z'
< —

it 3 (1) = 0 for ell mez .
o n
L

Considering the projective system H above, using the specbral sequence 'E

and the iscmorphism (6) we find

1 g v 1M p
i P
z'x ot 7"
But the spectral sequence "B degenerates, therefore Iim N (1) H= 0,

%

ot

A's

QED.

Lemma, (l,Ql Iet A be a noetherisn ring of finite dimension snd M a
finitely generated A-module. Suppose M is filtered by submodules {Mi} s
M= Mo 2 Ml B see 2 Mi 2 Mi-—!»l?" ess then there exists an integer i1
such that



10
dim V(Mi/Mﬁ) < dim V(M) for all 4 21,

Proof. Recall that V(M) = (#p e spec{a) | M @s;. 0} . The Piltration of

M induces a filtration of ordered sets
'z 4 ¢ v e ean
viM) 2 "\(Ml) 2 v(mi) 2 V(Miﬂ) 2
Since each of the ordered sets V(Mi) has a finite mmber of minimal
elements and since A is noetherisn there must exist an j,l such that
o o S
V(Mi:l) = V(Mk) for all k 2 iy .

Let {/Ps) gwp Pe the minimal elements of V(M:Li) then (M has

iﬁg) Py

finlte length. Therefore there exists en 1 2 j“l such that

A

(1, ) 2

’Z.”'(Mz) for all £ 2 1 and all s = 1, “°*, m .,
&

P
This mesns that P ¢ V(Mi/Mﬂ) for all s =1, °*¢, m .and all £ 21,

Thus
dim V(Mi/Mz) < dim V(Mj} for all £ 21,

QED,

Definition (1.9) We shall say that the n-fold canonical filtration is

trivial 4f D(n) = "D(n) for all i3 1 .

Theorem (1.10) Iet A be e noetherian ring of finite Krull dimension n .

Let D be a projective system of finitely genersted A-modules, then the
following statements are equivalent
(1) 1w oo
et
(11) the (n+l)-fold canonicel Ffiltration is trivial and complete,

Proof. If the (n+l)-fold cenonical filtration is triviel, then by Lemma (1.4)
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1D(n+l) will be epimorphic and therefore %gm(l) 1D(n+1) = 0 , Suppose
the (n+l)-fold canonical filtration is nontrivial, then using Lemma (1.8)
we Tind dim V(Dm) >n for some m , which contradicts the assumption that

dim A = n ., The rest follows from Theorem (1.7).

QED,

=

It {FPC°} is a complete filtration of a complex €° and if Dp
Hn(FPC') we shall see in 8% and g4 that 1D(l) £ 0 if and only if decn”l
is not closed in the topology of o generated by the filtration (FPCH} .
Moreover we will have %gm(i)D =0 for 1 20. Taus if or 1is an ideal
of a canplete a7 ~adic ring A and if the completion ég of ©% in the

¢ -adlc topology of €% has e nonclosed image in A  ‘then the projective

system
T
L k - k
D =¢y /1m[Q¥ ot a7 7}
will have the propertiess

%im(i)p =0 for 320 and “D(1) £ 0.

An example of this sort is the ideal oz generated by the elements

Ky = xi
1 i

countable numper of variables over a field.

of the formal power series ring k[[xl, ety Ky eee]] dn a

2. BSpectral seguences.

Iet D Dbe an object of ¢
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For each p € 2 we can find one, but in general lots of, objects Ep and

morphisms Jp and kp in ¢ such that the disgrem

i1
Dp-«l - / DP
N
(1) Ky 3y
B
P

is an exact couple. It suffices, in fact, to find an object Ep and.
morphisms J% and ké such that the following seguence beccmes exact
1
. Ip kp
0 - coker i i B -+  ker i - 0
p-1 P p-1

This is obviously the same as picking an element Ep from
Extt (ker i coker 1 ) .
p-1 "’ p-1
Thus the set
s(0) =TT Ext’ (ker i_ . , coker i_.)
) p-1 p-1
P €z
is in one-to-one correspondence with the set of all, up to isomorphisms,
graded exact couples
i
D -~ D
AN

B
with

D= Ui Dp , BE= )l E
pPEd P € 4

where 1, J and k have degrees +1 , 0 and -l respectively.

Given an object D in ¢, and en exact couple B e 8(D) , we would

i
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AR P e f¢
like to caleuwlete

(1) .
%;p D and %im(i) D

vwsing only the spectral seguence

T
(B }r et

Let us first introduce same notetions., If

p-1 ¥p
D s ees - Dp-l e DP - 1)P+l e d e s a

is an object of ¢, and if p' <p let

p', N
Mp ¢ P Dy

be the obvious composition of the iU 's .

We put

i1

(D) %gp(i) D

for 1 =0, L.

il

) g
iH(D, 1j?(i) D

We define a canonical filtration (HP(D)) of °H(D) and a canonical

p €
cofiltration {HP(D))p ez ©OF OH(D) , by

HP(D) = ker FgF

HP()D

i

coker M
1Y

where TP : lim D~ D_ and g 3D = 1im D are the canonical morphisms.
&~ P J¢ P >

Now for p' < p , consider the disgram of exact sequences



1h

Applying the functors %im resp. 1%@ we easily deduce:
¥

P P
P ~ o7 s s e P ~ dr o P
(D) =~ %3? kex ] b HP(D) X lg? coker ¥ o
P P
and we pubs
LoPrny o e 1) ! R D
B°(D) = %i? kes% L, (D) = l%T(l) coker 4 7,

In the r*- derived of the exact couple (1)

I
D" ; ot
£ R/ 57
E

we shall consider D" as a subobject of D and E as a subquotient of

the graded object E , Thus:
PeIiwl.

>

T
D o= im
P K Y
Using the same methods as in the proof of (1.5) we emsily prove thats
1T i T
H(D") = “H(D) iH(D ) = iH(D)
i P o i.p 1
(D) = “H (D) iHP(D ) = iHP(D)

for all peZ apd 1=0, L.
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Now, look at the exact sequence deduced from the rth derived exact

couple,
) i i} 4 - W ) i )
(2) T2 T o T B T P v B

Lenma (2.1) For every k & 0 the seguence (2) induces an exact sequence

Iy r ) I
0 - coker 1p+rw2 - zp,k ker 1p«l -+ Q

where Z; K is the sup. of the subobjects of E; for which E§+k is a
b

quotient (see [5]1).

T
Proof, As coker ip+r“g

= ker k; the inclusion

is evident.

Now look at the commubative diagram:

%
r g T
7 s E - o
P,k~-1 P p~1
o isurg. ke i
he
k-1 +R~1 -1
z e E - D
p,l P p-1
l surJ. 57% jr+k
r+k , p-1
Fr+k kp I’3:+k S Dr+k .
" S p-1 P
. . P r ~Ls r+k=1 e .
Taking into account the definition of ZP K = o (ZP 1 ) it beccmes fairly
2 ?
evident that kr maps 7 onto ker ir+k
P D,k p-1
QED.
Now apply the functor lim  to the exact sequence of (Q.l)u
ke Z
Since the projective system coker i* is constant with respect to

pHr-2
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k ¢ 2 we obtain the exact seguence:

1 4K
(3) 0 - coker 1" > 1im % +  1im ker i ~ 0
pi-2 T, Yok e p-1
and bthe isomorphism
(1) i) ZF S %i@cl) ker 1”j§
ez P xTa p
~ %im(l) kexr ikml
ke? P

In particular we find that the projective systems indexed by r € 2,

Tim  ker ir+§ = %i@ ker ik 1 and £§m<1) 7 x are constant. Remembering
k¢ Z L O A kez P

that in the notations of [5]:

and, by defimition,

EY = 1im B o= lim lm 25, .
p = P = - P,k
r e re? kei
Since %im(l) 7r X is constant with respect to r we may defines
keZ !
1, L. (1) or
(5) Ep - %E? Zp,k
k€2

Then using the functor Lim on the sequence (3) we get an exact sequence:

reh

k
(6) 0 - lim coker i~ « EP -+ lim ker i -~ 0
r ez pr-2 P ‘e 7 -1

and isomorphisms:
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. (1) k 00 r
(7) 1z i~ l:m< ker i and E- ¥ lim coker 1
D ey p-1 1'p v 270 (1) pr=2

where in analogy with the definition above we have pub:

8 5P = i o,
(8 1p 1—35’10(1)3;
r e 7

Now, look at the commutative diagrams of exact sequences

-k
0O - kerv?p‘_l - Dp-k -+ Dp-»l -~ 0

ing. | I

0 - keri?g'k -+ D - D

p~1
pir-1 ~ 0

iy

A -+ Dp#r-l coker'q

" i i ‘L surj.

1p+r<-2
- ' - - p
0 - Dp+r-a1 ’ Dp+rnl " cokerquﬂl o .
Using the snake lemma we get exact sequences:
P"’k P“k ‘k -+

0 = ker Y p-1 ~+ ker " b - ker 1p--l 0
(10) » p-1 o

0 - coker 1p+r=~2 - cokerqu“l ~* coker?] pir-1 - 0
Applying the functors 233—1“ resp. lim on these sequences we are left

k€ Z T €2

with the exact sequences:

0« ¥t o W s umker 1f AP L Ty Lo
p-1 P
(10) k
r
0 - lEp -+ 1Hp-l - 3—HP -+ %"ﬁ coker ip-kr«Q -+ H‘pnl > HP -+ 0
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Together (6) and (10) give us,

Theorem (2.2) For sny E e S(D) we have the following diagrem of exact

sequences:

3. Convergence of spectral seguences.

The following theorems are the mein results in this paper.

Theorem (3.1) Suppose E e S(D) , then the following conditions are

equivalent

(i) For every p € Z ‘there exists a rp 2 1 such that

(11) VFor every p € 7Z the projective system

(1) (ier g”k]k -

is stable, and the projective system

(2) {ecker 7 §+k}k Al

is costable.

If one of these conditions ls satisfiled we shall say that the spectral
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sequence {Er} converge.

Proof. Consider the exact sequences (see '§.2,).

(3) 0 - coker i§+r 5 7 Z; K ker i;+§ - 0
- , _
(k) 0 = ker? i:i’r ~ ker % g-k-r ~ ker i;j? o
—pr T :p_l . P
(5) 0 coker Spapn coker % el coker v — 0

If (1) is sbable we must have that

Lk
T

(6) (ker o1

k ¢ zt

is stable, but being monomorphic it has to be constant for big k 's .

A dual argument shows that if (2) is costable, then

T
{(7) {coker 1p+r~2}r c ¥

is constant for big r 's .
As (3) is exact we have proved that (i1i) imply that the projective
system

T
(8) {Ap,k}r,k e z+

is constant for gig r and k 's .

This mesns that there exists T s ko € Z+ such that

thus (11) ==> (i).
To prove (i) =% (ii) we start by observing that (i) is, in fact,
equivalent to (8) being constant for r 2 r and. k 2 0. So suppose (8)

is constant, for r 2 x and k 2 O , then using the exactness of (3) we
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find that (6) and (7) are constant for k 2 r, resp. T > T . Now sup-

pose we are given & k 2 0 and let us choose a k' 2 k such that

1
(9) Ker 1;_3 = ker ig_j for all s> k' end 1S4 Sk

| "o e
(We may put k max{rp, rp_l, ’ rp»k+l}')

For each 1 < j Sk consider the commutative disgram

0 = kery g:; ~ ker % g:§+l -+ ker i;LJ - 0

- p-k! p~k' k!
0 ker‘q -3 =+ ker % p-3+L -+ ker ip-j - O
.l L ¢ mono
p-k p-k k
0 = ker n ped -+ ker q p-d+l ker ipuj -+ QO

in which each horizontal sequence is exact.

Using ‘the snake lemma we get a diagram

p-s p-ky p-s p-k N .5 I
0 - coker{kervp_j kerqp_J] coker{kervp_d+l ker7p_j+l} coker {ker 1.y " ker 1P~J} -+ 0

o 0%, 4 "

~ p-k! p-ky p-k' p-k k! k
0 coker{ker»;P_J -+ ker?p_J} » coker[kervp_3+l -» ker7p_j+l]4coker[ker lpaj -+ ker lP—J}% 0

in which the sequences are exact.
Now for all s 2 k' ¢§ is an isomorphism, bhoth sides being zero, thus
¢Ewl is an isomorphism for all s 2 k' . Continuing we readily find that
¢2 is an isomorphism for all s > k' , thus proving that (1) is stable.
A dual argument may be used to prove that (2) is costable, thus finishing
the proof.
QED.

Theorem (3.2) Suppose B ¢ 8(D) then the following conditions are




el

equivalent

(1) There exists & r = 1 such that
B v E”
(ii) There exists & r 2 1 such that for every p e Z the projective
system
Igalc}

{ker??p k ezt

is stable of uniform height x , and the projective system

P
leokern ol e gt

is costable of uniform depth r .
If one of these conditions is satisfied we shall say that the spectral
seguence {EF} converges wniformly.
Proof. In the proof of (3.1) we mey pub r,=7r and k' can be chosen
equal to r . This proves the theorem.
QED.

Proposition {3.3) Suppose that (8" converges uniformly, then

2 ig stable

and

D is costable.

Proof. MAs for each 8 € Z+ the projective system

p-k
{kex n p+s)k e z*

is stable of uniform height r we have for every s and k and every

t 2 r an isomorphism
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coker{kerv") gjg"r -5 ker7 s } ~ coker{kereg +k_ - ker’;p+s} .
Now 1im and coker commute, thus
coker{ 1im ker¢7§;' 1im kery:p } ¥ coker{lim keryg;zﬂt ~+ 1im keryi;gl
s 5 s
and by definition of 2 this is the same as
COker{Ep“k~r P k} ™ coker[D et diE%-k}

but this means that B is gtable.

A dual argument shows that D is costable.

Corollery (%.4) Suppose that (E) converges, then

(i) For all pe 2

L.p =
0" == al = 0

(1i) For every P € Z we have an exact sequence

~ - 3 SN — Pnl -~ D —p
0 ker{Hp_l HP} Ep coker{H HY) 0

(iii) For every p e Z there are exact sequences

0 = 1,y o(1) - 1im B - °H - 1im In(1) » 0
v (1)
) X (1
0 - lim _1D(1) - H - lim Hp - 1im lD(l) - 0

(iv) For every p € Z there sre exact sequences
1 —
0O - "D(1}) - D = D - lH =+ 0
P( ) P P

0O - _H -+ D - D = D{1) -0
1 ~p P l‘p()

(+ lD(l) is epimorphic and lD(l) is moncmorphic,
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Proof, By (3.1) we know that [kerw;i“k}k ¢ 7+ 18 stable, thus by (1.5)¢

Lyp ~ lim(l) kere?p"k =0,
ﬁ? b

Dually, we £ind lHP = Q0 , Together this gives us (i), and (ii) follows

immediately from (2.2) and (i).
Now using (i) and the exact sequences

5 ]
0 = Kker = D -~ im -+ 0
e 71) 8 $7p

(10) Y P
0O = im % é -+ DB - cokerqs - 0

we get the exact sequences

0 - w - % - le -~ 0

(11)
0 - D -~ H - H - 0
1'p o) P

and the isomorphisms

~ e (1) . B ~ D
(12) ]H a %m mvp 5 lH ™ lgs;m(l) im?s o

From the exactness of the sequences (11) we deduce that lD is epimorphic

and lD is monomorphic, Applying respectively lim and ;gp to the same
. P P
sequences (ll) we get (iii), and applying 1im and %yn to the exact
P P
sequences of (10), using (12), we finally deduce (iv).

Q,ED(:

Corollary (3.5) Suppose [Er} converges and suppose further thatb

OH = lH = Q

then for each p € 24 there is an exact sequence



(1) 04HP"1»HP»E;°~»0.

Moreover we have an exact sequence
. Y O . 5

(11) 0 » Lm ¥ -~ "H - 1im;y D - 0
and the isomorphism

. 1 -
(iii) Ho1lim D .
Proof. Consider the exact sequence of (3.4}

04133(1)—»D~>'f5-»lﬁ~*o.

This may be split into two exact seguences

O*>JD(1).“*D~>K*>O

0 - K + P -TH -+ 0.
Now lgm(.) D=0 and lgm(l) 1H = 0 so we deduce

Lmey D(1) = 0 Lm K =0
lim D ¥ n 1im In(1) ~ imegy K ¥ Limeqy )

and this together with (3.4) proves the corollary.

Corollary (3.6)  Suppose {Er] converges and suppose

(1) 0 - E =+ H - H - 0,

Moreover we have an exact sequence



: (v, . :
(i1) 0 - Lim ™’ D OH—**%}):@HP-*O
and the isomorphism
(131) JHTHmD
Proof. Dual to that of (3.5).

Corollary (3.7) Suppose thet (E') converges uniformly then

(1) For all p e Z

]—Hp?- H =0

L'p

(ii) For every p € Z we have an exact sequence

@

0 ~ ker(H s 1] -+ E® o coker{EPt - #?) - 0
p-1 P D

(iii) For every p € Z we have an exact sequence

0 » H - 1wmH - %% > H - LimH - TH -+ 0 .
1 - ¢ & D
p p
Moreover we have isomorphisms
(iv) Lim BP ~ 1im D and lim H =~ lim D .
> o &= P -—p

Proof. Using (3.3) and (1.5) we know that

S

Now from (iv) of (3.4) we deduce two exact sequencess

0@11)(3.)»:9%1(»»0

0 » K - D -Tg » o .

From the last one we conclude:

and the sequence

25
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0 » 1imK = LimD - 'H - 0

is exsct.

From the first we then get the exact sequence

0 ~ l_j;mlD(l) - JH < limK = 0

and the isomorphism

l_i;xn(l) l-.D o .]..H °

Putting things together, using (1ii) of (3.4) we get the following exact

sequence

0 - .H - Lim w - ©

y ! H—»OH»lyﬁw]H»o.

Dually we find the exact segquence

0 - H - 1imD - % - H - Jim H - H - 0 .
1 G P

The 5-lemma then concludes the proof.

QEDe

Remark (5,8)‘ Iet D be a monomorphic projective system of abelian groups,

and suppose Dp ~ Do for all p 2 0 . Then we know that
Yot pto
G—-

if and only if DO is nondiscrete, but not complete, in the topology

induced by the subgroups DP for p S0 . As the projective system

{ker p-k] # is zero and the projective system {coker# ¥ )} + dis
Tp 'k ez T pik’k € 2

monomorphic, the condition (ii) of (3.2) is satisfied. Thus the condition

(1) of (3.2) does not exclude the situation Ty £ 0. If we change the

projective system D by imposing Dp = O for p >0, then we find that
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the condition (ii) of (3.1) is satisfied if and only if for some p, Wwe

have D_ 2~ D for.all p<p .
r P, o
If this last condition is not satisfied we will not be able to obtain
oo

El after a finite nawber of steps, i.e. as an Ei .

Remark (3.9) By (3.1) we find that if for some E e S(D) [Er] converges

then the same is true for any B e 8(D) .

Remark (3.10) It is easy to show that if for Pl < Py the projective
. P
. k 1 .
system {ker?? Pe}k < Py resp. {cokex"? K }k S b, is stable resp. cosgable

. . k 2
then so is also the projective system {ker? Pl}k < P, resp. (coker'? K }k > Pe.

Moreover if ({ker 1? };}k <p is stable then using the exact sequence

p-k
0 - ker'qp -+ Dpwk - :im'kl'

p-k
p

- 0

we find an exact sequence

0O

0 » B - % - (1) - o .

Suppose that D is a projective system of graded objects from c , and

let E*Z be the subcategory of S consisting of such objects and morphisms

of degree O, Then of course, ‘0 s and j‘H are graded obJects. Moreover

the filtration

1Y
(B }p € 2
of °H » and the cofiltration

{Hp)p € 4

of oH are graded, i.e. for every p € Z +the morphisms
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0 p-1
-t o P o Iy
AL N

are of degree zero.

Iet E be an element of S(D) and assume for each p € Z that E%

is graded, so that the resulting exact couple

is bigraded. The set of such E will be denoted by S*(D) . We shall

call the p in Ep s respectively Dp , the primsry degree, and the n in

the graduations {Ep,n]n ¢ 7 and (Dp,n}n e of EP respectively Dp

the total degree.

Thus i will always have total degree 0 , BSuppose J have total

degree u and k have total degree v , then the total degree of J(r) is

u and the total degree of k(r) is v ..
In particular the morphisms in the exact sequence of (2.1) have total

degree u and v respectively, and the same must be true for the morphisms

in the exact sequences (3) and (6) of g2.

In the same way we find that the isomorphisms (7) of§2 have total
degree v and + u respectively.

As the total degree of 1 dis 0 we find, morveover, that the
morphisms in the sequences (1) of §2 have total degree 0O . Together this

gives us the following bigraded version of (2.2).
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Theorem (3.11) TFor any object D in ¢ and for amy E e s#(D) such

that the total degrees of J and k are u and v respectively, we have

the following diagram of exact sequences

0
i
00 :
0= lEp,n»v-u - alml,n~u ~ al,n-u I - Hp~1,n~u ~ Psn-u -0

1

b,n

L

0 - Hp-l,n+v o PR % 1Hp~l,n+v - al,n+v - 1Eoo .

] p,ntviu

0

Now looking carefully at the proof of (3.1) we find the following theorems:
Theorem (3.12) Suppose D is an object of cf and let B¢ S*(D) , then
the following conditions are equivalent

(i) For every p € Z ‘there exists an Toon € 7 such that

b4

BP0 o g

bsn p,;n

(ii) For every p € Z2 the projective system
{ker p"k(n+v)}
i D k ezt

is stable, and the projective system

{coker7£+k(n~u)]k -

is costable.

v
Here we have denoted by # g {n) the n' th homogeneous component
p?
of .
7
Theorem (3.13) Suppose D is an object in c¥ and let B e 8%, then

the following conditions are equivalent,
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(i) There exists an r €% such that

xr
E? ~g®

for eve € D .
Pyn b,n vop

(ii) There exists an rn € Z+ such that for every p € 2 the projective

system

=)
[ker7 5 ((n+v)}k 7+

is stable of uniform height T and the projective system

{coker 7§+k(n—u)}k 7+

is costable of uniform depth LI

Remark (3.14) Using the remark (3.10) and the theorem (3.12) one may

easily deduce the theorem of Shih [9], see also Proposition (13.7.h4)
of [h].
Iet c. be a complex in ¢ with differential d of degree -1 .

is called a filtration S£ c. -

1
Then a system of complexes [chw)p c 7

1f there are gilven for every p € Z monomorphisms

Fpu-l Co ¥ F:p C. ¢ C, .

Dually we say that a system of complexes {KZPCJP ¢ 7 is & cofiltration 3{

¢, if there are given for every p € 4 epimorphisms

c, + K c, + K e.. .,
p-1 P

We shall assume that for every filtration

l;m chq ~ e,
P

and for every coflltration



%1
jh_linlﬁpce ™o,
From this we deduce the relations
1im coker{F c¢. = c. 0 Lim F ¢, =0
5() (ry b= »SN) T -

(‘) ker{c, - Kp c.} =0, 1im(l) K e, =0 .

1im Lu o
P

e
P
Using the general theory of the functors Ilim and Llim (see [6] and [T71)

and spectral sequences we get in the case of a Tiltration the following

disgrams of exact sequences.
0

7
Hn(c@)

s
0 - 1im H (F ¢.) - x - Lim H (F_ c.)— O
p e nop 1 D€ Z(l) n-1"p

0 = Hnwl(]gn(l) FP Cu)

o -

(13)

« O

5
t

Uﬂ:
—
)
< 6—?5 T k-

0 & Lim Hn(Fp c.) &

~
—~
el
i
ol
Ay

®

and in the case of a cofiltration dual diagrems.

Now, look at the projective systems of graded objects
Froeve = H (R joe) = H (Fpe) = H (F,,c) = -

K“: e s s ~P Ho (Kp—l Co) sl Hg (KP C,'.,) i d H‘ (KP.{,.:L Ce) -t e ® & N
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The problem is to calculate H.{c.} by using spectral sequences associated
to the projective systems F and K .

There exist natural exact couples in S¥F) and S*X) , given by

i

B = {B with E H, { coker{F ¢c. - F q.
{ P} v o {coker( ~ b })

1

B

J {JP} with J = H. (ker [Kpn c. =K e }) .

1

The total degree of jE Is O , the total degree of kE iz -1 , the

total degree of jJ is -1 and that of kJ is 0O , the notations being

evident,

By (3.2) we then have the following dlagrams of exact sequences

0

o

0 .
1Sp,n+l - 1Hp—1,n. - 1Hp,n ” I i Hpml,n - Hp,n » 0

0 - Hpul,nul - Hp,n»l 1Hp~l,n~l - 1Hp,n—l - 1. o

P;n“l

¥ * L

and:

— O

w
0
~ 1Jb,n+1 M 1Hp~1yn+l ~ al,n+l

+

g &x*
$
=

p=l,n+l - Hp,n+l

ey
o
=

0 - Hpml,n -~ gPrr L.p-l,n al,n - 1Joo -0

p,n~1

C &= kI
4
e
i




33

The following results generalize the Corollary (6.3) of [3].

Theorem (3.15) Suppose %ip<') Fp c. = 0 and suppose for some p,€ Z+

that FP C, = FP c. for all p 2 p, - If (E°} converges uniformly,
o ,
then

EX = ker(H . ~H) , H (c.)=10limH .
D p- P & p

1

+
Theorem (3.16) Suppose lgm( ) Kb ¢. = 0 and suppose for sonme b, € Z

Kﬁ ¢, = Kb ¢c. for all p < P, . Ir (3 r} converges uniformly, then;
o

::e;o = coker(HP"t > H?) |, B (c.) = 1im HY .

Prodf. Using (3.7) and the diagrams (13) these results become obvious.
QED,
We are now going to explicit the conditions (1i) of (3.12) and (3.13)
to the case of a filtered complex.

Proposition (3.17) The condition {ii) of (3.12) for the projective

system F above, is equivalent to the following

(1) For every pe Z .and k € 25 there exists a k' ¢ 7t such that

for every k" 2 k!

) 1 11 4} - n 1 )
(1h) 2 N By ¥ By = Dy N By * Bk
"y n n 11 1
(15) Bp+k" N z.p+k + zp = Bp+k, N zp+k + z,P

n . 4a n d
where ZP = ker{Fp c. *'Fp cn—l] 5 Bp im{Fp cn+l FP cn} .

Proq£, We have

. p-k _
ker«]p zp_kn B p/Bquk

P ;
cokerq . zwk/?p By




3l

- s . . B ) j ek

Using this we readily show that (1) is equivalent to {ker¢7p (n))k€Z+
bei 2) is e lent t b bei
being stable, and (2) is equivalent to {coker?}ﬂkfn)}k ¢ g+ being

costable.

Now as intersection and kernel commubte we have:s

n n n
Z B = F c. 1 B
Pmk i m p P"k i1 n P
n n n
Bp+k" n Zp+k = Bp+k" N ?p%k ®h -

Moreover (15) is equivalent to

n n n
Z =% ' ®
(16) Bp+k" 0 DK * Fp “n Bp+k' N Zp+k + Fp-cn

Proposition (3.18) The conditions (ii) of (3.13) for the projective system

e
F above, is equivalent to the following (ii)' . There exists an r €2

such that for every p e Z , k,5 € 2"

¥ “n n d(bp+k cn+l) s Fp~rn—s “n ) .

r +d(F ¢
p-r P

n+l

Proof. Iet r = be the number in (3.13), then the condition {ii) of (3.13)

is equivalent to the following condition

| n n 1 It
FP-rnmkus o By b By ® Fp—k--rn B+ Pk
(17)
el ] ) o
Bp+k+rn+stﬁ Fo Cn * Fp O = B;+k+rn'7 o * T O

for every p e Z sand k,;s € Z+ .

But (1) is equivelent to
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\ 1 n
Fpmkwrn € N Bp = Eﬁmk~rnns °n T Bpmk
(18)
n P
Bp+k+rn+s n IEHk “n € I%Hkﬁrn * lp Cn

If we 1n the first formula put p for p-k and in the second put p for

pikdr - we find thet (18) 1s equivalent to

. n n
<
Fp«rn e, N Bn+k < Fp—rnns + BP .

QED.

Corollary (3.19) Suppose that c¢. is a complex of R-modules, R being

a8 commutative ring, and suppose the filtration {Fp c«}p c 7 is bounded to
the right, i.e, Fp e, = FP c. for some p_ and all p > p, - Suppose

o)
further that the submodules Bg of Cn is c¢losed in the topology of cn

induced by the submodules {FP cn}p ¢ 7 + Then the condition (1i) of (3.13)

is equivalent to

(ii)' There exists an r € 2t such that for every p e 7

) .

Fp-r . n dlc

) & a(F_ c
. D

n+l n+l

Proof. Use {3.18) and remember that (1 (P ¢ + 8% =38, since B
—— gzt p-8 n o Tp T T D

is closed,
QFD,

Remark (3.20) The above corollary generalizes a result of Serre, [8], II-15.

If we suppose %@y Ep ¢c. = 0 we may avoid the condition that B;

be
closed in ¢ . In fact using (2.10) end (4.6) we prove that if {E'} converges
then B; is closed in ¢, thus (ii) ==> (ii)'. On the other hend (ii)'

obviously imply (ii1).
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L. Induced morphisms.

Let
¢:C-+D

be a morphism in ¢, , and suppose given exact couples E € s(¢) , T e S(D)

and a morphism of graded objects
Y E~T
compatible with ¢ .
T ¢~ evidently we get morphisms

iH( D)

il

o : tu(c) = :L:Im(i) c - 1:'111(1) D
G =S

wr:Er 5 ™.

Tet
"l p'
C e seo —+C e C P e C:z C
p-1 p {p’gp}
ks (v, m 2"
D2 esn =D - D -+ era D=1{D ¢
-1 p p’ ?p

be the two objects of ¢ .
_.Z

Lemma (h.l) If the morphism ¢ induces Isomocrphisms
¢ : ker k. = ker i-
b b
for every pe 2 &nd ré& Z¥ then ¢ induces an isomprhism
¢:c — D,

—

Proof. By §2 (9) we have s diagram of exact sequences




- kerg?g”k > ker kK - 0

. pml
- k i 4
(1) ool a ] re b
p-k p-k o 4K -
O - ker~2pm1 - ker*}p ker ipml o .

As yi 1ls an isomorphism for all pe?2 and k € 7t and as ap = 7;

an ipductive argument shows that aé is an isomorphism for all p € Z

and k € Z° . Bub then

N e »
2? = 1%m ker@ bk

and

. s P
D = 1im ker
—p -‘? 7 p+k

must be isamorphic.

QED.
Terma (4. 2) If the morphism ¢ induces isomorphisms
¢ : coker k' -+ coker i°
b b
Tfor every p €2 and 1 ¢ Z+ then @ induces an 1lsomorphism
d:C > D .
Proof, Dual %o that of (4.1).
QED,

Theorem (4.3) Suppose ¢ induces either isomorphisms

ker("EP"H(0) » THP(C)) ~»  xerl® D) - P(D))
coker{Hp"l(C) - Q) - coker{Hp"l(D) - HP“I(D)}

or isomorpnlsms
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coker{leml(C) - le(C)} -+ coker{al_l(D) - al(D)]

ker{HP_l(C) - HP(C)} +  ker {Hp‘l(’l)) - Hp(’l))}

T
then if 9; © ig an 1somorphism, ¢ will induce isomorphism

¢ -3 °

¢ ~ D

Proof. Look st the commutative diasgram of exact sequences (see (2.1)).

T4k

T Ty :
0 -~ coker kp+T~2 > ZP,K(Q) > ker kpml + 0
o T K
‘L P L Vo5 ‘L "o
3T ST e TR
0 - coker Lrp Zp,k(D) > ker i g v 0

where O and yr+k are induced by ¢ and %ﬂr ig induced by ?ﬁr .
b P sk

+ r . . s
For r 2 Ty and k € 2 we know that ﬁp is an isomorphism.

D,k

Applying %im and lim  on this diagram we get the Tollowing commutative
k Y

diagram (see g2 {6)).

C - lgm coker 'k£+ - E;O - %;m ker 'kk“ - 0

r rme " p-1
a A g ﬁ-
R L oo L, e 11K
0 - lim coker ilp+r-2 -~ T r %%m ker ip»l - O .

Now, from the diagram (1) above we deduce the following commutative disgram

of exact sequences:

o » w®t(e) - ®(c) ~ Lim ker ’kil.l > W)+ TP () e
k

! ! I, ! !

0 - (D) » (D) - lim ker 'i® . - WPl (D) - WP(D) - ...
T Pt




and dually we get the commutative diagram of exact sequences

e o B s i 'Yr -3 M
- al_l (¢) al (C) ~ Lim coker Kpppp ™ B (c) HP(L) -+ 0

T -2 p-1
Lo 4
! l Lo l
evw o . . V‘r B
- 1prl (D) - 1Hﬁ (D) b %;n coker 1p+rm2 » Hpﬂl (D) —+ Hp (D) -0

The conditions of the theorem guarantee that for every p € 2 , either 7p
or ap is an isomorphism,
From this we easily deduce that for every peZ2 , v,k €2 , 1< T, o

the morphisms
o and 7r+k
P Y

are isomorphisms. The conclusion then follows from (4.1) and (k4. 2).
QED.

Carollary (4.4)  Suppose either C=C and D=D or C=C and D=D,
by
and suppose further that for some r, € Z+ 5 4{ © 45 an isomorphism. 'Then

is an isomorphism, and in particular

8 {c) =~ A (D)
H(¢) ~ H (D) .
Proof, If C=0C and D =D we know that

1in® p = 1™ pao ror 10
o | g

and

l0(1) = lD(l) =0 .
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Thus we deduce from the exaclt seguences

p-K . o Pk

0o - ke:r*gp # Cpnk -+ lm?k ~ 0
p-k X oK

o - ker*?p -+ mek -+ 1m@;p -+ 0

W) =" (D) =0  forall peZ,i°0 .

The conclusion now follows trivielly from (4.3) and the fact that if C = ¢

=4 3:‘O I‘C) rO 'er
and D=D then € = C and D " =D, If C=C and D=1D we

may use & dusl argument.
QED.

Corollary (4.5) Suppose that B and I converge and suppose for some

+ To | . . o s
r, €z Y © is an isomorphism. Then if either

B (c) = °H (D) =0 or J ()= H (D) =0

e? will induce isamorphisms

ol
12

¢~

Proof. By (3.1) we know that al = al = 0O for all peZd, so the

conclusion follows trivially from (4.3).

QED.
et C. and D. be filtered complexes with filtrations {Fp C”P ¢ 7

and {Gp D.,}P < 7 + Suppose given a morphism
$:c. = D

respecting the filtrations. We shall say ‘that (b has filtration degree w

if d) induces morphisms




Ly

F CG g G DG L)
P DAV

In this case @ induces a morphism of projective systems
d:F - @
and morphisms

&{»’T:EI'F - E G

wvhere E F and E G are the natural spectral sequences associated to

the filtrations of ¢. and D. .

Ierma (4.6)  Suppose Lim Fp C. = 0 then the following conditions sre

b
eguivalent.,

(1) (1) = 0

(ii) TFor every p € Z we have

d(FP G.}) = %%g (d(bp ) + Fp«k c.) .

Proof. As for every p e 2

we have

lFP = %%y (mek + BP/B@)

so that lFP = 0 if and only if
14 o o
dm (2, +B) B,

and this is seen to be eguivalent with

Lim (F

C. +B )}~ B
- p-k p} P

by using the exact sequence
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0 = 2 +B - F ¢. +B. -+ B - 0
p=k P p-k P p-k

and the fact that lim B 0.
e e

Xk
k Pt

QED.

Remark (4.7) The condition (i1) above says that d(FP C.}) is closed in

the topology of C. defined by the subobjects (Fp C.}p c 7

Theorem (4%.8)  Suppose lim(l) F C. = lim(i) ¢ D.=0 for 1=0, 1 and
i Y G p

suppose for each p € Z ‘that d(FP C.) and d(GP D.) are closed in the

topology of €. vrespectively D, defined by the filtrations. Then, if

+ To | , o s .
for some r, € Z gv is an isomorphism ¢ will induce i1somorphisms

end in particuler we will have
H (c.) ~H (D.} .

Proof. By (4.6) we have

(1) = Ta(1)

il
Q

so by (1.7)

The conclusion then follows from (4.h4).
QED,

Remark (4.9) T¢ E(F) converge and lim F = O then by (2.10) we know

that lF(l) =0, Ths by (4.6) d(Fp C.) is closed in the topology of C.
defined by the filtration.
Tn [3] Bilenberg and Moore prove that the last conclusion of (4.8)

holds without the condition that d(Fp C.}) and d(GP'DW) be closed,
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