Massey operations and the Poincaré series

of certain local rings
by
Tor Holtedahl Gulliksen。

Introduction. Throughout this paper R denotes a local noetherian ring with maximal ideal M and residue field $R /$ /A/ For a finitely generated R-module M we let $P_{R}(M)$ be the power series

$$
P_{R}(M)=\sum_{p=0}^{\infty} \operatorname{dim}_{k} \operatorname{Tor}_{p}^{R}(k, M) Z^{p}
$$

The Poincaré series of R is the power series $P_{R}=P_{R}(k)$ 。 The conjecture due to Kaplansky and Serre that P_{R} be a rational function is still far from being solved, although the rationality of P_{R} has been established for several classes of rings: For complete intersections by Zariski and Tate $[7]$, for rings of the form $R=k\left[x_{1}, \ldots, X_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)^{r}$ by Golod [2], for rings of imbedding dimension equal to 2 by Scheja [5], for rings with "two relations" by Shamash [6], and lately for Gorenstein rings of imbedding dimension 3 by Wiebe [8].

The main results in this paper are the following:
(i) If R is a local complete intersection with socle $0: M$, and we put $\overline{\mathrm{R}}=\mathrm{R} / 0: M$, then $\mathrm{P}_{\overline{\mathrm{R}}}$ is a rational function.
(ii) If $R(M)$ is the extension of R by a finitely generated R-module M (see below for the definition of $R(M))$ then

$$
P_{R}(M)=P_{R} \cdot\left(1-Z P_{R}(M)\right)^{-1}
$$

Let Φ_{R} be the power series

$$
\sum_{p=0}^{\infty} \operatorname{dim}_{k} \operatorname{Ext}_{R}{ }^{P}(k, R) z^{P}
$$

We find a relationship between the rationality problems of P_{R} and Φ_{R} for rings R of dimension zero。Cf． Wiebe［8］．

The method of proof is based on the use of Massey operations on differential graded algebras，a technique exploited by Golod［2］and Shamash［6］in computing P_{R} for certain rings R 。

Notations and definitions．

The term＂R－algebra＂will be used in the sense of Tate $[7]$ 。 By an augmented R－algebra F we will mean an R－ algebra F with a surjective augmentation map $F \rightarrow \mathrm{R} / m$ 。 $\widetilde{H}(F)$ will denote the kernel of the induced map $H(F) \rightarrow R / m$ 。 deg x will denote the degree of a homogeneous element x 。

Let M be a finitely generated R－module．We shall let $R(M)$ denote the algebra over R whose underlying $R-$ module is the direct sum $R \oplus M$ and whose ring structure is given by $(r, m)\left(r^{8}, m^{8}\right)=\left(r r^{8}, r m^{9}+r^{9} m\right)$ ．Note that R is a local noetherian ring；it will be referred to as the extension of R by M 。

1. Massey operations on R-algebras.

Definition. Let F be an augmented R-algebra and let n be a positive integer. Let I be a set consisting of n successive integers and consider an indexed set

$$
M=\left\{\int_{i, j}\right\}_{\underset{i}{i}, j \in j} \in I
$$

of homogeneous elements (of non-negative degree) in the augmentation ideal of F. We will call M an nary trivialized Massey operation on F provided that

$$
\begin{array}{ll}
d \gamma_{i, j}=\sum_{k=i}^{j-1}(-1)^{[i, k]} \gamma_{i, k} \gamma_{k+1, j} & \text { for } i<j \\
d \gamma_{i, j}=0 & \text { for } i=j
\end{array}
$$

where $[i, k]=\sum_{t=i}^{k}\left(1+\operatorname{deg} \gamma_{t, t}\right)_{0}$
Observe that if $\left\{\gamma_{i, j}\right\} i_{o} \leqslant i \leqslant j \leqslant j_{0}$ is a $\left(j_{0}{ }^{\left.-i_{o}+1\right)-}\right.$ ary trivialized Massey operation and if $i_{0} \leqslant i_{1} \leqslant j_{1} \leqslant j_{0}$, then $\left\{\gamma_{i, j}\right\}_{i_{1} \leqslant i \leqslant j \leqslant j_{1}}$ is a $\left(j_{1}-i_{1}+1\right)$-ary trivialized Massey operation.

We will say that F has a trivial Massey operation if there exists a set S of homogeneous cycles in F, representing a minimal set of generators for $\tilde{H}(F)$, and is a function with values in F, defined on the set of finite sequences of elements in S (with repetitions), such that

$$
\begin{equation*}
f(z)=z \text { for all } z \in S \tag{i}
\end{equation*}
$$

and
for any sequence $z_{1}, \ldots, z_{n},\{/ / j, j\} 1 \leqslant i \leqslant j \leqslant n$ is a trivialized Massey operation, X_{i}, j being defined by $\gamma_{i, j}=\gamma^{\prime}\left(z_{i}, \ldots, z_{j}\right)$.
S will be called the set of cycles belonging to γ^{\prime}. The following proposition is a slight generalization of a result essencially due to Golod [2]. See also Shamash [6].

Proposition 1. Let F be an augmented R-algebra with a trivial Massey operation γ. Assume that F is R-free as a module, and let N be a graded R-module whose homogeneous components N_{p} are free R-modules of rank equal to $\operatorname{dim}{\underset{p-1}{N}}_{N_{p-1}}^{(F)} \underset{R}{ } k$, for all p.

Let T be the tensor algebra generated over R by No Then the differential on F may be extended to a differential on the graded R-module $X=F \otimes T$ turning X into an R-free resolution of R / m°

Moreover if $d F \subset M F$ and im $\int \subset M F$ then X is a minimal resolution of $\mathrm{R} /$ /ho

Proof. Let S be the set of cycles belonging to . Choose a homogeneous basis U for N and a bijective map $U \rightarrow S$ of degree -1 . The image of an element $u_{i} \in U$ will be denoted by z_{i} 。

Every element of X is uniquely expressible as a sum of tensors $f \otimes u_{1} \otimes \ldots \otimes u_{n}$ where $n \geqslant 0, f$ denotes a homogeneous element of F and $u_{i} \in U$ for $1 \leqslant i \leqslant n$, (for $n=0$ the symbol combination $f \otimes u_{1} \otimes \ldots \otimes u_{n}$ shall denote the element $f \otimes 1$). Now define the differential on these selected generators inductively by

$$
d(f \otimes 1)=(d f) \otimes 1
$$

and for $n \geqslant 1$

$$
\begin{align*}
& d\left(f \otimes u_{1} \otimes \ldots \otimes u_{n}\right)= \tag{1}\\
& d\left(f \otimes u_{1} \otimes \ldots \otimes u_{n-1}\right) \otimes u_{n}+(-1)^{\operatorname{deg} f} f_{f} \cdot f\left(z_{1}, \ldots, z_{n}\right)
\end{align*}
$$

d can now be extended uniquely to all of X by linearity. Using induction on n one easily verifies the following formula

$$
\begin{align*}
& d\left(f \otimes u_{1} \otimes \ldots \otimes u_{n}\right)= \tag{2}\\
& (d f) \otimes u_{1} \otimes \ldots u_{n}+\sum_{t=1}^{n}\left[(-1)^{\operatorname{deg} f_{f}}\right. \\
& \left.\quad \circ /\left(z_{1}, \ldots, z_{t}\right) \otimes u_{t+1} \otimes \ldots u_{n}\right]
\end{align*}
$$

It follows from the definition of γ that

$$
\begin{equation*}
d f\left(z_{1}, \ldots, z_{n}\right)=\sum_{k=1}^{n-1}(-1)[1, k] /\left(z_{1}, \ldots, z_{k}\right) \gamma /\left(z_{k+1}, \ldots, z_{n}\right) \tag{3}
\end{equation*}
$$

where $[1, k]=\sum_{t=1}^{k}\left(1+\operatorname{deg} z_{t}\right)_{0}$ Using (2) and (3) it is a matter of straightforward computation to show that $d^{2}=0$ 。 We omit the details.

We furnish X with|the augmentation map $X \rightarrow k$ induced by the augmentation map $F \rightarrow k$ 。 We shall indicate a proof of the fact that X is acyclic.

Let x be a homogeneous cycle in the augmentation ideal of X. There exist unique homogeneous elements $f_{u_{1}} \ldots \ldots, u_{n} \in F$ such that

$$
\begin{equation*}
x=\sum_{\substack{u_{1}, 00, u_{n} \\ n \geqslant 0}} f_{u_{1}, \ldots, u_{n}} \otimes u_{1} \otimes \ldots \otimes u_{n} \tag{4}
\end{equation*}
$$

where $f_{u_{1}, \ldots, u_{n}}=0$ for all but a finite number of indices. The integer $\sup \left\{n \mid f_{u_{1}}, \ldots . u_{n} \frac{1}{\mp} 0\right\}$ will be called the wight of x and will be denoted by $w(x)$.

For $w(x)=0$ we obviously have $x \in B(X)$. Now assume that $w(x)=w \geqslant 1$ 。 Let the elements $f_{u_{1}, \ldots, u_{w}}$ in (4) which are coeffisients of terms of weight equal to w be denoted simply by $f_{1,0.0, f} \mathrm{k}^{\circ}$ In differentiating (4) using the formula (2) and looking at the terms of wight w and $w-1$, one can see that $f_{1}, \ldots . f_{k}$ are cycles in the augmentation ideal of F. Here one has to use the fact that the "selected" cycles z are linearly independent modulo $B(F)$. Hence to each $f \in\left\{f_{1}, \ldots, f_{k}\right\}$ there exist elements $r_{1} \not \ldots 0, r_{m}$ in R and cycles $z_{1}, \ldots 0 z_{m}$ in S and an element g in F such that

$$
\begin{equation*}
f=d g+\sum_{i=1}^{m} r_{i} z_{i} \tag{5}
\end{equation*}
$$

Let $f \otimes u_{1} \otimes \ldots \otimes u_{w}$ be one of the terms in (4) of weight equal to w. Using (5) we obtain

$$
\begin{aligned}
& d\left(g \otimes u_{1} \otimes \ldots \otimes u_{w}+1 \otimes \sum_{i=1}^{m} r_{i} z_{i} \otimes u_{1} \otimes \ldots \otimes u_{w}\right) \\
& =f \otimes u_{1} \otimes \ldots \otimes u_{w}+(\text { terms of weight }<w) .
\end{aligned}
$$

It follows that there exist elements y and x^{8} in X such that

$$
x=d y+x^{\prime}
$$

where $w\left(x^{0}\right) \leqslant w(x)-1$. By induction on $w(x)$ it now follows that $x \in B(x)$ 。

The last statement in the proposition is trivial in view of (2).

The following lemma is easily verified and we omit the proof.

Lemma．Let X be an R－algebra．Let $\Omega \geqslant 2$ and let $\left\{\gamma_{j, j}^{\prime}\right\} \quad 1 \leqslant i \leqslant j \leqslant n$ be a trivialized n－any Massey operation on X．Suppose that there exists，a $y \in X$ such that $d y=J^{\prime} 1,1^{\circ}$ Put $\quad \gamma_{2, j}=\gamma_{1, j}^{\prime}+(-1)^{\text {deg } / / 1,1 \cdot y / 2, j}$
and $\quad \gamma_{i, j}^{i}=\gamma_{i, j}$ for $i>2$
Then $\{\gamma / i, j\} 2 \leq i \leqslant j \leqslant n$ is a trivialized（ $n-1$ ）－mary Massey operation on X ．圈

Proposition 2．Let X be a minimal R－algebra resolution of R / T and let F be a sub－R－algebra of X such that F_{9} as an R－module，is a direct summand of X 。 Let $\left\{\gamma_{i, j}\right\} \quad 1 \leqslant i \leqslant j \leqslant n$ be a trivialized nary Massey operation on F with $\gamma_{i, i} \in \notin \mathcal{H}$ for all i 。 Then $\gamma_{i, j} \in \mathscr{M} F$ for all $i \leqslant j$ 。

Proof．Since $\left\{\gamma_{i, j}\right\}_{1 \leqslant i \leqslant j \leqslant n}$ is also a trivialized Massey operation on X and moreover $111 X \cap F=11 F$ ，it is no loss of generality assuming that $F=X$ 。

We will prove the proposition by induction on n 。 For $\Omega=1$ it is trivial Let $t \geqslant 2$ 。 Assume that it has been proved for $n<t$ ．Now let $n=t$ ．By the induction hypothesis and the observation made in the definition of Massey operations it suffices to show that $\gamma_{1, n} \in \mathcal{M} X_{0}$ Since x is acyclic and $\gamma_{1,1}$ is a cycle in $\neq \mathbb{X}$ there exists a $y \in X$ such that $d y=\gamma / 1,1^{\circ}$ Using the lemma we can construct an（n－1 ）－ry Massey operation $\left\{\chi_{i, j}^{\prime}\right\} \quad 2 \leqslant i \leqslant j \leqslant n$ on X such that

$$
\gamma_{1, n}=\gamma^{\prime} 2, n^{\prime}-(-1)^{\operatorname{deg} \gamma^{\prime} 1,1} y /{ }_{2, n}
$$

and such that $\gamma_{2,2}^{\prime}$ is a cycle of positive degree．The minimality of the resolution x gives $\gamma_{2,2}^{1} \in 111 \mathrm{X}$ ．More－ over we have $\gamma_{i, i}^{\prime}=\gamma_{i, i}^{\prime} \in M X$ for $n \geqslant i>2$ 。 Hence the induction hypothesis gives $\gamma_{2, n}^{\prime} \in 111 X$ and $\gamma_{2, n} \in M 1 X$ ． Hence $j^{\prime} 1, n \in m x$ 戋

2．The Poincaré series of local complete intersections reduced modulo the socle．

Theorem 1．Let R be a local complete intersection with maximal ideal m 。 Let $n=\operatorname{dim} / m^{2}$ and put $\overline{\mathrm{R}}=\mathrm{R} / 0: 11$ 。 Then R is either a local complete intersection，or else the Poincaré series of \bar{R} is given by

$$
P_{\vec{R}}=\left((1-z)^{n}-z^{2}\right)^{-1}
$$

Proof．Since complete intersections are Cohen－Macaulay rings we will have $0: M 1 \neq 0$ if and only if $\operatorname{dim} R=0$ 。 Hence we may assume，without loss of generality，that $\operatorname{dim} R=0$ 。 By the Cohen structure theory there exists a regular local ring \tilde{R}, \tilde{m} and a surjective ringhomomorphism $\varphi: \widetilde{R} \rightarrow R$ such that $\operatorname{ker} \varphi$ is generated by a maximal R－sequence $v_{1}, \ldots . v_{n}$ contained in ${\widetilde{m_{n}}}^{2}$ ．Let t_{1}, \ldots, t_{n} be a minimal set of generators for \widetilde{M} ．Then there exist elements $r_{i j}$ in \tilde{m} such that

$$
v_{i}=\sum_{j=1}^{n} r_{i j} t_{j}, \quad i=1, \ldots, n
$$

Let \tilde{u} be the determinant of the matrix $\left(r_{i j}\right)$ and observe
that $u \in \dddot{H}^{n}$ 。 Put $u=\varphi(u)$ 。 Proposition 1 in［4］shows that $0 \neq u \in 0: M 1$ ．On the other hand $0: M$ is a simple submodule of R since R is a zerodimensional Gorenstein ring，$c f \circ[1]$ 。Hence u generates $0: M$ ．Thus letting $\Omega=\left(v_{1}, \ldots, v_{n}, \tilde{u}\right)$ we can conclude that $\bar{R} \approx R / a$ 。

Let F be the minimal R－algebra resolution of $R / 1 /$ obtained from the R－algebra R by the adjunction of n variables of degree 1 and n variables of degree 2 。 Cf．Tate［7］．Let \bar{F} be the \bar{R}－algebra $F /$／uF。

If α can be generated by n elements then these elements form an \tilde{R}－sequence，in which case \bar{R} is a complete intersection．Let us assume that this is not the case，i．e． Ω is minimally generated by $\left\{v_{1}, \ldots, v_{n}, \tilde{u}\right\}$ and $n \geqslant 2$ 。 In this case we have $\Omega \subset \widetilde{M}^{2}$ and \bar{F} can be extended to a minimal．\vec{R}－algebra resolution of $\overline{\mathrm{R}} / \bar{m}$ by adjoining one variable of degree 2 （corresponding to the new relation u ） and variables of degree $\geqslant 3 . \mathrm{Cf} .[3]$ ．The existence of such an extension enables us to apply proposition 2 later． We will now show that \bar{F} has a trivial Massey operation．First choose a set S of cycles representing a basis for $\tilde{H}(\vec{F})$ ．Let $\psi: F \longrightarrow \vec{F}$ be the canonical map．To each cycle z in S ，select an element Z in $\psi^{-1}(z)$ ．We obviously have

We shall define inductively a function Γ assigning to each
finite sequence of＂selected＂elements Z_{1}, \ldots, Z_{m} in $\psi^{-1}(S)$ an element $\Gamma\left(Z_{1}, \ldots, Z_{m}\right)$ in F satisfying
$\Gamma(z)=z$

$$
\begin{equation*}
d \Gamma\left(z_{1}, \ldots, z_{m}\right)=\sum_{k=1}^{m-1}(-1)[1, k] \Gamma\left(z_{1}, \ldots, z_{k}\right) \Gamma\left(z_{k+1}, \ldots, z_{m}\right) \tag{i}
\end{equation*}
$$

where $[1, k]=\sum_{t=1}^{k}\left(1+\operatorname{deg} Z_{t}\right)$ 。
Let $\psi\left(\Gamma\left(z_{1}, \ldots, z_{m}\right)\right)$ be denoted by $\gamma\left(z_{1}, \ldots, z_{m}\right)$ 。
Observe that if $\Gamma\left(z_{1}, \ldots, z_{m}\right)$ has been defined then $\gamma\left(z_{1}, \ldots 0, z_{m}\right)$ is one of the components of a trivialized $n-$ ary Massey operation，since \mathcal{U} is an R－algebra homomorphism。 It follows from proposition 2 that $\gamma\left(z_{1}, \ldots 0, z_{m}\right) \in \overline{\ln } \bar{F}$ hence

$$
\begin{equation*}
\Gamma\left(z_{1}, \ldots, z_{m}\right) \in m F \tag{2}
\end{equation*}
$$

Let $m \geqslant 2$ and suppose that Γ has been defined on sequences of length $<m$ ．Now let Z_{1}, \ldots, Z_{m} be an arbitrary sequence of length m 。

$$
\text { Put } Y=\sum_{k=1}^{m-1}(-1)[1, k] \Gamma\left(z_{1}, \ldots, z_{k}\right) \Gamma^{1}\left(z_{k+1}, \ldots, z_{m}\right)
$$

Using the induction bypotesis and relations of type（i）and （ii）one easily shows that

$$
d Y=(-1)^{[1,1]} d\left(z_{1}\right) \Gamma\left(z_{2}, \ldots, z_{m}\right)-\Gamma\left(z_{1}, \ldots, z_{m-1}\right) d\left(z_{m}\right)
$$

It follows from（1）and（2）that

$$
d Y \in(u F)(m F)=0
$$

F is acyclic．We choose an element in $d^{-1}(Y)$ and denote it by $\Gamma\left(z_{1}, \ldots, z_{m}\right)$ ．The construction is now complete，and the function γ^{\prime} sending the sequence $z_{1}, \ldots 0, z_{m}$ to $\gamma\left(z_{1}, \ldots 0, z_{m}\right)=\psi\left(\Gamma\left(Z_{1}, \ldots, Z_{m}\right)\right)$ is obviously a trivial Massey operation on $\bar{F}_{\text {o }}$ ．In view of proposition 1 we can find a
minimal resolution X of the \bar{R}-module $\bar{R} / \overline{1 / 1}$ of the form

$$
X=\overline{\mathrm{F}} \frac{\otimes}{\mathrm{R}} \mathrm{~T}
$$

where T is the tensoralgebra generated by a free graded R-module N with

$$
\operatorname{rank} N_{p}=\operatorname{dim} \tilde{H}_{p-1}(\vec{F}) \text { for all } p
$$

Hence letting $\not(1)$ denote the Poincare series of graded modules, ie. the formal power series

$$
\nsim()=\sum_{p=0}^{\infty} \operatorname{rank}\left(()_{p}\right) z^{p}
$$

we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{R}}=\mathscr{X}(X)=\mathscr{X}(\overline{\mathrm{F}}) \cdot \mathscr{K}(\mathrm{I}) \tag{3}
\end{equation*}
$$

We have $\mathscr{Z}_{U}^{\prime}(\vec{F})=(1-Z)^{-n}$ cfo $[7]$ 。
Moreover
(4)

$$
\chi(\mathrm{T})=(1-\not /(\mathrm{N}))^{-1}
$$

From the exact homology sequence associated to the exact sequence of complexes

$$
0 \rightarrow F / /_{H} F \xrightarrow{u_{0}} F \rightarrow \bar{F} \rightarrow 0
$$

one obtains isomorphisms

$$
H_{q}(F) \approx H_{q-1}(F / m F) \text { for } q \geqslant 1
$$

It follows that

$$
\begin{equation*}
\chi /(N)=z^{2} / /(F / 1+F)=z^{2}(1-Z)^{-n} \tag{5}
\end{equation*}
$$

The desired formula for P_{R} now follows from (3), (4) and (5).

Remark. It might be possible to use similar methods to compute P_{R} for the following rings R :

Let \widetilde{R} be a regular ring of dimension n. Let $v_{1}, \ldots 0, v_{n}$ be a maximal \tilde{R}-sequence and let $u_{1}, \ldots 0 u_{n}$ be elements in R such that $v_{i}=\sum_{j=1}^{n} r_{i j} u_{j}{ }^{0}$, Put $\widetilde{u}=\operatorname{det}\left(r_{i j}\right), \Omega=\left(v_{1}, \ldots, v_{\Omega}, u\right) \quad$ and $R=\widetilde{R} / \Omega_{0}$

A homological investigation of ideals of the type has been carried out by Northcott [4].

3. A change of ring theorem and a relationship between P_{R} and $\bar{\Phi}_{R}$ -

Theorem 2。 Let $R(M)$ be the extension of R by a finitely generated R-module M. Then

$$
P_{R(M)}=P_{R} \cdot\left(1-Z P_{R}(M)\right)^{-1}
$$

Proof. We will identify the residue field of R and that of $R(M)$ and denote it by k. Let X be a minimal R-algebra resolution of k. Consider the $R(M)$-algebra $X^{*}=X \otimes R(M)$, furnished with the canonical augmentation map $X^{*} \rightarrow \mathrm{R}_{\mathrm{k}}$. We will show that X has a trivial Massey operation γ^{\prime} 。 From the exact sequence of R-modules

$$
0 \rightarrow \mathrm{M} \rightarrow \mathrm{R}(\mathrm{M}) \rightarrow \mathrm{R} \rightarrow \mathrm{O}_{3}
$$

which may be regarded as a sequence of $R(M)$－modules，we obtain the exact sequence of complexes over $R(M)$

$$
0 \rightarrow \underset{\mathrm{R}}{X} M \rightarrow X^{*} \rightarrow x \rightarrow 0
$$

We will identify $X \underset{R}{\otimes} M$ with its image in X^{*} ．Since X is acyclic，the exact homology sequence shows that the inclusion $X \& M \hookrightarrow X^{*}$ induces an isomorphism of $R(M)-$ modules $\underset{R}{H}(X \otimes \underset{R}{\otimes}) \approx \tilde{H}\left(X^{*}\right)$ 。 Hence we can find a set S of homogeneous cycles in $\underset{R}{X} M$ representing a minimal set of generators for $\tilde{H}\left(X^{*}\right)$ 。 Since $M^{2}=0$ we have $(X \otimes M)^{2}=0$ in X^{*} ．It is now simple to construct a trivial Massey operation γ on X^{*} 。Simply put $\gamma(z)=z$ for all $z \in S$ and for each sequence $z_{1}, \ldots o z_{n}$ of elements in S ，of length $n \geqslant 2$ ，put $f^{\prime}\left(z_{1}, \ldots z_{n}\right)=0$ 。

Using proposition 1 we can construct a minimal resolution of the $R(M)$－module k of the form $X \underset{R(M)}{\otimes} T$ where T is the tensoralgebra of a free graded $R(M)$－ module N with

$$
\operatorname{rank} N_{p}=\operatorname{dim} \widetilde{H}_{p-1}\left(X^{*}\right) \bigotimes_{R(M)} k \text { for all } p
$$

We have isomorphisms of degree zero ：

Thus

$$
\mathscr{X}(\mathrm{N})=\mathrm{ZP}_{\mathrm{R}}(\mathrm{M})
$$

Since $\not \mathscr{X}(\mathrm{T})=(1-\not \mathcal{X}(\mathrm{N}))^{-1}$ and $\mathrm{P}_{\mathrm{R}}=\not \mathscr{L}\left(\mathrm{X}^{*}\right)$ we have

$$
P_{R}(M)=\chi\left(X^{*} \otimes T\right)=P_{R} \cdot\left(1-Z P_{R}(M)\right)^{-1}
$$

Lemma．Let R be a local ring of dimension zero．Let E be the injective envellope of the R－module $\mathrm{R} / \mathrm{m}_{\mathrm{m}}$ ．Then $R(E)$ is a local Gorenstein ring of dimension zero．

Proofo Since $R(E)$ is finitely generated over R g it has dimension zero．The anihilator of E is zero；moreover the socle of E is generated by one element，say e_{o} ，since $\operatorname{Hom}_{R}\left(R_{\text {䏧 }} E\right) \approx R /$ M．One easily shows that the socle of the ring $R(E)$ is generated by the element（ $0, e_{o}$ ）．It follows that $R(E)$ is a Gorenstein ring；Cfo Bass［1］．Note that E is finitely generated since $\operatorname{dim} R=0$ 。

Theorem 3．Let R denote a local ring of dimension zero． Then the following statements are equivalent ：
（i）$\quad P_{R}$ is rational for all R 。
（ii）$\quad P_{R}(M)$ is rational for all R and all finitely generated modules M 。
（iii）Φ_{R} is rational for all R and P_{R} is rational for all Gorenstein rings R。
（iv）$\frac{P_{R}}{\Phi_{R}}$ is rational for all R 。

Pronf．Let M be a finitely generated R－module．The rationality of P_{R} and $P_{R}(M)$ implies the rationality of
$P_{R}(M)$ ，because of the preceding theorem．Hence（i）implies （ii）．In the following let E be the injective envellope of the R－module $R / m \circ$ We have

$$
\operatorname{Tor}^{R}\left({ }^{R} / m, E\right) \approx E x t_{R}(R / m, R)
$$

hence $\Phi_{R}=P_{R}(E)$ ，showing that（ii）implies（iii）。 It follows from the preceding theorem that

$$
\begin{equation*}
P_{R}(E)=P_{R} \cdot\left(1-Z \Phi_{R}\right)^{-1} \tag{1}
\end{equation*}
$$

Assume that（iii）is true．We will show that $\frac{\mathrm{P}_{\mathrm{R}}}{\frac{Q_{R}}{}}$ is rational for an arbitrary R 。 By the lemma $R(E)$ is a Gorenstein ring．Hence $\mathrm{P}_{\mathrm{R}}(E)$ ，as well as Φ_{R} ，is rational by the assumption．It follows from（1）that P_{R} is rational。 Hence so is $\frac{\mathrm{P}_{\mathrm{R}}}{\Phi_{\mathrm{R}}}$ 。

From（1）we obtain

$$
\begin{equation*}
P_{R}=P_{R(E)} \cdot\left(1+Z P_{R}(E) \frac{\frac{\sqrt[1]{9}}{P_{R}}}{P_{R}}\right)^{-1} \tag{2}
\end{equation*}
$$

Since $R(E)$ is a Gorenstein ring，we have $\Phi_{R(E)}=1$ ．It follows from（iv）that $P_{R}(E)$ is rational．Hence it follows from（iv）and（2）that P_{R} is rational，showing that（iv） implies（i）。

References：

［1］Bass， Ha ：On the ubiquity of Gorenstein rings． MathoZeitschrift 82 （1963）8－28。
［2］Golod，E．So：On the homology of some local rings． Soviet Mathog 3 （1962）745－748．
［3］Gulliksen，T．H．：A proof of the existence of minimal R－algebra resolutions．Acta．Math． 120 （1968）53－58。
［4］Northcott， D．G．A A homological investigation of a $^{\text {a }}$ certain residual ideal．Math．Annalen 150 （1963） 99－110。
［5］Scheja，G_{0} ：Uber die Bettizahlen lokaler Ringe． Math．Annalen 155 （1964）155－172。
［6］Shamash，J_{0} ：The Poincaré series of a local ring． Joof Algebra 12 （1969）453－470。
$[7]$ Tate，J ：Homology of noetherian rings and local rings． Illinois Joof Matho 1 （1957）14－25．
［8］Wiebe，H_{0} ：Uber homologische Invarianten lokaler Ringe． Math．Annalen， 179 （1969）257－274．

