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Abstract
Mortality rates are the ratio of death counts and estimates of the population ex-

posed to risk of deaths in matched intervals of time and age. Mortality forecasting
is the use of historical data of mortality to determine future pattern of trends. Mor-
tality forecasting remains a major challenge for the planning of pension systems and
management of annuity businesses. Having high mortality forecasting accuracy re-
quires a model that provides good fit to the historical mortality data for consistent
predictive performance. Poisson or Negative binomial regression and Lee-Carter
(1992) demographic models are some of the predictive models being consistently
used in mortality forecasting. Hence this thesis seeks to compare and evaluate fore-
casting accuracy of these two models in predicting Norwegian male mortality.

Keywords: mortality rates, poisson, negative binomial, orthogonal polyno-
mials, lee-carter, random walk, mortality index, forecast, forecast errors
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Thesis Overview

The datasets of observed Norwegian male mortality and their risks of exposure
will be obtained from Human Mortality Database and used to fit both models.
Poisson or negative binomial regression and Lee-Carter (1992) demographic models
will be constructed from the datasets for the year period 1950 to 1999. The fitted
models will be used to forecast mortality rates for the year period 2000 to 2009.
The mortality set for the 50 age group in 1999 and 2009 will be used to validate
both models. Descriptive summaries of both data sets will be covered in chapter
one.

Poisson or Negative binomial regression model will be fitted to the Norwegian
male mortality data by treating period and age groups as covariates. The number
of deaths and their risks of exposure for the forecasting period will be predicted
using the fitted models. Here some care may be necessary and a tradeoff between in
sample fit and forecasting ability will be expected. To ensure the latter, relatively
simple only functions will be allowed for the period covariate. The mortality rates
for the forecasting period will then be estimated as the ratio of predicted number of
deaths and their risks of exposure. These will be covered in chapters two and four.

Lee-Carter model is based on the original method for mortality forecasting sug-
gested by Lee-Carter in "Lee, R.D. and L.R Carter: Modeling and forecasting U.S.
Mortality, Journal of the American Statistical Association, 1992, vol. 87, pp. 659-
67". The Lee-Carter model will be fitted to the the Norwegian male mortality data
as the logarithmic transformation of age-specific central rate of mortality as a sum
of an age-specific component that is independent of time, and the product of mortal-
ity index that describes the general level of mortality and an additional age-specific
component that represents how rapidly or slowly mortality at each age varies when
the mortality index changes. From this forecast of the mortality index, the actual
age-specific mortality rates will be derived using the estimated age effects.These will
be covered in chapters three and four.

Finally, both models will be compared using the mean squared error (MSE) and
mean absolute error (MAE) with detailed considerations of the distribution of their
respective forecast errors. Conclusion will then be drawn. These will be covered in
chapters five and six.
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Chapter 1
The Data

1.1 Description of Data
Both datasets of Norwegian male death counts and their risks of exposure are

required to fit the models and perform forecasting analyses. The two sets of the
data are from the calender year period of 1950 to 2009. The data files of the male
death counts are classified according to age, sex and time. The population size is
given by one-year age groups from 0 up to 109 with an open interval for 110+,
starting from 1950 through to 2009. The data files for risk exposure are organized
accordingly with similar trend.

Data files for the Norwegian male risk exposures are estimates of the population
exposed to risk of death during a 1x1 age-time interval based on annual (first Jan-
uary) population estimates, with a small correction that reflects the timing of deaths
during the interval. Data files for the Norwegian male death counts are collected
by 1x1 Lexis diagrams whilst their risk exposures are estimated from the diagram.

1.1.1 Sources of the data

Both demographic data files of Norwegian male death counts and their exposures to
risk are available from the Human Mortality Database (maintained by the Univer-
sity of California, Berkeley (U.S.A),and the Max Planck Institute for Demographic
Research (Germany)), www.mortality.org(data downloaded in January 2015).

1.1.2 Lexis Diagram

The Lexis Diagram displays the stock and flow of a population and the occur-
rence of demographic events over age and time. The diagram is a vital descriptive
representation of demographic events. The risks of exposure from Human Mor-
tality Database (2005) were computed using Lexis Diagram. The computational
procedures are illustrated below:

Figure 1.1 depicts a Lexis diagram, which is a plot of a population’s life experience
in time against age. The graph is sectioned into one-year by one-year cells. Each 45◦
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Figure 1.1: Example of Lexis Diagram

line represents an individual’s life, which ends in death (red ’x’) or out-migration
(solid dot). An individual also may, at some time, migrate into the population
(hollow dot).

We estimate risk of exposure for each 1x1 cell by using the highlighted 1x1 cell
displayed in figure 1.1. As we can see, the cell starts at time t and age x.If we know
the exact lines, then we can calculate the risk of exposure in person-years by adding
up each of the line segment within the cell. We then divide the actual length of
each segment by

√
2, since the life lines are 45o to the age and time axes.

However, exact life lines are rarely known in study of large national population.
Instead, we often have the counts of individuals alive for each age at exact times
t, t + 1, t + 2, etc. Considering the highlighted cell in figure 1.1 above again, for
example, the count at time t and age x is 2 (lines b and c) and the count at time
t + 1 and age x is 1 (line a). Given this information, our best estimate of the
risk of exposure within the cell is merely the average of these two counts (thus, 1.5
person-years). Incidentally, line d does not contribute to this cell’s risk of exposure
estimate as it does not cross either of the boundaries at times t and t + 1.

1.1.3 Male mortality data

Min. Max. Sum
Deaths 0.0 3,606 2,855,185
year 1950 2009
Age 0 110+

Table 1.1: Summary of Male mortality data
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Table 1.1 gives a brief summary measures of the data file for number of deaths of
Norwegian male from the calender year 1950 to 2009. There are 2,855,185 total sum
of death counts with 164 death counts for each calender year. The counts range
from a minimum value of 0.0 to a maximum value of 3606 with mean 156.8 .

The mortality data set has been classified into training set, used for fitting the
models, test set, used for testing the fitted models and comparing forecasts and
validation set, used for validating the fitted models and forecasts. The training set
ranges from the year period of 1950 to 1999 and the test set is for the year period
2000 to 2009. The validation set consists of mortality rates for the 50 age group
in the year 1999 and 2009. Diagrammatic presentations of these classifications are
described below.

Observed number of male deaths (1950-1999)

Figure 1.2: Observed Norwegian male death counts from 1950 to 1999

Figure 1.3: Observed male death counts (at age 50 and year 1999)

Figure 1.2 displayed above depicts a three-dimensional plot of observed number
of deaths of Norwegian male from the year period 1950 to 1999 over the intervals
of age and year. Figure 1.3 is a two-dimensional plot of figure 1.2 in the year 1999
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for 50 age group, smoothed with splines of 25 degrees of freedom. The death counts
of the Norwegian male against their ages are observed to be highest among the
70’s and 80’s age groups but decline steadily; recording minimal counts for 100’s
age groups. The death counts fluctuates with the years of counts. The maximum
counts are recorded in the 1970’s and the minimum counts in 1980’s.

Observed number of male deaths (2000-2009)

Figure 1.4: Observed Norwegian male death counts from 2000 to 2009

Displayed in figure 1.4 below is a three-dimensional plot of death counts against
age and year for the year period 2000 to 2009.The plot follows the same trend of
distribution of the training set in figure 1.2 and will be used in assessing the strength
of the fitted models and performing forecast analyses of number of deaths.

1.1.4 Risks of exposure data

Min. Max. Sum
Exposures 0.0 38,140 232,475,346

year 1950 2009
Age 0 110+

Table 1.2: Summary of risk exposure data

Summary measures of the data file of the Norwegian males exposed to risk for
the year period 1950 to 1999 is tabulated above. About total sum of 232,475,346 ob-
servations are recorded with 10,530 for mean. Similar statistical summary recorded
for age and year in the mortality data set are observed as well for the exposures.

Data set for Norwegian male exposed to risk are also categorised into training
sets for the year period 1950 to 1999, test set from 2000 to 2009 and validation set
consisting of 50 age group in the year 1999 and 2009. Models are as well fitted to the
data set from 1950 to 1999 and forecasting strengths are examined and compared
with the set from the year period 2000 to 2009.
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Observed males exposed to risk (1950-1999)

Figure 1.5: Observed Norwegian male exposure from 1950 to 1999

Figure 1.5 is a three-dimensional representation of the Norwegian males exposed
to risk from the year period 1950 to 1999. This will be used in fitting the predictive
model for forecasting.

Figure 1.6: Observed male exposure (at age 50 and year 1999)

Displayed in figure 1.6 are two dimensional plots of figure 1.5 for observed males
exposed to risk in the year 1999 for the 50 age group, smoothed with splines of 25
degrees of freedom. Risks of exposure are observed to fluctuate from 0 age group
to 50 age group, declined roughly steadily thereafter to 100 age group in the year
period 1999. The year period 1980’s records the least risks of exposure with the
highest occurring in the 1990’s for the 50 age group.

Observed males exposed to risk (2000-2009)

Displayed in figure 1.7 is a three dimensional plot of observed Norwegian male
risks of exposure from the year period of 2000 to 2009. The plot shows the same
distribution trend of the training set in figure 1.5 and will be used in forecast
analyses.
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Figure 1.7: Observed Norwegian male exposure from 2000 to 2009

1.1.5 Estimation of observed mortality Rates

Mortality rate is the probability of an individual aged exactly x at time t will die
before time t + 1. Mortality rate is estimated as the ratio of observed number of
Norwegian males and their risk of exposure in 1x1 age-period interval. This implies
mortality rates are highly influenced by risks of exposure.

Observed rates of mortality (1950-1999)

Figure 1.8: Observed Norwegian male log mortality from 1950 to 1999

Figure 1.8 is a three dimensional plot of observed log mortality for Norwegian
males from the year period 1950 to 1999. The plot will be used in comparing and
assessing fitted and forecast rates of mortality .

Figure 1.9 shown below are two dimensional plots of mortality rates on logarithmic
scale in the year 1999 for the 50 age group, smoothed with splines of 25 degrees of
freedom.The mortality rate attain minimum value for the 10 years age group and
maximum for 110+ age group.
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Figure 1.9: Observed male log mortality (at age 50 and year 1999)

Nevertheless, the mortality increased along with observed calender years.A sig-
nificant decline in the rates is observed from 0 to 20 age groups.The mortality
rates increased with age thereafter. Further decline is observed after the 100 age
group.This indicates young age group are less exposed to risk of deaths and thus
have less rates of mortality relative to the older groups.

Observed rates of mortality (2000-2009)

Figure 1.10: Observed death rates from 2000 to 2009, for comparing forecast

Figure 1.10 displays a three dimensional plot of observed log mortality of Nor-
wegian males from the year period 2000 to 2009. The plot follows the same trend
of distribution of the training set in figure 1.8. The plot will be used for comparing
forecast of mortality rates of the same year period.
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Chapter 2
Poison and Negative Binomial
Regression Models

2.1 Modeling of number of deaths
We model the training set of the mortality data described in subsection 1.1.3 with

Poisson and negative binomial regression. Described in subsections below are the
basic concepts of the two distributions and how they are fitted to the training set.

2.1.1 Basic concepts of Poisson Regression Model

The poisson regression models the mortality data by treating both age and year
covariates xij as categorical variables with the response variable yij as the number
of deaths.Thus,

yij ∼ poison(uij) and uij = E(yij)
then,

log(uij) = log(nij) + (xij)Tβ

=⇒ uij = exp{log(nij) + (xij)Tβ} (2.1)

Where log(uij) is the natural log link, i = 0, 1, ..., 110 and j = 1950, .., 1999. nij is
the number of risk exposure. The vector xij contains the values of the explanatory
variables for each age i, year j combination. The explanatory variables coded as
polynomials with the usual intercept 1, indicator variables corresponding to age,
and indicators corresponding to calender year.

The probability mass function (pmf) of Poisson distribution is given by:

P (Yij = yij) =
µ
yij
ij exp(µij)
yij !

(2.2)

Hence from equation 2.1, we obtain the Poisson regression model to be:

P (Yij = yij) = (exp{log(nij)+(xij)T β})yij exp(exp{log(nij)+(xij)T β})
yij !
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The mean and variance of Poisson regression are E(yij) = uij and V ar(yij) = uij .

2.1.2 Parameter estimation of Poisson Model

Fitting Poisson distribution 2.2 to the Norwegian male mortality requires estima-
tion of β parameters with maximum likelihood method. We express the likelihood
function of equation 2.2 as;

L(β) =
∏
ij

P (yij) =
∏
i,j

µ
yij
ij exp(µij)
yij !

(2.3)

with µij as defined in 2.1. The log-likelihood function of equation 2.3 becomes:

lnL(β) =
∑
i,j

{yijlnµij + µij − lnyij !} (2.4)

The maximum likelihood estimates are the values of β that maximize L(β) of equa-
tion 2.3. The variance-covariance matrix of the estimators is Σ = −H−1, where
H−1 is the Hessian matrix of second derivatives of equation 2.4. H−1 is used to
find the p-values of β estimates .

2.1.3 Basic concepts of Negative Binomial Regression

Negative binomial regression is a type of Poisson regression in which the depen-
dent variable yij is a count of the number of times death occurs. It has one extra
parameter more than Poisson regression that adjusts the variance independently
from the mean. The appropriate parameterisation of Negative binomial distribu-
tion given by Hilbe (2011) follows:

f(yij) =
Γ(yij + 1

κ)
yij !Γ( 1

κ)
( 1
1 + κµij

)
1
κ ( κµij

1 + κµij
)yij (2.5)

where µij > 0 is the mean of yij and κ = 1
θ > 0 is the dispersion parameter. The

mean and variance of negative binomial regression model are:

E(yij) = µij and V ar(yij) = uij(1 + κuij)
Thus if ,

yij ∼ negb(uij)
then from 2.1,

=⇒ uij = exp{log(nij) + (xij)Tβ}
Hence, the pmf of Negative binomial regression model becomes:

f(yij) =
Γ(yij + 1

κ
)

yij !Γ( 1
κ

)
( 1
1 + κ(exp{log(nij) + (xij)Tβ})

)
1
κ ( κ(exp{log(nij) + (xij)Tβ})

1 + κ(exp{log(nij) + (xij)Tβ})
)yij

(2.6)
With E(yij) = µij and V ar(yij) == uij(1 + κuij). κ measures overdispersion by
controlling extra variation compared to the Poisson regression model.
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2.1.4 Parameter estimation of Negative Binomial Model

In other to fit the distribution 2.5 to the Norwegian male mortality, we also need
to estimate κ and β with maximum likelihood method. The likelihood function is:

L(κ, β) =
∏
i,j

f(yij) =
∏
i,j

Γ(yij + 1
κ)

yij !Γ( 1
κ)

( 1
1 + κµij

)
1
κ ( κµij

1 + κµij
)yij (2.7)

with µij as defined in 2.1. The log-likelihood function of equation 2.7 becomes:

lnL(κ, β) =
∑
i,j

{yij lnκ−yijµij−(yij+
1
k

)ln(1+κeµij)+lnΓ(yij + κ−lnΓ(yij + 1)−lnΓ( 1
κ

)} (2.8)

Equation 2.8 is maximised and the values of κ and β that maximise L(κ, β) are the
maximum likelihood estimates. The p-values of β estimates are obtained with the
same procedures explained in subsection 2.1.2.

2.1.5 Smoothness of Poisson and Negative Binomial Models

We exploit smoothness of Poisson and Negative binomial regression models de-
scribed in subsections 2.1.1 and 2.1.3 by specifying polynomial terms with degrees
p and q in the regression, for the explanatory variables age and year respectively.
Hence from the model, log(uij) =log(nij)+(xij)Tβ where uij = E(yij), the ordinary
polynomial regression becomes;

log(uij) = log(nij) + β0 + β1i+ ..+ βpi
p + βp+1j + ..+ βp+qj

q

Where
(xij)Tβ = β0 + β1i+ ..+ βpi

p + βp+1j + ..+ βp+qj
q (2.9)

i = 0, 1, ..., 110 and j = 1950, .., 1999 as usual and β’s are beta coefficients over age
and year in the regression.

2.1.6 Model Selection Criteria

We select the best model with Akaike information criteria (AIC), since the pa-
rameters are maximum likelihood estimates described in the previous sections and
the mortality data has high dimensions. If L is the maximised value of the likelihood
function of the model and q is the number of estimated parameters of the model,
then the AIC value of the model is;

AIC = −2ln(L) + 2q (2.10)

With given number of candidate models for the mortality data, the preferred model
is the one with the least AIC value.

2.1.7 Fitting the models

In this subsection, we apply the previous subsections to fit the "optimal" Poisson
and Negative binomial regression models to the training set in subsection 1.1.3.

15



R notes: We face multicolinearity and numerical problems with the large polyno-
mials terms in equation 2.9. Multicolinearity involves inclusion of highly correlated
independent explanatory variables in the regression. This can inflate estimates for
β’s with high standard errors. We address these problems by using orthogonal poly-
nomials for age i and year j explanatory variables and standardising year j. Thus,
equation 2.9 can be basically written in the orthogonal form as;

(xij)Tβ = β∗0 + β∗1ν1i + ..+ β∗pν
p
pi + β∗p+1ν1j + ..+ β∗p+qν

q
qj (2.11)

Where,
νki = ck,k + ck,k−1ip + ...+ ck,1i

k−1
p + ikp, k = 1, 2, .., p

And
νrj = cr,r + cr,r−1jq + ...+ cr,1j

r−1
q + jrq , r = 1, 2, .., q

We have,

log(uij) = log(nij) + β∗0 + β∗1ν1i + ..+ β∗pν
p
pi + β∗p+1ν1j + ..+ β∗p+qν

q
qj (2.12)

Standardising the explanatory variable year j with a, implies j − a = s. Hence,

log(uis) = log(nis) + β∗0 + β∗1ν1i + ..+ β∗pν
p
pi + β∗p+1ν1s + ..+ β∗p+qν

q
qs (2.13)

νki and νrs are orthogonal polynomials of degrees k in ip and r in sq respectively.
The νk = (νki), k = 1, 2, .., p and νr = (νrs), r = 1, 2, .., q represent the kth and rth
orthogonal coefficients, i.e they satisfy the following relationships;∑

i

νki = 0,
∑
s

νrs = 0, k = 1, 2, .., p, r = 1, 2, .., q (2.14)

And, ∑
i

νkiνgi = 0,
∑
s

νrsνrh = 0, k 6= g = 1, 2, .., p, r 6= h = 1, 2, .., q (2.15)

Equations 2.14 and 2.15 are used to obtain systems of equations from which the
orthogonal coefficients νk and νr are derived. These computational procedures are
implemented in the glm and glm.nb R packages for Poisson and Negative binomial
regression models respectively. We use the concept of variance inflation factor to
check the multicolinearity in the regression. This is also implemented in R with "vif
()" function of the "car" package.

Fitting Poisson regression model

The AIC values for selection of "optimal" Poisson regression model are infi-
nite.This is an indication of presence of overdispersion in the mortality data. This
is checked and confirmed in subsection 2.1.8. Hence we use the same polynomial
terms p=25 and q=4 of the "optimal" Negative binomial regression model below to
fit the Poisson regression with the same procedures for comparison purposes.

Fitting negative binomial regression model

We fit our preferred Negative binomial regression model to the training set of
number of deaths in subsection 1.1.3 based on the results displayed in the tables
below.
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Polynomial Degrees Akaike information criteria (AICs)
p=22 and q=1 43,163
p=23 and q=2 42,629
p=24 and q=3 42,593
p=25 and q=4 42,578

Table 2.1: Comparison of selection criteria for p and q

Polynomial Degrees Akaike information criteria (AICs)
p=25 and q=1 43,117
p=25 and q=2 42,621
p=25 and q=3 42,591
p=25 and q=4 42,578

Table 2.2: Comparison of p=25 with different q

Table 2.1 shows the various AICs values for different values of polynomial orders
p and q. Table 2.2 compares AICs values of polynomial order p=25 with different
values of polynomial orders q. It is noted from the two tables that p=25 and q=4
yields the least AIC value, and hence a model with 30 parameters. The AIC for
this "optimal" model is 42578. Where i = 0, 1, .., 110 and s = −25, .., 24, since we
standardised j with 1975.
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Fitted Poisson Regression Model

Table 2.3: Fitted Poison regression Model with GLM

Table 2.3 above shows Poisson regression model fitted with R "glm" package.The
deviance is 13,079 on 5520 degrees of freedom. Also displayed are regression coeffi-
cients against standard errors and p-values. Most of the coefficients are statistically
significant.
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Fitted Negative Binomial Regression Model

Table 2.4: Fitted Negative Binomial Regression Model

Displayed in table 2.4 above is the "optimal" negative binomial model fitted
with R "glm.nb" package. The deviance of the fit is 6047.5 on 5520 degrees of
freedom. Displayed are also the fitted regression coefficients with their respective
standard errors and p-values. Both results displayed in tables 2.3 and 2.3 are based
on orthogonal polynomials of the explanatory variables age i and year s which we
explained earlier.
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2.1.8 Checking for model assumptions

In this subsection, we check assumptions underlying Poisson and Negative bino-
mial models fitted in subsections 2.1.7 to determine which of them best fits the
mortality data. Poisson distribution assumes that the mean is the same as the vari-
ance. Overdispersion then occurs when the data show extra variation that is greater
than the mean. Negative binomial regression is more flexible in modeling overdis-
persed data. Thus we check for overdispersion in the mortality data by computing
for scalar parameter φ. for Poisson and testing the significance of the dispersion
parameter of the fitted Negative binomial regression model with Wald test.

The scalar parameter φ defines how spread the mortality data is and is held 1
in Poisson, for the mean and variance to be equal. There is overdispersion when
φ > 1. φ is derived as the mean square of the Pearson residuals, implemented in R
as:

Pearson < −residuals(model, ”pearson”)
Squared < −sum(Pearson2);Squared

[1] 10991.57
φ < −sum(Squared)/df.residual(model);φ

[1] φ = 1.991587

From the result above, the variance of Poisson is 99% larger than the mean. Also,
Negative binomial regression model becomes Poisson regression model when the
overdispersion parameter κ = 0. We can check statistical significance of the overdis-
persion parameter by testing the hypothesis H0 : κ = 0 against H1 : κ > 0 with
Wald or likelihood ratio test. The value of θ̂ for the fitted negative binomial model
displayed in table 2.4 is 122.99 with standard error of 4.89. Since the dispersion
parameter κ = 1

θ̂
means κ̂ = 0.0081 > 0. The test statistic of MLE κ̂ for the Wald

test is approximated to N(0, 1). The test statistic is implemented in R as;

κ̂ = 0.0081
κo = 0

std.error = 4.89
Wald_statistic = (κ̂− κo)/std.error ;

Wald_statistic = 0.001656442

0.001656442 < Zα
2

= 1.96. Hence the null hypothesis H0 : κ = 0 is rejected at
the 5% level of significance. Both results indicate presence of overdispersion in
the mortality data. In this regard, Negative binomial regression yields a better fit
compared to Poisson and would be used henceforth.

2.1.9 Goodness of fit

We note the fitted Negative Binomial model gives good fit to the mortality com-
pared to Poisson due to overdispersion in subsection 2.1.8. In this subsection, we
validate the fitted negative binomial model with residual analysis.
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Residual deviance diagnostics

The residual deviance terms which are elements of variation unexplained by the
fitted negative binomial model are random and normally distributed with zero mean
and constant variance. We check for the randomness and normality of these residuals
with three dimensional and Q-Q plots .

Figure 2.1: Residual deviance of log number of deaths

Figure 2.3 shows three dimensional and Q-Q plots for the residual deviance of the
fitted negative binomial model for the male mortality. There is a clear structured
pattern of residuals for the young age groups in 1950-60’s with the rest of the
residuals randomly distributed in the three dimensional plot. Some of the residuals
depart from normality at the ends of the Q-Q plot, with majority roughly normal.
Thus, adequacy of normality is probably indicated.

Figure 2.2: Residual plots of log mortality (at age 50 and year 1999)

Figure 2.4 displays two dimensional plots of the residuals for the 50 age group in
the year 1999, smoothed with splines of 25 degrees of freedom. Few large values for
the 50 age group are not well captured in the fitted model. Apart from that, both
plots show random structure of the residuals.
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Fitted against observed number of deaths

We assess how well the fitted Negative binomial regression model captures the
historical trend of the observed number of deaths.

Plot of fitted number of deaths

Figure 2.3: Fitted Norwegian male deaths using Negative Binomial Model

Figure 2.5 displays the smoothed plot of the training set of the observed number
of deaths displayed in figure 1.2. The plot shows similar distribution pattern of the
observed data. Figure 1.2 covers large number of deaths as compared to 2.5.

Figure 2.4: Fitted Norwegian male deaths (at age 50 and year 1999)

Figure 2.2 displays two dimensional plots of the fitted deaths superimposed on the
observed data for the 50 age group in the year 1999. The fitted number of deaths
depart considerably from the historical trend through time but fit well through age.
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2.2 Modeling of risks of exposure
The number of risk exposure is also modeled using Negative binomial regression

model. Having good fit to risks of exposure will yield consistent prediction of
mortality rates, since mortality rates are highly influenced by risks of exposure.

2.2.1 Basic Concepts

Let xTij be categorical variables for both year and age with the number of risk
exposure as the response variable nij .

nij ∼ negb(uij) and uij = E(nij)
then,

log(uij) =log((xij)Tβ

=⇒ uij = exp{(xij)Tβ} (2.16)

Where log(uij) is the natural log link. Also, i = 0, 1, ..., 110 and j = 1950, .., 1999
are indicators of explanatory variables xij .The vector xij contains the values of the
explanatory variables for each age i, year j combination and β, the regression co-
efficients. Inserting equation 2.16 into equation 2.5, we get pmf for risk exposure as;

P (Nij = nij) =
Γ(nij + 1

κ
)

Γ(nij + 1)Γ( 1
κ

)
( 1
1 + κ(exp{(xij)Tβ})

)
1
κ ( κ(exp{(xij)Tβ})

1 + κ(exp{(xij)Tβ})
)nij (2.17)

With µij as defined in equation 2.16, the likelihood function of equation 2.17 is:

L(κ, β) =
∏
i,j

p(nij) =
∏
i,j

Γ(nij + 1
κ)

nij !Γ( 1
κ)

( 1
1 + κµij

)
1
κ ( κµij

1 + κµij
)nij (2.18)

The log-likelihood function of equation 2.18 becomes:

lnL(κ, β) =
∑
i,j

{nij lnκ− nijµij − (nij + 1
k

)ln(1 + κeµij) + lnΓ(nij + κ− lnΓ(nij + 1)− lnΓ( 1
κ

)}

(2.19)
The dispersion parameter κ and β regression coefficients of equation 2.19 are es-
timated by maximum likelihood as explained in subsection 2.1.4. i = 0, 1, .., 110
and j = 1950, .., 1999 as usual. Smoothness of the Negative binomial regression
model for the risks of exposure is also exploited by specifying polynomial orders p
and q in the regression, for the age and year covariates as explained in subsection
2.1.5. Model selection for risk exposure is also based on AIC criteria described in
subsection 2.1.6. Risks of exposure are not integers and so are rounded off.

2.2.2 Fitting Negative binomial regression model

We also face multicollinearity and numerical problems in fitting Negative binomial
regression to the risks of exposure. We also address these by using orthogonal
polynomials for age i and year j and standardising year j with 1975. These are
based on the same procedures explained in subsection 2.1.7.
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Fitted negative binomial regression Model

Table 2.5: Fitted Negative Binomial Model

Table 2.5 below is the fitted Negative binomial regression model for the Norwegian
male exposed to risk. The deviance of the model is 5748.7 on 5536 degree of freedom.
Displayed also are the regression coefficients with their respective standard errors
and p-values.
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2.2.3 Goodness of fit

Since risks of exposure are also modeled with Negative binomial regression model,
we apply the same measures of fit validation described earlier in subsection 2.1.9.
We check for randomness and normality of residual deviance with three dimensional
and Q-Q plots respectively.

Figure 2.5: Plots of residuals

Figure 2.8 depicts three dimensional and Q-Q plots of residual deviance of the
fitted model. The structure of the three dimensional plot shows no clear pattern
of randomness of the residuals.The Q-Q plot shows considerable variation of the
residuals from normality.

Figure 2.6: Plots of residuals (at age 50 and year 1999)

Displayed in figure 2.9 are two dimensional plots of residuals for the 50 age group
in 1999, smoothed with splines of 25 degrees of freedom. Both plots show systematic
downward and upward trends of residuals through time and age. They are well
smoothed with no clear pattern of randomness. This is an indication of departure
from normality, hence suggesting that the historical trend of risks of exposure are
not sufficiently captured by the fitted Negative binomial regression model for the
50 age group in the year 1999.

25



Fitted against observed risks of exposure

In this subsection, we assess how well the fitted Negative binomial regression
model captures the historical trends of the observed risks of exposure over age and
time with two and three dimensional plots.The model can give good prediction if it
fits well on the historical paths of the observed data.

Figure 2.7: Plot of fitted male risk exposure, 1950 to 1999

Figure 2.10 shows smoothed plot of the training set of observed risks of exposure
displayed in figure 1.7. There is considerable discrepancy between the structure of
the two plots which is captured in residuals in subsection 2.2.3.

Figure 2.8: Fitted risk exposure (at year 1999 and age 50)

Displayed in figure 2.11 are two dimensional plots of fitted and observed risks of
exposure for the 50 age group in the year 1999. The plots show trends of distribution
of the fitted and observed risks of exposure in figures 2.10 and 1.5 respectively. The
fitted risks of exposure depart significantly from the observed trend through time
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for the 50 age group but fit roughly to the observed trend through age in the year
1999. Thus we can conclude that the fitted model does not provide adequate fit to
the observed data for the 50 age group in the year 1999.

2.3 Estimation of mortality rates
Mortality rate is estimated as the ratio of number of fitted deaths and risk of

exposure. That is, if ŷij and n̂ij are the number of fitted deaths and risk of expo-
sure for i=0,1,...,110 and j=1950,..,1999 as usual, then the nonparametric estimate
of mortality rate m̂ij for age i and year j is expressed as:

m̂ij = ŷij
n̂ij

=exp((xij)T β̂)

=⇒ log(m̂ij) = log( ŷij
n̂ij

) = (xij)T β̂ (2.20)

The vector xij contains the values of the explanatory variables for each age i, year
j combination and the β̂ are the regression coefficients.

2.3.1 Goodness of fit

We assessed both year and age-specific patterns of trend of the observed log
mortality rates in figure 1.9. These patterns of trend are expected to be fully
captured by the fitted Negative binomial model for consistent forecasting. Hence in
this subsection, we check for consistency of the fitted trends on the observed trends
through age and year.

Figure 2.9: Fitted log male mortality from 1950 to 1999

Figure 2.12 displays three dimensional plot of fitted log mortality rates of Nor-
wegian male from the calender year period 1950 to 1999. This is the smoothed plot
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of the observed log mortality rates graphed in figure 1.8. Both plots show similar
pattern of distribution of the mortality rates over the intervals of age and year.

Figure 2.10: Observed and fitted mortality and log mortality

Figure 2.13 displays four plots of two dimensions of observed and fitted mortality
and log mortality for the 50 age group in the calender year 1999. The fitted rates of
mortality follow similar year and age-specific patterns of the observed rates. We can
see considerable departures of the fitted trend from the historical trend through age
and year. These departures are clearly displayed on the logarithmic scale. The fitted
and observed log mortality rates decline roughly downward with increasing years for
the 50 age group and increase along with increasing age in the year 1999. The fitted
trend departs from the observed trend from 1950’s for the 50 age group and from 0
age group upto 100 year group in 1999. The model also fails to capture the few large
rates after the 100 age group. Hence, we can say that the fitted Negative binomial
regression model does not sufficiently capture the observed mortality trends through
age and time for the 50 age group in the year 1999.
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Chapter 3
The Lee-Carter Model

In this chapter, Lee-Carter demographic model will be used to model patterns
of trends and levels of the observed Norwegian male mortality data described in
subsection 1.1.5. The model is primarily based on the past experience of the age-
specific of the data.

3.1 Basic concepts
The model proposed by Ronald Lee and Lawrence Carter in 1992 for mortality

forecasting assumes that the force of mortality mx(t) at age x in calendar year t is
of the form exp{ax + bxκt + ξx(t)}. Hence,

logmx(t) = ax + bxκt + ξx(t) (3.1)

where, t = t1 + 1, t1 + 2, ..., tn − t1 + 1 = T and x = x1, x2, x3..., xt. mx(t) is
the probability of death at age x in year t. ax is the age-specific parameter which
describes the general pattern of mortality by age. bx is the age-specific parame-
ter which describes the time trend for the general mortality. κt is a time-varying
mortality index. ξx(t) are the error terms capturing particular age-specific histor-
ical influences not explained by the model. These errors are assumed N(0,σ2). To
achieve a unique solution for the equation 3.1 the following restrictions are used;

ax = 1
T

∑
t

logmx(t),
∑
x

bx = 1,
∑
t

κt = 0 (3.2)

3.2 Parameter Estimation
The nonparametric estimate of the age-specific death rates is given by the ratio:

m̂t(x) = Dx,t

Nx,t
(3.3)

where Dx,t , denotes the number of deaths at age x during year t from a corre-
sponding exposure-to-risk Nx,t. The plot of m̂t(x) is displayed in figure 1.8. ax
is estimated as the mean of log mx(t) over time t. The estimation of bx and κt
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could not be solved explicitly and the model cannot be fit with ordinary regression
methods. Lee and Carter use a two-stage estimation approach. The singular value
decomposition is applied to the matrix {logmx(t)− ax} to estimate bx and κt, and
time series of κt is re-estimated in the second stage. They identified estimation of
the parameters bx and κt does not guarantee the observed total number of deaths
to be equal to the fitted total number of deaths. This is because there are less
parameters than the observations. They re-estimate κt to get the observed number
of deaths equal the fitted number of deaths, i.e.

Dt =
∑
x

exp(ax + bxκt)Nx,t (3.4)

whereDt is the total number of deaths in year t and Nx,t is the population (exposure
to risk) of age x in year t. No analytic solution is available so it can only be done
by searching over a range of value of κt.

3.2.1 Singular Value Decomposition

The parameter vector ax equation 3.1 at section 3.1 is computed as the mean
of log m̂x(t) over time t. Hence, âx = 1

T

∑
t log m̂x(t). Also from equation 3.1,

bxκt = logmx(t)− âx. Let Yx(t) = logmx(t)− âx.

If Z denotes a p x q matrix of rank r, then there is p x p orthogonal matrix U, q
x q orthogonal matrix V and p x q diagonal matrix d such that;

Z = UdV ′ (3.5)

Where V ′ = (vji) is the inverse of V = (vij). For m < n, equation 5.4 is represented
in the matrix form as;

A =


u1,1 ... ... u1,p
... ... ... ...
... ... ... ...
... ... ... ...
up,1 ... ... up,p

x

d1 ... 0 ... 0
0 ... ... ... 0
... ... dp−1 ... ...
... ... ... ... ...
0 ... ... ... dp

x

v1,1 ... v1,p ... v1,q
... ... ... ... ...
vp,1 ... vp,p ... vp,q
... ... ... ... ...
vq,1 ... ... ... vq,q



If we let Z = Yx(t) , where x = 1, 2, 3, ....X and t = 1, 2, 3...T, then the first
rank approximation of Ŷ 1

t (x) = d1U1(x)V1(t) = b1
xκ

1
t gives;

b̂1
x = (u1,1 u1,2...u1,x)′

and
κ̂1
t = d1 x (v1,1 v2,1...vT,1) .

Using the Lee-Carter constraints 3.2, bx and κt estimates become;

b̂1
x = ( 1∑

x
ux,1

)(u1,1 u1,2...u1,X)′, κ̂1
t = ( 1∑

x
ux,1

) x d1 x (v1,1 v2,1...vT,1)

Where U(x) denotes the age, d the singular value and V(t) the time components
respectively.
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3.3 Fitting Lee-Carter Model
Lee Carter model is fitted by approximating new matrix Ŷx(t) by the product of

the estimated vector parameters b̂x and κ̂t to obtain;

Ŷx(t) = b̂xκ̂t =


Ŷx(t1)
Ŷx(t2)
...

Ŷx(tn)

 b̂x, κ̂x =


Ŷx(t1)
Ŷx(t2)
...

Ŷx(tn)

 (3.6)

From equation 3.6, the fitted logarithm of the central death rate then becomes;

log m̂x(t) = âx +


Ŷx(t1)
Ŷx(t2)
...

Ŷx(tn)

 b̂x (3.7)

3.4 Applying Lee-Carter Model
In this section, we apply Lee Carter model (3.1) to the Norwegian male mortality

data described in subsection 1.1.3. The parameters ax, bx and κt of the model
are estimated by the methods described in 3.2.1 and analysed accordingly. The
residuals of the model is later examined. Re-estimation of κt is not considered here.

3.4.1 Fitted Lee-Carter model

We fit Lee-Carter by employing R “demography” package by Hyndman, Booth,
Tickle and Maindonald (2008), a program developed for the (1x1) data format of
the Human Mortality Database. This is implemented in R as shown below:

deaths = read.table(file = ”mot1950to1999.txt”, header = T, sep = ””)
exps = read.table(file = ”expo1950to1999.txt”, header = T, sep = ””)

library(demography) 1

year = unique(deaths$Y ear);nC = length(year)
age = unique(deaths$Age);nL = length(age)

deathrate = matrix((deaths$Male)/(exps$Male), nL, nC)
expos = matrix(exps$Male, nL, nC)

# We use the demogdata format
demo < −demogdata(data = deathrate, pop = expos, ages = age,

years = year, type = ”mortality”, label = ”Norway”, name = ”Male”, lambda = 1)
# Then we fit the Lee-Carter model

Lca < −lca(demo,max.age = 110, interpolate = T, adjust = ”none”)
# We extract values of ax, bx and kt

ax < −Lca$ax
bx < −Lca$bx
kt < −Lca$kt

1Some of the r codes for implementing the “demography” package are based on the examples
provided in Charpentier (2012) and Charpentier and Dutang (2013) online manual.
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Table 3.1: Estimates of ax, bx and kt

Displayed in table 3.1 above are estimated values of âx, b̂x and κ̂t parameters
from the R package “demography” by Hyndman, Booth, Tickle and Maindonald
(2011).The package is based on singular value decomposition method of parameter
estimation described in subsection 3.2.1. R source codes and updates of the “demog-
raphy” package can be found at https://github.com/robjhyndman/demography/
blob/master/R/lca.R.

The procedures for deriving âx, b̂x and κ̂t estimates can also be basically imple-
mented in R; create âx by taking logarithms of the mortality rates, rowMeans(logmx),
center the results with the average log mortality at a given age , logmx−ax, and de-
rive κ̂t, a scaling eigenvalue, and b̂x from u(,1), s(1), v(1,), where usv is the singular
value decomposition of the centered log mortality rates, svd(logmx−ax).
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Figure 3.1: Plot of fitted mortality rate

Figure 3.1 above plots the fitted mortality rates from the year period 1950 to
1999. We see that the shape of the mortality index âx is well captured. The model
yields a good fit on the data when κ̂t is decreasing and also the estimated values
of age-specific constant b̂x decrease with age. Predictive ability of the fitted model
will be undermined if there are no continuous historical patterns of trends for these
estimated parameters.
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Figure 3.2: General pattern of the Norwegian male mortality (ax)

As we expect the average mortality increases with increasing age. From table 3.1,
âx shows a downward trend from the 0 age group at a value of (-4.4) to the 12 age
group at a value of (-8.1), then rapidly increases to (-0.62) at the 100 age group and
shows a relatively slight increase afterwards. Figure 3.2 plots estimated âx over the
intervals of age, smoothed with splines of 25 degrees of freedom. We can see similar
pattern for the observed mortality rates through age in the year 1999 in figure 1.9.

Figure 3.3: Age-specific constant(bx) for Norwegian male mortality

The values for the estimated b̂x are shown in table 3.1. The estimated values
are decreasing by age and roughly level out, which means that the mortality rates
at younger ages decline more rapidly than for older ages. Higher values of b̂x for
the younger ages means mortality varies significantly when κ̂t changes. Also, lower
values of this parameter for the older ages means slight variation of mortality in
that period of time when κ̂t changes. Negative values give an increasing mortality
rate if the κ̂t is negative and declining. Figure 3.3 plots the pattern of b̂x through
age, smoothed with splines of 25 degrees of freedom.

34



Figure 3.4: Mortality index (κt) for Norwegian male mortality

The values for the estimated time-varying parameter κ̂t for Norwegian male mor-
tality from the year period 1950 to 1999 are tabulated in table 3.1. Figure 3.4 plots
these values, smoothed with splines of 25 degrees of freedom. κ̂t captures the main
time trend on the logarithmic scale of the mortality rates from the age period of 0
to 110. From the plot, κ̂t of the mortality attains its maximum value in 1950 .It
then tends to fluctuate from 1951 to 1987 and declines roughly linearly from 1989
to 1999. We can see similar pattern for the observed mortality rates through time
for the 50 age group in figure 1.9.

3.4.2 Goodness of fit

We validate the fitted demographic model described in the previous subsections by
employing Pearson residual diagnostics. The residual terms measure unsystematic
variability of the fitted model. Recalling from subsection 3.1: log mx(t) = ax +
bxκt+ξx(t), where ξx(t) are the residual terms with zero mean and constant variance.
Hence if âx, b̂x, κ̂t are the estimated parameters of the fitted model, then the residual
terms are estimated by: ξ̂x(t) =log mx(t)− âx − b̂xκ̂t.

Figure 3.5: Residuals of log mortality rate using Lee-Carter
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Figure 3.6: Residual plots of log mortality (at age 50 and year 1999)

Figure 3.5 shows three dimensional plots of the Pearson residual terms of the
fitted Lee Carter model. Figure 3.6 depicts two dimensional plots of Figure 3.5 for
50 age group in 1999, smoothed with splines of 25 degrees of freedom. We can see
figure 3.5 show more considerable clear patterns of residuals as compared to figure
2.3. In figure 3.6, residuals are randomly distributed in 1999 but decrease with time
for the 50 age group. Hence, the assumption of random distribution of residual
terms as expected is not entirely fulfilled. This indicates the fitted model does not
adequately capture the entire historical information of the observed data.
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Chapter 4
Forecasting Techniques

The Norwegian male mortality will be forecast with the fitted Negative binomial
and Lee-Carter models. The predictive performance of both models are evaluated
by comparing the distributions of the observed and forecast values.

4.1 Forecasting with Negative Binomial Model
Here, the Norwegian number of deaths and their exposure to risk for the year

period 2000 to 2009 described in subsection 1.1.3 are forecast with the fitted Nega-
tive binomial models in subsections 2.1.7 and 2.2.2 respectively. The forecast rates
of mortality are then subsequently estimated and compared with the test set in
subsection 1.1.3.

R note: Both fitted Negative binomial regression models for number of deaths
and risks of exposure in subsections 2.1.7 and 2.2.2 are based on orthogonalised
polynomials. As explained in subsection 2.1.5, we standardised and orthogonalised
the explanatory variables age and year to eradicate multicolinearity and numerical
problems. Hence we need a function in R that can create data frames of orthogonal
arrays with unique attributes for the new categorical explanatory variables to en-
able us forecast with the predict.glm function using the fitted models. expand.grid
function of the "base" R package has these features. Expand.grid creates the data
frames from all combinations of the new categorical explanatory variables age and
year with unique attributes which we use in the predict.glm function to get forecasts
for risks of exposure and number of deaths from 2000 to 2009. Note that we also
standardise the new categorical explanatory variable year j to obtain s = 25, .., 34.

4.1.1 Forecasting risks of exposure(2000 to 2009)

If nij is the number of males exposed to risk to be forecast and xij the new cat-
egorical variables age and year, then recalling from subsection 2.2.1, we obtain the
equation for forecasting nij to be:

log(uij) = (xij)T β̂ =⇒ uij = exp{(xij)T β̂}
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ñij = E(nij) = uij . i = 0, 1, ., 110 and j = 2000, ., 2009 are indicators of the
vector xij for explanatory variables, for each i age and j year combination, from
2000 to 2009. β̂’s are the regression coefficients.

Figure 4.1: Forecasts of risk exposure (2000 to 2009)

Figure 4.1 shows smoothed plot of the observed risks of exposure displayed in
figure 1.7. We can see slight variations in the structural appearances of both plots.

Goodness of forecast

Figure 4.2: Forecast of number of deaths (at age 50 and year 2009)

Figure 4.2 shows two dimensional plots of figures 4.1 and 1.7 for the 50 age group
in 2009. We can see forecast risks of exposure follow the same historical patterns
through time and age for the 50 age group in 2009. Comparing this to figure 2.11,
we can say the fitted model forecast well for shorter time periods but would likely
not forecast well for longer time periods.

4.1.2 Forecasting number of deaths (2000 to 2009)

Let yij be the death counts of Norwegian male to be forecast and xij the new cat-
egorical variables age and year that have predictive power for yij . i = 0, 1, ..., 110
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and j = 2000, .., 2009 are indicators of the vector xij for explanatory variables,
which is for each i age and j year combination, starting from 2000 calender year
through to 2009. Therefore recalling from subsection 2.1.1, we obtain the equations
for forecasting the number of deaths yij for the year period 2000 to 2009 to be;

log(uij) =log(ñij) + (xij)T β̂

=⇒ uij = exp {log(ñij) + (xij)T β̂}

Where the β̂’s are the regression coefficients in subsection 2.1.7, based on orthog-
onalised polynomials. ñij are the forecast values of risks of exposure in subsection
4.1.1. The expected forecast values are then obtained as, ỹij = E(yij) = uij .

Figure 4.3: Forecast of number of deaths (2000 to 2009)

Displayed in figure 4.3 is the smoothed plot of the test set of number of deaths
in figure 1.4. Structurally, both plots look alike, just that the forecast death counts
have significantly few high values compared to the observed.

Goodness of forecast

Figure 4.4: Forecast of number of deaths (at age 50 and year 2009)

Figure 4.2 depicts two dimensional plots of figures 1.4 and 4.1 for 50 age group in
2009. As we can see from the plot, number of forecast deaths depart significantly
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from the observed over the time trend of the 50 age group and between 40 to 80 age
groups in 2009. Too high mortality rates are forecast for the 70’s age group. The
time trend would likely get worse as time increases. These are departures from the
fitted trends displayed in figure 2.6. Hence the fitted model gives poor predictive
performance.

4.1.3 Forecasting rates of mortality (2000 to 2009)

If ỹij and ñij are the forecast values for number of deaths and risks of exposure
for the Norwegian males obtained in subsections 4.1.2 and 4.1.2 respectively, then
the values for the forecast rates of mortality are fitted by the ratio:

m̃ij = ỹij
ñij

=exp{xTij β̂}

=⇒log(m̃ij) =log( ỹijñij ) = (xij)T β̂

Where i, j and xij are as defined in subsections 4.1.1 and 4.1.2. The β̂’s are also
the regression coefficients in table 2.4 based on orthogonalised polynomials.

Figure 4.5: Forecast mortality rates(2000 to 2009)

Figure 4.5 displays the smooth plot of observed mortality rates in figure 1.10.
Both plots follow similar patterns of distribution of the mortality rates against year
and time.

Goodness of forecast

Figure 4.6 below shows four plots of two dimensions of observed and forecast
mortality and log mortality rates for the 50 age group in the year 2009. As we can
observe, the fitted model does not sufficiently relate the forecasts to the historical
trend of the observed rates through time for the 50 age group. Similar problem
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is noted for the fit in figure 2.13. The forecasts deviate considerably from the
historical trend of the observed rates between the 5 and 70 age groups. The model
also gives poor predictive performance for the few large mortality rates after the
100 age group. Similar problem is also noted in figure 2.13.

Figure 4.6: Observed and forecast mortality and log mortality

4.2 Forecasting with Lee-Carter Model
In this section, Lee-Carter demographic model fitted in chapter three is used to

forecast the test set described in section 1.1.3 of chapter one. According to Lee and
Carter (1992), modeling the dynamics of the fitted mortality index κ̂t is key for the
equation 3.3 in section 3.2 to hold in other to forecast. They proposed standard
univariate ARIMA (0,1,0) time series model as appropriate model for modeling the
dynamics of the index κ̂t. We will apply this model to the estimated mortality
index, examine its quality of fit and make a forecast for κ̂t from 2000 to 2009.
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4.2.1 Basic concepts of standard ARIMA (0,1,0) model

The standard univariate ARIMA (0,1,0) time series model for κt is a random walk
with a drift δ, and has its dynamics expressed as:

κt − κt−1 = δ + ξt (4.1)

where t = t1 + 1, t1 + 2, ..., tn − t1 + 1 = T . The drift parameter δ gives the mean
annual change in κt, i.e δ = ∇κt = κt − κt−1. ξt are identically distributed error
terms with N(0,σ2). From equation 4.1 implies:

κt = κt−1 + δ + ξt (4.2)
To forecast κt two steps ahead, we obtain, κt = (κt−2 + δ + ξt−1) + δ + ξt
, which implies κt = κt−2+2d+(ξt+ξt−1). Therefore to forecast κt h steps ahead, we
obtain, κT+h = κT+hδ+(ξT+1+...+ξT+h), with expectation, E(κT+h/κT ) = κT+hδ̂

Fitting of the ARIMA (0,1,0) model to κ̂t

Here, we fit the ARIMA (0,1,0) model to the fitted κ̂t in table 3.1 with " astsa" R
package by Shumway and Stoffer(2010). We obtain the drift term δ = −1.54, with
standard error 0.87, indicating downward trend as expected. Hence, equation 4.2
becomes κt = κt−1 − 1.54 + ξt = −1.54 +

∑
t ξt

Goodness of fit

Figure 4.7: Diagnostic plots of refitted index κt

We validate the fitted ARIMA (0,1,0) model with diagnostic plots of residuals
displayed in figure 4.7. Apparently, there is stationarity in the standardized residual
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plot. The expected pattern of normality is deviated at the lower end of the Q-Q
plot.In addition,there are presence of significant autocorrelations in the ACF plot
and low p-values for Ljung Box statistic. This in effect indicates that ARIMA (0,1,0)
model as proposed by Lee and Carter (1992) does not fully capture the historical
dynamics of the Norwegian mortality index κ̂t.

Figure 4.8: Plot of fitted and re-estimated κt with ARIMA(0,1,0)

Figure 4.8 plots fitted and re-estimated κt from 1950 to 1999. Both plots follow
the same declining historical pattern. There are considerable variations in the trends
and levels of both series.

Figure 4.9: Forecast of κt from 2000 to 2009 with ARIMA(0,1,0)

We can see from figure 4.9 above that the trend of the forecast index κ̂t is in line
with the declining pattern of re-estimated index over the intervals of time. Also,
the forecast κ̂t is smoothed and linear through time with 95% prediction intervals.
This linearity trend of κ̂t is what we expect to forecast mortality rates with the
Lee-Carter model.
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4.2.2 Forecasting rates of mortality (2000 to 2009)

If âx and b̂x are the fitted values for the age-specific parameters tabulated in
table 3.1 and κ̂t denotes the forecast values with the ARIMA (0,1,0) model, then
the forecast rates of mortality from the year period 2000 to 2009 are obtained from
equation 3.1 by:

m̃x(t) = exp{âx + b̂xκ̂t}

=⇒ log m̃x(t) = {âx + b̂xκ̂t} .

Figure 4.10: Forecast rates of mortality (2000 to 2009)

Displayed in figure 4.10 is the smoothed plot of observed mortality rates in figure
1.10. The plot shows similar distribution patterns of forecast log mortality rates in
figure 4.5. Figure 4.10 covers more negative rates as compared to figure 4.5.

Goodness of forecast

Figure 4.11 depicts four plots of two dimensions of mortality and log mortality
forecasts for the 50 age group in the year 2009 for the Lee-Carter and Negative
binomial regression model. The three plots are smoothed with splines of 10 degrees
of freedom. The downward linear time trend of the forecast for the 50 age group
is due to the linearity of the re-estimated mortality index κt. We already noted
statistical insignificance of κt in subsection 4.2.1. We observe polynomial time
trend for the Negative binomial regression model, which we described in subsection
2.1.5. Both models give poor prediction through time for the 50 age group.

The forecasts for both models produce the general pattern of age-specific constant
ax displayed in figure 3.2. Lee-Carter model roughly captures the historical trends of
the log observed rates from 10 to 40 age groups and departs significantly afterwards
in 2009. On the other hand, Negative binomial model deviates from the historical
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trend of the log observed rates between 5 and 70 age groups and after 100 age group
in the same year period.

Both models in one way or the other, do not fully relate the historical patterns
of trends and levels of the observed rates and log observed rates to their respective
forecast rates and log forecast rates for the 50 age group in the year 2009. At
this juncture, we cannot statistically draw conclusion on which of the models gives
good forecast, since the comparison of the forecasts is based on only one age group
and year period. But we can suggest the fitted Negative binomial model seems to
outperform its fitted Lee-Carter competitor for the 50 age group and the year period
2009. Nevertheless, we will determine the best model that gives good forecast to
the Norwegian male mortality by examining their forecasting accuracy through the
distribution and measurement of their respective forecast errors.

Figure 4.11: Observed and forecast mortality
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Chapter 5
Forecast errors

We used Negative binomial regression and Lee-Carter models fitted in chapter
two to forecast Norwegian mortality rates from the year calender year period 2000
to 2009 in chapter four. The question now is which of the two models gives high
accuracy of forecasts? This is what this chapter seeks to address by comparing their
forecast errors.

5.1 Basic concepts of forecast error
Forecast error is estimated as the difference between the observed value and the

forecast value for the the corresponding year period. If m̃ij is the value of forecast
rate at age i in year j combination and mij is the corresponding observed mortality
rate, then the forecast error eij is defined as:

eij = mij − m̃ij (5.1)

In this case i = 0, 1, ., 110 and j = 2000, ., 2009.We can conclude from equation 5.1
that, positive eij implies mij > m̃ij , negative eij implies mij < m̃ij and neutral
eij implies mij = m̃ij . We will assess the distribution of error terms recorded by
Negative binomial and Lee-Carter models and subsequently quantify these errors
with Mean Squared (MSE) and Mean Absolute Error (MAE) measures.

5.2 Distribution of forecast errors
Figure 5.1 displays three dimensional plots of the forecast errors recorded over the

intervals of age and year by the fitted Negative binomial regression and Lee-carter
demographic models respectively. Most of the forecast errors recorded by Negative
binomial regression model are considerably positive. We can see large positive and
few negative values after the 100 age group for Negative binomial regression model.
On the contrary, Lee-Carter model records large negative and few positive values
after the 100 age group. Comparably, there are higher concentration of forecast
errors recorded by the fitted Lee-Carter model after the 100 age group than those
recorded by the fitted Negative binomial model. Nevertheless, both models deviate

46



Figure 5.1: Distribution patterns of forecast errors

very significantly in forecasting mortality rates for the highest attained age groups
of the Norwegian males.

Figure 5.2: Distribution of forecast errors(at age 50 and year 2009)

Figure 5.2 compares trends of the estimated forecast errors of the Negative bino-
mial regression and Lee- Carter models for the 50 age group in 2009. Both plots
are smoothed with splines of 25 degrees of freedom. We can see variations in the
trends of the forecast errors for the two models in the year period 2000 to 2003 and
2006 to 2009. Both models forecast almost with the same accuracy from 2003 to
2006. Most of the estimated forecast errors against age for the Negative binomial
regression model are closer to zero as compared to those of the Lee Carter model.
This indicates that the forecast values of Negative binomial are more closer to the
observed data as compared to the Lee-Carter model. Thus we can say Negative
binomial regression model gives better forecasting accuracy than the Lee-Carter
model for the 50 age group in 2009.
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5.3 Measurement of forecast errors
In this section, we use Mean Squared Error (MSE) and Mean Absolute Error

(MAE) methods to quantify the forecast errors recorded by both Negative binomial
regression and Lee-Carter models in figure 5.1.

5.3.1 Basic concepts of Mean Squared Error (MSE)

The mean squared error measures the mean of the squares of the forecast errors.
Hence, from equation 5.1, we can define the mean squared error as:

MSE = 1
n

n∑
i,j

e2
ij (5.2)

5.3.2 Basic concepts of Mean Absolute Error (MAE)

The mean absolute error measures the mean of the absolute forecast errors. From
equation 5.1, we can define the mean absolute error as:

MAE = 1
n

n∑
i,j

|eij | (5.3)

We can say from equations 5.2 and 5.3 that MAE is more sensitive to small forecast
errors and much less sensitive to large forecast errors than MSE.

5.3.3 Comparison of Sum of Squares of forecast errors

Figure 5.3: Sum of squares of forecast errors

Figure 5.3 displays sum of squares of forecast errors recorded by Negative and Lee
Carter models for the year and age groups. We see Lee Carter records high values
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of sum of squares for both year and age groups compared to Negative binomial
regression model. This is the result of the high negative errors recorded by Lee
Carter in figure 5.1, which inflate the sum of squares.

5.3.4 Comparison of MSE and MAE of forecast errors

Displayed in table 5.1 below are the estimated Mean Squared Error (MSE) and
Mean Absolute Error (MAE) of the forecast errors recorded by the fitted Negative
binomial and Lee-Carter models respectively, using R "metrics" package. Compu-
tations of MSE and MAE can also be implemented in R with the following codes:

mse < −function(e){mean(e2)};mse(e)

mae < −function(e){mean(abs(e))};mae(e)

MSE MAE
Fitted Negative Binomial Model 0.064 0.052

Fitted Lee Carter model 2.415 0.318

Table 5.1: Summary of forecast errors

It is clear from table 5.1 that the forecasting accuracy of the Norwegian male
mortality rates from 2000 to 2009 by the fitted Negative binomial regression model
far outweighs that of the fitted Lee-Carter model.

Negative binomial model has 0.0642 for MSE whilst Lee-Carter model has 2.415,
implying Lee-Carter model deviates from Negative binomial model by a difference
of 2.35 in order to forecast with the same accuracy as the Negative binomial model.
The high MSE estimated for Lee-Carter is due to the high values of the sum of
squares of the forecast errors displayed in figure 5.3.

Lee-Carter has a low value of 0.318 for MAE as compared to the MSE. This is
due to the absolute nature of the MAE, since Lee Carter recorded mostly negative
forecast errors. On the contrary, Negative binomial has a lower value of 0.052 for
MAE as compared to Lee-Carter. This produces a difference of 0.266 in MAE for
both models, implying that the Lee-Carter model needs a reduction of 0.266 in its
MAE to forecast with the same accuracy as Negative binomial regression model.

5.4 Other options of Negative Binomial Regression Model
This subsection seeks to assess whether some of the Negative binomial regression

models specify in subsection 2.1.7 have better forecasting accuracy than the fitted
Negative binomial regression model.
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Fitted Negative Binomial Model p=25 q=4 0.064 0.052
Negative Binomial Model p=25 q=3 0.065 0.057
Negative Binomial Model p=25 q=2 0.065 0.055
Negative Binomial Model p=25 q=1 0.063 0.051

Table 5.2: Summary of forecast errors

Table 5.2 displays summary of MSE and MAE for some of the Negative binomial
regression models specified in table 2.2 of subsection 2.1.7. Note that the polynomial
orders of p and q for age and years specified above are used to model number of
deaths only. Polynomial orders of p and q for age and years specified in the fitted
negative binomial regression model for risks of exposure in subsection 2.2.2 still
remain the same.

We see that Negative binomial model with polynomial order p = 25 for age
and q = 1 for year has the lowest estimates for MAE and MSE when used for
forecasting the mortality. This model outperforms the fitted Negative binomial
model in subsection 2.1.7 although it records the highest AIC value in table 2.2. This
is strange but true because "incorporating more polynomial terms with unnecessarily
high orders of p and q for age and year permits an increasingly complicated response
structure with fitted values close to the observations but low predictive strength",
Piet and Gillian (2008). Hence, simple polynomial function is recommendable in
modeling the time trend with Negative binomial regression model to obtain tradeoff
between good fit and forecasts for the Norwegian male mortality.

50



Chapter 6
Conclusion

In this chapter, we present summary and conclusion of the thesis. We also present
weakness identified for future work regarding the topic.

6.1 Summary Remarks
This thesis sought to compare Poisson or Negative binomial regression and orig-

inal Lee-Carter demographic models in forecasting Norwegian male mortality. We
noted that Negative binomial regression model overruled its Poisson competitor due
to rejection of equidispersion hypothesis to confirm overdispersion in the mortality
data. We proceeded to fit Negative binomial regression model to the mortality and
risks of exposure data to estimate mortality rates for the Norwegian males from the
year period 1950 to 1999. We observed Negative binomial regression model tended
to capture the historical trends of the observed data for the age groups but de-
parted significantly from the time trends. Comparative evaluations of the observed
and fitted mortality rates for the 50 age group in 1999 are of no exceptions. Lee
Carter model on the other hand was noted to provide poor fit to the mortality data
based on assessment of the distribution of residual terms. Validating the fits of
both models with the 50 age group in the year 1999, we observed Negative binomial
regression model indicated better fit as compared to the Lee-Carter model.

We used the fitted Negative binomial regression and Lee-Carter models to forecast
the mortality rates for the year period 2000 to 2009. We noted that Negative
binomial regression model indicated strong predictive power over the Lee-Carter
model based on comparative assessment of the forecast and observed rates for the
50 age group in 2009. The poor predictive performance of the Lee-Carter model is
basically attributable to inability of the reestimated mortality index to adequately
project age-specific mortality rates for the forecasting period. This problem was
moderately minimal in Negative binomial regression model because of the simple
polynomial functions allowed for the period.

The comparative assessment of the distributions of forecast error terms of the two
models indicated that Lee- Carter model under-predicted the mortality data. We
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noted that the Lee-Carter model recorded on average Negative errors.This resulted
in inflation of the mean squares leading to the high MSE estimate as compared to
the lower MSE estimate for the Negative binomial regression model. However, we
noted substantial reduction in the MSE estimate for Lee-Carter model using MAE
measurement technique, which is based on absolute values.

Although both Lee-Carter and Negative binomial regression models deviated in
many ways in capturing the future trends of the mortality data, at the end Negative
binomial regression model outperforms its Lee-Carter competitor in forecasting the
Norwegian male mortality.

6.2 Known Weakness and Suggestion
We noted that the Lee-Carter model gave poor predictive performance because

of statistical insignificance of the mortality index. This suggests that Lee-Carter
model could have predicted well if the dynamics of the mortality index had been
modeled with any appropriate stochastic model proposed in any of the extensions
of the Lee-Carter model rather than the random walk model.

We also noted that Negative binomial regression model gave high predictive ac-
curacy when simple polynomial functions were allowed for the period. Hence we
recommend that simple polynomial functions should be allowed in Negative bino-
mial regression model for consistent forecasting of Norwegian male mortality.

Both models departed significantly in providing good fits and forecasts for the
high attained age groups of the Norwegian males.This is due to the missing actual
death counts within these age groups. This suggests having high quality of data
within these groups could have improved the fits and predictive performance of the
models. Hence we suggest models with strong fitting and predictive power for high
thresholds and jump-offs for these groups.
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Appendix
Provided below are the R codes used for the entire thesis.
# Uploading the data files to R platform
rm(list=ls())
ls()
setwd("C:\\Users\\Emmanuel\\Desktop\\serious\\odd")
deaths=read.table("mot1950to1999.txt",header=T)
setwd("C:\\Users\\Emmanuel\\Desktop\\serious\\odd")
death.09=read.table("mot2000to2009.txt",header=T)
setwd("C:\\Users\\Emmanuel\\Desktop\\serious\\odd")
exps=read.table("expo1950to1999.txt",header=T)
setwd("C:\\Users\\Emmanuel\\Desktop\\serious\\odd")
exps.09=read.table("expo2000to2009.txt",header=T)

CHAPTER ONE
# Three dimensional plot for Number of Deaths(1950-1999)
Deaths<-matrix(deaths$Male,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),Deaths,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Deaths")

# observed death counts (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(seq(1950,1999),Deaths[50,],xlab="year",ylab=" Deaths")
lines(smooth.spline(seq(1950,1999),Deaths[50,],df=25), col = "black")
plot(seq(0,110),Deaths[,50],xlab="age",ylab="Deaths")
lines(smooth.spline(seq(0,110),Deaths[,50],df=25), col = "black")

# Three dimensional plot for Number of Deaths (2000-2009)
Death.09<-matrix(death.09$Male,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),Death.09,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Deaths")

# Three dimensional plot for risks of exposure (1950-1999)
Exposures<-matrix(exps$Male,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),Exposures,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Exposures")

# observed risks of exposure (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(seq(1950,1999),Exposures[50,],xlab="year",ylab=" Deaths")
lines(smooth.spline(seq(1950,1999),Exposures[50,],df=25), col = "black")
plot(seq(0,110),Exposures[,50],xlab="age",ylab="Deaths")
lines(smooth.spline(seq(0,110),Exposures[,50],df=25), col = "black")

# Three dimensional plot for risks of exposure (2000-2009)
Exposure.09<-matrix(exps.09$Male,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),Exposure.09,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Exposures")

#Persp for mortality rates (1950-1999)
lmort<-matrix(log(deaths$Male/(exps$Male),111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),lmort,ticktype = "detailed",theta=-45,xlab="age",ylab="year",zlab="Log Death Rates")

## observed mortality rates (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(seq(1950,1999),lmort[50,],xlab="year",ylab=" Deaths")
lines(smooth.spline(seq(1950,1999),lmort[50,],df=25), col = "black")
plot(seq(0,110),lmort[,50],xlab="age",ylab="Deaths")
lines(smooth.spline(seq(0,110),lmort[,50],df=25), col = "black")

#Persp for oberved mortality rates (2000-2009)
lmort.09<-matrix(log(death.09$Male/(exps.09$Male),111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),lmort.09,ticktype = "detailed",theta=-45,xlab="age",ylab="year",zlab="Log Death Rates")

CHAPTER TWO
#Fitted Poisson regression model for number of deaths
ddths<-deaths$Male
age1<-deaths$Age
yeary<-deaths$Year
year1<-yeary-1975
lexpa<-log(exps$Male)
library(MASS)
mod1<-glm(ddths~poly(age1,25)+ poly(year1,4)+lexpa,link="log")

#Fitted Negative Binomial regression model for number of deaths
ddths<-deaths$Male
age1<-deaths$Age
yeary<-deaths$Year
year1<-yeary-1975
lexpa<-log(exps$Male)
library(MASS)
mod1<-glm.nb(ddths~poly(age1,25)+ poly(year1,4)+lexpa,link="log")

#Residual and normality plots for fitted number of deaths
par(mfrow=c(1,2))
res<-matrix(resid(mod1,type="deviance"),111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),res,ticktype = "detailed",theta=-45,xlab="age",ylab="year",zlab="Residual deviance")
qqnorm(residuals(mod1,type="deviance"));qqline(residuals(mod1,type="deviance"),col="red")

# Residual deviance (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(seq(1950,1999),res[50,],xlab="year",ylab="Residual deviance")
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lines(smooth.spline(seq(1950,1999),res[50,],df=25), col = "black")
plot(seq(0,110),res[,50],xlab="age",ylab="Residual deviance")
lines(smooth.spline(seq(0,110),res[,50],df=25), col = "black")

# Three dimensional plot for fitted deaths
fit<-matrix(mod1$fit,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),fit,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Fitted Deaths")

# observed and fitted deaths (At age 50 and year 1999)
obs.ddths<-matrix(deaths$Male,111,50,byrow=F)
par(mfrow=c(1,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(1950,1999),obs.ddths[50,],xlab="year",ylab="Number of deaths")
lines(smooth.spline(seq(1950,1999),obs.ddths[50,],df=25), col = "black")
par(new=TRUE)
plot(seq(1950,1999),fit[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(1950,1999),fit[50,],df=25), col = "red")
legend("bottomleft",col=c("black","red"),legend=c("Observed number of deaths","Fitted number of deaths"),pch=1,lty=1,, cex=0.7,bty= "n")
title("Observed and fitted male deaths (At age 50)")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),obs.ddths[,50],xlab="age",ylab="Number of deaths")
lines(smooth.spline(seq(0,110),obs.ddths[,50],df=25), col = "black")
par(new=TRUE)
plot(seq(0,110),fit[,50],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),fit[,50],df=25), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed number of deaths","Fitted number of deaths"),pch=1,lty=1,, cex=0.7,bty= "n")
title("Observed and fitted male deaths (At year 1999)")

# Fitted Negative Binomial Regression for exposure
expo<-exps$Male
age<-exps$Age
year<-exps$Year
yearc<-year-1975
library(MASS)
mod2<-glm.nb(round(expo,0)~poly(age,10)+ poly(yearc,3),link="log")

#Residual and normality plots for fitted exposure
par(mfrow=c(1,2))
res2<-matrix(resid(mod2,type="deviance"),111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),res2,ticktype = "detailed",theta=-45,xlab="age",ylab="year",zlab="Residual deviance")
qqnorm(residuals(mod2,type="deviance"));qqline(residuals(mod2,type="deviance"),col="red")

# Residual deviance of fitted exposure (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(seq(1950,1999),res2[50,],xlab="year",ylab="Residual deviance")
lines(smooth.spline(seq(1950,1999),res2[50,],df=25), col = "black")
plot(seq(0,110),res2[,50],xlab="age",ylab="Residual deviance")
lines(smooth.spline(seq(0,110),res2[,50],df=25), col = "black")

# Three dimensional plot for fitted exposure
fit2<-matrix(mod2$fit,111,50,byrow=F)
obs.exps<-matrix(exps$Male,111,50,byrow=F)
persp(seq(0,110),seq(1950,1999),fit2,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Fitted Exposure")

# observed and fitted exposure (At age 50 and year 1999)
par(mfrow=c(1,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(1950,1999),obs.exps[50,],xlab="year",ylab="Risks of exposure")
lines(smooth.spline(seq(1950,1999),obs.exps[50,],df=25), col = "black")
par(new=TRUE)
plot(seq(1950,1999),fit2[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(1950,1999),fit2[50,],df=25), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed risks of exposure","Fitted risks of exposure"),pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and fitted risks of exposure (At age 50)")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),obs.exps[,50],xlab="age",ylab="Risks of exposure")
lines(smooth.spline(seq(0,110),obs.exps[,50],df=25), col = "black")
par(new=TRUE)
plot(seq(0,110),fit2[,50],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),fit2[,50],df=25), col = "red")
legend("bottomleft",col=c("black","red"),legend=c("Observed risks of exposure","Fitted risks of exposure"),pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and fitted risks of exposure (At year 1999)")

# Fitted mortality rates
fit<-matrix(mod1$fit,111,50,byrow=F)
obs.ddths<-matrix(deaths$Male,111,50,byrow=F)
fit2<-matrix(mod2$fit,111,50,byrow=F)
obs.exps<-matrix(exps$Male,111,50,byrow=F)
odeath.rate<-matrix((ddths/expo),111,50,byrow=F)
ldeath.rate<-matrix(log(ddths/expo),111,50,byrow=F)
fdeath.rate<-matrix((fit/fit2),111,50,byrow=F)
fldeath.rate<-matrix(log(fit/fit2),111,50,byrow=F)

# Three dimensional plot for fitted log mortality
persp(seq(0,110),seq(1950,1999), fldeath.rate,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Fitted log mortality")

# observed and fitted mortality and log mortality (At age 50 and year 1999)
par(mfrow=c(2,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(1950,1999),odeath.rate[50,],xlab="year",ylab="Mortality rates")
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lines(smooth.spline(seq(1950,1999),odeath.rate[50,],df=25), col = "black")
par(new=TRUE)
plot(seq(1950,1999),fdeath.rate[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(1950,1999),fdeath.rate[50,],df=25), col = "red")
title("Observed and fitted mortality rates (At age 50)")
legend("bottomleft",col=c("black","red"),legend=c("Observed mortality rates","Fitted mortality rates"),pch=1,lty=1, cex=0.8,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),odeath.rate[,50],xlab="age",ylab="Mortality rates")
lines(smooth.spline(seq(0,110),odeath.rate[,50],df=25), col = "black")
par(new=TRUE)
plot(seq(0,110),fdeath.rate[,50],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),fdeath.rate[,50],df=25), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed mortality rates","Fitted mortality rates"), pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and fitted mortality rates (At year 1999)")
par(mar=c(5,4,4,5)+.1)
plot(seq(1950,1999),ldeath.rate[50,],xlab="year",ylab="Log mortality rates")
lines(smooth.spline(seq(1950,1999),ldeath.rate[50,],df=25), col = "black")
par(new=TRUE)
plot(seq(1950,1999),fldeath.rate[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(1950,1999),fldeath.rate[50,],df=25), col = "red")
title("Observed and fitted log mortality rates (At age 50)")
legend("bottomleft",col=c("black","red"),legend=c("Observed log mortality rates","Fitted log mortality rates"),pch=1,lty=1, cex=0.8,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),ldeath.rate[,50],xlab="age",ylab="Log mortality rates")
lines(smooth.spline(seq(0,110),ldeath.rate[,50],df=25), col = "black")
par(new=TRUE)
plot(seq(0,110),fldeath.rate[,50],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),fldeath.rate[,50],df=25), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed log mortality rates","Fitted log mortality rates"),pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and fitted log mortality rates (At year 1999)")

CHAPTER THREE
#Fitting Lca From 1950-1999
library(demography)
year=unique(deaths$Year);nC=length(year)
age =unique(deaths$Age);nL=length(age)
deathrate=matrix(deaths$Male/exps$Male,nL,nC)
expos=matrix(exps$Male,nL,nC)
# Then we use the demogdata format
demo <- demogdata(data=deathrate, pop=expos, ages=age, years=year, type="mortality",label="Norway", name="Male", lambda=1)
Lca<-lca(demo,max.age=110,interpolate=T, adjust="none")

# Extracting ax, bx and kt parameters
ax<-Lca$ax
bx<-Lca$bx
kt<-Lca$kt

#Plotting the fitted Lee-Carter model
plot(Lca$fit)
legend("topleft",legend=unique(Lca$year),col=rainbow(length(Lca$year)*1.25), ncol=5, pch=19, title="Year", cex=0.5)

#Plotting ax
plot(ax,xlab="Age")
lines(smooth.spline(ax,df=25), xlab="Age",col = "black")

#Plotting bx
plot(bx,xlab="Age")
lines(smooth.spline(bx,df=25), xlab="Age",col = "black")
abline(h=0, lty=2, col="red")

#Plotting kt
plot(kt,xlab="Year")
lines(smooth.spline(bx,df=25), xlab="Year",col = "black")

# Three dimensional plot of Pearson residuals (Lee-Carter)
RES=residuals(Lca,"pearson")
persp(RES$x,RES$y,RES$z,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Pearson residuals")

## Plot of Pearson residuals (At age 50 and year 1999)
par(mfrow=c(1,2))
plot(RES$y,RES$z[50,],xlab="year",ylab="Pearson residuals")
lines(smooth.spline(RES$y,RES$z[50,],df=25), col = "black")
plot(RES$x,RES$z[,50],xlab="age",ylab="Pearson residuals")
lines(smooth.spline(RES$x,RES$z[,50],df=25), col = "black")

CHAPTER FOUR
#Forecasting risks of exposure (2000-2009)
agef<-exps.09$Age
yearg<-exps.09$Year
yearf<-yearg-1975
grid <- expand.grid(age=unique(agef), yearc=unique(yearf),KEEP.OUT.ATTRS = TRUE))
forecast2<-predict(mod2, newdata=grid)

# Three dimensional plot of forecast risks of exposure
exposures<-matrix((exps.09$Male),111,10,byrow=F)
for2<-matrix(exp(forecast2),111,10,byrow=F)
persp(seq(0,110),seq(2000,2009),for2,ticktype = "detailed",theta=-45,xlab="age",ylab="year",zlab="Log mortality")

#Observed and forecast risks of exposure (At age 50 and year 2009)
par(mfrow=c(1,2))
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par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),exposures[50,],xlab="year",ylab="Risks of exposure")
lines(smooth.spline(seq(2000,2009),exposures[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),for2[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),for2[50,],df=10), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed risks of exposure","Forecast risks of exposure"),pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and forecast risks of exposure (At age 50)")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),exposures[,10],xlab="age",ylab="Risks of exposure")
lines(smooth.spline(seq(0,110),exposures[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),for2[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),for2[,10],df=10), col = "red")
legend("bottomleft",col=c("black","red"),legend=c("Observed risks of exposure","Forecast risks of exposure"),pch=1,lty=1, cex=0.8,bty= "n")
title("Observed and forecast risks of exposure (At year 2009)")

#Prediction for deaths from 2000-2009
lexpo<-log(forecast2)
age2<-death.09$Age
yearp<-death.09$Year
year2<-yearp-1975

grid1 <- expand.grid(age1=unique(age2), year1=unique(year2),lexpa=unique(lexpo),KEEP.OUT.ATTRS = TRUE))
forecast1<-predict(mod1, newdata=grid1)

# Three dimensional plot of forecast deaths
for1<-matrix(exp(forecast1),111,10,byrow=F)
persp(seq(0,110),seq(2000,2009),for2,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Number of forecast deaths")

#Observed and forecast deaths (At age 50 and year 2009)
Dead<-matrix((death.09$Male),111,10,byrow=F)
par(mfrow=c(1,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),Dead[50,],xlab="year",ylab="Number of deaths")
lines(smooth.spline(seq(2000,2009),Dead[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),for1[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),for1[50,],df=10), col = "red")
legend("topleft",col=c("black","red"),legend=c("Number of observed deaths","Number of forecast deaths"),pch=1,lty=1, cex=0.7,bty= "n")
title("Number of observed and forecast deaths (At age 50)")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),Dead[,10],xlab="age",ylab="Number of deaths")
lines(smooth.spline(seq(0,110),Dead[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),for1[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),for1[,10],df=10), col = "red")
legend("topleft",col=c("black","red"),legend=c("Number of observed deaths","Number of forecast deaths"),pch=1,lty=1, cex=0.7,bty= "n")
title("Number of observed and forecast deaths (At year 2009)")

#Forecast mortality rates
est.mot<-matrix(exp(forecast1)/exp(forecast2),111,10,byrow=F)
obs.mot<-matrix((death.09$Male)/(exps.09$Male),111,10,byrow=F)
lest.mot<-matrix(log(exp(forecast1)/exp(forecast2)),111,10,byrow=F)
lobs.mot<-matrix(log((death.09$Male)/(exps.09$Male)),111,10,byrow=F)

#Observed and forecast mortality and log mortality (At age 50 and year 2009)
par(mfrow=c(2,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),obs.mot[50,],xlab="year",ylab="Mortality rates")
lines(smooth.spline(seq(2000,2009),obs.mot[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),est.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),est.mot[50,],df=10), col = "red")
title("Observed and forecast mortality rates (At age 50)")
legend("topleft",col=c("black","red"),legend=c("Observed mortality rates","Forecast mortality rates "),pch=1,lty=1, cex=0.7,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),obs.mot[,10],xlab="age",ylab="Mortality rates ")
lines(smooth.spline(seq(0,110),obs.mot[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),est.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),est.mot[,10],df=10), col = "red")
legend("topleft",col=c("black","red"),legend=c("Observed mortality rates","Forecast mortality rates "),pch=1,lty=1, cex=0.7,bty= "n")
title("Observed and forecast mortality rates ( (At year 2009)")
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),lobs.mot[50,],xlab="year",ylab="Log mortality rates")
lines(smooth.spline(seq(2000,2009),lobs.mot[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),lest.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),lest.mot[50,],df=10), col = "red")
title("Observed and forecast log mortality rates (At age 50)")
legend("topleft",col=c("black","red"),legend=c("Log observed mortality rates ","Log forecast mortality rates "),pch=1,lty=1, cex=0.7,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),lobs.mot[,10],xlab="age",ylab="Log mortality rates ")
lines(smooth.spline(seq(0,110),lobs.mot[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),lest.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),lest.mot[,10],df=10), col = "red")
legend("topleft",col=c("black","red"),legend=c("Log observed mortality rates ","Log forecast mortality rates "),pch=1,lty=1, cex=0.7,bty= "n")
title("Observed and forecast log mortality rates (At year 2009)")
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#Forecasting with Lee-Carter Model

# Re-estimating kt
require(astsa)
sarima<-sarima(kt, p =0,d = 1, q = 0)
kxt<-sarima$fit
forecast<-sarima.for(kxt, n.ahead = 10, p =0,d = 1, q = 0)
title("Forecast for kt with ARIMA(0,1,0)")

#Random walk approach
rdw<-rwf(kt,drift=T, level=c(0,1,0))

#Plot of fitted and restimated kt
res_kt<-sarima$fitted.values
y1 <- kt
y2 <- res_kt
par(mar=c(5,4,4,5)+.1)
plot(year, y1,type="l",col="red",ylab="fitted kt")
par(new=TRUE)
plot(yy2,type="l",col="blue",xaxt="n",yaxt="n",xlab="",ylab="")
axis(4)
mtext("re-estimated kt",side=4,line=3)
legend("bottomleft",col=c("red","blue"),lty=1,legend=c("fitted kt","re-estimated kt"))

# Deriving moratlity rates
for_kt<-cbind(-57.23450,-58.77321,-60.31192,-61.85063,-63.38934,-64.92805,-66.46676,-68.00548,-69.54419,-71.08290)
u<-exp(ax+bx%*%for_kt)

#Three dimensional plot of log forecast mortality
lest.mot<-matrix(log(u),111,10,byrow=F)
persp(seq(0,110),seq(2000,2009),lest.mot,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="Number of forecast deaths")

# all combined forecast mortality and log mortality (At age 50 and year 2009)
obs.mot<-matrix((death.09$Male+0.001)/(exps.09$Male+0.001),111,10,byrow=F)
lobs.mot<-matrix(log((death.09$Male)/(exps.09$Male)),111,10,byrow=F)
nest.mot<-matrix((exp(forecast1)/exp(forecast2)),111,10,byrow=F)
lnest.mot<-matrix( log(exp(forecast1+0.001)/exp(forecast2+0.001)),111,10,byrow=F)
est.mot<-matrix(u,111,10,byrow=F)
lest.mot<-matrix(log(u),111,10,byrow=F)

par(mfrow=c(2,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),obs.mot[50,],xlab="year",ylab="Mortality rates")
lines(smooth.spline(seq(2000,2009),obs.mot[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),nest.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),nest.mot[50,],df=10), col = "red")
par(new=TRUE)
plot(seq(2000,2009),est.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "green")
lines(smooth.spline(seq(2000,2009),est.mot[50,],df=10), col = "green")
title("Observed and forecast mortality rates (At age 50)")
legend("bottomleft",col=c("black","red","green"),legend=c("Observed","Negative Binomial","Lee Carter"),pch=1,lty=1, cex=0.7,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),obs.mot[,10],xlab="age",ylab="Mortality rates",col = "black")
lines(smooth.spline(seq(0,110),obs.mot[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),nest.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),nest.mot[,10],df=10), col = "red")
par(new=TRUE)
plot(seq(0,110),est.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "green")
lines(smooth.spline(seq(0,110),est.mot[,10],df=10), col = "green")
legend("topleft",col=c("black","red","green"),legend=c("Observed","Negative Binomial","Lee Carter"),pch=1,lty=1, cex=0.7,bty= "n")
title("Observed and forecast mortality rates (At year 2009)")
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),lobs.mot[50,],xlab="year",ylab="Log Mortality rates",col = "black")
lines(smooth.spline(seq(2000,2009),lobs.mot[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),lnest.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),lnest.mot[50,],df=10), col = "red")
par(new=TRUE)
plot(seq(2000,2009),lest.mot[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "green")
lines(smooth.spline(seq(2000,2009),lest.mot[50,],df=10), col = "green")
title("Observed and forecast log mortality rates (At age 50)")
legend("bottomleft",col=c("black","red","green"),legend=c("Observed","Negative Binomial","Lee Carter"),pch=1,lty=1, cex=0.7,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),lobs.mot[,10],xlab="age",ylab="Log mortality rates",col = "black")
lines(smooth.spline(seq(0,110),lobs.mot[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),lnest.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),lnest.mot[,10],df=10), col = "red")
par(new=TRUE)
plot(seq(0,110),lest.mot[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "green")
lines(smooth.spline(seq(0,110),lest.mot[,10],df=10), col = "green")
legend("topleft",col=c("black","red","green"),legend=c("Observed","Negative Binomial","Lee Carter"),pch=1,lty=1, cex=0.7,bty= "n")
title("Observed and forecast log mortality rates (At year 2009)")

CHAPTER FIVE
# Forecast errors
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robs.mot<-(death.09$Male)/(exps.09$Male)
rest.mot<-(exp(forecast1))/(exp(forecast2))
rest.lca<-list(u)
list.lca<- rapply(rest.lca,c)

neg.errors=robs.mot-rest.mot
lca.errors=robs.mot-list.lca

# Computing MSE and MAE
library(Metrics)
cbind(mse(robs.mot,rest.mot),mse(robs.mot,list.lca))
cbind(mae(robs.mot,rest.mot),mae(robs.mot,list.lca))

lneg.errors=log(robs.mot)-log(rest.mot)
llca.errors=log(robs.mot)-log(list.lca)

Mneg.err<-matrix(neg.errors,111,10,byrow=F)
Mlca.err<-matrix(lca.errors,111,10,byrow=F)
LMneg.err<-matrix(lneg.errors,111,10,byrow=F)
LMlca.err<-matrix(llca.errors,111,10,byrow=F)

# Plot of the distribution of forecast errors
par(mfrow=c(1,2))
par(mar=c(1,1,2,1)+.01)
persp(seq(0,110),seq(2000,2009),Mneg.err,ticktype = "detailed",theta =45,xlab="age",ylab="year",zlab="Forecast Errors")
title("Plot of forecast errors for Negatve Binomial")
persp(seq(0,110),seq(2000,2009),Mlca.err,ticktype = "detailed",theta = 45,xlab="age",ylab="year",zlab="Forecast Errors",col = "red")
title("Plot of forecast errors for Lee-Carter")

# Plot of the distribution of log forecast errors
par(mar=c(1,1,2,1)+.2)
persp(seq(0,110),seq(2000,2009),LMneg.err,ticktype = "detailed",theta=45,xlab="age",ylab="year",zlab="log forecast Errors")
title("Plot of log forecast errors for Negatve Binomial")
persp(seq(0,110),seq(2000,2009),LMlca.err,ticktype = "detailed",theta =45,xlab="age",ylab="year",zlab="Log forecast Errors",col = "red")
title("Plot of log forecast errors for Lee-Carter")

# forecast errors and log forecast errors (At age 50 and year 2009)
par(mfrow=c(2,2))
par(mar=c(5,4,4,5)+.1)
plot(seq(2000,2009),Mneg.err[50,],xlab="year",ylab="Forecast errors")
lines(smooth.spline(seq(2000,2009),Mneg.err[50,],df=10), col = "black")
par(new=TRUE)
plot(seq(2000,2009),Mlca.err[50,],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(2000,2009),Mlca.err[50,],df=10), col = "red")
title("Negative binomial and Lee-Carter (At age 50)")
legend("topleft",col=c("black","red"),legend=c("Negative binomial","Lee-Carter"),pch=1,lty=1, cex=0.7,bty= "n")
par(mar=c(5,4,4,5)+.1)
plot(seq(0,110),Mneg.err[,10],xlab="age",ylab="Forecast errors ")
lines(smooth.spline(seq(0,110),Mneg.err[,10],df=10), col = "black")
par(new=TRUE)
plot(seq(0,110),Mlca.err[,10],xaxt="n",yaxt="n",xlab="",ylab="",col = "red")
lines(smooth.spline(seq(0,110),Mlca.err[,10],df=10), col = "red")
legend("bottomleft",col=c("black","red"),legend=c("Negative binomial","Lee-Carter"),pch=1,lty=1, cex=0.7,bty= "n")
title("Negative binomial and Lee-Carter (At year 2009)")
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