Introduction

In this paper we shall study the convergence of spectral sequences. The problem is roughly the following. If in acme nice abelian category there is given an exsct couple

and is the corresponding spectral sequence is denoted by $\left\{E^{2}\right\}$, when will there exist an integer r_{0} such that $\mathrm{E}^{r^{\circ}} \approx \mathrm{E}^{\infty}$?

Our main result is the
Theorem (3.2) Suppose that $D=\left\{D_{p}\right\}$ is graded and suppose it is of degree 1 . Let $\eta_{p}^{p m}: D_{p-k} \rightarrow D_{p}$ be the restriction of $i^{(k)}$ to Dpak , then the following conditions are equivalent
(i) there extsts an integer x_{0} such that $\mathrm{E}_{\mathrm{O}} \approx \mathrm{E}^{\infty}$
(1i) for each p and each k we have isomorphisms
 for all $k^{\prime} \geqslant x_{0}$ 。

If one of these conditions holds we shall say that $\left[G_{r}\right.$) convexges uniformly. Using $(3,2)$ we prove

Corollary (3.7) If $\left\{\mathrm{E}^{\gamma}\right\}$ converges unifommy then there exfst exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{kex}\left(H_{p-2} \rightarrow H_{p}\right) \rightarrow T_{p}^{\infty} \rightarrow \operatorname{cokex}\left(H^{p-1} \rightarrow H^{p}\right) \rightarrow 0 \\
& \text { (1) } \\
& 0 \rightarrow \lim _{61} D_{p} \rightarrow \lim _{\rightarrow \rightarrow} H^{p} \rightarrow \lim _{p} D_{p} \rightarrow \lim _{p} D_{p} \rightarrow \lim _{p} H_{p} \rightarrow \lim _{p} D_{p} \rightarrow 0 \\
& \begin{array}{llllll}
p & p & p & p & p & p
\end{array}
\end{aligned}
$$

where $H^{p}=\underset{p^{\prime}}{\operatorname{ker}}\left[\operatorname{Iim}_{p^{\prime}} \rightarrow D_{p}\right]$

$$
H_{p}=\operatorname{coker}\left(D_{p} \rightarrow \frac{1 \lim _{p^{3}}}{} D_{p}\right)
$$

The above results generalize theorems of Serre $[: 8]$ and $\sin [9]$. See also Grothendieck $[4]$, Chop. $0, \$ 13$.

If $\left\{F_{p} C\right\}_{p} \leq 0$ is a complete filtration of a complex C° in the sense of Eilenberg, Moore [3] and if the spectral sequence $\left[E^{r}\right.$] associated, convexges unjfomly then using (3.7) we prove,

$$
\begin{aligned}
& \mathbb{T}_{\mathrm{p}}^{\infty} \because \operatorname{kex}\left\{\mathrm{H}_{\mathrm{p}_{\infty}^{*} 1} \rightarrow H_{p}^{\otimes}\right\} \\
& H^{n}\left(\mathrm{C}^{\bullet}\right)=\frac{\lim }{p} H_{p}^{n}
\end{aligned}
$$

where H_{p}^{*} is graded as a quotient-object of $\underset{\sim}{\lim } H^{\circ}\left(F_{p} C^{\circ}\right) \approx H^{*}\left(C^{\circ}\right)$
This generalizes Corollary 6.3 of [3].
The first section contains some results on the functoxs \lim and \lim.
In particulax we prove a theorem characterizing the projective systems D for which $\lim ^{(1)} \mathrm{D}=0$ 。

The second section is concerned with the relationship between ξ^{∞} and the filtration $\left\{H^{p}\right\}$ of $\lim D$ and the coftltration $\left\{H_{p}\right\}$ of $\lim D$ 。 In the third section we prove the theorem stated above and we deduce some coroliaxies.

The last section contalns some results on morphisms of exact couples. A fixst version of this paper was written in the spring of 1966 and
some of the results were presented to the International Congress of Nathematicians in Moscow the same year. Since then Ecknamn and Hilton have in a more general setsing published two papers [1], [2] on spectrol sequences tiatw, proving sone of our results, such as lemma (2.2). However their goals seem to be sonewhat different fron ours, and their methods do not involve the study of the higher derived functors of $\quad \lim$ and $\underset{\rightarrow}{\lim }$ which is essential for the results of this paper.

Sl. Some results on projective and inductive Iimits.
Let c be an abelian category with exact demmerable products and sums. Denote by c_{z} the category of projective systems in c indered by the integers Z. An object D of c_{Z} is then a sequence of morphisms in C

$$
D: \quad \cdots \rightarrow D_{p \cdots 1} \eta_{p}^{p-1} D_{p} \stackrel{\eta_{p}^{p} p+1}{D_{p+1}} \rightarrow \cdots
$$

We know, see Roos [7], that under these assumptions, the functors,

$$
\text { lim and } \lim _{\rightarrow} \mathrm{c}_{-} \rightarrow \mathrm{c}
$$

exist together with their satelites $\lim ^{(i)}$ and $\lim _{\rightarrow}(i)$, and it is easy to prove the following propertries
(1) $\quad \lim ^{(i)} \lim _{\rightarrow}(i)=0$ for $i \geq 2$ 。
(2) if all $\eta_{p}^{\mathrm{p}-1}$ are epimorphic resp. monomorphic then

$$
\lim ^{(1)} D=0 \quad \text { reap. } \quad \lim _{\rightarrow}(x) D=0
$$

Definition (1.1). If D is an object of c_{z} we define the completion \bar{D}
resp. the cocompletion D of D by

$$
\bar{D}_{p}=\frac{\lim }{k} \operatorname{coker} \eta_{p}^{p-k} \operatorname{resp}_{p} \underline{D}_{\mathrm{p}}=\lim _{\vec{k}} \operatorname{ker} \eta_{\mathrm{p}+\mathrm{k}}^{p}
$$

we have natural morphisms

$$
D \rightarrow \bar{D} \quad \text { resp. } \quad D \rightarrow D
$$

Let ${ }^{1} D(1)$ resp $1 D(1)$ be the kernel resp. the cokernel of this morphisms and derine inductively ${ }^{j} D(1)$ resp ${ }_{i} D(1)$ as the kernel resp. cokernel of

In this way we obtain a fintration resp. a cofiltration of D

$$
\begin{aligned}
& D \equiv{ }^{O} D(1) \cdots{ }^{1} D(1)<m^{i} D(1) \ldots
\end{aligned}
$$

Since all definitions and all results in this section, except for (1.8) and (1.10) have obvious duals we shall omit these duals.

The filltration (1) will be called the l-3old canonical filtration of D, and the subobject $1 \mathrm{D}(\mathrm{x})=\mathrm{Km}^{2} \mathrm{D}(\mathrm{I})$ will be called the ooterm or the Imfold canonical filtration.

Inductively we define the n-fold canonteal filtration of D

$$
D=O_{D}(n) \leftrightarrow I_{D} D(n) \leftrightarrow \omega^{2} D(n) \Leftrightarrow 1+1 D(n) \Leftrightarrow
$$

as follows: $j+1 D(n)$ is the comterm of the (n-1)-fold canonical filtration of $i_{D(n)}$, and the subobsect $I_{D}(n+1)=\frac{I_{m}}{}{ }^{\prime} D(n)$ is called the $\infty-$-texm of the n-fold canonical filtration.

Definition (1.2) We shall say that the mofold canonical filtration is
complete if
(i) $0 \rightarrow k+1 D(1) \rightarrow k_{D}(1) \rightarrow B_{D 1} \rightarrow 0$ is exact for a11 $k \geq 0$ (ii) $D /^{1} D(3 n+1)=\frac{\lim }{k} D /^{k} D(m)$ for all $1 \leq m \leq n$.

Definition (1.3) We shail say that D is stable (satisfy the Mfttagm Leffler condition) if for every p there exists a $r_{p} \in Z^{+}$auch that $\operatorname{coker} \eta_{p}^{p-x_{p}}=\operatorname{cokex} \eta_{p}^{p-k}$ sor $0.11 \quad k \geqslant x_{p}$

We shall call the number r_{p} the height of D at p, and we shall say that D is stable of uniform height r if we can choose all x_{p} in the above deffinition equal to x.

The following lemma is trivial.
Lerma (1.4) If for some n and some $k, k_{D(n)}$ is stable then $k+1 D(n)$ is epimoxphic and ${ }^{\ell} D(n)={ }^{k+1} D(n)$ for all $\ell \geq k+1$. If, on the other hand for some n and $k,{ }^{\ell} D(n)=k(n)$ for $a 11 \quad \ell \geq$ then $k_{D}(n)$ is epimorphic.

Lemma (1.5) Suppose D is stable then

$$
\lim ^{(1)} D=0
$$

Proof". Consider the projective system H on $Z x$ Z derined by $H_{m, n}=\operatorname{im} \min _{\max (m, n)}(m, n)$.

H restricted to the diagonal a in $Z x Z$ is isomorphic to D and H restricted to $\Delta_{r}=\left\{\left(p, p_{m} r_{p}\right) \mid p e Z\right\}$ is epimorphic. As both Δ and Δx are cofinal in $Z x, z$ the result follows from (it) above.

Lemma (1.6) Let D be an object of C_{Z}, then

$$
\lim ^{(i)} \bar{D}=0 \text { for } 1 \geq 0
$$

Proof. Put $F_{m, n}=D_{\max (m, n)} / \operatorname{im} \min _{\max (m, n)}(m, n$. Them F is a projective system defined on the ordered set $Z \times Z$. Since F restricted to the diagonal Δ is zero it follows that

$$
\lim _{\operatorname{Zx}}(i)_{F} 0 \text { for all i> } \geq 0
$$

$$
E_{p, q}^{2}=\frac{1 \operatorname{tim}}{m}(p) \lim _{n}(q) \quad D_{m} / \operatorname{sim} q_{m}^{n}
$$

see [6] on [7], thus giving us isomoxphisms

$$
\begin{aligned}
& \lim _{m}^{7} \text { (1) } \operatorname{nim}_{n} D_{m} / \sin \eta_{m}^{n} \approx \lim _{2 x Z} \text { (1) } F
\end{aligned}
$$

QED.
Theorem (1.7) Let D be an object of G_{Z} then the rollowing state ments are equivalent
(i) $\operatorname{tim}^{(1)} D=0$
(1i) For all $n \geq 1$ the n-fold canonical filltration of D is complete and

$$
\left.\lim _{\operatorname{Lim}}(1)\right]_{D}(n+1)=0
$$

Proof. We shall prove that (i) is equivalent to (il) with n a 1 , leaving
the more general statement as an easy exercise.
Suppose $\lim ^{(1)} D=0$, then applying the functor $\frac{7 m}{}$ to the two exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \eta_{m}^{n} \rightarrow D_{n} \rightarrow m_{m}^{n} \rightarrow 0 \\
& 0 \rightarrow \operatorname{m} \eta_{m}^{m} \rightarrow D_{m} \rightarrow \text { coker } \eta_{i n}^{n} \rightarrow 0
\end{aligned}
$$

we easily deduce an exact sequence

$$
0 \rightarrow I_{D}(1) \rightarrow D \rightarrow \bar{D} \rightarrow 0
$$

 continue, proving that for all i the sequence

$$
0 \rightarrow i^{i+1} D(X) \rightarrow i_{D}(I) \rightarrow i \overline{D(I)} \rightarrow 0
$$

is exact and
(3)

Now, let H be the projective system on $\mathrm{z} \times \mathrm{z}^{+}{ }^{+}$defined by

$$
H_{n, i}={ }^{I_{D}}(I)
$$

we know that $Z^{\frac{\lim }{\boxed{x}} z_{0}}(1) \mathrm{H}$ is the abutment of two spectral sequences given by

Using (3) we ind $\lim ^{I} D(2) \approx \lim D$ and

$$
\mathrm{E}_{\mathrm{p}, \mathrm{q}}^{2}=0 \text { for } \mathrm{p} \neq 0, q \neq 0
$$

thus

$$
\frac{\operatorname{lima}^{(1)}}{z^{t} x z^{-p}}=0
$$

From this it follows that

$$
" E_{1,0}^{2}="_{0,1}^{2}=0
$$

i.e.

$$
\lim ^{2}(1) I_{D}(2)=\frac{\lim _{n}}{}(1) \frac{\sin ^{2} D_{n}}{1}(1)=0
$$

(4)

$$
\lim _{\mathrm{n}} \lim _{\mathrm{i}}(1) \mathrm{i}_{\mathrm{D}}=0
$$

We are going to prove that for all $n \mathrm{~m}$ the orphism

$$
\begin{equation*}
\lim _{i}(I) i_{D_{n}}(I) \rightarrow{\underset{i m}{i}}^{(I)} i_{D_{m}}(1) \tag{5}
\end{equation*}
$$

is an epimorphism. Together with (4), (5) implies

$$
\lim _{\dot{i}}(I) i_{D_{n}}=0 \text { for every } n \in Z
$$

and this gives us the isomorphism $D_{n} l^{I} D_{n}(2) \simeq \frac{\lim }{i} D_{n} I^{1} D_{n}(1)$.
Consider the diagram
in which the horizontal sequences axe exact. We have to prove that ϕ is epimorphic. But by the commutativity of the lowex right square, we know that

$$
\operatorname{Im} v \Rightarrow \lim ^{(1)} k_{D_{m}}
$$

is epimorphic, and since $\operatorname{in} \nu \leq \operatorname{im} \psi$ we $i=n d$ that $\rho^{0} \psi$ is epimorphic. By the commutativity of the upper right square this proves that ϕ is epimorphic.

We have therefore proved (i) \rightarrow (iv).
To prove the converse part of the theorem, we first note that (ii) together with Lemma (1.6) proves that

$$
\begin{align*}
& \lim ^{(0)}{ }_{D} \simeq \lim \left({ }^{\circ}\right) \operatorname{I}_{D(I)} \text { for every } i \in Z^{+} \tag{6}\\
& \lim _{i}(1) i_{D}(1)=0 \text { for all } n \in Z .
\end{align*}
$$

Considering the projective system H above, using the spectral sequence ${ }^{[} \mathbb{E}$ and the iscmorphism (6) we find

$$
\lim _{z^{+} x z^{+}}^{(1)} \mathbb{H}=\frac{\operatorname{lym}}{z^{+}}(1) \mathrm{D}
$$

But the spectral sequence " E degenerates, therefore $\sum_{2^{\frac{1 m}{x} z^{+0}}}$ (1) $H=0$ 。 QED.

Lenma (1.8) Let A be a noetherian ring of finite dinension and M a finitely generated Amodule. Suppose M is fillered by submodules $\left\{M_{i}\right\}$, $M=M_{0} \geq M_{1} \geq \ldots \geq M_{i} \supseteq M_{1+1} \supseteq \ldots$ then there exists an integer 1 such that

$$
\operatorname{dim} V\left(M_{i} / M_{l}\right)<\operatorname{dsm} V\left(M_{i}\right) \text { for } a 11 \quad b \geqslant 1
$$

 M induces a piltration of ordered sets

$$
V(M) \equiv V\left(M_{1}\right) \equiv \cdots \geqslant V\left(M_{i}\right) \geq V\left(M_{i+1}\right) \geq \cdots
$$

Since each of the oxdered sets $V\left(M_{1}\right)$ has o finite muber of minimal elements and since A is noetherian there must exist on I_{1} such that

$$
V\left(M_{1}\right)=V\left(M_{k}\right) \text { for all } k \geq i_{1}
$$

Let $\left(p_{s}\right)_{s=1}^{m}$ be the minimal elements of $V\left(M_{d i}\right)$ then $\left(M_{1}\right)_{s_{s}}$ has finite length. Therefore there exists an $\geq i_{I}$ such that

$$
\left(M_{i}\right)_{p_{\mathrm{s}}} \approx\left(M_{\ell}\right)_{r p_{\mathrm{g}}} \text { for all } \ell \geq i \text { and all } \mathrm{saz}, \ldots, m
$$

This means that $P_{s} \& V\left(M_{i} / M_{d}\right)$ for all $s=1, \ldots, m$, and all \& ≥ 1. Thus

$$
\operatorname{dim} V\left(M_{i} / M_{l}\right)<\operatorname{dim} V\left(M_{i}\right) \text { for all } \ell \geqslant 1
$$

QRED.

Definition (1.9) We shall say that the n-fold canonical filtration is trivial if $i_{D(n)}=I_{D(x)}$ for all $1 \geq 1$.

Theorem (1.10) Jet A be n, noetherian ring of finite Krull dinension n . Let D be a projective system of findtely generated Amodules, then the following statements are equivalent
(1) $\operatorname{jim}^{(I)} D=0$
(11) the ($n+1$) fiold canonical filtration is trivial and complete.

Proor. If the $(n+1)=$ Sold canonical filtration is trivial, then by Lenma (1. 4)
$I_{D(n+1)}$ will be epimorphic and therefore $\lim ^{(1)} I_{D}(n+1)=0$. Suppose the $(n+1)$-fold canomical filtration is nontrivial, then using Lemma (1.8) we find $\operatorname{dim} V\left(D_{m}\right)>n$ for some m, which contradicts the assumption that $\operatorname{dim} A=n$. The rest follows from Theorem (1.7).

QED.
If $\left\{F_{p} C^{\circ}\right\}$ is a complete filtration of a complex C^{*} and if $D_{p}=$
 is not closed in the topology of C^{n} generated by the filtration $\left[F_{p} C^{n}\right]$. Moreover we will have $\frac{\lim \left(y^{2}\right)}{D}=0$ for $i \geq 0$. Thus $1 f$ or is an ideal of a complete of -adic ring A and if the completion or or in the of -adic topology of O has a nonclosed image in A then the projective system

$$
D_{k}=q_{7}^{k} / \operatorname{in}\left(q^{k} o u \rightarrow q^{k}\right\}
$$

will have the properties:

$$
\operatorname{Iim}^{(i)} D=0 \text { for } 3 \geq 0 \text { and } I_{D(I) \neq 0 . ~}^{D}
$$

An example of this sort is the ideal or generated by the elements $x_{1} \sim x_{i}^{i}$ of the formal power series ring $k\left[\left[x_{1}, \cdots, x_{i}, \ldots\right]\right]$ in a countable number of variables over a field.

2. Spectral sequences.

Let D be an object of $\mathrm{C}_{\text {z }}$

$$
D: \cdots \rightarrow D_{p-1} \stackrel{i_{p-1}}{D_{p}} \stackrel{L_{p}}{\rightarrow} p_{p+1} \rightarrow \cdots \cdots
$$

For each $p \in Z$ we can find one, but in general lots of, objects E_{p} and morphisms j_{p} and k_{p} in c such that the diagram
(1)

is an exact couple. It suffices, in fact, to find an object E_{p} and morphisms j_{p}^{\prime} and k_{p}^{\prime} such that the following sequence becomes exact

$$
0 \rightarrow \text { coker } i_{p-1} \stackrel{j_{p}^{1}}{\rightarrow} E_{p} \stackrel{k_{p}^{\prime}}{\rightarrow} \operatorname{ker} i_{p-1} \rightarrow 0
$$

This is obviously the same as picking an element E_{p} frora

$$
\text { Ext }{ }^{1}\left(\text { ker } i_{p-1}, \text { coker } i_{p-1}\right)
$$

Thus the set

$$
S(D)=\prod_{p \in Z} \operatorname{Ext}^{I}\left(\text { Ker } j_{p-1} \text {, coker } i_{p-1}\right)
$$

is in onemtome correspondence with the set of all, up to isomorphisms, graded exact couples

$$
\underset{\mathrm{k}}{\mathrm{D}} \stackrel{i}{\mathrm{E}} \mathrm{E}
$$

with

$$
D=\sum_{p \in Z} D_{p}, E=\frac{L}{p \in Z} E_{p}
$$

Where $1, f$ and k have degrees $+1,0$ and -1 respectively.
Given an object $D \quad \operatorname{In}_{n}{\underset{\sim}{Z}}$ and an exact couple $E \in S(D)$, we would

$$
\therefore \therefore \text { 唯pler }
$$

like to ealeviate

$$
\lim _{\infty}(i) D \text { and } \lim _{\rightarrow}(1) D
$$

using only the spectral sequence

$$
\left\{\mathrm{E}^{\mathrm{T}}\right\}_{\mathrm{I}} \in \mathrm{Z}^{+}
$$

Let us first introduce some notstions. If

$$
D: \cdots D_{p-1} \stackrel{i_{p-1}}{\rightarrow} D_{p} \stackrel{p_{p}}{\rightarrow} p_{p+1} \rightarrow \cdots
$$

is an object of c_{-Z} and if $p^{\prime} \leq p$ let

$$
\eta \frac{p^{i}}{p}: D_{p^{\prime}} \Rightarrow D_{p}
$$

be the obvious composition of the $\mathrm{i}_{\mathrm{p}} \mathrm{i}_{\mathrm{s}}$.
We put

$$
\begin{aligned}
& i_{H}(D)=\operatorname{Iim}_{\infty}(i) D \\
& i H(D)=\lim _{\rightarrow}(i)
\end{aligned}
$$

We define a canonical filtration $\left\{H^{P}(D)\right\}_{p \in Z}$ of ${ }^{O} H(D)$ and a canomical cofiltration $\left\{H_{p}(D)\right\}_{p \in Z}$ of $o^{H(D)}$, by

$$
\begin{aligned}
& H^{p}(D)=k \operatorname{Tr} T^{p} \\
& H_{p}() D=\operatorname{coker} H_{p}
\end{aligned}
$$

Where $\pi^{p}: \lim _{p} D \rightarrow D_{p}$ and $u_{p}: D_{p} \rightarrow \lim _{\rightarrow} D$ are the canonical morphisms. Now for $p^{\prime}<p$, consider the dlagram of exact sequences

$$
0 \rightarrow \operatorname{ker}_{\mathrm{p}}^{p^{\prime}} \rightarrow \mathrm{D}_{p^{\prime}} \rightarrow \operatorname{im}_{\frac{d}{p} p_{p}^{\prime}}^{p_{p}} \rightarrow 0
$$

Applying the functors $\underset{p^{\prime}}{\lim }$ resp. $\underset{\vec{p}}{\lim }$ we easily deduce:
and we put:

$$
I_{H^{p}}^{p}(D)=\lim _{p^{\prime}}^{(1)} \operatorname{ker}_{p}^{p^{\prime}} \quad I_{p}^{H}(D)=\lim _{{\underset{p}{p}}^{\prime}}(1) \quad \text { coker } \eta \frac{p}{p^{\prime}}
$$

In the rth. derived of the exact couple (1)

$$
\begin{aligned}
& D^{r} \stackrel{i^{x}}{\rightarrow} D_{B^{r}}^{x} \\
& M^{r}
\end{aligned}
$$

we shall conslder D^{r} as a subobject of D and F^{r} as a subquotient of the graded object E Thus:

$$
D_{p}^{r}=i m \eta_{p}^{\left.p-x^{-1}\right]}
$$

Using the same methods as in the proof of (1.5) we easily prove that:

$$
\begin{array}{ll}
i_{H}\left(D^{r}\right)=i_{H}(D) & { }_{i} H\left(D^{r}\right)={ }_{i} H(D) \\
i_{H} p\left(D^{X}\right)=\dot{L}_{H} P(D) & i^{H} H_{p}\left(D^{r}\right)={ }_{1} H_{p}(D)
\end{array}
$$

for all $p \in Z$ and $i=0,1$.

Now, look at the exact sequence deduced from the $x^{\text {th }}$ derived exact couple,

Lemma (2.1) For every $k \geq 0$ the sequence (2) induces an exact sequence

$$
0 \rightarrow \text { cokes } i_{p+r-2}^{r} \rightarrow Z_{p, k}^{r} \rightarrow \text { kex } i_{p-1}^{r+k} \rightarrow 0
$$

where $z_{p, k}^{r}$ is the sup. of the subobjects of p_{p}^{r} for which \mathbb{E}_{p}^{r+k} is a quotient (see [5]).

Proof. As cover $i_{p+x-2}^{x}=k e r k_{p}^{x}$ the inclusion

$$
\text { cover } i_{p+r-2}^{r} \subseteq z_{p, k}^{r} \text { for all } k \geq 0
$$

is evident.
Now look at the commutative diagram:

$$
\begin{aligned}
& Z_{p, k-1}^{r} \subseteq E_{p}^{r} \quad{ }_{p}^{k_{p}^{r}} D_{p-1}^{r} \\
& \phi \text { sure. } \\
& z_{p, 1}^{r+k-1} \subseteq E_{p}^{r+k-1} \stackrel{k_{p}^{r+k-1}}{\rightarrow} D_{p-1}^{u l} \\
& \downarrow \text { surg. }
\end{aligned}
$$

Taking into account the definition of $Z_{p, k}^{r}=\phi^{-1}\left(z_{p, 1}^{x+k-1}\right)$ it becomes fairly evident that k_{p}^{x} maps $z_{p, k}^{r}$ onto ken i_{p-1}^{x+k}.

QED.
Now apply the functor ${ }_{k} \frac{1 m}{\sigma} \frac{1}{2}$ to the exact sequence of (2.1).
Since the projective system cover i_{p+x-2}^{x} is constant with respect to
$k \in \mathbb{Z}$ we obtain the exact sequence:
 and the isomorphism
(4)

$$
\begin{aligned}
\lim _{k \in Z}(1) Z_{p, k}^{m} & \cong \lim _{k \in Z}(1) \text { ker } 1_{p-1}^{x+k} \\
& \cong \lim _{k \in Z}(1) \text { ker } i_{p-1}^{k}
\end{aligned}
$$

In particular we find that the projective systems indexed by $r \in Z$,
 that in the notations of $[5]$:

$$
\lim _{k \in Z} Z_{p, k}^{x}=\cap_{k \in Z} Z_{p, k}^{x}=\bar{E}_{p}^{x}
$$

and, by definition,

Since $\lim _{k \in \mathbb{Z}}^{(1)} \mathbb{Z}_{\mathrm{p}, k}^{\mathrm{r}}$ is constant with respect to r we may define:

$$
\begin{equation*}
I_{F_{p}}=\lim _{k \in Z}^{(1)} Z_{p, k}^{x} \tag{5}
\end{equation*}
$$

Then using the functor $\lim _{r} \mathrm{E} \mathrm{Z}$ on the sequence (3) we get an exact sequence:
(6) $0 \rightarrow \lim _{x \in Z} \operatorname{coker} i_{p+x-2}^{r} \rightarrow \mathrm{E}_{\mathrm{p}}^{\infty} \rightarrow{\underset{k}{\mathrm{E}} \in \mathrm{Z}}_{\lim \operatorname{ker}} \mathrm{i}_{\mathrm{p}-1}^{\mathrm{k}} \rightarrow 0$

Where in analogy with the definition above we have put:

$$
\begin{equation*}
I_{p}^{E_{p}^{\infty}}=\lim _{r \in \mathbb{Z}^{0}}(I) \frac{\bar{F}_{p}^{r}}{p} \tag{8}
\end{equation*}
$$

Now, look at the commutative diagrams of exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \eta_{p-1}^{p-k} \rightarrow D_{p-k} \rightarrow D_{p-1}^{k} \rightarrow 0 \\
& \text { in. } \quad 11 \int i_{p-1}^{k} \\
& 0 \rightarrow \operatorname{ker} \eta_{p}^{p-k} \rightarrow D_{p-k} \rightarrow D_{p}^{k} \\
& D_{p+r-2}^{r} \rightarrow D_{p+r-1} \rightarrow \operatorname{coker} \eta_{p+r-1}^{p-1} \rightarrow 0 \\
& i_{p+r-2}^{r} \downarrow \| \quad \downarrow \operatorname{surj} \text { 。 } \\
& 0 \rightarrow D_{p+r-1}^{r} \rightarrow D_{p+r-1} \rightarrow \text { cover } \eta_{p+x-1}^{p} \rightarrow 0 .
\end{aligned}
$$

Using the snake lemma we get exact sequences:

$$
\begin{align*}
& 0 \rightarrow \text { kex } \eta_{p-1}^{p-k} \rightarrow \text { kex } \eta_{p}^{p-k} \rightarrow \text { kex } i_{p-1}^{k} \rightarrow 0 \\
& 0 \rightarrow \text { comer } i_{p+r-2}^{x} \rightarrow \text { cover } \eta_{p+x-1}^{p-1} \rightarrow \operatorname{coker} \eta_{p+x-1}^{p} \rightarrow 0 \tag{10}
\end{align*}
$$

Applying the functor $\lim _{k \in Z}^{\lim ^{*} \in}$ resp. $\lim _{x \in \mathbb{m}}^{\vec{~}} Z$ on these sequences we are left With the exact sequences:

$$
\begin{align*}
& 0 \rightarrow I_{p}^{E_{p}} 1_{1}^{H}{ }_{p-1} \rightarrow I_{p}^{H}+\underset{{ }_{9}}{\lim } \text { cover } 1_{p+x-2}^{r} \rightarrow H_{p-1} \rightarrow H_{p} \rightarrow 0 \tag{10}
\end{align*}
$$

Together (6) and (10) give us,
Theorem (2.2) For any $E \in S(D)$ we have the following diagram of exact sequences:

3. Convergence of spectral sequences.

The following theorems are the main results in this paper. Theorem (3.1) Suppose $\in \in S(D)$, then the following conditions are equivalent
(i) For every $p \in Z$ there exists a $x_{p} \geq I$ such that

$$
{ }_{E_{p}}^{r_{p}} \simeq E_{p}^{\infty}
$$

(ii) For evexy $p \in Z$ the projective system
(I) $\left\{\operatorname{ker} \eta{\underset{p}{p m}\}_{k} \in Z^{+}}^{+}\right.$
is stable, and the projective system
(2)

$$
\left(\text { coker } \eta_{\mathrm{p}+\mathrm{k}}^{\mathrm{p}}\right)_{\mathrm{k} \in \mathrm{z}^{+}}
$$

is costable.
If one of these conditions is satisfied we shall say that the spectral
sequence $\left\{\mathbb{H}^{r}\right\}$ converge.
Proof. Consider the exact sequences (see (2).

$$
\begin{equation*}
0 \rightarrow \text { coker } i_{p+r-2}^{r} \rightarrow Z_{p, k}^{r} \rightarrow \text { ker } i_{p-1}^{r+k} \rightarrow 0 \tag{3}
\end{equation*}
$$

(4) $0 \rightarrow \operatorname{kex} \prod_{p-1}^{p-k-x} \rightarrow \operatorname{ker} \eta_{p}^{p-k-x} \rightarrow \operatorname{ker} 1_{p-1}^{r+k} \rightarrow 0$
(5) $0 \rightarrow$ coker $i_{p+i r-2}^{r} \rightarrow \operatorname{coker} \eta_{p+i-1}^{p-1} \rightarrow \operatorname{coker} \eta_{p+r-1}^{p} \rightarrow 0$

If (1) is stable we must have that

$$
\begin{equation*}
\left\{\text { ker } i_{p-1}^{r+k}\right\}_{k \in Z^{+}} \tag{6}
\end{equation*}
$$

is stable, but being monomorphic it has to be constant for big k 's.
A dual argument shows that if (2) is costable, then

$$
\begin{equation*}
\left(\text { coker } i_{p+x-2}^{r}\right\}_{r \in Z^{+}} \tag{7}
\end{equation*}
$$

is constant for big x^{\prime} 's.
As (3) is exact we have proved that (ii) imply that the projective system

$$
\begin{equation*}
\left\{\mathrm{Z}_{\mathrm{p}, \mathrm{k}}^{\mathrm{r}}\right\}_{x, k \in \mathrm{Z}^{+}} \tag{8}
\end{equation*}
$$

is constant for fing r and k 's.
This means thet there exists $x_{0}, k_{0} \in Z^{+}$such that

$$
E_{p}^{\infty} \simeq z_{p, k_{0}}^{r_{0}} \simeq E_{p}^{r_{0}+k_{0}}
$$

thus (1 i) $\Rightarrow(\mathrm{i})$.
To prove (i) \Rightarrow (ii) we start by observing that (i) is, in fact, equivalent to (8) being constant for $r \geq r_{p}$ and $k \geq 0$. So suppose (8) is constant, for $x \geq x_{p}$ and $k \geq 0$, then using the exactness of (3) we
find that (6) and (7) are constant for $k \geq r_{p}$ resp, $r \geq r_{p}$. Now sup. pose we are given a $k \geq 0$ and let us choose a. $k^{\prime} \geq k$ such that
(9) \quad ker $i_{p-j}^{s}=k e r i_{p-j}^{k^{\prime}}$ for all $s \geq k^{\prime}$ and $I \leq j \leq k$.
(We may put $k^{\prime}=\max \left\{r_{p}, r_{p-1}, \cdots, r_{p-k+1}\right\}_{0}$)
For each $1 \leq j \leq k$ consider the comnutative diagram

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \eta_{\mathrm{p-j}}^{p-\mathrm{s}} \rightarrow \operatorname{ker} \eta_{\eta-\mathrm{p}+1}^{p-\mathrm{s}} \rightarrow \operatorname{ker} \mathrm{i}_{\mathrm{p}-\mathrm{j}}^{\mathrm{s}} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \eta \frac{p-k}{p-j} \rightarrow \operatorname{ker} \eta_{p-j+1}^{p-k} \rightarrow \operatorname{ker} i_{p-j}^{k} \rightarrow 0
\end{aligned}
$$

in which each horizontal sequence is exact.
Using the snake lemma we get a diagram
$0 \rightarrow \operatorname{coker}\left(\operatorname{ker} \eta_{p-j}^{p-s} \rightarrow \operatorname{ker} \eta_{p-j}^{p-k}\right\} \rightarrow \operatorname{coker}\left(\operatorname{ker} \eta_{p-j+1}^{p-s} \rightarrow \operatorname{ker} \eta_{p-j+1}^{p-k}\right\} \rightarrow \operatorname{coker}\left(\operatorname{ker} i_{p-j}^{s} \rightarrow \operatorname{ker} i_{p-j}^{k}\right\} \rightarrow 0$
$\phi_{j}^{s} \downarrow \quad \phi_{j-1}^{s} \downarrow$ ॥
$0 \sim \operatorname{coker}\left\{\operatorname{ker} \eta_{p-j}^{p-k^{\prime}} \rightarrow \operatorname{ker} \eta_{p-j}^{p-k}\right\} \rightarrow \operatorname{coker}\left(\operatorname{ker} \eta_{p-j+1}^{p-k^{\prime}} \rightarrow \operatorname{ker} \eta_{p-j+1}^{p-k}\right\} \rightarrow \operatorname{coker}\left(\operatorname{ker} i_{p-j}^{k \prime} \rightarrow \operatorname{ker} i_{p-j}^{k}\right\} \rightarrow 0$
in which the sequences are exact.
Now for all $s \geq k^{\prime} \phi_{k}^{s}$ is an isomorphism, both sides being zero, thus $\phi_{k . .1}^{s}$ is an isomorphism for all $s \geq k^{\prime}$. Continuing we readily find that ϕ_{0}^{s} is an isomorphism for all $s \geq k^{\prime}$, thus proving that (1) is stable.

A dual argument may be used to prove that (2) is costable, thus finishing the proof.

QED.
Theorem (3.2) Suppose $E \in S(D)$ then the following conditions are
equivalent
(1) There exists a $x \geq 1$ such that

$$
\mathbb{E}^{r} \cong \mathbb{E}^{\infty}
$$

(ii) There exists a $x \geq 1$ such that for every $p \in Z$ the projective system

$$
\left(\operatorname{ker} \eta_{p}^{p-k}\right)_{k \in Z^{+}}
$$

is stable of uniform height r, and the projective system

$$
\left\{\operatorname{coker} \eta_{p+k}^{p}\right\}_{k \in Z^{+}}
$$

is costable of uniform depth r.
If one of these conditions is satisfied we shall say that the spectral sequence $\left(E^{r}\right)$ converges uniformiy.

Proof. In the proof of (3.1) we may put $r_{p}=r$ and k^{\prime} can be chosen equal to r. This proves the theorem.

QED.
Proposition (3.3) Suppose that $\left\{\mathrm{E}^{r}\right\}$ converges uniformly, then
D is stable
and

$$
\overline{\mathrm{D}} \text { is costable. }
$$

Proof. As for each $s \in Z^{+}$the projective system

$$
\left\{\operatorname{ker} \eta_{\mathrm{p}+\mathrm{s}}^{\mathrm{p}-\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{Z}^{+}}
$$

is stable of uniform height r we have for every s and k and every $t \geq r$ an isomorphism

Now him and coke commute, thus
and by definition of D this is the same as

$$
\operatorname{coker}\left\{D_{-\mathrm{p}-\mathrm{k}-\mathrm{x}} \rightarrow \mathrm{D}_{\mathrm{p}-\mathrm{k}}\right\} \cong \operatorname{coker}\left(\mathrm{D}_{-\mathrm{p}-\mathrm{k}-\mathrm{t}} \rightarrow \mathrm{D}_{\mathrm{p}-\mathrm{k}}\right\}
$$

but this means that D is stable.
A dual argument shows that $\overline{\mathrm{D}}$ is costable.
QED.
Corollary (3.4) Suppose that $\left\{\mathrm{E}^{7}\right\}$ converges, then
(i) For all $p \in Z$

$$
I_{H} P=H_{P}=0
$$

(ii) For every $p \in Z$ we have an exact sequence

$$
0 \rightarrow \operatorname{ker}\left\{H_{p-1} \rightarrow H_{p}\right\} \rightarrow E_{p}^{\infty} \rightarrow \operatorname{coker}\left\{\mu^{p-1} \rightarrow H^{p}\right\} \rightarrow 0
$$

(iii) For every $p \in Z$ there are exact sequences

$$
\begin{aligned}
& 0 \rightarrow \lim _{\lim } D(1) \rightarrow 0^{H} \rightarrow \lim _{p} H_{p} \lim ^{(1)} D(1) \rightarrow 0
\end{aligned}
$$

(iv) For every $p \in Z$ there sure exact sequences

$$
\begin{aligned}
& 0 \rightarrow I_{D_{p}}(1) \rightarrow D_{p} \rightarrow \bar{D}_{p} \rightarrow I_{H} \rightarrow 0 \\
& 0 \rightarrow 1^{H} \rightarrow D_{p} \rightarrow D_{p} \rightarrow 1_{p}(1) \rightarrow 0
\end{aligned}
$$

($v^{\prime} I_{D(I)}$ is epimorphic and $I^{D(I)}$ is monomorphic.

Proof. By (3.1) we know that $\left\{\operatorname{ker} \eta_{p}^{p-k}\right\}_{k \in Z^{+}}$is stable, thus by (1.5):

$$
I_{H} p \approx \lim _{k}^{(1)} \operatorname{ker} q_{p}^{p-k}=0 .
$$

Dually, we find $I_{1} H_{p}=0$. Together this gives us (i), and (ii) follows irmediately from (2.2) and (i).

Now using (i) and the exact sequences

$$
0 \rightarrow \operatorname{ker} \eta_{p}^{s} \rightarrow D_{s} \rightarrow \operatorname{im} \eta_{p}^{s} \rightarrow 0
$$

$$
\begin{equation*}
0 \rightarrow \operatorname{im} \eta_{\mathrm{s}}^{\mathrm{p}} \rightarrow \mathrm{D}_{\mathrm{s}} \rightarrow \operatorname{coker}_{\mathrm{s}}^{\mathrm{p}} \rightarrow 0 \tag{10}
\end{equation*}
$$

we get the exact sequences

$$
\begin{align*}
& 0 \rightarrow H^{p} \rightarrow O_{H} \rightarrow I_{D} \rightarrow 0 \tag{11}\\
& 0 \rightarrow I_{p} \rightarrow D_{0}^{H} \rightarrow H_{p} \rightarrow 0
\end{align*}
$$

and the isomorphisms

From the exactness of the sequences (11) we deduce that ${ }^{l_{D}}$ is epimorphic and I^{D} is monomorphic, Applying respectively $\underset{\vec{p}}{\lim }$ and $\frac{\lim }{p}$ to the same sequences (1J) we get (iii), and applying $\underset{\vec{p}}{\lim }$ and $\underset{\underset{p}{p}}{\frac{1 i m}{}}$ to the exact sequences of (10), using (12), we finally deduce (iv).

QED.
Corollary (3.5) Suppose $\left\{\mathrm{E}_{x}\right\}$ converges and suppose further that

$$
0^{H=} 1^{H}=0
$$

then for each $p \in Z$ there is an exact sequence
(i)

$$
0 \rightarrow H^{p-1} \rightarrow H^{p} \rightarrow E_{p}^{\infty} \rightarrow 0
$$

Moreover we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \lim _{\lim ^{p}} \mathrm{H}^{p} \mathrm{~K}_{\mathrm{H}} \rightarrow \lim _{\rightarrow}(1) \bar{D} \rightarrow 0 \tag{ii}
\end{equation*}
$$

and the isomorphism

$$
\begin{equation*}
l_{\mathrm{H}} \cong \lim _{\rightarrow} \overline{\mathrm{D}} \tag{iii}
\end{equation*}
$$

Proof. Consider the exact sequence of (3.4)

$$
0 \rightarrow I_{D}(1) \rightarrow D \rightarrow \bar{D} \rightarrow I_{H} \rightarrow 0 .
$$

This may be split into two exact sequences

$$
\begin{aligned}
& 0 \rightarrow I_{\mathrm{D}(1)} \rightarrow \mathrm{D} \rightarrow \mathrm{~K} \rightarrow 0 \\
& 0 \rightarrow \mathrm{~K} \rightarrow \overline{\mathrm{D}} \rightarrow I_{\mathrm{H}} \rightarrow 0 .
\end{aligned}
$$

Now $\lim _{\rightarrow \rightarrow}(0)^{D=0}$ and $\lim _{\underline{M}}(1) I_{\mathrm{H}}=0$ so we deduce

$$
\begin{aligned}
& \lim _{\rightarrow}(1)^{I} D(1)=0 \\
& \lim _{\rightarrow} K=0 \\
& \lim _{\rightarrow} \check{D} \simeq 1_{H} \quad \lim _{\rightarrow D} D(1) \simeq \lim _{\rightarrow}(1) K \simeq \lim _{\rightarrow}(1) D
\end{aligned}
$$

and this together with (3.4) proves the corollary.
QED.
Corollary (3.6) Suppose $\left\{\mathrm{E}_{\mathrm{r}}\right\}$ converges and suppose

$$
H^{*}=I_{H^{*}}=0
$$

then for each $p \in Z$ there is an exact sequence
(i)

$$
0 \rightarrow E_{p}^{\infty} \rightarrow H_{p-1} \rightarrow H_{p} \rightarrow 0
$$

Moreover we have an exact sequence
(ii)

$$
0 \rightarrow \lim ^{(1)} \underset{D}{ } \rightarrow{ }_{0}^{H} \rightarrow \lim _{p} H_{p} \rightarrow 0
$$

and the isomorphism

$$
\begin{equation*}
1^{H} \cong \operatorname{Iim} \underline{D} \tag{iiii}
\end{equation*}
$$

Proof. Dual to that of (3.5).
Corollary (3.7) Suppose that $\left\{\mathrm{F}^{\mathrm{r}}\right\}$ converges uniformly then
(i) For all $p \in Z$

$$
I_{H} p={ }_{1} H_{p}=0
$$

(ii) For every $p \in Z$ we have an exact sequence

$$
0 \rightarrow \operatorname{ker}\left\{H_{p-1} \rightarrow H_{p}\right\} \rightarrow E_{p}^{\infty} \rightarrow \operatorname{coker}\left\{H^{p-1} \rightarrow H^{p}\right\} \rightarrow 0
$$

(iiii) For every $p \in Z$ we have an exact sequence

$$
0 \rightarrow 2^{H} \rightarrow \underset{p}{\lim _{p}} H^{p} \rightarrow O_{H} \rightarrow 0^{H} \rightarrow \lim _{p} H_{p} \rightarrow I_{H} \rightarrow 0 .
$$

Moreover we have isomorphisms

$$
\begin{equation*}
\lim _{\rightarrow} H^{p} \cong \lim \underset{q}{D} \text { and } \underset{\sim}{\lim } H_{p} \cong \lim _{\rightarrow} \bar{D} \tag{iv}
\end{equation*}
$$

Proof. Using (3.3) and (1.5) we know that

$$
\lim _{\vec{\rightarrow}}(1) \bar{D}=0, \quad \lim ^{(1)} \underline{D}=0
$$

Now from (iv) of (3.4) we deduce two exact sequences:

$$
\begin{aligned}
& 0 \rightarrow D_{D}(1) \rightarrow D \rightarrow K \rightarrow 0 \\
& 0 \rightarrow K \quad \rightarrow \bar{D} \rightarrow I_{H} \rightarrow 0
\end{aligned}
$$

From the last one we conclude:

$$
\operatorname{lif}^{m}(x) k=0
$$

and the sequence

$$
0 \rightarrow \lim K \rightarrow \lim _{\rightarrow \rightarrow} \bar{D} \rightarrow I_{H} \rightarrow 0
$$

is exact.
From the first we then get the exact sequence

$$
0 \rightarrow \lim ^{1} D(1) \rightarrow 0^{H} \rightarrow \lim _{\rightarrow} K \rightarrow 0
$$

and the isomorphism

$$
\lim _{\rightarrow \rightarrow}(I)^{1} \simeq_{1}{ }^{H} \text {. }
$$

Putting things together, using (iii) of (3.4) we get the Pollowing exact sequence

$$
0 \rightarrow x^{H} \rightarrow \lim _{\vec{p}} H^{p} \rightarrow o_{H} \rightarrow o^{H} \rightarrow \lim _{\rightarrow} \bar{D} \rightarrow I_{H} \rightarrow 0 .
$$

Dually we find the exact sequence

The 5-1emma then concludes the proof.
QED.
Remark (3.8), Let D be a monomorphic projective system of abelian groups, and suppose $D_{p} \simeq D_{0}$ for all $p \geq 0$. Then we know that

$$
I_{\mathrm{H}}=\lim ^{(I)} \mathrm{D} \neq 0
$$

if and only if D_{0} is nondiscrete, but not complete, in the topology induced by the subgroups D_{p} for $p \leq 0$. As the projective system $\left\{\operatorname{ker} \eta_{\mathrm{p}}^{p-\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{Z}^{4}}$ is zero and the projective system $\left\{\text { coker } \eta_{\mathrm{p}+\mathrm{k}}^{p}\right\}_{k \in Z^{+}}$is monomorphic, the condition (ii) of (3.2) is satisfied. Thus the condition (i) of (3.2) does not exclude the situation ${ }^{1} \neq 0$. If we change the projective system D by imposing $D_{p}=0$ for $p>0$, then we find that
the condition (ii) of (3.1) is satibfied if and only fif for some p_{0} we have $D_{p} \simeq D_{p_{0}}$ for all $p \leq p_{0}$.

If this last condition is not satisfied we will not be able to obtain $\mathrm{E}_{\mathrm{I}}^{\infty}$ after a finite number of steps, i.e. as an $\mathrm{F}_{\mathrm{I}}^{r}$ 。 Remark (3.9) By (3.1) we find that if for some $E \in S(D)\left(E_{r}\right)$ converges then the same is true for any $E \in S(D)$.
Remark (3.10) It is easy to show that if for $p_{1}<p_{2}$ the projective system $\left\{\text { ker } \eta_{p_{2}}^{k}\right\}_{k}<p_{2}$ resp. \quad coker $\left.\eta_{k} \mathrm{p}_{\mathrm{I}}\right\}_{k}>p_{I}$ is stable resp. costable then so is also the projective system $\left\{\text { ker } \eta_{p_{1}}^{k}\right\}_{k}<p_{I} \quad$ resp. $\quad\left\{\text { coker } \eta_{k} p_{k}\right\}_{k} p_{2}$. Moreover if $\left\{\operatorname{ker} \eta_{p}^{k}\right\}_{k}<p$ is stable then using the exact sequence

$$
0 \rightarrow \operatorname{ker} \eta_{p}^{p-k} \rightarrow D_{p-k} \rightarrow \operatorname{im} \eta_{p}^{p-k} \rightarrow 0
$$

we find an exact sequence

$$
0 \rightarrow H^{p} \rightarrow O_{H} \rightarrow I_{D(1)} \rightarrow 0 .
$$

Suppose that D is a projective system of graded objects from c, and Let $\mathrm{c}^{*}{ }_{Z}$ be the subcategory of c_{Z} consisting of such objects and morphisms of degree 0 : Then of course, ${ }^{i} H$, and ${ }_{i}{ }^{H}$ are graded objects. Moreover the filtration

$$
\left\{\mathbb{H}^{p}\right\}_{p \in Z}
$$

of ${ }^{\circ} \mathrm{H}$, and the cofiltration

$$
\left(H_{p}\right)_{p \in Z}
$$

of o^{H} are graded, i.e. for every $p \in Z$ the morphisms

$$
\begin{aligned}
& H^{p-1} \rightarrow H^{p} \rightarrow O_{H} \\
& o^{H} \rightarrow H_{p-I} \rightarrow H_{p} \\
& I_{H}^{p-I} \rightarrow I_{H^{p}}^{p} \rightarrow I_{H} \\
& I^{H} \rightarrow I^{H} p-I \rightarrow I_{p}^{H}
\end{aligned}
$$

are of degree zero.
Let E be an element of $S(D)$ and assume for each $p \in Z$ that E_{p} is graded, so that the resulting exact couple

is bigraded. The set of such E will be denoted by $S^{*}(D)$. We shall call the \underline{p} in E_{p}, respectively D_{p}, the primaxy degree, and the n in the graduations $\left\{E_{p, n}\right\}_{n \in Z}$ and $\left\{D_{p, n}\right\}_{n \in Z}$ of E_{p} respectively D_{p} the total degree.

Thus i will always have total degree 0 . Suppose j have total degree u and k have total degree v, then the total degree of $j(r)$ is u and the total degree of $k^{(x)}$ is v.

In particular the morphisms in the exact sequence of (2.1) have total degree u and v respectively, and the same must be true for the morphisms in the exact sequences (3) and (6) of 82.

In the same way we find that the isomorphisms (7) of $\$$ have total degree v and $+u$ respectively.

As the total degree of 1 is 0 we find, moreover, that the morphisms in the sequences (1) of $\$ 2$ have total degree 0 . Together this gives us the following bigraded version of (2.2).

Theorem (3.11) For any object D in C_{Z}^{*} and for any $E \in S^{*}(D)$ such that the total degrees of j and k are u and v respectively, we have the following diagrom of exact sequences

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p}, \mathrm{n}}^{\infty}
\end{aligned}
$$

Now looking carefully at the proof of (3.1) we find the following theorems: Theorem (3.12) Suppose D is an object of c_{-}^{*} and let $E \in S *(D)$, then the following conditions are equivalent
(i) For every $p \in Z$ there exists on $r_{p, n} \in Z$ such that

$$
E_{p, n}^{r p, n} \simeq E_{p, n}^{\infty}
$$

(ii) For every $p \in Z$ the projective system

$$
\left\{\operatorname{ker} \eta_{p}^{p-k}(n+v)\right\}_{k \in Z^{+}}
$$

is stable, and the projective system

$$
\left\{\operatorname{coker} \eta_{p+k}^{p}(n-u)\right\}_{k \in Z^{+}}
$$

is costable.
Here we have denoted by $\eta_{p}^{p^{p}}(n)$ the n^{\prime} th homogeneous component of $\eta \frac{p^{p}}{p}$.
Theorem (3.13) Suppose D is an object in ${\underset{Z}{*}}_{*}^{*}$ and let $E \in S_{Z}^{*}$, then the following conditions are equivalent.
(i) There exists an $x_{n} \in Z$ such that

$$
E_{p, n}^{r_{n}} \simeq{\underset{p}{p, n}}_{\infty}^{\infty} \quad \text { for every } p \in Z
$$

(ii) There exists an $r_{n} \in Z^{+}$such that for every $p \in Z$ the projective system

$$
\left\{\operatorname{ker} \eta{\underset{p}{p-k}(n+v)\}_{k} \in Z^{+}}^{p}\right.
$$

is stable of uniform height r_{n}, and the projective system

$$
\left\{\operatorname{coker} \eta_{\mathrm{p}+\mathrm{k}}^{\mathrm{p}}(n-\mathrm{u})\right\}_{\mathrm{k}} \in \mathrm{Z}^{+}
$$

is costable of uniform depth r_{n} 。
Remark (3.14) Using the renark (3.10) and the theorem (3.12) one may easily deduce the theorem of Shith [9], see also Proposition (13.7.4) of [4].

Let c. be a complex in c with differential d of degree -1 . Then a system of complexes $\left\{F_{p} c_{0}\right\}_{p \in z}$ is called a filtration of c_{0}. if there are given for every $p \in Z$ monomorphisms

$$
\mathbb{F}_{p-1} c_{0} \rightarrow F_{p} c_{0} \rightarrow c_{0}
$$

Dually we say that a system of complexes $\left\{K_{p} c_{0}\right\}_{p \in Z}$ is a cofiltration of c. if there are given for every $p \in Z$ epimorphisms

$$
c_{e} \rightarrow K_{p-1} c_{0} \rightarrow K_{p} c_{0}
$$

We shall assume that for every filtration

$$
\underset{\mathrm{p}}{\lim } \mathrm{~F}_{\mathrm{p}} \mathrm{c}_{0} \approx c_{0}
$$

and for every coflitration

$$
\lim _{k_{p}} c_{0} \cong .
$$

From this we deduce the relations

$$
\begin{aligned}
& \lim _{\vec{p}}(0) \operatorname{coker}\left(F_{p} c_{0} \rightarrow c_{0}\right\}=0, \lim _{\vec{p}}(1) F_{p} c_{0}=0 \\
& \frac{\lim }{\stackrel{p}{p}}(0) \operatorname{ker}\left(c_{0} \rightarrow K_{p} c_{0}\right)=0, \lim _{\underset{p}{p}}(1) K_{p} c_{0}=0
\end{aligned}
$$

Using the general theory of the functors \lim and $\frac{1 \mathrm{im}}{4}$ (see [6] and [7]) and spectral sequences we get in the case of a filtration the following diagroms of exact sequences.

$$
\begin{aligned}
& 0 \\
& \uparrow
\end{aligned}
$$

(13)
and in the case of a cofiltration dual diagrams.
Now, look at the projective systems of graded objects

$$
\begin{aligned}
& F_{:} \ldots \rightarrow H_{0}\left(F_{p-1} c_{0}\right) \rightarrow H_{0}\left(F_{p} c_{0}\right) \rightarrow H_{0}\left(F_{p+1} c_{0}\right) \rightarrow \cdots \\
& K_{0} \ldots \rightarrow H_{0}\left(K_{p-1} c_{0}\right) \rightarrow H_{0}\left(K_{p} c_{0}\right) \rightarrow H_{0}\left(K_{p+1} c_{0}\right) \rightarrow \cdots .
\end{aligned}
$$

The problem is to calculate H_{0} (c.) by using spectral sequences associated to the projective systems F and K.

There exist natural exact couples in $S *(F)$ and $S *(K)$, given by

$$
\begin{aligned}
& E=\left(E_{p}\right) \text { with } E_{p}=H_{v}\left(\operatorname{coker}\left(F_{p-1} c_{0} \rightarrow F_{p} c_{0}\right\}\right) \\
& J=\left(J_{p}\right) \text { with } J_{p}=H_{0}\left(\operatorname{ker}\left(K_{p-1} c_{0} \rightarrow K_{p} c_{0}\right\}\right)
\end{aligned}
$$

The total degree of j_{E} is 0 , the total degree of k_{E} is -1 , the total degree of j_{J} is -1 and that of k_{J} is 0 , the notations being evident.

By (3.2) we then have the following diagrams of exact sequences

$$
\begin{aligned}
& \rightarrow \begin{array}{l}
0 \\
d
\end{array} \\
& 0 \rightarrow I_{M_{p, n+1}^{\infty}}^{\infty} \rightarrow 1_{p-1, n}^{H} \rightarrow I_{p, n}^{H} \rightarrow \underset{p}{*} \rightarrow H_{p-1, n} \rightarrow H_{p, n} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

and:

$$
\begin{aligned}
& 0 \\
& \downarrow \\
& 0 \rightarrow{ }_{1} J_{p, n+1}^{\infty} \rightarrow 1_{1} \mathrm{H}_{\mathrm{p}-1, \mathrm{n}+1} \rightarrow 1_{1}^{\mathrm{H}} \mathrm{p}, \mathrm{n}+1 \rightarrow \underset{\downarrow}{*} \rightarrow \mathrm{H}_{\mathrm{p}-1, \mathrm{n}+1} \rightarrow \mathrm{H}_{\mathrm{p}, \mathrm{n}+1} \rightarrow 0 \\
& J_{p, n}^{\infty} \\
& 0 \rightarrow H^{p-I, n} \rightarrow H^{p, n} \rightarrow \begin{array}{l}
\downarrow \\
* \\
\downarrow
\end{array}+I_{H^{p-1, n}} \rightarrow I_{H}^{p, n} \rightarrow I_{J_{p, n-1}^{\infty}}^{\infty} \rightarrow 0
\end{aligned}
$$

The following results generalize the Corollary (6.3) of [3]. Theorem (3.15) Suppose $\operatorname{7im}^{(0)} F_{p} c_{*}=0$ and suppose for some $p_{0} \in Z^{+}$ that $F_{p} c_{0}=F_{p_{0}} c_{0}$ for all $p \geq p_{0}$. If $\left(E^{r}\right\}$ converges uniformily, then

$$
E_{p}^{\infty}=\operatorname{ker}\left(H_{p-1} \rightarrow H_{p}\right), H_{\omega}\left(c_{0}\right)=\operatorname{qim}_{\&} H_{p} .
$$

Theorem (3.16) Suppose $\underset{\sim}{\lim }(.) K_{p} c_{0}=0$ and suppose for some $p_{0} \in Z^{+}$ $K_{p} c_{0}=K_{p_{0}}$ c. for $a I I \quad p \leq p_{0}$. If $\left\{J^{x}\right\}$ converges uniformy, then;

$$
\exists_{p}^{\infty}=\operatorname{coker}\left\{H^{p-l} \rightarrow H^{p}\right\}, H_{0}\left(c_{0}\right)=\lim _{\rightarrow} H^{p} .
$$

Proof. Using (3.7) and the diagrams (13) these results become obvious.
QED.
We are now going to explicit the conditions (ii) of (3.12) and (3.13)
to the case of a filtered complex.
Proposition (3.17) The condition (ii) of (3.12) for the projective system F above, is equivalent to the following
(i) For every $p \in Z$ and $k \in Z^{+}$there exists a $k^{\prime} \in Z^{+}$such that for every $k^{i n} \geq k^{\prime}$

$$
\begin{align*}
& z_{p-k}^{n} \cap B_{p}^{n}+B_{p-k}^{n}=Z_{p-k^{\prime}}^{n} \cap B_{p}^{n}+B_{p-k}^{n} \tag{14}\\
& B_{p+k^{\prime \prime}}^{n} \cap z_{p+k}^{n}+z_{p}^{n}=B_{p+k^{\prime}}^{n} \cap z_{p+k}^{n}+z_{p}^{n} \tag{15}
\end{align*}
$$

where $Z_{p}^{n}=\operatorname{ker}\left(F_{p} c_{n} \xrightarrow{d} F_{p} c_{n-1}\right\}, B_{p}^{n}=\sin \left(F_{p} C_{n+1} \xrightarrow{d} F_{p} c_{n}\right\}$.
Proof. We have

$$
\begin{aligned}
& \operatorname{ker} \eta_{p}^{p-k}=Z_{p-k} \cap B_{p} / B_{p-k} \\
& \operatorname{coker} \eta_{p+k}^{p}=Z_{p+k} / Z_{p}+B_{p+k}
\end{aligned}
$$

Using this we readily show that (1) is equivalent to $\left\{\operatorname{ker}_{p}^{p-k}(n)\right)_{k e Z^{*}}$ being stable, and (2) is equivalent to $\left\{\text { coker } \eta_{p+k}^{p}(n)\right\}_{k \in Z^{+}}$being costable.

QED,
Now as intersection and kernel commute we have:

$$
\begin{aligned}
& z_{p-k^{\prime \prime}}^{n} \cap B_{p}^{n}=F_{p-k^{\prime \prime}} c_{n} \cap B_{p}^{n} \\
& B_{p+k "}^{n} \cap z_{p+k}^{n}=B_{p+k^{\prime \prime}}^{n} \cap F_{p+k} c_{n}
\end{aligned}
$$

Moreover (15) is equivalent to

$$
\begin{equation*}
B_{p+k k^{\prime \prime}}^{n} \cap z_{p+k}^{n}+F_{p} c_{n}=B_{p+k} \cap \cap z_{p+k}^{n}+F_{p} c_{n} \tag{16}
\end{equation*}
$$

Proposition (3.18) The conditions (ii.) of (3.13) for the projective system F above, is equivalent to the following (ii)' . There exists an $r_{n} \in Z^{+}$ such that for every $p \in Z, k, s \in Z^{\text {to }}$

$$
F_{p-r_{n}} c_{n} \cap d\left(F_{p+k} c_{n+1}\right) \subseteq F_{p-r_{n}-s} c_{n}+d\left(F_{p} c_{n+1}\right)
$$

Proof. Let x_{n} be the number in (3.13), then the condition (ii) of (3.13) is equivalent to the following condition

$$
F_{p-r_{n}-k-s} c_{n} \cap B_{p}^{n}+B_{p-k}^{n} * F_{p-k-r_{n}} c_{n} \cap B_{p}^{n}+B_{p-k}^{n}
$$

$$
\begin{equation*}
B_{p+k+x_{n}+s}^{n} \cap F_{p+j s} c_{n}+F_{p} c_{n}=B_{p+k+x_{n}}^{n} \cap F_{p+k} c_{n}+F_{p} c_{n} \tag{IT}
\end{equation*}
$$

for every $p \in Z$ and $k, s \in Z^{+}$.
But (ili) is equivalent to

$$
\begin{equation*}
F_{p-k-r_{n}} c_{n} \cap B_{p}^{n_{1}} \subseteq F_{p-k-x_{n}-s} c_{n}+B_{p-k}^{n} \tag{18}
\end{equation*}
$$

$$
\mathrm{B}_{p+k+r_{n}+s} \cap F_{p+k} c_{n} \subseteq B_{p+k+r_{n}}^{n}+F_{p} c_{n}
$$

If we in the first formula put p for $p-k$ and in the second put p for $p+i k+r_{n}$ we find that (18) is equivalent to

$$
F_{p-r_{n}} c_{n} \cap B_{n+k}^{n} \subseteq F_{p-x_{n}-s}+B_{p}^{n}
$$

QED.
Corollary (3.19) Suppose that c. is a complex of R-modules, R being a conmutative ring, and suppose the filtration $\left\{F_{p} c_{0}\right\}_{p \in Z}$ is bounded to the right, i.e. $F_{p} c_{0}=F_{p_{0}} c_{\text {. for some }} p_{0}$ and all $p \geq p_{0}$. Suppose further that the submodules B_{p}^{n} of c_{n} is closed in the topology of c_{n} induced by the submodules $\left\{F_{p} c_{n}\right\}_{p \in Z}$. Then the condition (ii) of (3.13) is equivalent to
(ii)' There exists an $r_{n} \in Z^{+}$such that for every $p \in Z$

$$
F_{p-x_{n}} c_{n} \cap d\left(c_{n+1}\right) \subseteq d\left(F_{p} c_{n+1}\right)
$$

Proof. Use (3.18) and remember that $\bigcap_{s \in Z^{+}}\left(F_{p-s}{ }^{c}{ }_{n}+A_{p}^{n}\right)=B_{p}^{n}$, since B_{p}^{n} is closed.

QED.
Remark (3.20) The above corollaxy generalizes a result of Serre, [8], II-I5. If we suppose $\frac{\lim }{f} F_{p} c_{0}=0$ we may avoid the condition that B_{p}^{n} be closed in c_{n}. In fact using $(2,10)$ and (4.6) we prove that if $\left\{\mathrm{E}^{r}\right\}$ converges then B_{p}^{n} is closed in c_{n}, thus (ii) \Rightarrow (ii)'. On the other hand (ii)' obviously imply (ii).

4. Tnduced morphisms.

Let

$$
\phi: C \rightarrow D
$$

be a morphism in ${\underset{-}{C}}$, and suppose given exact couples $\mathrm{E} \in S(C), I \in S(D)$ and a morphism of graded objects

$$
\psi: E \rightarrow I
$$

compatible with ϕ.
T? evidently we get morphisms

$$
\begin{aligned}
& \phi: i_{H}(C)=\lim _{L}(i) C \rightarrow \underset{\sim}{\lim (i)} D={ }_{H}(D) \\
& \phi: i^{H(C)}=\lim _{\rightarrow}(i) C \rightarrow \lim _{\rightarrow}(i) D={ }_{i} H(D) \\
& \psi^{r}: E^{r} \xrightarrow{r} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& C: \ldots \rightarrow C_{p-1}{ }_{k_{p-1}} C_{p} \rightarrow \cdots C=\left\{C_{p}, \rho_{p}^{p^{\prime}}\right\} \\
& D: \ldots \rightarrow D_{p-1} \xrightarrow{\lambda_{p-1}} D_{p} \rightarrow \cdots D=\left\{D_{p}, \eta_{p}^{p^{\prime}}\right\}
\end{aligned}
$$

be the two objects of c_{Z}.
Lemma (4.1) If the morphism ϕ induces isonorphisms

$$
\phi: \operatorname{ker} k_{p}^{r} \rightarrow \operatorname{ker} i_{p}^{r}
$$

for every

$$
p \in Z \text { and } r \in X^{+} \text {then } \phi \text { induces an iscmprhism }
$$

$$
\Phi: C \quad \longrightarrow \quad D .
$$

Proof. By $\mathrm{\xi}^{2}$ (9) we have a diagram of exact sequencea
(I)

$$
0 \rightarrow \operatorname{kex} \rho_{p-1}^{p-k} \rightarrow \operatorname{ker}_{\mathrm{p}} \mathrm{p}_{\mathrm{p}}^{\mathrm{p}-\mathrm{k}} \rightarrow \operatorname{ker}_{\mathrm{k}}^{\mathrm{k}-1} \mathrm{l} \rightarrow 0
$$

$$
\alpha_{p-1}^{k-1} \downarrow \quad \alpha_{p}^{k} \downarrow \quad \gamma_{p}^{k} \downarrow
$$

$$
0 \rightarrow \operatorname{ker} \eta_{p-1}^{p-k} \rightarrow \operatorname{ker} \eta_{p}^{\mathrm{p}-\mathrm{k}} \rightarrow \operatorname{ker} \mathrm{i}_{\mathrm{p}-1}^{\mathrm{k}} \rightarrow 0 .
$$

As γ_{p}^{k} is an isonoxphimm for all $p \in Z$ and $k \in Z^{+}$and as $\alpha_{p}^{I}=\gamma_{p}^{1}$ sn inductive argument shows that α_{p}^{k} is an isomorphism for all $p \in \mathbb{Z}$ and $k \in Z^{+}$。 But then

$$
C_{p}=\lim _{\vec{k}} \operatorname{kerg} \underset{p+k}{p}
$$

and

$$
\mathrm{D}_{\mathrm{p}}=\frac{\operatorname{Iim}_{\vec{k}}}{} \operatorname{ker} \eta_{\mathrm{p}+\mathrm{k}}^{\mathrm{p}}
$$

must be isomorphic.
QED.
Lerma (4.2) Tf the morphism ϕ induces isomorphisms

$$
\phi: \text { coker } k_{p}^{r} \rightarrow \text { coker } i_{p}^{T}
$$

for every $p \in Z$ and $x \in \mathbb{Z}^{+}$then ϕ induces an isomorphism

$$
\bar{\phi}: \overline{\mathrm{C}} \rightarrow \overline{\mathrm{D}} .
$$

Proof. Dual to that of (4.1).
QED.
Theorem (4.3) Suppose ϕ induces eithex isomorphisms

$$
\begin{aligned}
& \operatorname{ker}\left\{H^{p-1}(C) \rightarrow I_{H}^{p}(C)\right\} \rightarrow \operatorname{ker}\left\{H^{p-1}(D) \rightarrow I^{1} p(D)\right\} \\
& \operatorname{coker}\left\{H^{p-1}(C) \rightarrow H^{p}(C)\right\} \rightarrow \operatorname{coker}\left\{H^{p-1}(D) \rightarrow H^{p-1}(D)\right\}
\end{aligned}
$$

or isomoryniems

$$
\begin{aligned}
& \operatorname{coker}\left\{1_{1} H_{p-1}(C) \rightarrow I_{p}(C)\right\} \rightarrow \operatorname{coker}\left\{I_{p-1}(D) \rightarrow I_{p}(D)\right\} \\
& \operatorname{ker}\left\{H_{p-1}(C) \rightarrow H_{p}(C)\right\} \rightarrow \operatorname{ker}\left\{H_{p-1}(D) \rightarrow H_{p}(D)\right\}
\end{aligned}
$$

then if $\psi^{x_{0}}$ is an isomorphism, ϕ with induce isomorphism

$$
\begin{aligned}
& \overline{\mathrm{C}}^{x_{0}} \rightarrow \overline{\mathrm{D}}^{x_{0}} \\
& \underline{\mathrm{C}}^{x_{0}} \rightarrow \underline{\mathrm{D}}^{x_{0}} .
\end{aligned}
$$

Proof. Look at the commutative diagram of exact sequences (see (2.1)).

$$
\begin{aligned}
& 0 \rightarrow \operatorname{coker} k_{p+r-2}^{r} \rightarrow Z_{p, k}^{r}(c) \Rightarrow \operatorname{ker} k_{p-1}^{x+k} \rightarrow 0 \\
& \int \alpha_{p}^{r} \quad \int \psi_{p, k}^{r} \quad\left\lfloor\gamma_{p}^{r+k}\right. \\
& 0 \rightarrow \text { cover } i_{p+r_{i=2}}^{r} \rightarrow z_{p, k}^{r}(D) \rightarrow \text { er } i_{p-1}^{r+k} \rightarrow 0
\end{aligned}
$$

where α_{p}^{r} and γ_{p}^{r+k} axe induced by ϕ and $\psi_{p, k}^{r}$ is induced by ψ^{r}. For $r \geq r_{0}$ and $k \in \mathbb{Z}^{+}$we know that $\psi_{p, k}^{r}$ is an isomorphism. Applying $\underset{\underset{k}{l}}{\underset{k}{\lim }}$ and $\underset{\underset{r}{x}}{\operatorname{lin}}$ on this diagram we get the following commutate diagram (see ge (6)).

$$
\begin{aligned}
& \downarrow \alpha_{p} \quad \downarrow \psi \quad l \gamma_{\mathrm{p}} \\
& 0 \rightarrow \underset{\underset{r}{x}}{\lim } \text { cover } i_{\mathrm{p}+\mathrm{r}-2}^{x} \rightarrow \mathrm{I}^{\infty} \rightarrow \frac{\lim }{\mathrm{k}} \text { er } \mathrm{i}_{\mathrm{p}-1}^{\mathrm{k}} \rightarrow 0 \text {. }
\end{aligned}
$$

Now, from the diagram (1) above we deduce the following commutative diagram of exact sequences:
$0 \rightarrow \mathrm{H}^{\mathrm{p}-1}$
\downarrow
$\begin{aligned}(c) \rightarrow H^{p}(c) & \rightarrow \lim _{\mathrm{k}} \mathrm{ker}^{1 \mathrm{k}_{\mathrm{p}-\lambda}^{\mathrm{k}}} \\ \downarrow & \downarrow \gamma_{\mathrm{p}}\end{aligned}$
$+]_{H}^{p-1}$
d
$(\mathrm{c}) \rightarrow \begin{array}{r}1_{\mathrm{H}} \mathrm{p} \\ \downarrow\end{array}$
(C) $\rightarrow \cdots$
$0 \rightarrow H^{p-1}$
$(D) \rightarrow H^{p}(D) \rightarrow \lim _{\frac{1}{K}}$ ger ${ }^{\prime} j_{p-I}^{k} \rightarrow I_{H}^{p-I}$
(D) $\rightarrow I_{H} P(D) \rightarrow \ldots$
and dually we get the commutative diagram of exact sequences
$\cdots \rightarrow I^{H} p-1$
$(\mathrm{c}) \rightarrow \mathrm{H}_{p}$
(c) $\rightarrow \lim _{\underset{r}{ }}$ conker ${ }^{s}{ }_{p+r w 2}^{r} \rightarrow H_{p-1}$
$(c) \rightarrow H_{p}(c) \rightarrow 0$
$\downarrow \quad \downarrow$
$\ell \alpha_{p}$
\downarrow
\downarrow
$\cdots \rightarrow I^{H} p-1$
$(D) \rightarrow A_{p}$
$(D) \rightarrow \underset{\vec{r}}{\lim }$ cover $i_{j+1}^{r} \rightarrow H_{p-1}$
$(D) \rightarrow H_{p}$
$(\mathrm{D}) \rightarrow 0$.

The conditions of the theorem guarantee that for every $p \in Z$, either γ_{p} or α_{p} is an isomorphism.

From this we easily deduce that for every $p \in Z, x_{,} k \in Z^{+}, r \geq x_{0}$, the morphisms

$$
\alpha_{p}^{r} \text { and } \gamma_{p}^{r+3 r}
$$

are isomorphisms. The conclusion then follows from (4.1) and (4.2).
QED.
Corollary (4.4) Suppose either $C=\bar{C}$ and $D=\bar{D}$ or $C=C$ and $D=\underline{D}$, and suppose further that for some $r_{0} \in Z^{+}, \psi^{r_{0}}$ is an isomorphism. Then

$$
\phi: C^{x_{0}} \rightarrow D^{r_{0}}
$$

is an isomorphism, and in particular

$$
\begin{aligned}
& i^{H(C)} \simeq_{i}^{H(D)} \\
& i_{H}(C) \simeq i_{H}(D)
\end{aligned}
$$

Proof. If $C=\bar{C}$ and $D=\bar{D}$ we know that

$$
\lim ^{(i)} D=\lim ^{(i)} D=0 \text { for } i \geq 0
$$

and

$$
I_{O}(1)=I_{D}(1)=0
$$

Thus we deduce from the exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker}^{m} \frac{p-k}{p} \rightarrow D_{p m k} \rightarrow i m \eta_{p}^{p-k} \rightarrow 0 \\
& i_{H} p(C)=i_{H} p(D)=0 \quad \text { for } a l l \quad p \in Z, i \geq 0 .
\end{aligned}
$$

The conclusion now follows trivially from (4.3) and the fact that if $C=0$ and $D=\bar{D}$ then $C^{T}=C^{r}{ }^{\circ}$ and $D^{{ }^{\circ}}=\bar{D}^{\circ}$. It $C=C$ and $D=D$ we may use a dual argument.

QED.
Corollary (4.5) Suppose that F and I converge and suppose for some $x_{0} \in Z^{+} y^{x_{0}}$ is an isomorphism. Then if either

$$
O_{H}(C)=O_{H}(D)=0 \quad O_{0} \quad o^{H}(C)=o^{H(D)}=0
$$

中 will induce iscmorphisms

$$
\begin{aligned}
& \overline{\mathrm{r}}_{0}^{r_{0}} \approx \widetilde{\mathrm{D}}^{r_{0}} \\
& \mathrm{C}^{r_{0}} \approx D^{r_{0}}
\end{aligned}
$$

Proof. By (3.1) we know that $I_{H^{p}}=I^{H}=0$ for all $p \in Z$ so the conclusion follows trivially from (4.3).

QED.
Let C. and D_{0} be filtered complexes with filtrations $\left\{F_{p} C_{p}^{\prime}\right\}_{p} \in \mathbb{Z}$ and $\left\{G_{p} D_{0}\right\}_{p \in Z}$. Suppose given a morphism

$$
\phi: C_{0} \Rightarrow D_{0}
$$

respecting the filtrations. We shall say that ϕ has filtration degree w if ϕ induces morphisms

$$
F_{p} C_{0}+G_{p+w} D_{0}
$$

In this case ϕ Induces a morphism of projective systems

$$
\phi: F \rightarrow G
$$

and morphisms

$$
\psi^{r}: E^{r} F \rightarrow E^{r} G
$$

where $E^{r} F$ and $E^{r} G$ are the natural spectral sequences associated to the filtrations of C a and D_{s}.

Lemna (4.6) Suppose $\lim _{p} F_{p} C_{0}=0$ then the following conditions axe equivalent.
(i)

$$
1_{F}(1)=0
$$

(ii) For every $p \in Z$ we have

$$
d\left(F_{p} C_{0}\right)=\frac{\lim _{k}}{k}\left(d\left(F_{p} C_{n}\right)+F_{p-k} C_{0}\right)
$$

Proof. As for every $p \in Z$

$$
F_{p}=Z_{p} / B_{p}
$$

we have

$$
I_{p}=\frac{J^{2}}{k}\left(Z_{p-k}+B_{p} / B_{p}\right)
$$

so that $I_{F_{p}}=0$ if and only if

$$
\frac{\lim }{\bar{K}}\left(Z_{p-k}+B_{p}\right) \cong B_{p}
$$

and this is seen to be equivalent with

$$
\frac{\lim }{k_{k}}\left(F_{p-k} C_{0}+B_{p}\right) \cong B_{p}
$$

by using the exact sequence

$$
0 \rightarrow Z_{p-k}+B_{p} \rightarrow F_{p-k} C_{0}+B_{p} \rightarrow B_{p \omega k} \rightarrow 0
$$

and the fact that $\frac{1 i m}{\frac{i}{k}} B_{p-k}=0$.
QED.
Remark (4.7) The condition (ix) above says that $a\left(F_{p} C.\right)$ is closed in the topology of C. defined by the subobjects $\left\{F_{p} C_{0}\right\}_{p \in Z}$. Theorem (4.8) Suppose $\lim ^{(i)} F_{p} C_{0}=\operatorname{Tim}^{(i)} G_{p} D_{0}=0$ for $i=0,1$ and suppose for each $p \in Z$ that $d\left(F_{p} C_{0}\right)$ and $d\left(G_{p} D_{*}\right)$ are closed in the topology of C. respectively D defined by the filtrations. Then, if for some $r_{0} \in Z^{+}, \psi^{r_{0}}$ is an isomorphism ϕ will induce isomorphisms $F^{r} O \simeq G^{r}{ }^{\circ}$
and in particular we will have

$$
H_{0}\left(C_{0}\right) \cong H_{e}\left(D_{s}\right) .
$$

Proof. By (4.6) we have

$$
I_{F}(1)={ }^{1} G(1)=0
$$

so by (1.7)

$$
F=\widetilde{F}, G=\widetilde{G} .
$$

The conclusion then follows from (4.4).
QIB.
Remark (4.9) If $E^{r}(\mathbb{F})$ converge and $\lim T=0$ then by (2.10) we know that ${ }_{F}(1)=0$. Thus by (4.6) $d\left(F_{p} C_{0}\right)$ is closed in the topology of c. defined by the filtration.

In [3] Bilenberg and Moore prove that the last conclusion of (4.8) holds without the condition that $d\left(F_{p} C_{*}\right)$ and $d\left(G_{p} D_{*}\right)$ be closed.

References

[]] B. Eckmann and P. J. Hilton: Exact couples in an abelian category, Journal of Algebra, vol. 3, no. 1. (1966) pp. 38.87.
$[2]$ B. Ecknann and P. J. Hilton: Composttion sunctors and spectrat sequences. Comon. Math. Helv. 41 (1966-67) pp. 187me21.
[3] S. Eilemberg and J. C. Moore: Timits and spectral sequences. Topology, Vol. 1 (1962) pp.1-24.
[4] A. Grothendieck: Flements de Gemetrie Algebrique Chap. III publication Mathématiques vo. 21 T. H. E.S. Paris (1961).
[5] Sze.Tsen-Hu: Homotopy theory. Academic Press, N. Y. (1959).
[6] O. A. Laudal: Sur]a theorie des Iimites projectives et inductives. Annales de 1 'Ecole Normale Sup. 82 (1965), pp. 241-296.
[7] J. E. Roos: Sur Ies fonctours dérivés de lim. Applications. Comptes Rendudelacad. Sci. Paxis $252 \mathrm{pp}_{\mathrm{R}}$ 3702-3704.
[8] J. P. Sexre: Algebre Locale. Multiplicités. Iecture Notes in Mathematics. Springer-Vexlag. Berlin, (1965).
[9] Weishu Shih: Une remarque sur le systeme projectif de suites spectrales: Comptes Rend. de I'Acada, e de Sci. Paris t. 251 (1960) pp. 20-21.

