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We work with extensions of the systems of natural deductions 

NM, NJ, ill{ introduced by Gentzen [1] and Johansson [3] • The 

systems are extended by quantifierfree axioms and inductionrule. 

We call the extended systems NMA, NJA, NKA. Prawitz [5] has shown 

how to define a normalform for prooftrees in NM, NJ, NK. For the case 

where the logical symbols are&, ::) 9 \1 he does it by giving certain 

local reductions in a natu.::'al way. A prooftree is in normalforrri if it 

has no local reductio:ns. HG shows that any prooftree can be brought 

to a norrnalform by a finite number of local reductions. In the usual 

correspondence between NM, NJ, NK and LM, LJ, LK the prooftrees in 

normalform correspond to cutfree proofs. 

In this pa12er we extend Prawitz's result to NMA, NJA, NKA. It is 

well known that there can be no full cut-elimination result for ele­

mentary number theory (first order arithmetic.) We can see this in 

minimal and intuitionistic elementary number theory as follows 

From a cutfree proof of a II~ formula 'v'x Giy A (x. y) we can read 

off a primitive recursive function f(x) such that 'Vx A (x, f(x) ) 

is true. We know that we can prove that the Ackermann - function is 

total ; but since it is not primitive recursive, we cannot give a cut-

free proof that it is total. 

In spite of this we give an extension of the normalform results 

to NMA, NJA, NKA • We give in a natural way local reductions of proof­

trees. We show that all reduction-sequences starting with a given 

prooftree terminate after a finite number of reductions in the same 

normalform. This normalform is strong enough to conclude the consi -

stency of NMA, NJA, NKA • In NMA and NJA we show how to derive the 

results of Harrop [ 2] • 

The proof is influenced by Sanchis [ 6] • I have been given much 

help by Dag Prawitz. With his normalform for iterated inductive defi -

nitions Per Martin - L0f has since given a theorem stronger than at 

least some of the the results in this paper. 
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2 As mentioned above NMA, NJA, NKA are the systems NM, NJ, NK 

extended by quantifierfree axioms and inductionrule. 

We have an unlimited list of free variables a,b,c, •••• ; and 

an unlimited list of bound variables x,y,z, ·~··• 

Our connectives and quantifiers are &, v, =>, V~ a . 
We have symbols for zero 0 

(sum) , p including = , S 

We write A for 0 = 0' • 

successor 

(product) • 

The numerals are o, 0 , 0" , ••••• 

, and relations 

~erms , atomic .fdrmulae , formulae , and closed fo~mulae are 

defined in the usual way. 

Our proofs are written in treeform. We call them prooftrees. The 

downmost formula (or rather the formula at the downmost node of the 

tree) is the conclusion of the prooftree. The topmost formulae are 

either axioms or assumptions. The assumptions are either open or closed. 

(Prawitz [5] calls a closed assumption discharged.) We read the 

prooftree as From the open assumptions A1 , ., •• ~we get the 

conabmion B • A closed assumption is written with a squarebracket 

around. 

The axioms are the quantifierfree formulae with true universal 

closure .. 

To each connective and quantifier we have rules for introduction 

and elinunation., These are the same as in NM, NJ, NK , In the usual 

shorthand ( see Prawitz [5] ) the rules are given by : 
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&E) 

A & B 

A 

vE) 

A v B 

~E) 

A 

B 

'v'xAx. 

ril:E) 

riixAa 

At 

B 

in addition we have an inductionrule 

IND) [Aa] 

Ao Aa' 
At 

[A] 
c 

c 

A~B 

[Aa] 
B 

[B] 
c 

We have the usual restriction on the eigenvariable a in 
'v'I , rfl: E , IND • 

A&B 

B 

These rules are common for all three systems and are all the rules 
of NM~. To get NJA we add the rule 

AI) 
A 
A 

To get NKA we add the more general rule 

AK) 
[A =>J\] 

A 
-A-
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In both AI and ..AK we assume that A is different from 

A. In case we have only &:. 9 => , v as logical signs 9 we can as-

sume that A is atomic. 

We distinguish between major and minor premisses. In &I, 

&E, vi, =>I 9 VI, VE, ~I, /\I,/\K all the premisses are major. In 

VE the one to the left is major, the two to the right minor. In 

aE the one to the left is major, the one to the right is minor. 

In =>E the one to the right is major 9 the one to the left is mi-

nor. In IND both premisses are minor. 

A branch in a prooftree which can be traced up from the con-

elusion to an axiom or an assumptio~through major permisses is 
or consequence of IND 

called a main branch. 

Being reasonably careful with the free variables in a proof• 

tree~ we can substitute a term for a free variable not used as an 

eigenvariable. 

A main subtree of a prooftree is a subtree with conclusion a 

minor premiss of a rule with consequence in a main branch of the 

original prooftree • 

.3.• We can consider an introductionrule as giving a sufficient 

reason for introducing a connective, and an eliminationrule as an 

inverse to the introductionrule. If we first apply an introdu-

tionrule to introduce a connective and then the eliminationrule, 

we essentially restore the original situation. It was not necs­

sary to use the two rules. We have another redundancy when the 

inductionterm in IND is either zero or successor. To each such 

redundancy we have a reduction. 

DEFINITION 

A maximal formula in a prooftree is a formula which occurs 

as either both consequence of an introductionrule and major premiss 

of an eliminationrule, or consequence of IHD with inductionterm 

either zero or successor. 
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DEFINJIJ~I ON 

l:. prooftree is in normalform if it does not contain any maxi-

mal foroula. 

Our problem now is to give a systematic transformation of any proo:f-

tree to a prooftree in normalform with the same conclusion and not 

more open assumptions. This will be done by the reductions 

defined below. We will see that for each maximal formula there is 

a natural way of getting rid of it, but at the possible expense 

of creating new maximal formulae. 

Observe that in the reductions defined below the conclusions reDmin 

the SHm.e and we do not get new open assumptions. The reductions are 

as follows ~ 

&-reduction: 

2::1 2::2 
A B -.. ~,.. 

A & B 
A 

2::3 

A & B 

'/-reduction: 

B 

2::4 

[A] ~B] 

:f 2 2::3 
0 0 

is reduced to 

is reduced to 

is reduced to 
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:>::r:; [A] [B] Zr:; J 
B ;::2 2:2 

J 
--~~., B 
A v B c c is reduced to 2:3 -="·""""-~~-

c c 
2.:4 2.:4 

:=1- reduction~ 

[A] 
2.:1 ;::2 

2::1 B A 
--- L.2 A A :=1 B is reduced to 

-~ _.,. --=~---~ 
B B 

r.3 r3 

V-reduction~ 

r1 
I 

r.1 
A a At 

VxAx is reduced to 
At L.2 

2::2 

where 2:: 1' is obtained from r 1 by substituting t for a • 

a- reduction: 

ax Ax is reduced to 

where >: 2' is obtained from r 2 by substituting t for a • 

IND-reduction (zero-case): 

[Aa] 
r1 2::2 
Ao Aa 1 

is reduced to 
I: 1 
Ao 

Ao 
2:3 

r.3 



:Zr:: 
? 

[A] [B] 

B r2 2::2 ~--c" 

A v B c c 
~-~-~==-----~ 

c 
I:4 

:::J- reductiong 

[A] 
r2 

I:1 B 

A A :::J B 

V-reduction~ 

2:1 
A a 

'f/x71X 
At 
r2 
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L:r:: 
? 

B 
is reduced to I:3 

c 
I:4 

is reduced to 

is reduced to 

where I:1' is obtained from r 1 by substituting t for a • 

3::- reduction~ 

:Rx Ax 
is reduced to 

where r 2' is obtained from r2 by substituting t for a • 

IND-reduction (zero-case)~ 

[Aa] 
r1 I:2 
Ao Aa' ----Ao 

r3 

is reduced to 
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IND-reduction (successor-case)g 

[Aa] [Aa] 
2:'1 I:2 I:1 I:2 
Ao Aa' -·-= ... -- is reduced to Ao Aa 1 

At1 

I:3 

where I:2' is obtained from t:2 by substituting t for a • 

These are all the reductions. 

DEF'INITION 

A reductionsequence is a sequence of prooftrees such that eacl!. 

prooftr>AA reduces to the next in the sequence. 

4 vre want to prove that all reducti.onsequences terminate. Say 

we would first prove that to each prooftreee there is a reduction~ 

sequence which terminates in a prooftree in normalform. It is not 

hard to show that if this is true, we can always do with the part5.­

cular reductionsequences we get by always reducing one of the dovm-

most maximal formulae in the main branch, and then after the m2.:i.n 

branches areoleared up go to the main branches in the main subtrees 

etc. So we concentrate on those reductionsequences. It becomes 

soon apparent that the major obstacles to a proof are the induction-

rules vd.th inductionterm a free variable. To talce care of those 

we adcl the obvious Lu-reduction Substitute any numeral for a 

free variable in the inductionterm. We are forced to add two ot17.er 

rather trivial reductions so that the prooftree remains a proo:l:tree 

after the substitution. There are additional problems when we have 

v or a • To take care of those we introduce the collapsed proof-
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trees. Vve then prove over several lemmata~ all obvious exce1)t 

the main lemma 9 that the relation given by all those extra reduc­

tions is well-fouDded. We can then prove the weaker version of 

the theorem mentioned above by induction over the well-founded 

relation. Being a little more clever we can prove that all re-

ductionsequences terminate. The main problem here is that in 

some reduction we may cut off a whole subtree and will therefore 

not be able to keep track of ·what could be going on in that sub-

tree. To take care of this we introduce the associated subtrees 

of a maximal formula. 

DEFINITION 

The associated subtree of a prooftree with respect to a 

maximal formula is the subtree v~1ich can be cut off in the re-

duction. So for example 

2::1 2::2 

to A B associate 
A & B 

we 
-

A 
2::3 

[A] 
2::2 

r1 B 
A A => B we associate and to 

B 
2:3 

DEIHNITION 

To each \IE and i1E we define the collapsed prooftrees 

[A] [B] 
A B 

}:1 2::2 2:3 I: 2::3 A v B 0 0 is collapsed to 2 and ------ 0 0 0 
" z::4 z::4 64 



[Aa] 
r1 r2 

and xAx B 
-~-----=-r--~--~ 

B 

2::3 

DEFINITION 

- g -

is collapsed to 

A a 
2::2 
B 
2::3 

We define a binary relation 6<. be tween prooftrees. z:: 1 CR z::2 

is defined by cases depending on the free variables in the main 

branches of z:: 1 and on the downmost formula in the main branches 

of z:: 1 which is not the consequence of an eliminationrule 9 of 

AI 9 nor of .A K • (Not that it matters 9 but there is at most 

one such formula.) 

a) A formula in the main branches contains a free variable a 

not used as an eigenvariable. 

where 2 1 is obtained from r 

by substituting any numeral for a • 

b) Case a does not apply and the last rule used is an intro-

ductionrule. Depending on whether we have one or two premisses 

we get 

or 

c) Case a and case b do notapply and there is a downmost 

maximal formula in the main branches. Then 

where r 1 is the reduction of r, and 2::2 is the associated 

subtree, 

d) Case a and case b do not apply and there is a vE or 
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:RE in the main branches. J:hen 

where r.1 is the collapsed prooftree. 

e) Case a~ b 9 c do not apply. (i.e. all the formulae in the 

main branch are consequences of eliminationrules or AI or A K') 

Then 

where are the main subtrees 

(i.e. subtrees above a minor premiss with consequence in the 

main branch. ) 

This concludes the definition of 6? . 

:DK[)'INITION 

>- is the transitive closure of {j( . 

DEFINITION 

An OX -sequence is a sequence of prooftrees each in GR -rela-

tion to the next. 

2.· We vvill show that 'r is well-foundec1 9 i.e. all CR, -sequencer::: 

are finite. 

]):fiJFINITION 

A prooftree is regular if all 6<-sequences starting with it 

are finite. 

We have the following obvious lemma~ 

i) If r is regular and I: cR r,? 
9 then 2:: 1 is regular. 

ii) If all prooftrees in Gt-relation to I: are regular 9 then ~ 

is regular. 
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Note that we can do induction over the ordering > restricted to 

regular prooftrees. Vve call this CR. -induction. The following 

is also obvious. 

i) A prooftree consisting of only an axiom or an assumption is 

regular. (We Cdll such a prooftree trivial.) 

ii) Regularity is closed under )\ 
I 9 AK and introductionrules. 

iii) Regularity is closed under &E and \i:FJ • 

iv) Regularity is closed under ::::)E 
9 vE 3:E provided there 

are only trivial prooftrees above the minor premisses. 

Proof~ 

We indicate how to prove first part of iii. 

We use ~-induction. 

Assume I: 
A &B regular. Want A & B regular. 

~I-
Two cases to consi-

der - either the last rule in AiB is an introductionrule or it 

is not. Both cases equally obvious. 

MAIN LEMMA 
!1 A 

If A and I: are regular 9 then also R r. • (We may here put 

n over more than one open assumption A.) 

Proof~ 

The proof is by a double induction. A primary induction over the 

length of A and a secondary ~-induction over either 
ll n 

A 
r. 

less than or equal A or over A with less than or equal 

To the initial step obseve that the least prooftrees in the 

with 
A 
I: • 

~-re-

lation consist of a single branch with only &E 9 vE 9 AI 9 ;\K 
n 

used as rules. So we use lemma 2 to get A regular. 
:r; 
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Now to the induction step. Suppose there is an infinite <J< -se­
n 

quence starting with 

first 0< -relation 

A • We divide up into cases depending on 
r 

the in the sequence. 

i) Yve use case a in the definition of (R . 

ii) We use case b • 

iii) We use case c with either associated subtree or reduction 

with maximal formula different from A • 

iv) We use case d • 

v) We use case e . 

vi) Vve use case c and reduction with maximal formula A • 

Cases i - v are obvious. So we go to case vi • 
Il 

that we can put A over all the open assumptions 

First observe 
A 

A in 1.:: not 

in the main branch by an argument as in cases i - v to get the 
A TI 

regular prooftree E' We want to put A over the open assump-
A 

tion A in the main branch of Z1 We now have subcases depen-

ding on the principal logical symbol in A • We give the argument 

for A = B ~ C 9 A = B v C . The remaining subcases are similar. 

II 
B ~ a 

~· 

Observe that 

tion of 

n 
B v a 

"' '-' 

n 
B ~ a 

!.::' 

= 

= 

[B] 
n' 

1.::1 a 
B B ~ C 

B a 

a 
1.::2 

rl I " 
9 '--'2 are regular. By induction the reduc-

a 

ii ' 
B 

B v a 

is regular. 

CB J c a J 
Z1 ~:2 
]) ]) 

---z~--=-~-....-

]) 

r3 
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E' B 
We have B and r 1 regular so by induction the reduction of 

:0 

n n' 
B v c B 

>" 2:1 _, 
:0 

2:3 

is also regular. 

2:3 

This concludes the proof of the main lemma. 

In case our prooftrees contain only formulae built up from 

:J ~ v we can prove that last case in a simpler way. We assume 

here that in .AI 9 .J\K A is atomic. 

A A A 
~19••• 9 r be the main subtrees of 
A An 

Let \' 
w • 

1 n n D 
A A 

By induction f 1 ~···~fn are regular. 
1 n 

Using the assumptions we see that the 

less than the length of A • 
A 

Cut of 2: at A1 9 •• • 9 An to get the 

prooftree A A1 ••• An 
>- -x-

Using lemma 2 

By induction 

we get 

n 
A 
~ 

= 

II 
A A1 • • • A

1
" 

~-)(- l. 

n n 
A A 

n n1 Tin 
A A1 . ~,. An 

-~ --"-

is regular and we are done. 

lengths of 

regular. 

A1 9 • • • 9 An 

Now using the main lemma and lemma 2 we immediately have 

JJEMMA 3 

i) Regularity is closed under ~E 9 'IE 9 E • 

are 

ii) Regularity is closed under IN:O with induction term a numeral. 

iii) Regularity is closed under nm 
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All prooftrees are regular. 

6. We will now prove the normalform theorem. By ·()(-induction 

it is easy to prove that all prooftrees can be reduced to a proof-

tree in normalform. We want to shovr that all reduotionsequ.enoes 

terminate. 

DEFINITION 

The order of a formula in a prooftree is the number of minorpre-

misses we must go through to get down from the formula to the con-

elusion of the prooftree. 

DEFINITION 

Given tvvo formulae A, B in a prooftree. A dominates B if 

either of the following holds 

i) the order of A < the order of D , 
' 

ii) they have the same order and the branch through A is to 

the left of the branch through :S ; or 

iii) they have the same order and are on the same branch and A 

is below B . 

L:CMIVIA 4 

A dominates B is a linear well-ordering. 

To each reduction p of a prooftree we assign the maximal formula, 

Let p be a reduction of n to n' and A the assigned 
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formula in IT • Then the ordering of TI up to but not including 

A is an initial segment of the ordering in (1
1 

To each reduction we assign the initial segment given by lemma 5. 

LEMMA 6 

Let be a reduction of to with segment I 0 

and p 1 a reduction of n1 to n2 with segment I 1 • Assume 

I 1 is more than one formula less than I 0 We can then apply 

p1 to no to get rr2 with segment I 1 • If is different 

from n2 ~ then there are reductions such that 

takes n' 2 to z, ' a1 takes z, to 2::2 9 •• • • • • 9 an takes 

to The reductions 

and they are all of the same kind as the reduction Po . 

:DEFINITION 

A reductionsequence is standard~ if the segment of any reduc~ 

tion p is not more than one formula shorter than the one of the 

reduction which precedes p in the sequence. 

LEMMA 7 

If we have a finite reductionsequence which takes TI to rr' 9 

then there is another finite standard reductionsequence which 

takes TI to rr' • All the reductions in the new sequence are of 

types used in the old sequence. 

LEMI11A 8 

Given an infinite reductionsequence starting with I1 , then 

there is another infinite standard reductionsequence starting 

with 11 • 
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TH:COREM 2 

All reductionsequences terminate. 

Proof~ 

Ve prove by ~ -induction over IT that all reductionsequences 

starting with IT terminate. Obvious if II is not in ~-rela-

tion to any prooftree. Assume we have a standard infinite reduc-

tionsequence starting with IT • The proof goes now by cases: 

i) The main branch of IT has a free variable not used as an 

eigenvariable. 

ii) The last rule in IT is an introductionrule. 

iii) The main branch contains a maximal formula and cases i~ ii 

do not apply. 

iv) Cases i, ii~ and iii do not apply. 

Here i 9 ii 9 and iv are immediate. For iii either the downmost 

maximal formula in the main branches is reduced in the first step 

in the reductionsequence or it is contained in the segment of any 

reduction in the sequence. (Here we used that the sequence was 

standard.) The first alternative is obvious. We give an example 

of what to do with the second. Say our maximal formula is A~ JJ, 

and IT is 

Since A~ B is included in all the segments~ it will separate 

each prooftree in the reductionseq_uence in two parts. 

reductionsequence starting with 

There must 
IT1 
A or one be either an infinite 

A 
starting with rr2 • In the last case -vve also get an infinite 

B 
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il1 
A 

reductionsequence starting with rr2 
B 
II';;: 

) 

are done. Observe that we had to have 

happen that there were no assumptions 

rr<Rf1 'T l'.,;. _t ,• 9 

rr(Rn1 
·A since 

A above B • 

n1 
A 
nf) 
BL 

and we 

113 

it could 

We do a 

similar analysis when the maximal formula is A & B9 A v B9 

\ix Ax 9 or 3:x Ax • This concludes the proof. 

A standard reductionsequence ending in a prooftree in normalform 

is uniquely determined. One always chooses the reduction with 

the least segment. Hence~ 

THEOHEM 3 

Given a prooftree rr • Then all reductionsequences starting 

with i1 and ending in a normalform 9 end in the same normalform. 

Prawitz [5] gives also a stronger normalform. 

:oJtFINITION 

A segment in a prooftree IT is a sequence A19 ••• ,An of conse­

cutive formula occurrences in a branch such that 

i) A1 is not the consequence of VE or 3:E 0 

' 
ii) A. 

l 
for each i < n is a minor premiss of VE or 3: E ; and 

iii) A is not the minor premiss of vE or 3:E . n 

IliGFINITION 

A maximal segnent is a segment that begins with a consequence of 

an I-rul e or A I and ends with a 1naj or premiss of an E-rule. 

mmiNITION 

A redundant application of VE or 3JI: is an application which 

has a minor premiss where no assumption is closed. 
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JJEFINITION 

A prooftree is strongly normal if it contains neither maximal 

segments nor redundant applications of vE or aE • (Observe 

that a maximal formula is a maximal segment so that a strongly 

normal prooftree is normal.) 

JJEFINITION 

A redundant variable in a prooftree is a free variable not used 

as an eigenvariable and v~1ich does neither occur in the conclu-

sian nor in any open assumption. 

Using redundant variables there are trivial transformations of 

prooftrees to prooftrees in (strong) normalform. For instance 
111 

take the prooftree A over into 
rr2 

[11 
A 0 = 0 

rr1 
A a = a 

A& 0 = 0 A& a= a 
~~--~-~--~..-..... 

A&b=b 
--=_,.,._~.----

A 

Observe that the reduction of a prooftree without redundant vari-

ables is without redundant varialJles. 

TIIEOREl[ 4 

To all prooftrees II we can find a normal prooftree with 

no redundant variables and with the same conclusion and not more 

open assumptions as in il • 

THEOREM 5 

To all prooftrees n we can find a strongly normal proof-

tree with the same conclusion and not more open assumtions and 
no redundant variables. 



- 19 -

Proof~ 

By 0\-induotion over n • 

Obvious if !1 is not in Ci( -relation to any other prooftree. 

We divide up into oases as usual~ 

i) The main branches of !1 contain a free variable not used 

as an eigenvariable. 

ii) The last rule used is an introduotionrule. 

iii) In the main branches vre have a A..I followed by an elimi­

nationrule, 

iv) In the main branches we have a maximal formula. 

v) In the main branches we have a redundant VE or E • 

vi) In the main branch we have only ./\I 9 .AK 9 &E9 :::::JE9 VE • 

vii) In the main branch we have only ArAK and E-rules but 

at least one vE or E 9 and case i does not apply. 

Here i - vi are straightforward. Now to vii • Take the 

topmost of the vE or E in the main branch. Say it was VE • 

Our prooftree !1 is 

By lK-induotion and the assumption vve can get strongly normal 

prooftrees without redundant variables 

rr' 1 
AVB 

If has not A as open assumption 9 take it as the result, 

has not B as open assumption. Else take 
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AVB 
D 

where we close the open assumptions A above D in the first 

minor premiss and the open assumptions B above D in the second. 

The proof when the topmost of the vE or aE in the main branch 

is aE 9 is similar. This concludes the proof. 

There are difficulties in getting equivalents to theorem 2 

and 3 for the strong normalform. Firstly it is not clear how 

we should reduce a maximal segment. Secondly there are no rea-

sons why we should get uniqueness. For example 

has both 11 3 
0 

0 

as natural reductions. 

7. We will now use the normalform and the strong normalform 

for prooftrees en NMA 9 NJA 9 NKA • The consistency of the systerns 

is obvious since a normal proof without redundant variables of 

0 = 0 9 cannot contain free variables, quantifiers 9 induction-

rules. Using the strong normalform we can prove the results of 

Harrop [2] for NMA and NJA • In fact we can follow step for 

step the proof of Prawitz [5] of Harrops results for NM and NJ. 

Of course we do not have the subformulaproperty for normal and 

strongly normal proofs. The result of Kreisel [4 9 page 331] 

gives hope for improved results in extended systems. 

We prove our normalform theorem by use of bar induction. 
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1Ne could also have used ordinalassignments and transfinite in-

duction. One such assignment can be given as follows~ 

The assumptions and the axioms are assigned 1 . 

If in a proof we have assigned to the premisses of a rule 

a 9 ~ 9 y 9 assign to the consequence cpm(a'u'~'~~'Y) where is 

Hessenbergs natural sum~ ~0 =AX (x+1) ~ ~m for m > 0 is the 

m-th Bachmann function~ and m is 

i) 0 in &I~ &E ~ VI~ :::JI 9 VI 9 VE 9 I 9 .A19 ~( 

ii) length of minor premiss in :::JE ' 

iii) length of major premiss in VE 9 aE and 

iv) 1 + length of premiss in IND • 

This assignment does not seem to be too economical. On the other 

hand it is unreasonable to expect an assignment which gives the 

normalform theorem by s -induction vv-i thou t further analysis. 
0 

This since we can add the t:J-rule for W-introduction without 

affecting the proof of the normalform theorem. 
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