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INTRODUCTION. 

In this paper we will prove the so called differentiable 

Riemann-Roch theorem without using the differentiable structure 

of the manifold, the proof is actually formulated for topological 

manifolds. 

The proof of the original differentiable Riemann-Roch theorem 

/2/ consists of two parts. In the first there is given a map 

f: X .... Y 

of manifolds and a transfer homomorphism 

f,: KU(X)-+ KU(Y) . 
j 

that depends on several choices, is constructed. 

In the second and most important part of the proof properties 

of KU-theory and the Chern character are considered. When com­

bined with the transfer homomorphism, the Chern character gives 

the R.-R. formula 

ch(f,(x)Td(Y) = f~(ch(x)Td(X)) 
• • 

where is the transfer homomorphism in singular cohomology. 

X and Y are now taken to be (weakly almost) complex manifolds 

and Td is the Todd class. 

Today the second part of the proof belongs to general cohomo­

logy theory. Some of the properties of the Chern character are 

used as a definition of a multiplicative cohomology transformatiop 

** ** m: k -+ h 

where k* and h* are multiplicative cohomology theories, and a 

so called formal Riemann-Roch theorem -·--
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arises. Here m is the "Todd" class defined using m , and the 

* manifolds are supposed to be k -orientable. 

A similar formula is valid when f but not neccesarily Y 

* is k -orientable. In this form the theorem is proved in /10/. 

Concerning the first part of the paper /2/ it is natural to 

ask if the transfer homomorphism is functorial in some sense. 

(That this is not a useless question is illustrated by the proof 

of our theorem (5.1)J This question was answered in the affirma­

tive in /11/ and /5/ in the case of differentiable manifolds. 

The main part of this paper is noncerned with the category 

on which the transfer homomorphism is a functor, and the proof 

that it is a functor on this category. 

Although the proof of /11/ is formulated for differentiable 

manifolds only, the stable isotopy uniqueness of normal bundles 

/12/ implies that /11/ is equally valid in the topological case. 

We follow another line of proof and do not use /12/. 

The paper is divided into five paragraphs: 

§ 1 • 

Here we consider the Pontryagin-Thom map determined by an open 

imbedding of bundle spaces. We assume that the imbedding is givep 

and let the bases of the bundles be general spaces. The main re­

sult is the well known homotopy commutativity of a certain diagrallJ. 

(1.6). This expresses a stability property of the Pontryagin-Thom 

map and formulas like 

* f,(f (y)x) = yf,(x) 
• • 

are corollaries. 

In this§ we clearly see why f has to be proper, (1.1). 
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§ 2. 

In this § we prove some lemmas on fibre isotopies of (Rq,O)­

bundles that will be needed later on. The main result is that 

each isotopy class of fibrepreserving open bundlespace imbeddings 

contains exactly one isotopy class of bundle isomorphisms, (2.6). 

From this we deduce that when two bundles are contained in the same 

microbundle, there is a £anonical isotopy class of isomorphisms 

of the two bundles. This is a strengthening of the uniqueness 

part of the Kister-Mazur theorem that states that the two bundles 

are isomorphic. The proofs of this § are based on the relative 

version of the Kister-Mazur theorem proved in /15/. 

§ 3. 

* Here we consider k -oriented proper maps and define the cat~-

gory whose objects are manifolds and whose morphisms are proper 

oriented maps under a homotopy relation. 

* We also prove a theorem on k -thomclasses that generalizes 

theorem (1.1) of /1/ and has a much simpler proof. This theorem 

states that when U E k*(T(b),pt) where T(b) is the thomspace 

of the bundle b , and U has the property that ~/n U is a tho~-

-1 * * class for b in the cohomology theory n k obtained from k 
2 by localizing in the multiplicative system (~,n,n , ••• ), some 

Whitney multiple 

has a * k -thomclass. (3.3). 

§ 4. 

In this § we prove that the transfer homomorphism is well 

defined and a functor on the category of§ 3. (4.10). 
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§ 5. 

Here we first apply theorem (4.10) to prove a well known 

theorem of Atiyah /4/ in the case of not neccesarily compact mani­

folds and proper homotopy equivalences. (5.1.5.2). This is a real 

strengthening of Atiyah's theorem because his proof depends strong­

ly on notions like reducibility and S-duality that do not seem to 

work well in the non-compact case. 

Next we consider general properties of multiplicative cohomo­

logy transformations, following /3/. The result is, of course, 

the formal Riemann-Roch and Wu theor0ms stated in (5.11,14,15,16). 

* We introduce the homology theory k* corresponding to k 

and prove without using S-duality that the compact manifold X 

has a k*-fundamental class if and only if its tangent bundle has 

* a k -thomclass. (5.18). We go on to prove that the transfer homo~ 

morphism determined by 

X - Point 

is evaluation on a fundamental class. We write down the Wu for-

mula in this case and obtain the classical Wu formula for the 

Stiefel-Whitney class as a corollary, 5.21). 
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§ 1. The Pontryagin-Thom construction. 

Constructing the transfer maps we shall take a map 

f: X- Y 

of manifold and lift it to an imbedding 

where E is a bundle space over Y 

neighbourhood in some E x Rn. [20]. 

X will then have a tubular 

In this § we start in the latter situation. Let X and Y 

be spaces with bundles E; and 'll and let 

be an open topological imbedding. Then we have the Pontryagin­

Thom map 

defined by Di . -1 = 1 on i(Es) 

and 

We say that the imbedding i is bounded iff Di is continuous. 

( 1.1) Lemma. 

When i is bouna.ed, the map f = pr'll i s 0 x- y is proper. 
~ 

. 
When f is proper, there is a nbd. u of X in Et. such that 

whenever a. Es ~ Es is a bundle-imbedding with image in U , 

the imbedding 

is bounded. 

Proof. Choose a locally finite covering of Y consisting of 

relatively compact sets and argue by point-set topology. Note 

that if X is compact, every i is bounded. 
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(1.2) Lemma. 

Let X, Y and Z be base spaces of the bundles s, ~ and 

1..1. • Let 

i : Es ~ E~ and j : E~ ~ ~ 

be open imbeddings. Then 

Proof. Trivial. 

(1.3) Lemma. 

Let i,j Es ~ E~ be open imbeddings which are boundedly 

pseudo-isotopic in the sense that there is an open bounded imbed­

ding 

J: E(sxi) ... E(~x I) 

which is i over the 0-slice and j over the 1-slice. 

Then D1 and Dj are homotopic rel.pt. 

Proof. 

The following map is a homotopy. 

Next we shall consider stability properties of the maps Di 

We shall, however 9 not stabilize our bundles by adding new bundles, 

we prefer to use composition of bundles [20] which is a more 

flexible tool. 

Recall that when s and ~ are microbundles with diagrams 

the microbundle so~ has the diagram 
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where the maps are 

X ~ E ~ F ~ E ~ X • 

so~ is the composite micro-bundle and 

When both s and ~ are bundles, an easy application of the 

homotopy covering theorem [20] shows that so~ is a bundle. 

The correspondence 

~ --> so~ 

takes bundles on Es to bundles on X • It is a functor preserv~ 

bundle isomorphisms and isotopies of such. 

Note that 

It is easily seen that the map 

extends to a diagonal map 

The inclusion X~ c (Es)~ is a homotopy equivalence because 

X c Es is. Any map 

6 : xso~ ~ xs A x~ 

such that the diagram (+) homotopy - commutes rel.pt is called 

a diagonal map. 

u (+) 

(1.4) Definition. 

The Q1agonal map 6 defined above is unique in homotopy rel.pt. 
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Now let i . Es ... E'l'\ be an open imbedding of bundlespaces, . 
and let ~ be a bundle on E.'l'\ • The map 

* 
ib . Ei 1..t .... :EU . 

is then an open imbedding .. Considered as an imbedding of bundle-

spaces, it will be called an induced imbedding and denoted 

* i . Esoi I.J. -+ E'I')OU. . • 

(1.5) Lemma. When i is bounded, i is also bounded. 

We omit the proof. 

(1.6) Proposition. 

Let i : Es ... E'l'\ be a bounded imbedding of bundles over the 

spaoes X and Y • Let 1.J. be a bundle on E'l') and let i be 

* the induced imbedding and suppose that 

gram homotopy-commutes rel.pt. 

I.J. = pr '1'\!J. • 

y'I'\OIJ. _L> y'l'l 1\ yU. Jf (\ id 

1 Di* 
~ Xi; A r 

xf*u~f xsoi ~ _6_> Xi; A 
b 

Proof. Note that * * * * * i !J. \ X = se: i pr '1'\ u = f 1.J. where 

Consider the diagram(*). 

y'l'\0~ __£._> y'l'\ 1\ (E'I'\)~ Di 1\ id 

Then the dia-

1 Di * 
~ X; 1\ (E'Il)u. (*) A 

xE:oi ~ -> d 
xs 1\ (Es) i *\J, <" ib 

This diagram commutes by definition of d and Di • 

Next consider the diagram (**) containing (*). 
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yTlOIJ. ___£__> yTl " ( ETl )!J. :::::> yTl " yiJ. 

l nl 

~ ~ Di A id 

(*) X~ " (ETl)IJ. :::> xs " yiJ 

t t id " fb 
XC:oi*u ~> xs ·* 

:::::> xs * 

" (Es)l u " xf u 

Clearly this diagram commutes except the lower right square. 

In the following diagram, 

(**) 

(***) 

which appears in(**), the retraction r is given by the fact 

* that IJ. = pr Tl IJ. • After deleting the inclution in the upper line 

from (***), the diagram commutes. Because r is a homotopy­

equivalence, (***) homotopy-commutes after deleting r. Hence 

(**) homotopy-commutes. In view of the definition of the diagonal 

maps 6 9 the proposition is proved. 

Q,E.D. 

In the rest of this § we draw some consequences of the 

proposition. 

(1.7) Corollary. 

With the notation of the proposition, let u = eq • Then 

under the identifications 

and 

we get the identification 
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Proof. 
It suffices to consider the following diagram, and use the 

proposition. 

yTl A sq 

~ i ~~ Di A id 
flOE: q q 

....£:__> yTl A ye: ~'-. y ,, ''-::1 

1 Di 
~ xe: q xs A sq A y€ -> 

__ /iid A fb ~ 
soeq xs q 

X -> A X8 

6 

~ J 
XE; A sq 

Note that the diagonal map defined in (1.4) defines a pairing 

given by 
* rt, ~ = 6. (a A !3 ) • 

(1.8) Corollary. 

With the notation of the proposition, let 

a E h*(xs,pt) and !3 E h * ( yU, pt) • 
Then 

-:- * * ( Di) *(a ) '!3 ( D1
) (a • fb ( ~ ) ) = 

and 
-:- * * ~(Di)*(a) ( D1

) ( fb ( f3 )a ) = • 

Proof. -:-* * -:-** * 
(D1

) (afb(S)) = (D1
) 6 (idA fb) (a AS) = 

* . * . * 6. (D1 Aid) (aA~) = (D1
) (a)~ according to 

proposition (1.6). 

The second equation is obtained using the diagonal map 

yflO~ ---> ~ A yTl 

and the version of (1.6) valid for this map. 
Q.E.D. 
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(1.9) Corollary. 

With the notation of proposition (1o6) we have 

where y E h*(Y) and a E h*(xs,pt), and the pairing is the 

usual action of 
* . 

h (base) * on h (Thorn space, pt~. 

Proof. 

Identifying h*(x) with h*(x 0 ,pt) it is easily verified 

* that the action of h (X) is determined by a diagonal map 

6 0 xs -> xo " xe: 0 . 
Taking ~ = 0 in proposition (1.6) we find that the asserted 

equation is a special case of the second equation in (1.8) because 

i = i . 

We now give the first definition of a transfer map. 

(1.10) Definition. 

Let ~ , ~ be bundles over the spaces X 9 Y and let U , y 

be Thorn classes for these bundles. (see§ 3). Also let 

i : Es ~ E~ be a bounded imbedding. The transfer map 

* * t = t(i,U,V) : h (X) ~ h (Y) 
is defined by 

(1.11) Lemma. 

When i : Es ~ E~ and j E~ ~ ~ are open bounded im-

beddings, and Uo V and W are Thorn classes for ~ ~ and 11 
T ':) ' ' I !""' ' 

we have 

t(ji,U,W) = t(j,V,W)t(i,U,V) • 
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Proof. 

Write this equation as t" = t•t • Then 

t"(x)W =(Dji)*(xU) = (Dj)*(Di)*(xU) = 

. * . 
(DJ) (t(x)V) = t 1 (t(x))W. 

Cancelling the Thorn class W , we get t" = t't • 

(1.12) Proposition. 

When t: h*(x) ~ h*(Y) is the map defined in (1.10), and 

f X~ Y is as defined in (1.1), we have 

* t(f (y)x) = yt(x) 

* * for all y E h (Y) , x E h (X) • 

* That is, t is a h (Y)-module homomorphism. 

Proof. 

Using corollary (1.9) we get 

Now cancel v. 

(1.13) Corollary. 

With the notation of proposition (1.6), let A be a Thorn 

class for 1J • Then f~A is a Thorn class for 

t(i,U,V) :::: t(i,Uf~(A),VA) • 

Proof. 

Let us write this equation t = t' • 

according to corollary (1.8). 

* f IJ. and 

Q.E.D. 
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Note in particular that 

t(i,U,V) = t(i,f*(a)U,aV) 

whenever a E h 0 (Y) is such that aV is a Thorn class. This 

follows either from (1.13) or from (1.12). 
' 

Finally we mention a corollary of (1.6) of a somewhat 

different type. It will not be used later. 

(1.14) ~ro~osition. 

Let X be a space dominated by a finite-dimensional OW 

complex. Let s and ~ be bundles on X and suppose that 

there is an open bounded imbedding 

i : Es ~ E~ 

which is the identity on the zero-section. Then J(s) = J(~) • 

The proof is practically the same as in (5.1). When X is 

a manifold, s and ~ are stably isomorphic. 
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§ 2. Fibre Isotopies of Topological Bundles. 

In this §, we prove a theorem (2.10) on fibre-isotopies of 

bundle-imbeddings. We use the relative version of the Kister­

Mazur theorem proved in [15] : 

Theorem. (P. Holm) 

~llien a numerable microbundle over a space X contains a 

bundle over a halo of a closed set F c X , it contains a bundle 

over all of X that equals the given bundle over F. 

In this § all fibrebundles and microbundles shall be numer­

able [g] with no restriction on the base space. 

(2.1) Lemma. 

Let a : Es _. E'r) 
0 

be a bundle-imbedding over the base 

space X and let U c E'fl be a microbundle nbd. of X e Then 

there is an isotopy 

of bundle-imbeddings such that 

for all t~ and a 1 (Er;) cu. 

Proof. 

In the bundle 'fl xI there is the microbundle nbd. 

The theorem quoted from [15] now gives a bundle ~ containedm 

M equal to a:
0

(Er;) over X x [01. We then use the fact that 
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M is a microbundle over X x I. The homotopy covering theorem 

(for bundles) now gives an isomorphism 

such that the composite 

a : Es X I .... E \..J. c M c Er) X I 

equals a: 
0 

over the 0-slice. Clearly a: is the required 

isotopy. 

(2.2) Lemma. 

Let a: 
0

, a: 1 : Es .... Er) be isotopic bundle-imbeddings. 

Then there is an isotopy from a: 
0 

to a: 1 whose image at 

each stage is contained in 

Proof. 

Let a: : Es x I .... E fl x I 

be some isotopy from a: 
0 

to a: 1 • In lemma ( 2.1) take X x I 

as base space and define U c Er) x I by 

Lemma (2.1) now gives an isotopy 

13 t : Es x I .... Efl x I 

with 

for each t , and 

s1 (Et;x I) cU. 

The isotopy St corresponds to a bundle-imbedding 

s : E( s X I X I) .... E( f) X I X I) 

over X xI xI • 
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Write R = [0,1} x I U I x (1} • Restricting S to X x R we 

obtain a bundle-imbedding 

!3: E(sxR) ... E('!lxR) 

which may be regarded as an isotopy of bundle-imbeddings Es ... E'll 

parametrized by R. Note that R is an interval. We assert that 

this is the required isotopy. First we have (0,0), (1,0) E R 

and 

Then we must show that 

S(Es xR) c [ao(Ee;) u a:1(Es)] X R. 

This is a consequence of the following three inclusion relations. 

I • s ( Es x r o 1 x I) c a c Es x I ) x I n E'll x r o} x I = a 
0 

( Ee; ) x { o 1 x I • 

II. Similarly !3(Es x [1} xI) c a: 1 (Es)x (11 xI 

III. s ( Es x r x ( n ) = s1 ( Es x I) x r n c u x r 1 1 = 

= [a: 
0 

( Es) u a 1 ( Es) J x I x [ 1} 

(2.3) Corollary. 

When two bundle imbeddings 

r,z : EE: -+E'Il 

are isotopic, there are bundle imbeddings 

a:,s : Es ... Ec: 

both isotopic to the identity such that 

rs = za. • 

Proof. 

• 

• 

N = r(Ee;) n z(Es) is a microbundle nbd. in 'll • Hence, by 
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lemma (2.1), there is a bundle-imbedding 

isotopic to r with image in N. By the same lemma we can choose 

q so that there is an isotopy 

image in N u r(Es) = r(Es). 

With 
-1 r q 1 = id. 

-1 S = r q, we get that B 

from q = q 
0 

to 

is isotopic by 

= r with 

to 

But q is also isotopic to z and lemma (2.2) gives an 

isotopy q t from q0 = q to q 1 = z with image in N U z(EE:) = z(EE:) 
-1 Hence a = z q is isotopic to id, and 

rs = r(r-1 q) = q = z( z-1 q) = za 

In the above lemmas we have constructed small bundle imbed-

dings and small isotopies. We now go in the opposite direction to 

obtain bundle isomorphisms from bundle-imbeddings. 

(2.4) Lemma. 

Any bundle-imbedding is isotopic to a bundle isomorphism. 

Proof. 

Let a 
0 

: Es -+ E11 be a bundle-imbedding. The bundle 11 x I 

contains the bundle 

over the halo 

X X [I - f.~}] of X X f 0, 11 • 

By the theorem quoted from [15] there is a bundle ~ contained 

in 11 X I which equals a 
0 

(EE.) over the 0-slice and E11 over 

the 1-slice. Now take an isomorphism 
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such that the composite 

Es X I .... Eu, c E'll X I 

is an isotopy as required. 

(2.5) Lemma. 

When two bund~isomorphisms S
0

, s1 : s .... '11 are isotopic as 

bundle imbeddings, they are isotopic as bundle isomorphisms. 

Proof. We may suppose that there is an isotopy 

from c 
~-'o to B ' 1 which is stationary over 

the bundle '11 x I x I there is contained the bundle 

and 

A= S(Esxi) X [O,t> U E('llXI) X<~, 1] 

In 

whose base is a halo of X x o (I x I). Hence, by (15], '11 xI x I 

contains a bundle U. equal to A· over X x a (I x I). Let 

be a bundle isomorphism equal to S over X x I x (0}. Then the 

composite 

B Es X I X I .... Eu c E'll X I X I 

restricted to X x R where 

R= (0,1} X IU I X (11 

gives an isotopy of bundle isomorphisms from so to s1 para­

metrized by R. 

(2.6) Proposition. 

Each isotopy class of bundle imbeddings s .... '11 contains 

exactly one isotopy class of bundle isomorphisms s .... '11· 
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Proof. 

This is the content of (2.4) and (2.5). 

We now draw a conclusion of (1.1) and (2.3) concerning 

boundedness of imbeddings. 

(2.7) Lemma. 

Let s and ~ be bundles over the spaces X and Y and 

let i : Es ~ E~ be an open imbedding such that f 

is proper. Then there exist bundle imbeddings r 

= pr i 
'tl 

Es ~ E!! 

isotopic to id such that ir is bounded. Any two such imbeddings 

are boundedly isotopic. 

Proof. 

Let U be the nbd. of X in E~ described in (1.1). 

According to (2.1) there is a bundle imbedding 

r Es ~ Et; 

with image in U and which is isotopic to id. By (1.1) ir is 

bounded. Let iz be an other bounded imbedding with z isotopic 

to id. Then r is isotopic to z so that there are bundle 

imbeddings a and S both isotopic to id and, according to 

( 2 • 3) , such that z ~ = r s. Now 

ir "" irB = i z a ~ iz 

where the isotopy is bounded because ir and iz are bounded. 

(2.8) Definition. 

Let i, f and r be the maps defined in (2.7). Then we 

define 

to be the homotopy class of the map Dir This is a well defined 



- 20 -

homotopy class according to (1.3) and (2.7), provided that f is 

proper. 

That is, when f is proper, we can define Di as a homotopy 

class, even when i is not bounded. 

(2.9) Definition. 

Let X~ M ~X be a microbundle over an arbitrary space X· 
' 

denote it by M~ When s is a bundle over X, a bundle imbedding 

~ ~ M or Es ~ M is a topological imbedding Es ~ M that preser­

ves fibres and zerosection. It is then clear how to define iso-

topies. 

We define a category Bundle (X)/M where an object is a bundle 

E on X together with an isotopy class of bundle imbeddings 

s - M. We denote an object by 

s - M 

A morphism (s - M) - (~- M) is an isotopy-class of bundle im­

beddings s ~ ~ such that 

(*) 

commutes. To be accurate, the isotopy-classes in (*) shall have 

representatives that make the diagram commute as a diagram of spaces 

(**) 

Given two morphisms 

(+) 

the composite morphism 
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is defined by composing maps representing the morphisms (+). We 

must show that this defines a morphism which is unique. 

Let 

be diagrams representing (+). Then 

Es _!L> E11 

b'~ ~' 
M. 

' 

is also a representing diagram because b'a - ca = b. Hence the 

diagram 

(++) 

represents the composite morphism. Moreover the imbeddings a' 

and a belong to welldefined isotopy classes so that the composite 

morphism is unique. Hence to compose the morphisms (+), we may 

si.mply delete a copy of 1\1 and write 

It is then clear that identity maps exist. 

(2.10) Theorem. 

When x and y are objects in 

the category 

the set 

has exactly one element. 

Bundle (X)/M, 

Hom (x,y) 
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Proof. 

Let s ~ M and ~ ~ M be two objects. When we represent 

these isotopy-classes by imbeddings a : E~ ~ M and S : E~ ~ M t 

we may according to (2.1) choose a such that 

Im(l')'..)_ c Im( S). 

Hence there is a map ~ : E~ ~ E~ such that 

~ is then a bundle imbedding and represents a morphism 

When we know that the sets Hom(x,y) are nonempty, it suffices to 

show that Hom(x,x) has only one element to conclude the proof, 

as the reader easily verifies. 

That is, when given a commutative diagram 

EE; __§__> Es 

b \ /a 
M 

where b ~ c, we must show that a~ id. To this end we note that 

(2.1), (2.2) and (2.3) which deal with bundle imbeddings EE; ~ E~, 

are equally valid for bundle imbeddings 

Es ~ M • 

In fact the proofs are valid when we replace E~ by M every-

where. 

Because b and c are isotopi~~ there are, by (2,3)~ bundle 

imbeddings r, z : Es ~ Es both isotopic to id such that bz =cr. 

But b = ca so that 

caz = cr , and 

az = r 
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because c is injective. Because z,r ~ id , we get 

a ::::. id • 
Q.E.D. 

Note that (2.10) and (2.6) implies that when ; and ~ are 

bundles contained in the microbundle M, there is a canonical 

isotopy class of isomorphisms 

s ... '11 • 

(2.11) 

When X is a manifold, we define 

TX = Bundle(X)/TX 

where TX is the tangent microbundle space, By abuse of notation, 

we shall denote objects in this category by TX. In view of (2.10) 

we may do so. 

For later use we need some standard facts about fibre bundles. 

The fibre bundles shall be numerable with some fixed fibre and 

structural group. 

(2.12) Lemma. 

Let r: and ~ be fibre bundles over X and let 

a,b . e: ... ~ . 
be two isomorphisms. Suppose that a and b are isotopic when 

restricted to a set A c X such that X can be deformed into A. 

Then a and b are isotopic over all of X . 
Proof: Standard. 

(2.13) Corollary. 

Suppose that A c X is a deformation retract and let 
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r : X ~ X be a retraction onto A. When ; is a fibre bundle 

on X there are isomorphisms 

which are the identity over A , and these are isotopic. 

Proof: Standard. 

When f : X~ Y is a map of spaces, it is clear how to define 

a bundle map (or isomorphism) covering f (or over f). When 

H : X X I _. Y 

is a homotopy, an isotopy of bundle maps covering the homotopy H 

is defined in the same way. 

(2 .. 14) Lemma. 

Let A c X be a strong deformation retract and let r 

be a retraction onto A. Let 

H X X I -+ X 

be a homotopy from idx to r rel. A • Let 

be a fibre bundle map covering r and isotopic to ids by an 

isotopy covering H. Then the restricted map 

is isotopic to the identity and this fact uniquely determines the 

isotopy class (over r) of a. 

Proof. Standard. 

Now let X be a manifold and ; a bundle on X • Let 

pr2 : X x X ~ X denote the second projection. 
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(2.15) Lemma. 

The microbundles 

T(Es) I X and (TX) o pr2*e: 

are isomorphic by an isomorphism given by a canonical homeomorphism 

of the total spaces. 

Proof. 

The diagram of is 

X X X ~ (X X X) X Es ]£> X X X 

(id,se;pr2 ) X 

where the fibered product is formed by means of the maps 

X X X ->X< E~ • pr2 pre; 

Hence the diagram of (TX) o pr2*s is the upper line in the 

following diagram. 

" ( i d , s e: pr 2 ) X -'=' X X X > (X X X) X Es ]£>X X 
pr1 

X-> X -

(i~ I 
~X X 

I 

pr1 pr1 
EE; 

Because the diagram commutes, the vertical map is a homeo­

morphism which is canonical, and the broken line is the diagram 

of T (EE;) I X , the proof is complete. 

(2.16) 

In practice, we choose bundles in the microbundles and apply 

(2.15) to these bundles. We can do so in view of (2.10). 

\ 
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§ 3. Orientations. 

When h* is a multiplicative cohomology theory and s is a 

bundle over X, a h*-Thom class for ~ is an element 

u E h*(xe:,pt) 

such that when F c X is a closed set over which e: has constant 

rank, the restricted class 

UF E h*(Fs,pt) 

is homogeneous. 

When F = P, a point in X, we also claim that Up shall be 

one of the canonical generators of the h*(pt)-module h*(Ps,pt). 

There are at most two such generators corresponding to the two 

homotopy equivalences 

for some q .2: 0. 

(When q = 0 there is only one such equivalence.) Note that 

a class u E h*(xc:,pt) restricts to some other generator in 

h*(PC:,pt) when P c X is a point, there is a unit a E h 0 (X) 

such that au restricts to a canonical generator for all p c 

if 

X. 

The bundle s is said to be h*-orientable iff it has a 

h*-Thom class. When A is a ring (commutative with 1), a H*(-;A)-

Thorn class is called an A-Them class. 

(3.1) Lemma. 

When U is a h*-Thom class for e:, all other * h -Thorn classes 

can be written 
au 

where a E h 0 (X) is unique and restricts to + 1 E h0 (P) when 

P c X is a point. 
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II. When F, and ~ are bundles on X and U and W are Thorn 

classes for ~ and ~ $ ~' there is a unique Thorn class V for 

~ such that 

w = uv • 

Proof. 

I. By the Thorn isomorphism theorem, any Thorn class can be written 

uniquely as a • U where Let subscript p denote re-

striation to P and the Thorn space over P. Then 

are canonical generators, hence ap = ± 1 . 
Conversely, when a E h 0 (X) and ap = + - 1 for all p c x, 

aU is clearly a Thorn class. 

II. The product uv is determined by the diagonal map 

Choose some Thorn class v' for ~ • Then 

w = a(uv') and 

v = av' uniquely, 

according to I. 

(3.2) 

When k ~ 1 is an integer, we define a k-adic Thorn class 

to be a class 

that fullfils all the requirements to a Thorn class except that 

it restricts to k times a canonical generator in the fibres of 

the r.rhom space. A k-adic Thorn class becomes a Thorn class when 

we localize our theory in the multiplicative system 

f1,k,k2 ,···} c k 0 (pt). 
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We now make a digression to prove (3.3) and (3.4). 

(3.3) The k-adic Dold theorem. 

Let X be a finite-dimensional connected cell complex. 

When s is a bundle on X that has a k-adic Thorn class, some 

Whitney-multiple ~ • s is orientable provided either (i) or (ii) 

is true. 

(i) X is simply connected. 

(ii) 2k does not map to zero under :?l .... h 0 (pt). 

Proof. 

When n ~1 our induction hypotesis will be that some Whitney­

multiple ka· s restricted to the n-sceleton Xn is orientable. 

We first prove this for n = 1. 

Collapsing a maximal tree in x1 , we may assume that x1 is 

a boQuet of 1-spheres. If (i) is true, the map x1 c X is null-

homotopic, and s is trivial over x1. In any case it suffices 

to assume x1 = s 1 . If the orientation system of s restricted 

to x1 = 81 is trivial, there is still nothing to prove. In cas~ 

it is nontrivial, we deduce that 2kg = 0 where 

is a generator. Hence 2k = 0 in h 0 (pt), but this is not the 

case according to (ii). 

Hence the induction hypotesis is true for n = 1 with a = 0. 

Assume that it is true for some n ~ 1 and some a. 

When A 

that R = As 

is the given k-adic Thorn class for r,,it is clear 

is a k~-adic Thorn class for ~·s, we choose S = ka. 

By hypothesis there is a Thorn class V for ~·s over Xn. We 

may choose the sign of V such that 

= ksv 
X 

when 
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We also assume that X n+1 is obtained from xn by imbedding 

a boquet S of n-spheres and attaching the corresponding boquet 

D of (n +1)- cells. 

D being contractible, there is a Thorn class U for S·~ over D. 

We choose the sign of U such that 

Ux = Vx when x E S • 

(As before, restriction to F and the Thorn space over F is 

denoted by subscript F). 

u8 and v8 are both Thorn classes over S, hence 

(I) 

where e E h 0 (S) and ex = 0 for all x E s. 

By a similar argument, we get 

Rx 
n 

= (kp + &)V (II) 

where & E ho(Xn) is such that & 
X = 0 for all x E xn 

because we have Rx = s k vx. Taking X E s and using equations 

(I) and (II), we get 

Rx = k8v = ksu . X X 

Hence over the contractible space D we get 

RD = kSU • (III). 

Now using equations (II), (III) and (I) successively, all 

restricted to S9 we get 
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Hence 

58 = k!3€ • 

Recall that e E h 0 (S,pt), so that e 2 = 0 because 6 : S ~SA S 

is nullhomotopic. Putting m = kS we get in h*(smS~,pt) the 

following identity 

(urn ) S = (us ) m = ( 1 + e: ) m ( V s )m = 

( 1 +me )(V 
8 

)m = ( 1 +5
8 

)(V 
8 

)m = 

= ( ( 1 + 5 ) vm) 8 ~ 

Thus the two Thorn classes urn for mSr over D and 

(1 + 5)Vm for mss over Xn coincide over S = D n Xn. This 

implies that there is a Thorn class for m!3s over Xn+1 • Because 

me= ks~, we are done. 

( 3. 4) Corollary. (Adams) 

Let E ~ X be a q-sphere bundle over a connected finite 

dimensional cell complex X. Assume that there is a map 

E ~ sq 

of degree ± k in each fibre where k ~ 1 • Then some kl-fold 

Whitney join of E with itself is fibrehomotopically trivial. 

Proof. 

We use stable cohomotopy theory and observe that the map 

E ~ Sq determines a k-adic Thorn class for the discbundle spanned 

by E. We also note that condition (ii) of (3.3) is fullfilled by 

cohomotopy theory. We denote the discbundle spanned by a sphere­

bundle E by E . Then 

where * is the Whitney join and ® is the Whitney sum (or pro-
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duct). By (3.3) some multiple Whitney sum 

is orientable where ~ = ka • Increasing a so that 

dim X + 2 ~ ka ( q + 1 ) we are in the stable range and the cohomo­

topy Thom class of 

13 E -- *13 E • 

is represented by a map 

of degree± 1 in each fibre. By a theorem of Dold [8], *i3E is 

fibrehomotopically trivial. 

It is easily seen that corollary (3o4) is equivalent to 

theorem (1.1) of [1]. 

(3.5) Definition. 

Let ~'~ be bundles on X,Y and let 

a : s .... ~ 

be a bundle imbedding covering f X .... y • 

We define 

a* : h*(Y~,pt) .... h*(xs,pt) 

as follows. Take a bundle-isomorphism a, 1 isotopic to a over f. 

Then the map of Thom spaces 

T(a 1 ) xs .... y'll 

is defined. We put 

Then a* is well-defined because the isotopy class (over f) of 

a 1 as an isomorphism is uniquely determined according to (2.6). 
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When ~ is a bundle on Y and ~ is a bundle on E~ 1 we 

have the natural homotopy equivalence 

By means of this equivalence we identify the corresponding cohomo­

logy groups. In particular a Thorn class for IJ. and a Thorn class 

for u. 1 Y is the same thing. 

(3.6) Definition. 

Let A and ~ be bundles on Y and let u. be a bundle on 

E~ • Then there is a diagonal map 

6 : yA®(~ou) _. yA®~ A yU. 

defined in the same way as the diagonal map of (1.4). The diagonal 

map is unique in homotopy. When S is a Thorn class for A 41 ~ and 

V is a Thorn class for ~, we get a Thorn class 

SV = 6 * ( S A V ) 

for A <!> ( ~ o u). 

We now give a definition of an orientation of a map f 

of manifolds that does not use imbeddings of X in Y x mq 

(3.7) Definition. 

X .... y 

A Thorn class for a map f : X -+ Y of manifolds is a triple 

(a, U, V) Where o: is a bundle imbedding covering f 

a : TX o E; -+ TY o ~ 

and U, V are Thorn classes for the bundles s, ~ on E 'T' X, E 'T' Y • 

We say that two Thorn classes (ct, U, V) and (a', U' 9 V') for f 

are equivalent if there is a bundle A on Y and Thorn classes 

R for f*A Ef> 'T' X and S for A !fl rr Y such that 

RU = ( fb <!> ct ) * ( SV) 

and RU 
1 = ( fb <!> a ' ) * ( SV 1 

) • 
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Here we use definition ( 3. 5) and fb (f) a: is the bundle imbedding 

f*A. ® T X 0 t; ... A (.f) T y 0 'r1 • 

Using (2.6) it is not difficult to see that this relation 

between Thorn classes is an equivalence relation. 

(3.8) Definition. 

An orientation of a map f . X ..... y is an equivalence class • 

Thorn classes for f. An oriented map X ... y is a pair (f,w) 

where f is a map X ... y and w is an orientation of f 

This definition is justified by the following lemmao 

(3.9) Lemma. 

Let (f,w) : X ... Y be an oriented map of manifold and let 

be a bundle imbedding covering f. When V is a Thorn class for 

of 

'r1 1 there is exactly one Thorn class U for ~ such that (a:,U,V) 

represents w • 

We omit the proof that U exists. Suppose that (a:,U,V) 

and (~,U',V) are equivalent. With the notation of (3.7) we have 

RU = (fb (f) a:)*(SV) = RU 1 

and hence u = u'. 

(3.10) Definition. 

Given maps X_!_> Y _g_> Z of manifolds with Thorn classes 

(a,U,V) and (S 7 V,W) where 

'T' X o ~ .J:L_> 'f Y o 'r1 - 9-> 'T' Z o u 

are bundle imbeddings covering f and g. The composite Thorn 

class is defined to be 

(13a:,U,W) • 
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(3.11) Lemma. 

Definition (3.10) gives a definition of composition of orien­

ted maps by composing representing Thorn classes. This composition 

operation is associative so that we have a category of manifolds and 

oriented maps. 

Proof. 

Let (f,w) : X~ Y and (g,C) : Y ~ Z be oriented maps. It 

is a consequence of (3.9) that w and C may be represented by 

Thoro classes as in (3.10). Suppose that 

I 0 I 
,. X 0 !'; I ..£_> ,. y 0 r) I ~> ,. z 0 IJ. I 

and (Q 1
, U 1 

, V 1 
) , ( ~ 1 

, V 1 
, W 1 

) is another such representation. We 

then have two Thoro classes representing w, and two representing 

C • It is then easily seen that there is a bundle A on Z and 

Thoro classes R,S,T for 

f* g* A® rr X, g* A t:j:) rr Y , A t:fl 'r Z 

such that 
RU = ( f b r.t> a ) * ( SV ) RU 1 = ( f b r-f> a I ) * ( SV I ) 

and 
( gb ® S ) * ( TW) sv' sv = = (gb(:E) s I ) (TW 1

) 

when the notation is as in ( 3. 7). Note that 

The four equations above imply 

and 
* RU = (gbfb (f) Sa) (TW) 

RU 1 = (gbfb ® 13 'a 1 )*(TW') .. 

That is, the two composed Thorn classes are equivalent, and hence 

the composed orientation is well defined. 

Associativity is clear from the definition and the neutral 

oriented map 
(id,1) X .... X 

clearly exist. 
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(3.12) Definition. 

When f : X~ Y and g : A ~ B are maps with Thorn classes 

(a,U,V) and (~,P,Q), we define the product Thorn class for 

f x g to be 

(a X [3 , U A P, V A Q) • 

(3.13) Lemma. 

The above definition gives a product of oriented maps 

(f,w) X (g,C) ~ (f X g, W X ,). 

Proof. Trivial. 

(3.14) Example. 

When X is an oriented manifold, and P is a point, there 

is a canonical orientation for any map f : P ~ X The map 

may be considered as a map 

a ,. P o f* 'T"X ~ ,. X o e: 0 • 

When 0 is a Thorn class for 'r X , 

is a Thorn class for f : P ~ X • 

Because f is canonically oriented when X is oriented, we 

shall consider f as an oriented map. Note that s1 is canoni­

cally oriented so that any map f : P ~ s1 will be considered as 

oriented. 

We now define a relation of homotopy in the category of mani­

folds and oriented maps. 
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(3.15) Definition. 

Two oriented maps ( f, l!.l) and ( g, ),_) X ... y are homotopic 

if there is an oriented map 

(H,v) Y X S 1 ... y 

such that (f,w) = (H,v)(1x x j 1 ) 

and (g,A.) = (H,v)(1x x j2). 

Here (1x x j 1) denotes, by abuse of notation the composite 

oriented map 

X 

(3.16) Lemma. 

The relation of homotopy defined in (3.15) is an equivalence 

relation on the set of oriented maps X ... Y • It is compatible 

with composition so that we get a homotopy category of oriented 

maps. 

Proof. 

The proof goes just as for the ordinary homotopy category. 

(3.17) Remark. 

We have defined homotopy classes of oriented maps X ... Y, 

but not oriented homotopy classes of maps X ... Y . In general 

homotopy classes of continuous maps can not be oriented.. Let 9 for 

example, P be a point and X a connected manifold, nonorientable 

over ~ . Then every map P ... X is orientable over ~ , and all 

maps P ... X are homotopic. There is, however, no reasonable defi-

nition of an orientation for this homotopy class, as the reader 

will see by letting P trace through a loop in X that has no 

lifting to the orientation cover of X. 
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(3.18) Lemma. 

When two continuous maps 

f,g : X-+ Y 

are homotopic, and w is an orientation for f, there exists an 

orientation A for g such that (f,w) is homotopic to (g,X) 

Proof. 

Let H X X 81 ... y be a map such that f = HJ1 and g = HJ2 

where 

Ji 0 X -+ X X 81 
0 

is the imbedding Ji(x) = (x,zi) • The maps J. 
1 

are canonically 

oriented as in (3.15). We may also choose H so that it is homo-

topic to f pr where pr 0 X X 81 ... X Clearly pr and hence . • 

f pr are orientable, hence H is orientable. 

Consequently there exist orientable bundles s on X and 

n on Y and bundle imbeddings 

'r X EF> e 1 
EF> E: ..!J_> 'r (X X 81 ) EF> ( S X 81 ) - 8-> 'r Y EF> n 

covering J~ and H. Take a Thorn class representing w of the 

form (Sa, ~ U,V) where ~ is the canonical Thorn class of e 1 
o 

Let v be the orientation of H represented by 

Then 

(f,w) = (H,v)J 1 

where J 1 has the canonical orientation. We define A by 

(g,X) = (H,v)J2 . 

Then ( g, X) and ( f, IJJ) are homotopic by definition. 
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§ 4. The Transfer Homomorphism. 

In§ 3 we defined in (3.16) a category consisting of mani-

folds and oriented maps. We also defined the corresponding homo­

topy category. To define the transfer homomorphism, we need the 

corresponding categories based on proper maps and proper homotopies. 

(4.1) Definition. 

The category of manifolds and oriented proper maps and the 

corresponding proper homotopy category are defined just as in (3.16) 9 

with the restriction that all maps be proper. It should be noted 

that the map H defined in (3.18) in this setting may be chosen 

as a proper map so that (3.18) is still true for the proper categor,y. 

Next comes the main construction of this §~ 

Given a proper map f : X ~ Y of manifolds and a bounded 

imbedding i : E~ ~E~ of bundle spaces lifting f , that is so 

that f = pr is~. We shall construct a bundle imbedding 
'Y1 ' . 

a : ,. X o pr 2 * E: ~ ,. Y o pr 2 * 11 

covering f and unique in isotopy (over f). Here pr2 denotes 

one of the composite maps 

The imbedding 

E ,- X c X X X pr2> X 

E ,- Y c Y X Y -> Y 
pr2 

determines a bundle imbedding 

covering iss, when restricted to bundle spaces in the microbundles. 

Also there is a bundle-isomorphism covering pr
11 
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which is the identity on Y c En 

a is the composite 

(2.13). The bundle imbedding 

rX o pr2*s = (rE~) l X .... r(En) .... (rEf!) I Y = rY o pr2*n 

where the first and the last isomorphism are defined in (2.17). 

Clearly ex covers pr ni s E: = f in the base. 

(4.2) Definition. 

The bundle imbedding a defined above will be called the 

bundle imbedding determined by i • 

(4.3) Definition. 

When w is an orientation of f , we define 

t(i,w) : h*(X) .... h*(Y) 

as follows: 

When V is a Thorn class for n , let U be the unique (3.9) 

Thorn class for s such that (a,TT,V) represents w. Then defin? 

t(i,w) = t(i,U,V) • (1.10) 

This definition is independent of the choice of V. vfhen we take 

another Thorn class aV for n with a E h0 (Y), w is represented 

by (a, f*(a)U, aV). This is an easy consequence of the definiti~n 

(3.7) of equivalent Thorn classes. From (1.13) we conclude that 

t(i,U,V) = t(i,f*(a)U, av). 

(4.4) Proposition. 

Let (f,w) : X .... Y be an oriented proper map and i 

an open bounded imbedding lifting f. 

When u is a bundle on En (such that u = prn*u) , we hav~ 

t(i,w) = t(r,w) 

where r is the induced imbedding determined by u • ( 1 .. 4). 



- 40 -

Proof: 

We recall that T is an imbedding 

T : E ( E; o i *u ) -+ E ( 11 0 \.1 ) • 

Let (a,U,V) be a Thom class representing w. Here a is 

the bundle imbedding determined by i • (4.2) When A is a Thom 

class for u , there is a Thom class (a, UB, VA) representing w 

where B is a Thom class for i*u and a is the bundle imbedding 

determined by T • Suppose that B = i*A. Then we get from (1.13) 

t('r,w) = t(T,UtA,VA)= t(i,U,V) = t(i,m) 

because 

Hence it suffices to prove that B = i*A or in other words 

that (a,u,v) and (a, Ui*A, VA) are equivalent Thom classes. 

The proof of this statement is tedious and requires a lot of dia­

grams, hence we skip it. The proof goes as follows: Choose R 

and S so that 

RU = (fb ~ a)*(sv) in the notation of (3.7) 

and prove that 

(4.5) Proposition. 

(i) Let (f,w) : X -+ Y and (g,u) : Y -+ Z be proper oriented 

maps and let i : Es ... E11 , j : E11 ... E\ be bounded open imbeddin~s 

of bundle spaces lifting f and g respectively. Then 

t(ji,uw) = t(j,u)t(i,w) 

provided there is a splitting 11 = 111 ® 112 such that 

ise;(X) c E111 
and 

restricted to E11 1 • 
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(ii) The conclusion t(ji,uw) = t(j,u)t(i,w) also holds in case 

iss(X) c s'll(Y) • 

(iii) When the maps f and g are given, we can always find 

imbeddings i and j with the properties described in (i). 

Proof. 

(i) uw is an orientation of gf • In order that the proposition 

make sense, we must have gf = prA. j is r; • But g pr '11 i s s (X) = 

pr\ j is r; (;x:) because ise;(X) c E'l11 • That is gf(x) = pr A. j is r; (x) 

Let a,a and y be the bundle imbeddings determined by i,j 

and ji • Then there are Thorn classes U,V and W for ~, fl 

and >.. such that t(i,w) = t(i,U,V), t(j,u) = t(j,V,W) and hence 

t(j,u)t(i,w) = t(ji,u,w) according to (1.11). Now (Ba, u,w) i$ 

a Thorn class representing uw • If y is isotopic (over gf) to 

Sa, (y,U,W) is another representing Thorn class for uw , 

t(ji,U,W) = t(ji,uw), and (i) is proved. 

To prove that y and Sa are isotopic, we consider a diagram 

defining a and 8 • 

X X 

In this diagram (that does not commute) a = is~ x i , b = js'll x j, 

c = s'll x id , p is a bundle isomorphism covering pr'll equal to 

the identity over Y and q is a similar isomorphism covering 

pr>.. • By definition a: = pa and 13 = qb • 

Although some of the maps in the diagram are defined on the 

whole total space, they should be considered as bundle maps defined 
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on some nbd. of the zero section. That is, the diagram looks like 

Now let Dt : E~ ~ E~ be a deformation of E~ rel Y such 

that 

Then there is an isotopy 

covering Dt and equal to the identity over s~(Y) • According 

to (2.16) we may choose p such that cp = A 
0 

. This gives an 

isotopy 

q( j X j )Ata 

from q(j X j)a = y to q( j X j)cpa ::: qbrx ::: 8(1 covering 

X~ Z • If this homotopy is stationary, the proof 

is finished. We choose the deformation Dt such that the fibres 

of E~ 1 c E~ are preserved. Then 

and 

prA. j Dt isr; ::: g pr~ Dt isE ::: g pr~ iss ::: gf • 
' 

(ii) Trivial. Take ~1 ::: o, ~2 = n, and use (i) . 

(iii) Let \.1 be a bundle on z such that there is an imbedding 

X~ 
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lifting f and admitting a normal bundle. (x 1 may be chosen as 

a trivial bundle.) Let 

be an open bounded imbedding lifting g. We have the induced im­

bedding 

Using the isomorphism 

with the composite imbedding 

visibly maps X to E'l')1 • We must also show that 

g pr'l1 = prA. j over E'l')1 
when 

1l = '112 ® '111 and \ = A.2 4'l >..1 . 
Because g = prA. j s'l1 9 we must show that 

prA.js'l1pr'l1=pr\j over E'r)1 

This equation simply states that each fibre of E'r)1 is mapped by 

j into some fibre of E\ • Because j is an induced imbedding, 

this is clearly true. 

(4.6) Lemma. 

Let s be an orientable bundle on the manifold X and let 

i : EE; .... E~ 

be an open bounded imbedding that restricts to the identity on 

X c EE; • Then 
t(i,1) = id 

when 1 is the neutral orientation of the identity map X .... X • 
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Proof. 

Let 
a : rX o pr2*E - rX o pr2*; 

be the bundle imbedding determined by i and let (a,U,V) be a 

Thorn class representing 1. Because 

t(i,1)(x) = xt(i,1)(1) 

according to (1.12), it suffices to prove that t(i,1) = 1 , or 

that V = (Di)*(u) • (It is true more or less trivially that 

t(i,1) is a unit in h 0 (X)). 

Because (a,U,V) represents 1 , there is a bundle ~ on X 

such that when 

we have 
RU = ( id CB a ) * RV 

when R is a Thorn class for ~ ~ rX • The microbundle diagram 

for ~ ® (rX o pr2 *~) is 

(sv,s~) pr~pr 1 X > E~ X E~ > X , 

and the map id EB a is simply 

id X i : E~ X E~ - E~ X E~ 

on the total space. The map 

v~(rXopr2 *s) ~ ~~rx 
f. : X X 1\ Xr; 

that determines the product Thorn classes is the Thorn space map 

derived from a closed imbedding 

restricting to the diagonal map X ~ X X X in the base. On the 

total spaces S is given by 

S : E~ X Es ~ (E~ X X) X Es 
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where 
S(v,w) = (v,pr~(w),w) • 

This fact follows from the definition (3.6) after some calculation. 

Note that the diagram of ~ ~ TX is 

(s~,id) pr 
X > E~ X X -2> X • 

To obtain a Thorn space map from S , we collapse closed sets whose 

complements are sufficiently small bundle nbd's. 

We shall prove that the diagram of bundlespaces 

Ev X EE; _JL> (E~ X X) X Es 

(+) +idxi Jidxidxi 

E~ X Et: T> (E~ X X) X EF, 

gives rise to a homotopy commutative diagram 

~(:f)( TX o pr2 *t::) 
_!L> 

~(.i:)tX xs X X 1\ 

(*) J T(idff>a) I id 1\ Di 

~~(TXo pr2*s) 
X _L> X 

~®'!"X E: 
1\ x-

If this is so, we get 

But 
RU = (id~a )*(RV), hence 

To prove che proposed homotopy commutativety of the diagram (*), 

we first deform S • Let Dt Es ~ Es be a deformation rel. X 

with D1 = id D0 = s~:; prs • Then 

~t(v,w) = (v, pre: Dt i(w),w) 

is a closed imbedding 

Ev X E~ ~ (E~ X X) X EE: 
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preserving the zero section. We get a homotopy of Thorn space maps 

with T(~ 0 ) = 6 because s = s . 
0 

prove that ,f\ is homotopic to 

But this is a consequence of the fact that 

!31 
Ev X Es ----> (Ev X X) X E~ 

(+ 1) ! id X i J id X id Xi 

Ev X Es ~> (Ev X X) X E~ 

commutes. 

Thus it suffices to 

Note: Lemma (4.6) is a direct consequence of (4.4) and (4.9) when 

we use a theorem of M.W. Hirsch [12] on the stable isotopy-unique-:-

ness of normal bundles. 

(4.7) Corollar;y:. 

Let (f,w) : X .... y be an oriented proper map. Let F and 

>.. be bundles on X and let n be a bundle on y • When 

i . E~ .... En and j E>.. .... En . 
are open bounded imbeddings lifting f such that is~ = j sA ' 

we 

have t(i,m) = t(j,w) • 

Proof. 

Obviously the bundles s and A have the same stable class. 

Because a~ induced imbedding gives the same transfer map (4.4), 

we may suppose that ~ and A are isomorphic, by adding a trivial 

bundle to n • Now let k : EF. -+ E>.. be a bundle imbedding so 

small that ir = jk for some open imbedding r E s _. E s • ( That 

is so small that jk(Es) c i(E~).) Then r is the identity on X 

Because (f,w) = (f,w)(id, 1), we get from (4.5 ii) 

t(i,w) = t(i,w)t(r,1) = t(ir,w) = t(jk,w)= t(j,w)t(k,1)= t(j,w). 
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Here we used (4.6) to get t(r,1) = id and the trivial fact 

that t(k,1) = id. (Note that k preserves fibres.) 

(4.8) Proposition. 

The transfer homomorphism is independent of the bounded im­

bedding used to define it. Precisely : 

Let (f,w) X~ Y be a proper oriented map, let i : Es~ E~ 

and j EA ~ Eu be open bounded imbeddings lifting f. When 

~ and ~ are orientable, we have 

t(i,w) = t(j,w). 

Proof. 

Because induced imbeddings give the same transfer maps, we 

may assume that ~ and ~ are vectorbundles, trivial for instanre. 

In case iss(X) intersects the zero section in ~ , we may add 

a trivial bundle to ~ and isotope X and its normal bundle 

away from the zero section without changing the transfer map 

according to (4.4), (4.7) and (4.9). Hence we may assume that 

is~(X) does not intersect the zero section in ~ • Now define 

J: X X R~ E(~ ~ u ® 8
2 ) 

by 
J(x,t) = (t•is~(x), (1-t)•jsA(x), t(1-t),t2 (1-t)). 

Here 8
2 denotes the trivial bundle of dimension 2. Clearly J 

is a closed imbedding such that 

J
0 

= (0, jsA, 0) 

J 1 = (is~, 0, 0} 

correspond to imbeddings induced from i and j. After adding 

trivial bundles, we may assume that J admits a normal bundle. 

This implies that the isotopy Jt of X may be extended to an 
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isotopy of normal bundles. Because the actual choice of normal 

bundle does not matter according to (4.7), we may write 

t(i,w) = t(is~, w) = t(J1,w) = t(J
0

,w) = t(js~,w) = t(j,w), 

using (4.9). 

(4.9) Lemma. 

Let it : Es ~ E~ be an isotopy of bounded imbeddings lif­

ting f : X ~ Y • Then 

Proof. 

This is an immediate consequence of the definition (4.2) of 

the bundle imbedding at determined by it and the definition 

(4.3) of t(i,w) • 

(4.10) Theorem. 

On the proper homotopy category of manifolds and oriented 

maps defined in (4.1) there is a covariant functor taking the map 

(f,w) : X~ Y 

to the homomorphism fw : h*(X) ~ h*(Y) . 

When i : Es ~ E~ is an open bounded imbedding of bundle 

spaces lifting f (that is f = pr'llis;) , we have 

fw = t(i,w) 

as definec in (4.3), provided ~ , and hence s , is orientable. 

The following equation holds 

fw(f*(y)x) = yfw(x) 

showing that fw is a h*(Y)-module homomorphism. 
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Proof. 

Proposition (4.8) shows that fw is well defined by 

fw = t(i,w). Proposition (4.5 iii) implies that fw is a functor 

on the category of manifolds and proper oriented maps. The homo­

topy invariance of fw is seen as follows, we use the notation 

of (3.15). 

Two properly homotopic oriented maps may be put in the form 

Because the transfer homomorphism is a functor, it suffices to 

show that the "universal" homotopic maps 1x X j 1 and 1x x j 2 
give the same transfer. But this is clear from their definition 

(3.15). 
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§ 5. Applications. 

The Riemann-Roch Theorem. 

Our main application of the transfer homomorphism will be a 

proof of Atiyah 1 s theorem [4] that when f : X~ Y is a homotopy-

equivalence of compact manifolds, 

We shall prove this theorem without the compactness condition, 

provided f is a proper homotopy equivalence. 

(5.1) Theorem. 

Let f : X ~ Y be a proper map of connected manifolds of the 

same dimension. If f admits a one-sided proper homotopy inverse, 

Moreover f induces an isomorphism in any multiplicative cohomo-

logy theory. 

Proof. 

We may assume that f has a left inverse g so that gf is 

properly homotopic to the identity on X • We must prove that the 

conclution of the theorem is true for both f and g. 

We first apply singular cohomology mod 2. Then every map 

has a unique orientation (use lemma (3.9)) and we denote the trans-

fer homomorphism by f 1 • Also gf is homotopic to id as an 
• 

oriented map, according to (3.18). Consequently 

g 1 ( f 1 ( 1 ) ) = ( gf) 1 ( 1 ) ::;: 1 , f 1 ( 1 ) I 0 and f 1 ( 1 ) = 1 
• • • • • 

because H0 (Y,~2 ) = ~2 • 

Now let ~ be a bundle on Y of stable class g*(TX) - TY , 

and let i : E~ ~ E~ be an open bounded imbedding lifting f • 
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Then the stable class of s is 

By adding a trivial bundle to ~ and taking an induced imbedding, 

we may assume that ~ is trivial. Note that 

and 
J(~) ~ g*J(rX) - J(rY) 

f*J(~) ~ J(rX) - f*J(rY) • 

Hence the main assertion of the theorem is equivalent to J(~) ~ 0. 

Let 

be the Thorn map, and let u,v be the mod 2 Thorn classes for s,~. 

Then 
(Di)*(xu) ~ f,(x)v and 

• 

Because ~ is trivial, u is the reduction of an integral Thorn 

class u • We define v ~ (Di)*(u) . In the "fibres" of the Thorn 

space y~ the class ~ does not restrict to 0 because its mod 

reduction v does not. Hence ~ is orientable over Q 9 conse-

quently over ?l • Let v' be a Thorn class for ~ such that 

v I 
~ mV , m > 0 • Let z be the orientation of f determined by 

U and v' and let w be some ~orientation of g • Note that 

g is orientable over ~ because its normal bundle is ~ • Then 

(g,w)(1,z) is homotopic to (id,x) for some orientation x of 

id , according to (3.18) • We have gwfz ~ (gf)wz = idX and 

But 

and 

gw(fz(1)) = idx(1) ~ ± 1 • 

(Di)*(U) = f (1)•V 1 ~ V = mV' z 

2 
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Because H0 (X,~) = ~ , we get m = : 1 and m = 1 • Thus 

V = V' is a Thorn class for ~ over Z • Let q be the fibre 

dimension of s and let 

p . x~ - sq . 
be the canonical map. We may suppose that u = p*(uo) where 

uo E Hq(Sq) 

is a generator. The map 

pDi : Y~ - sq 

has the property that (pDi)*(U
0

) = V is a ~-Thorn class for ~· 

Consequently pDi has degree 1 when restricted to a "fibre" in 

the Thorn space. A theorem of Dold [8] implies that J(~) = 0 • 

When h* is a multiplicative cohomology theory, let 

u 1 E nq(Sq) be the suspension of the unit. Also let 

V1 -- (Di)* p*(u
1

) • Th *(u ) d v en p 1 an 1 together with i 

determine an h*-orientation p of f • We get 

f f*(y) = yf (1) = y p p 
because 

(Di)*(p*u1 ) = fP(1)v 1 = v1 

by definition of p • 

Hence f f* = id p We also have 

g* - f - (f*)-1 • - p -

(5.2} Theorem. 

f * * g = 

When X and Y are manifolds and f 

homotopy-equivalence, 

f*J(TY) = J(TX) • 

id • That is 

X -+ Y is a proper 
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Proof. 

We may assume that X and Y are connected. The conclusion 

follows from (5.1) if dim X= dim Y Using cohomology mod 2, 

we note that deg f, = dim Y - dim X • Let g be an inverSe of 
• 

f in the proper homotopy category~ We get 

f 1 (1) I 0 and g 1 (1) I 0 because g,f,(1) = f,g,(1) = 1 • . . " . . . 
Consequently deg f,(1) ~ 0 and deg g, ~ 0 which implies 

• • 
dim X = dim Y • 

Q.E.D. 

We note that Atiyah's proof does not work in the case of 

non-compact manifolds. His proof uses S-duality, and the theory 

of S-duality does not work as it should for non-compact manifolds. 

As an example, let M be a manifold with boundary oM I 0 • The 

usual S-dual of int M and of M is Mv/(oM)v where v is a 

normal bundle. But the space we have used to define the transfer 

homomorphism is (int M)v or Mv • This fact suggests a defini­

tion of S-duality for locally compact non-compact spaces. 

(5.3) Theorem. 

The tanget bundle of the manifold X is J-equivalent to a 

vector bundle if and only if some product 

has the proper homotopy type of a differentiable manifold. 

Proof. 

If X x ffiq has the proper homotopy type of a differentiable 

manifold, theorem (5.2) implies that T(X x ~q) and hence rX 

is J-equivalent to a vector bundle. 

Now suppose that J(rX) = J(~) where S is a vector bundle 

on X • Also let v be a normal bundle of X in some euclidean 
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space. Then E~ has a differentiable structure, and so has 

E(~ ~ S) which is the total space of a vectorbundle on E~ • 

We have J(~ ® S) = J(~ ® rX) = 0 • Adding a suitable trivial 

bundle to S , we conclude that E(~ ® S) has the proper homotopy 

type of X x Rq . In fact they have the same proper fiber-homotopy 

type. 

We are now going to prove the usual Riemann-Roch and Wu 

theorems. [5] The proofs are entirely formal. We assume that 

a multiplicative transformation of cohomology theories is given~ 

define the corresponding "Todd class" of an oriented map, and the 

R.-R. theorem drops out, The arguments are well established in 

the litterature [2], [3], [11], and our proofs will be short. 

Up to this point we have assumed that a fixed multiplicative 

cohomology theory h* is given. 

theory, and let A : k** ~ k** 

transformation. That is 

Now let k* be another such 

be a multiplicative cohomology 

(i) A(X,A) : k**(X,A) ~ h**(x,A) is a natural ring homomorphism! 

(ii) A commutes with the coboundary homomorphisms in the long 

cohomology sequences. 

(iii) A(pt) : k**(pt) ~ h**(pt) satisfies A(pt)(1) = 1 • Here 

+OO 
k**(X,A) ~ -rr- kq(X,A) 

q= - (X) 

denotes e1ther the subring of elements vanishing below some non­

fixed degree or the subring of elements vanishing above some non­

·fixed degree. 

(5.4) Lemma. 

2 ' th ,.., d ' f k** (X) 11. preserves e L.L.J 2-gra 1ngs o and h** (X) • 
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Proof. 

Let z E k1(S1) and w E h1 (S1) be the suspension of the 

units. Then A.(z) = w • When b E h**(x) is a homogeneous ele-

ment, we know that 

T*(b x w) = (-1)deg(b)w x b 

when T • s1 X X -+ X x s 1 is the twisting map • Consequently . 
is even (odd) if and only if 

T*(b x w) = ew x b 

where e = 1 (e = 1) and bE h**(x) is arbitrary. Now let 

a E k**(x) b ( dd) 1 t e an even o e emen • Then 

* T (a X z) = ez X a . 

Using A. we get 

T*(A.(a) X w) = ew X A.(a) ~ 

hence 2A.(a) is an even (odd) element. 

(5.5) Definition. 

A.' : k* .... h* is the cohomology transformation defined by 

A. 1 (x) =the homogeneous component of A.(x) in degree n, when 

x E kn(X) • 

A.' has all the properties of A., except multiplicativity. 

In many well known cases A.' is the identity transformation, 

Because A. preserves suspensions of units, A. 1 does so too. 

2b 

When U is a * k -Thorn class for a bundle, A I (U) is a h*-Thom 

class. 

(5.6) Definition. 

When is a bundle on a space X and U is a * k -Thorn 

class for s , let 
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1. ( s, U) E h ** (X) 
be defined by 

A(s,U)A 1 (U) = A(U) • 

(5.7) Lemma. 

(i) 2];. ( s 'u) is an even element. 

(ii) A is natural, f*..?:.(s,u) = 1(f*s,f~(u)) when f B -+ X 

is a map to the base of s • 

(iii) 1_(s,U) is invertible in h**(x) • 

Proof. 

(i) We have 21_(s,U)A 1 (U) = 2A(U) where A1 (U) is a Thorn 

class and the elements U9 A1 (U) and 2A(U) have the same 7l2-

degree according to (5.4). 

( ii) Obvious. 

(iii) Let T be a bundle on X such that s ~ T is trivial 

and let V be a k*-Thom class for T such that the Thorn class 

UV for s ® T is a suspension of the unit pulled up to the Thorn 

space. Then A(UV) = A1 (UV) , We have 

and 

consequently 

b,(s,U)A 1 (U) = A(U) 

1(T,V)A 1 (V) = A(V) 

A(S,U)A(T 1 V)A 1 (U)A 1 (V) = A(UV)= A1 (UV) 

where we use (i) to conclude that A(T,V) commutes with every 

other element. In this equation, bot A1 (U)A'(V) and A1 (UV) 

are h*-Thom classes. This implies that 1(s,U)1_(r,V) and hence 

1_(s,U) is a unit. 
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( 5 • 8 ) Lemma • 

Let f : X ~ Y be a proper k*-orientable map of manifolds. 

Let i : Es ~ Ef] 

be an open bounded imbedding of bundlespaces lifting f , and let 

U and V be * k -Thom classes for and '11 • When we put 

k . t = t(J.,U,V) 
we get 

and 

where 

Proof. 

The conclusion follows because A1 (V) is a Thom class. As a 

consequence 

where we use (1.12) and (5.7, i). Because A(fJ,V) is a unit in 

h**(Y) , it may be cancelled. We note that ~(fJ,V)- 1 is well­

defined because 1(fJ,V) is in the centre of h**(y) according 

to (5.7, i) 

We would like the following assertion to be true. 

(5.9) Assertion. 

When r:' r:-' I=' :±l r:' 
'::> ' '::> , ':l ':l are bundles with Thom classe u,u' and 
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' UU , we have 

A.(s,u)"-(s' ,u') = A.(s <±> s', uu') • - - -
From definition (5.6) we see that the assertion holds if A.' is 

multiplicative. We note that A.
1 is multiplicative if A. is 

monotonic in the sense that when x E kn(X), A.(x) is zero in 

degrees < n • 

The Steenrod operations Sq and P in cohomology mod 2 and 

mod p are monotonic. The Chern character 

ch : KU*(x) ~ H**(X,Q) 

is not monotonic. This is a consequence of the formula 

ch(Sx) = ch(x) where ~ E Ku-2(pt) is a Batt element. Neverthe­

less (5.9) is true for ch • 

( 5 • 1 0 ) Lemma • 

If assertion (5.9) is true, a * . k -or1ented map gives rise to 

a h*-oriented map in a canonical way. 

When (f,w) is k*-oriented, we obtain an element 

1(w) E h**(x) to be defined below. 

Proof. 

When f: X~ Y is a map of manifolds 9 and (a,u,v) is a 

Thorn class representing its k*-orientation, we let (a,"-'(u),"-'Cv» 

represent the h*-orientation. This gives a well defined h*-

orientation according to (5.9), (5.7 ii) and (3.7). 

We define 

where a : rX o s ~ ,-y o fl is the bundle-isomorphism in (a, U, V). 

That this is independent on the choice of Thorn class-representing 

w follows from (5.9), (5.7,ii) and f3.7). 
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(5.11) Theorem. (Riemann-Roch). 

where (f,A(w)) is the h*-oriented map obtained from (f,w) by 

means of A , assuming (5.9) to be true. 

Proof. 

This is an immediate consequence of (5.8) using the defini­

tions of (5.10). Note that when (5.9) is not true, we may regard 

(5.8) as the R.-R. theorem. 

We now consider k*-oriented manifolds and continuous maps 

f :X~ Y of such manifolds. A k*-oriented manifold is a mani-

fold X together with a Thorn class U in the tangent bundle. 

When Y is 7<-k -oriented by the tangent bundle Thorn class v 

is a bundle isomorphism covering f , we say that a Thorn class 

(a,u1 ,v1) for f is determined by X and Y in case 

where a also denotes the map of Thorn spaces. 

(5.12) Proposition. 

The above definition of a Thorn class for a continuous map 

and 

f : X ~ Y of k*-oriented manifolds determines a functor from the 

category whose objects are k*-oriented manifolds and whose mor-

phisms are usual proper homotopy classes of continuous maps, to 

the proper homotopy category of manifolds and oriented maps defineq 

in ( 4. 1 ) • 
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Proof. 

This is a straightforward verification based on the definitions 

(3.7) and(3.15). 

(5.13) Definition. 

When is a bundle on X with a * k -Thorn class U , we 

define l(-s, u-1) as follows. Let ~ be a bundle on X and 

be a trivialization. Let V be a Thorn Class for ~ such that 

UV corresponds under a to the suspension of the unit. We put 

This definition is independent of the choices made. By the cal­

culation in the proof of (5.7, iii) we know that 

is a unit in h 0 (X) • If (5.9) is true, this unit is 1. 

When (X,U) is an oriented manifold, we define 

(5.14) Theorem. (Riemann-Roch). 

On the category of * k -oriented manifolds and proper homotopy 

classes of continuous maps there is a functor taking 

f : X ~ Y 

to 
f~ : k*(x) ~ k*(Y) 

• 

and another functor taking f to 

f~ : h*(x) ~ h*(Y) • 
• 

The R.-R. relation 

f~(A(x)l(X, u-1)) 
• 
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is valid when U and V are the Thorn classes orienting X and Y. 

Proof. 

The first of the two functors is the composition of the func­

tor of (5.12) composed with the transfer functor f (4.10). The 

second functor is obtained by first using the functor taking the 

k*-oriented manifold (X,U) to the h*-oriented manifold (X,~'(U)) 

and then proceeding as above. To obtain the R.-R. relation, we 

use (5.8): Let 

i : Es .... En 

be a bounded open imbedding of bundle-spaces lifting f. Suppose 

that there is an isomorphism 

Let 

be the isomorphism covering f determined by i • Let B be a 

Thorn class for 11 such that VB corresponds to the suspension 

of the unit under ~ When A is a Thorn class for ; such that 

UA = a*(VB) it is clear that VA corresponds to the suspension 

of the unit under ~a. Consequently 

Also 
f~ = t(i,A,B) and f~ = t(i,A.' (A) ,A.' (B)) , 

• • 

according to proposition (5.12). Now (5.8) reads 

A. ( f~ ( x) ) •1_ ( '11, B) = f ~(A. ( x) •1. ( S , A) ) 
• • 

or 

which is the R.-R. relation. 

The reader should note that this theorem is independent of the 

truth of (5.9), in contrast to theorem (5.11). 
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Defining 
1(f) = l(X, u-1 )f*A(Y, v-1)-1 

that obviously depends on U and V , we obtain just as in (5.8): 

(5a15) Corollary. 

A(f~(x)) = f~(A(x)•A(f)) • 
• • 

Assuming that A is an epimorphism, we define 

Wu (X,U) E k**(x) 

Wu (Y,V) E k**(Y) 

and Wu (f) E k**(x) 

to be elements satisfying 

A Wu (X,U) = 1.(X, u-1 ) 

A Wu (Y,V) = 1(Y, v-1) 

and A Wu (f) = 1,(f) • 

(5.16) Theorem. (Wu.) 

Assume that A is an epimorphism and let the data of (5.14) 

be given. Then the following Wu formulae hold. 

k h A(f,(x)•Wu(Y,V)) = f,A(x•Wu(X,V))? 
0 • 

A(f~(x)) = f~A(x•Wu(1)) 
• • 

Proof. 

Immediate from (5.14,15). 

We assume that the cohomology theories k* and h* are 

represented by spectra and let k* and h* be the non-reduced 

homology theories defined by the same spectra, so that we have 

slant and Kronecker products defined as in [23]. 

When~ X is a compact connected manifold without boundary, a 

fundamental class for X is an element 



- 63 -

such that there is a map q : X ~ Sn such that 

is the suspension of the unit. 

(5.17) Definition. 

We have defined a h*-fundamental class 0 for the n-mani•. 

fold X • 

It is known that the fundamental classes for X correspond 

in a 1-1 way with the * h -Thorn classes for rX , and the corre-

spondence is canonical. A proof using S-duality is given in [5]. 

We shall not prove that much, but the following lemma is proved 

without using S-duality. 

(5.18) Lemma. 

Let X be a connected compact manifold without boundary. 

Then· rX has a h*-Thom class if and only if X has a h* funda­

mental class. 

Proof. 

Let a fundamental class 

0 E hn(X) 

be given. Let u : X0 A XV -+ Sn+k 

be defined as follows. (This definition is given in [16].) v is 

a bundle on X such that rX ~ v is a trivial bundle of rank 

n + k • Let 

d : X -+ X X Ev 

be the diagonal imbedding. A normal microbundle of d is 
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This microbundle equals T2 (X) ~ v where T2 (X) is the second 

tangent bundle 
X ~ X X X ----> X • 

pr2 

Consequently the normal bundle of d is trivial. This gives a map 

X X Ev ~ sn+k 

that collapses the complement of a tubular nbd. of d(X) and has 

degree 1 on the "fibres" in the normalbundle Thorn space. 

This map extends to a map 

u Xo A XV ~ Sn+k • 

Let 

be defined by 
U = 0' u*(cr) 

where cr is the suspension of the unit in hn+k(sn+k,pt). Let 

cp : s k ~ xV be the inclusion of a II fibre". Then the composite 

is visibly a map of degree 1 from the relative manifold x0 A sk~t 

to sn+k, according to a well-known characterization of such maps 

(22]. This gives, when T E hk(sk,pt) is the suspension of the 

unit, 

< cp *u , T > = < 0 \? * ( cr ) , cp * T > = 

± < u*(cr), 0 A cp*(T) > = 

because u(id A cp) has degree 1 and 0 is a fundamental class. 

(We use the theorem of Hopf stating that the maps of degree 1 

generate the cohomotopy group (Y/B, Sn] when Y,B is a compact 

relative n-manifold.) 
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We have proved that ~ has a Thorn class and consequently 

that rX has a Thorn class. 

To prove the converse, let 

E~ c sn+k 

be an open imbedding and let 

be the resulting map. Also let D c X be an imbedded compact 

n-disc and let 
q : X -+ D/?JD 

be the resulting map. Then there is a homotopy commutative diagr~ 

x~ !J, 
> xo " x~ 

~ 
1 sn+k l i3 q/\id 

~ k D/oDAS > D/oD 1\ x'J 
idl\rp 

where a is a homotopy-equivalence. To see this, note that 

(q 1\ id)6 sends the complement of D~ c X~ to the base-point. 

Because ~ is trivial over D , we obtain the map S • S may be 

chosen such that there is an open set 

such that the restricted map 

is a homeomorphism. Because a = Sp is a map of spheres, it is 

a homotopy-equivalence. Let 

be a Thorn class and define 
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by 

where we identify 

hn(X 0 ,pt) = hn(X) and y E hn+k(sn+k,pt) 

is the suspension of the unit. Let 

be the suspension of the unit. Then 

± <p*6*(q A id)*(o AU), y > = 

± < a* ( id A cp) * ( o A U), y > = 

+ < 6 A cp * (U), a* ( y) > = + 1 

because U is a Thorn class and a is a homotopy equivalence. 

Consequently q*(O) is ± the suspension of the unit, and 

0 is a fundamental class. 

Q.E.D. 

are both S-duality maps. This is proved in [23] and [16]. 

(5.19) Theorem. 

When (X,U) 
-x-

is a k -oriented compact connected manifold 

without boundary, there is a k*-fundamental class 0 for X 

such that when 

is the map from X to a point that has its canonical k*-orienta-

tion, we have 
k 

c 1 (x) = < x, 0 > • 
• 
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Proof. 

Consider the diagram 

( ) ( n+k ) used in the proof of 5.18 • Let y E kn+k S ,pt be the sus-

pension of the unit and let u 1 be the Thorn class for v used to 

define • Then 

is a fundamental class according to the proof of (5.18). 

when x E k*(x) 

We have, 

Now let y1 E 

< x, 0 > = < x,6*p*(v)/U1 > = 

< p*ll*(x 1\ u 1 ) ' y > = < p* (xU 1 ) 9 y > • 

kn+k(sn+k,pt) be the suspension of the 

< v 1 , y > = 1 and c¥ (x)v 1 = p*(xu1 ) • 

k 
< x, o > = < c, (x)v 1 , v > = 

• 
. k k 
c! (x) <v 1 , v >= c,(x). 

We let k = dim u 1 be even to avoid sign trouble. 

(5 .. 20) Theorem. (The Wu formula). 

* 

., 

unit. Then 

Let (X,U) be a compact connected k -oriented manifold with-

out boundary. Let A : k** ~ h** be a multiplicative cohomology 

transformation. Then there is a k*-fundamental class 0 and a 

h*-fundamental class T for X such that 

A< x, 0 > = < A(X)A(X, u-1), T > 

for all x E k*(x) • 
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Proof. 

Let c : X ~ P 

be the point map and let V be the canonical Thorn class for ~p ~ 

According to theorem (5.19) we can choose 0 and T so that 

k h 
c, (x) = < x, 0 > and c, (y) = < y, T > • 

• • 

The R.-R. formula (5.14) now reads 

A< x, 0 >•1(P, v-1 ) = < A(x)1(X, u-1),T >. 

But obviously 1(P, v-1
) = 1 • 

(5.21) Corollary. 

When W(X) is the total Stiefel-Whitney class of ~x, we 

have the relation 

< x,[X] > = < Sq(x).w(x)-1 ,[x] > 

for all x E H*(x, ~2 ) • 

Proof. 

In (5.20) we let 1 2 A= Sq = 1 + Sq + Sq + ••• and 

* * * k = h = H (-, ~2 ) • Then X has only one fundamental class 

and the formula of (5.20) reads 

Hence it suffices to note that Sq is the identity on a point and 

that 
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Notations and definitions. 

Bounded imbedding; p. 5. 

Bundle; a fibre bundle with fibre IRq and the group of 
homeomorphisms of (Eq,o) as structural group. q need 

not be constant. 

Bundle imbedding; an open topological imbedding of bundle­
spaces commuting with the bundle projections and restricting 
to the identity on the zero section. 

Bundle imbedding determined by i ; def. (4.2). 

Composite bundle; p. 6. 

Composite Thorn class; def. (3.10). 

Di ; p. 5. 

Diagonal map; def. (1.4) and (3.6). 

Es total space of the bundle s . 

we get maps Ef*s .... Es 

is a map and s 
and xf*~ .... yS 

fw(w +b); see theorem (4.10). 

Fundamental class; def. (5.17). 

Homotopy of oriented maps; def. (3.15). 

Induced imbedding; p. 8. 

is a bundle on Y 

both denoted by 

J(s) ; the stable spherical fibration determined by the 
bundle s . 

A.' ; def. (5.5). 
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- .?::_(s, u) ; def. (5.6). 

1.(-s, u-1 ) ; def. (5.13). 

Orientation of a map; def. (3.8). 

prs ; the bundle projection of s . 

ss the zero section of the bundle s . 

- s 
_9. 

see 'A • 

Thorn class for a bundle; p. 26. 

Thorn class, k-adic; see (3.2). 

Thorn class for a map; def. (3.7). 

t(i, w) . deL . ( 4·. 3) • 
' 

t(i, u, V) . def. (1.10). 
' 

th 
' 

tk . 
' 

1 emma ( 5 • 8 ) • 

Transfer homomorphism; def. (1.10),see also f 00 
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