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Abstract

This thesis is devoted to the simultaneous estimation of the means of p ≥ 2
independent Poisson distributions. A novel loss function that penalizes bad
estimates of each of the means and the sum of the means is introduced. Un-
der this loss function, a class of minimax estimators that uniformly dominate
the MLE, is derived. This class is shown to also be minimax and uniformly
dominating under the commonly used weighted squared error loss function. Es-
timators in this class can be fine-tuned to limit shrinkage away from the MLE,
thereby avoiding implausible estimates of means anticipated to be bigger than
the others. Further light is shed on this new class of estimators by showing
that it can be derived by Bayesian and empirical Bayesian methods. Moreover,
a class of prior distributions for which the Bayes estimators are minimax and
dominate the MLE under the new loss function, is derived. Estimators that
shrink the observations towards other points in the parameter space are derived
and their performance is compared to similar estimators previously studied in
the literature. The most important finding of the thesis is the aforementioned
class of estimators that provides the statistician with a convenient way of com-
promising between two conflicting desiderata (good total and individual risk)
when estimating an ensemble of Poisson means.
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1

Introduction

This thesis deals with the simultaneous estimation of the parameters of several
independent Poisson random variables. Assume that Y1, . . . , Yp are independent
Poisson with means θ1, . . . , θp, and let Y and θ be the p × 1 vectors of obser-
vations and means. We wish to estimate θ using an estimator δ = (δ1, . . . , δp).
The two most common loss functions for this problem are the squared- and
weighted squared error loss functions, defined by

Lm(δ, θ) =

p
∑

i=1

1

θmi
(δi − θi)

2

with m = 0 and m = 1 respectively. The usual estimator of θ is δo(Y ) = Y ,
which is the maximum likelihood estimator (MLE), the minimum variance un-
biased estimator and minimax with respect to L1 (see Appendix A.2). Peng
(1975) showed that the MLE is inadmissible under L0 when p ≥ 3 and de-
rived an estimator that performs uniformly better than the MLE in terms of
risk. Working with the L1 loss function Clevenson and Zidek (1975) derived an
estimator shown to possess uniformly smaller risk than the MLE for p ≥ 2.

As we will see, both Peng’s estimator and the estimator of Clevenson and
Zidek shrink Y towards the zero boundary of the parameter space. Conse-
quently, both estimators show most of their risk improvement for values of θ
close to zero. Since zero is the boundary of the parameter space for the Pois-
son distribution, small parameters can only be badly overestimated. Bigger
parameter values, on the other hand, can be badly underestimated and shrink-
age estimators such as Peng’s and that of Clevenson and Zidek might shrink
large counts by an amount resulting in implausible estimates of large means. In
particular, the shrinkage can be thought to be too large if one in addition to es-
timating each individual Poisson mean whishes to make sure that the estimate
of the sum of the means is not corrupted. These two observations constitute
parts of the rationale for the loss function that is the primary focus of this
thesis, namely the c -Loss function. The c -Loss function is a generalization of

1



2 1. INTRODUCTION

L1 and is defined by

Lc(δ, θ) =

p
∑

i=1

1

θi
(δi − θi)

2 +
c

∑p
i=1 θi

(

p
∑

i=1

δi −
p
∑

i=1

θi

)2

,

where c is a non-negative parameter. In this thesis I show that the MLE is in-
admissible under c -Loss when p ≥ 2, and derive a class of minimax estimators
that uniformly dominate the MLE. In effect, it is shown that the class of esti-
mators derived in this thesis is also uniformly dominating under the weighted
squared error loss function. As such, this class of estimators provides a com-
promise between the MLE and the shrinkage estimators previously studied in
the literature (e.g. Clevenson and Zidek (1975) and Ghosh et al. (1983)), and
makes it possible for the statistician to control the amount of shrinkage away
from the MLE without sacrificing the risk function optimality.

In the next section I provide an overview of the background for this thesis,
namely Stein’s paradox (see e.g. Efron and Morris (1977)). I introduce the
James-Stein estimator and uniformly dominant shrinkage estimators associated
with the Poisson distribution. In Section 1.3 I discuss some of the limitations
related to estimators derived with the decision theoretic aim of uniform domi-
nance relative to the MLE, and mention some of the interactions between the
Bayesian and the decision theoretic approaches. A complete outline of the full
thesis is given in Section 1.4.

1.1 The risk function

Most statistical studies lead to some form of decision.1 These decisions range
from an inference concerning the probability distribution underlying some phe-
nomenon, to whether one should undertake some action or another. Whatever
the objective of a statistical study, it is vital to have some criterion by which
to evaluate the consequences of each decision depending on the true state of
nature (see e.g. Robert (2001, 51)). In statistical decision theory, this criterion
is the loss function L(δ, θ). The loss function is a function from D × Θ, where
D is the set of all possible decisions and Θ is the parameter space (the true
state of nature), to the positive part of the real line R+. In this thesis, the set
of decisions is the parameter space. In other words, the loss function is used
as the criterion for evaluating the performance of an estimator δ ∈ D = Θ in
estimating an unknown parameter θ ∈ Θ. An effective way to compare different
estimators is the risk function

R(δ, θ) = EθL(δ, θ) =

∫

Y

L(δ, θ)f(y|θ) dy, (1.1)

1Efron (1982, 1986) distinguishes between four basic operations of statistics: enumeration,
summary, comparison and inference. They do not all lead to a decision.
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which provides the average performance of the estimator in terms of loss. The
risk function, since it integrates over the sample space Y , is called the frequentist
risk function. Throughout this thesis the frequentist risk function is the main
tool used for evaluating and comparing the performance of different estimators.

One principle by which to decide whether or not to use an estimator is
the principle of admissibility. According to this principle an estimator δ0 is
inadmissible if there exists an estimator δ1 such that R(δ0, θ) ≥ R(δ1, θ) for all
θ ∈ Θ, with strict inequality for at least one θ0. If no such estimator exists, δ0
is admissible. In this thesis all the risk functions that I consider are continuous,
which means that the strict inequality R(δ0, θ) > R(δ0, θ) must hold for an
interval (

¯
θ0, θ̄0) in Θ for δ0 to be inadmissible.

Obviously, it is hard to advocate the use of an inadmissible estimator be-
cause there exist other estimators that always perform better. Yet for a given
decision problem, there are usually many different admissible estimators. These
estimators have risk functions that may cross so that they will be better in dif-
ferent regions of the parameter space (Berger, 1985, 10). In situations where
R(δ0, θ) ≥ R(δ1, θ) for all θ ∈ Θ, with strict inequality for at least one θ0, I
will say that δ1 dominates the estimator δ0. If the inequality is strict for all
θ ∈ Θ the estimator δ0 will be said to uniformly dominate δ0. Throughout,
when I speak of dominance or uniform dominance, the dominance alluded to
will always be relative to the MLE if not indicated otherwise.

1.2 Shrinkage estimators

Stein’s paradox or Stein’s phenomenon (Berger, 1985, 360) is in its simplest form
the following: Let X1, . . . , Xp be independent normal random variables with
means ξ1, . . . , ξp and unit variance. It is desired to estimate these means under
the squared error loss function

∑p
i=1 (δi − ξi)

2. The MLE of ξ is δo(X) = X.
Stein (1956) showed that the MLE is inadmissible when p ≥ 3, and shortly
after James and Stein (1961) provided a constructive result by proving that for
p ≥ 3 any estimator of the form

δJS(X) =

(

1− b
∑p

i=1X
2
i

)

X, (1.2)

where b is a constant with 0 < b < 2(p − 2), uniformly dominates the MLE.2

The best choice of b in terms of minimizing risk is p−2 (Stigler, 1990, 147). The
reason for this result meriting (for some time) the appelation “paradox” is that
the observations are independent. At first sight it is hard to understand why

2The positive part version of the James-Stein estimator
(

1− (p− 2)/||X||2
)+

X, where
(a)+ = max{a, o}, improves on δJS and stops the estimator from shrinking past zero when
||X||2 < p− 2 (Robert, 2001, 98).
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information about the price of beer in Bergen and about the unemployment
rate in Belgrade might improve the estimate of the height of women in Berlin.

Now, the results of Peng (1975) and Clevenson and Zidek (1975) show that
the same quasi-paradoxical conclusion applies to the simultaneous estimation of
the means of independent Poisson distributions. Under the squared error loss
function L0 Peng proved that the estimator

δPi (y) = Yi −
(N0(Y )− 2)+

D(Y )
hi(Yi), (1.3)

where Nν(Y ) = #{i : Yi > ν}, hi(Yi) =
∑Yi

k=1 1/k, D(Y ) =
∑p

i=1 h
2
i (Yi) and

(a)+ = max{a, 0}, uniformly dominates the MLE when p ≥ 3.
The estimator of Clevenson and Zidek for L1 is given by

δCZ(Y ) =

(

1− ψ(Z)

p− 1 + Z

)

Y, (1.4)

where Z =
∑p

i=1 Yi and ψ is a non-decreasing function with 0 < ψ(z) ≤ 2(p −
1). This estimator uniformly dominates the MLE under the weighted squared
error loss function when p ≥ 2. As is evident from (1.2), (1.3) and (1.4) all
three estimators shrink the MLE towards zero and the amount of shrinkage
decreases as the size of the observations increases. Consequently, for large values
of the unknown means, when large observations are to be expected, these three
estimators will not differ much from the MLE and the savings in risk will be
very modest. The obvious way to fix this deficiency is to modify the estimators
so that they shrink the MLE towards some other point in the parameter space
than the origin. Provided that hypotheses about the means exist, say they
are all close to a common value ξ0, the James-Stein estimator is particularly
straightforward to modify for it to yield substantial savings in risk in regions
about this point. Using δJS for the deviations xi−ξ0 rather than xi one obtains
an estimator that shrinks the MLE towards ξ0. By way of an empirical Bayesian
argument, Lindley (1962, 286) proposed an estimator that uses the empirical
mean x̄ = p−1

∑p
i=1 xi as an estimator of ξ0, leading to

δL(x) = x̄+

(

1− p− 3

||x− x̄||2
)

(x− x̄), (1.5)

with p−3 as the constant since the parameter ξ0 is estimated (Efron and Morris,
1975, 312). The Lindley-estimator dominates the MLE under L0 in dimension
4 and higher.

For the Poisson distribution uniformly dominating estimators that shrink
towards some non-zero point have more complicated forms. This is due to the
non-symmetry of the Poisson distribution and zero being the boundary of the
parameter space. Moreover, under L1 the weighting implies that overestima-
tion of very small θi incurs heavy penalizations, which limits the possibility of
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smoothing the observations towards some common point (Hudson, 1985, 249).
Nevertheless, simultaneous estimators have been obtained that shrink the Pois-
son counts towards a non-zero point. The natural place to start in order to
find such estimators is to modify δP and δCZ in a manner mimicking that of
Lindley (1962). That is by subtracting an appropriate quantity from h and
Y in (1.3) and (1.4) respectively. Tsui (1981), Hudson and Tsui (1981) and
Ghosh et al. (1983) have provided constructive results in this direction where
the estimators shrink the MLE towards some pre-chosen or data-generated point
in the parameter space. Drawing on the ideas of Stein (e.g. Stein (1981)) these
authors considered competitors of the MLE of the form δo(Y ) + F (Y ) where
F (Y ) = (F1(Y ), . . . , Fp(Y )), and provided conditions on F for the new esti-
mators to have uniformly smaller risk than the MLE. The most general result
concerning such estimators is that of Ghosh et al. (1983), who proved theorems
that apply to general loss functions Lm for discrete exponential family distri-
butions (Theorem 3.1 and 4.1 in Ghosh et al. (1983)). By way of these two
theorems it is possible to construct functions F for estimators that shrink to-
wards any point in the parameter space. If correctly constructed, the theorems
of Ghosh et al. (1983) guarantee that the resulting estimator Y + F (Y ) domi-
nates the MLE. In Chapter 3 I provide a more thorough presentation of these
estimators and compare their performance to estimators derived in this thesis.

Finally, in many situations hypotheses will exist about the means having
some common structure. In the terminology employed so far, this means that
one anticpates improvements in risk by smoothing the observations towards
several different points in the parameter space. Once again, in the case of the
normal distribution the James-Stein estimator can be modified to smooth the
observations towards any linear model ξi = ztiβ, 1 ≤ i ≤ p. Here zi is a k × 1
vector of covariates and β a k×1 coefficient vector. The estimator is obtained by
replacing the deviances xi− x̄ in (1.5) by xi− ztiβ. Suppose that β is estimated
from the data by Z(ZtZ)−1Ztx where Z is the p×k design matrix with zti as its
rows and x = (x1, . . . , xp)

t (see e.g. Morris (1983b)). This gives the estimator

δEB(x) = Zβ̂ +

(

1− p− k − 2

||x− Zβ̂||2

)

(x− Zβ̂). (1.6)

For the reasons touched upon above, such smoothing estimators are more
complicated in the case of the Poisson distribution. The theorems of Ghosh et al.
(1983) can be used to derive estimators that shrink towards different points,
and Hudson and Tsui (1981, 183) proposed an estimator that shrinks towards
different a priori hypotheses about the means. These estimators do not, how-
ever, smooth the observations since observations below its hypothesized or data
generated point are estimated by the MLE (cf. δG1

i in (3.1)). Hudson (1985,
248-249) proposes an estimator that shrinks the observations towards a log-
linear model, relying on an approximate log transform of the Poisson data. Due
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to the transformation, the risk calculations involving this estimator are not ex-
act, and dominance relative to the MLE cannot be established. In Section 4.3
I compare the performance of such smooth-to-structure estimators with similar
estimators derived in this thesis.

Constructive results, that is those actually proposing improved estimators,
have been obtained for other distributions than the normal and Poisson. Berger
(1980, 557-560) obtained estimators that improve on the MLE in estimating the
scale parameters of several independent Gamma distributions assuming that the
shape parameters are known. Ghosh et al. (1983) derived uniformly dominating
estimators (under L0 and L1) for the w1, . . . , wp when the observations come
from p independent Negative binomial distributions with parameters (ai, wi),
assuming that a1, . . . , ap are known. Under L1, Tsui (1984, 155) derived domi-
nating estimators of the means aiwi/(1−wi) of p independent Negative binomial
distributions when the ai are either known or unknown.

What the simulation studies in Chapter 3 and Chapter 4 make clear is that
estimators developed with the decision theoretic aim of uniform dominance
often yield rather limited improvements in risk compared to the MLE. Berger
(1983, 368) suggests that risk domination might be too severe a restriction when
estimating multiple Poisson means, and that we might be better off abandoning
it in favour of Bayes and empirical Bayes methods producing estimators with
superior performance in certain regions of the parameter space. In the next sec-
tion I discuss such (possibly non-dominating) estimators with a particular focus
on the interaction between the decision theoretic and the Bayesian approaches.

1.3 Challenges and Bayesian techniques

There are primarily three challenges associated with simultaneous estimators of
Poisson means derived under the decision theoretic aim of uniform dominance.
The first has to do with the sensitivity of the dominant estimators to the form
of the loss function. The second has already been touched upon, namely that
the dominant estimators in many cases yield very modest improvements in
risk compared to the MLE. Associated with this challenge, a third challenge
concerns the balance between good risk performance and sensible estimates of
the individual parameters (Efron and Morris, 1972, 130).

In the problem of estimating normal means the choice of squared error loss
or weighted squared error loss is unimportant when it comes to dominance
(Berger, 1983, 369). Under both loss functions the dominating estimators are
on the form (1.2) (provided that the observations have equal variance). As
is seen from the estimators δP and δCZ , this is not the case for the Poisson
distribution. The form of the loss function does matter. Since a decision maker
in many instances is likely to be uncertain about the appropriate loss function,
it is preferable that the estimators work well under a variety of different loss
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functions (Berger, 1983; Robert, 2001, 83). A seemingly innocuous exigence is
that the estimators work well under the two most common loss functions, L0

and L1. So far no estimator has been found that uniformly improves on the
MLE under both these loss functions.

Since the MLE is minimax under L1 one cannot expect to find estimators
that perform substantially better than the MLE in all regions of the parameter
space.3 This means that if one wants to achieve substantial improvements
in risk, one has to specify a region where this improvement should occur and
accept that the estimator might perform worse than the MLE outside this region
(Albert, 1981, 401). In other words, prior information must be brought into the
estimation problem. In the development of such estimators a great success in the
case of the normal distribution has been the interaction between Bayesian (and
empirical Bayesian) methods and the frequentist decision theoretic approach.
Bayesian methods have been used in the derivation of estimators, while decision
theoretic ideas have been used to fine-tune these estimators (Berger, 1983, 368).
Prime examples are the James-Stein type estimators in (1.2) and (1.5) that can
be derived by Bayesian methods and then fine-tuned to minimize risk. As
we will see in Chapter 3, Bayes and empirical Bayes estimators outperform
the uniformly dominating estimators of Poisson means in certain regions of the
parameter space. A pertinent question (connected to what is known as Bayesian
robustness (Ghosh et al., 2006, 72)) is how well Bayesian estimators perform
when the prior information is misspecified. In order to make the estimators
robust to misspecifications of the prior distribution decision theoretic techniques
come into play. A case in point is Albert (1981) who starts out with Yi, 1 ≤
i ≤ p independent Poisson and the conjugate Gamma prior on the means. The
posterior distribution is then π(θi | yi) ∝ θa+yi−1

i exp{−(b+1)θi} and the Bayes
estimator (under L0) is

E[θi | data] =
a

b

b

b+ 1
+

(

1− b

b+ 1

)

yi.

Albert then replaces the weight b/(b + 1) by B(yi) and uses decision theoretic
techniques to derive a function B that limits shrinkage for observations far
from the prior mean. By way of simulations Albert’s estimator is shown to
perform better than the MLE in a region of the parameter space and to possess
smaller risk than E[θi | data] in non-favourable regions of the parameter space
(i.e. regions of Θ far from the prior mean).

A slightly different use of Bayesian methods in the frequentist decision the-
oretic setting is to look at what kind of prior information (if any) that results
in dominating estimators. This can illuminate the nature of the dominating
estimator at hand. For example, as I show in Section 2.7, the estimator of

3Under the squared error loss function L0, there exist no estimator δ for which supθ R(δ, θ)
is finite (see Appendix A.2).
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Clevenson and Zidek (1975) can be derived as an empirical Bayes estimator
when the Poisson means are independent and come from an exponential distri-
bution with mean 1/b, where b is estimated from the data.

Lastly, uniformly dominating estimators are constructed to guarantee a re-
duction in the total risk R(δ, θ), but may perform poorly in terms of estimat-
ing the individual components θi (Efron and Morris, 1971, 1972). Both the
weighted squared error loss function and the squared error loss function can be
decomposed into p individual loss functions. Illustratively, we can express the
risk as

R(δ, θ) =

p
∑

i=1

EθLi(δi, θi) =

p
∑

i=1

Ri(δi, θi).

Such a decomposition does not work for the c -Loss function. Uniformly domi-
nating estimators guarantee a risk R that is smaller than the risk of the MLE,
but may give non-plausible estimates of θi that are different from the others. So
even though the risk is uniformly smaller than that of the MLE, this does not
prevent one or more individual risk components Ri from being bigger than the
corresponding risk components of the MLE (the extent to which depends on the
weighting scheme). I look further into this when I motivate the c -Loss function
in Chapter 2. For now the point is that in using a shrinkage estimator that
“has good ensemble properties, the statistician must be aware of the possibility
of grossly misestimating the individual components” (Efron and Morris, 1972,
130). An important part of the rationale behind the c -Loss function is to de-
velop a compromise between the Clevenson and Zidek estimator and the MLE,
which can compete with δCZ under the weighted squared error loss function and
has decent individual properties.

1.4 Outline of the thesis

In Chapter 2 I introduce and give reasons for the c -Loss function. Then in
Section 2.1 I derive the Bayes solution to the c -Loss function and use this
solution to prove that the MLE is minimax. Subsequently, in Section 2.3 I
derive an explicit estimator that uniformly dominates the MLE under the c -
Loss function, and show that this estimator belongs to a larger class of minimax
estimators. Section 2.4 consists of a comparison of the new estimator derived
in 2.3 and the estimator of Clevenson and Zidek (1975). The c -parameter is
the focus of Section 2.5, where I propose a method for determining the value of
this parameter.

In Section 2.6 I extend the c -Loss function to situations with different expo-
sure times or multiple independent observations from each of the p distributions,
and derive a class of minimax estimators that uniformly dominate the MLE. It
is shown that this class of estimators contains the class of estimators derived
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for the equal exposures/ single-observation case. In Section 2.7 I show that
estimators uniformly dominating the MLE under the c -Loss function can be
constructed from Bayesian arguments in three different ways: as proper Bayes
estimators, as an empirical Bayes estimator, and finally as a generalized Bayes
estimator where the assumption of independence of the means is relaxed.

Chapter 3 consists of two parts. In the first part in Section 3.1 I study
estimators that shrink the MLE towards non-zero points in the parameter space
under L0. I derive an estimator by frequentist methods and study its relation to
empirical Bayes estimators. Subsequently, the performance of this estimator is
compared to those of Ghosh et al. (1983). Secondly, Section 3.2 consists of the
same type of analysis, but now under L1. Importantly, I derive a new uniformly
dominating estimator that shrinks a subset of the observations to a pre-specified
point in the parameter space.

Situations where the Poisson means are thought to have some common struc-
ture are studied in Chapter 4. I study a Bayesian hierarchical regression model
where the prior expectation of the Poisson mean is log-linear in the covariates.
In addition, the model allows for inference on the variance of the unknown
means. Via a simulation study this Bayesian regression model is compared to
other standard and non-standard Poisson regression models.

Finally, in Chapter 5 I conclude and discuss themes for further research.





2

The c -Loss function

In many applications the weighted squared error loss function L1 is the natural
loss function to use when estimating an ensemble of Poisson means. The primary
reason for this is that in situations where the Poisson parameters are expected
to be small, good estimates of θi close to zero are desired. Since the weighted
squared error loss function incurs a heavy penalization for bad estimates of
small parameter values it is therefore a natural choice. Moreover, contrary to
the squared error loss function the weighted squared error loss function takes
into account that it is not possible to badly underestimate small parameter
values (Clevenson and Zidek, 1975, 698).

A slightly different way to view L1 is as an information weighted loss func-
tion. The Fisher information of a Poisson observation is θ−1

i , which means that
the information that an observation Yi contains about θi is large for small θi,
and decreasing as the parameter values increase (Lehmann, 1983, 120). Thus,
the loss function L1 incurs a heavy penalization for bad estimates of θi when Yi
contains much information about θi.

As touched upon in Section 1.1 there are some potential deficiencies with
the the estimator δCZ derived under L1. The two that provide the motivation
for the c -Loss function relates to (i) the issue of striking the right balance
between good (total) risk performance and sensible estimates of the individual
parameters; and (ii) a good estimate of the sum of the individual parameters.

The estimator of Clevenson and Zidek shrinks all the observations towards
zero, and in some situations δCZ might shrink the observations by an amount
deemed to be too large. Particularly, this would be the case in situations with
many small or zero counts and a few large counts. As an example, consider a
Poisson estimation problem with p = 7 observed counts y = (0, 1, 0, 1, 0, 1, 5).
The Clevenson and Zidek estimator will here shrink the MLE of θi by 43%,
giving 2.86 as our estimate of θ7. This means that if we trust our estimate of
θ7, the probability of observing what we actually observed or something more
extreme is only 1− P (5 ≤ 2.86) = 0.07. This appears audacious.

More generally, in situations where we in addition to good risk performance,

11
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are interested in individual parameters or subpopulations of the parameters it
might be advantageous to find a compromise between the Clevenson and Zidek
estimator and the MLE. In the terminology of Efron and Morris (1972) estima-
tors that achieve such compromises “limits translation” away from the MLE.
Importantly, by shrinking the MLE in a Poisson estimation problem the “gross
misestimation of individual components” referred to above, can only occur for
parameters a certain distance from zero, simply because zero is the boundary
of the parameter space. This means that what we gain by limiting shrinkage
of large observations might outweigh what we lose in limiting shrinkage of the
small observations.

In many decision problems where one wants to estimate several Poisson
means, the decison maker might also be interested in a good estimate of the sum
of the Poisson means, or equivalently the mean of the means θ̄ = p−1

∑p
i=1 θi.

For example, a decision maker having to make budgetary decisions concerning
each of the boroughs of a city and the city as a whole, will find herself in such
a situation. Recall that the sum of p independent Poisson random variables
is itself Poisson with mean equal to the sum of the p Poisson means. I will
denote this sum by γ. A good estimate of γ can be of interest in its own right,
but it can also be seen as a compromise in situations where the decision maker
is uncertain as to whether the p observations come from p different Poisson
distributions or the same, i.e. θ1 = · · · = θp.

Even though the two considerations discussed above appear to be at odds
since they concern individual parameters contra the sum of the parameters,
they amount to the same thing (this will be made precise below). As such they
provide the motivation for the c -Loss function. As mentioned, let γ =

∑p
i=1 θi.

Then the c -Loss function is defined by

Lc(δ, θ) =

p
∑

i=1

1

θi
(δi − θi)

2 +
c

γ

(

p
∑

i=1

δi − γ

)2

. (2.1)

This loss function is equal to the weighted squared error loss function L1 plus
an extra term, where the weight accorded to this extra term is a function of the
user-defined constant c. Now I will make precise how the two consideration (i)
and (ii) amount to the same thing. Since γ is the mean of the Poisson random
variable Z =

∑p
i=1 Yi, the second term in (2.1) is the loss function

c

γ

(

p
∑

i=1

δi − γ

)2

=
cp

θ̄

(

δ̄ − θ̄
)2
,

where δ̄ = p−1
∑p

i=1 δi. The MLE of γ is Z, and equivalently the MLE of θ̄
is Ȳ = p−1

∑p
i=1 Yi. In this one-dimensional case the MLE is admissible and

the unique minimax solution, which means that the MLE cannot be uniformly
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improved upon (Lehmann, 1983, 277). Stated differently, since Z is the sum of
the individual MLE’s of θi, namely Yi, shrinkage away from Yi must deteriorate
the risk component that penalizes for bad estimates of γ. This implies that
larger values of cmust limit shrinkage away from the individual MLE’s of θi, and
consequently one avoids situations as the one above where one of the estimates
(that of θ7) appeared non-plausible. On the other hand, if c = 0 we have δCZ .
Hence the compromise between the Clevenson and Zidek estimator and the
MLE.

If the decision maker is uncertain about the number of Poisson distribu-
tions being p > 1 or one, the c -Loss function penalizes the decision maker
for mistakenly assuming that she is dealing with p different distributions when
she is in fact dealing with one and the same. This is because the individual
MLE’s cannot be uniformly improved upon if the observations come from the
same Poisson distribution. To see this, consider the risk of the first term in
the c -Loss function when θ1 = · · · = θp = θ0. The risk is then EθL1(δ, θ0) =
θ−1
0

∑p
i=1Eθ (δi − θ0)

2 = pθ−1
0 (δi − θ0)

2. The point is that if this is in fact the
loss function, the MLE (which is δi = Ȳ = p−1Z for all i) cannot be uniformly
improved upon (Lehmann, 1983, 277), and at the same time Z cannot be im-
proved upon in estimating γ irrespective of the number of Poisson distributions
being p or one. Hence, larger values of c pulls the estimates towards what would
have been best if the observations came from the same distribution.

Before I move ahead and derive an estimator that uniformly dominates the
MLE under the c -Loss function, I consider the Bayes solution and use this to
establish that the MLE is minimax. The minimax result will be of importance
in later sections.

2.1 Bayes and minimax

The risk function R(δ, θ) in (1.1) is called the frequentist risk function because it
intergrates over the sample space Y . In the Bayesian approach to decision theory
the sample is taken as given and one instead integrates over the parameter space
Θ to obtain the posterior expected loss

ρ(π(θ | y), δ) = E[L(δ, θ) | y] =
∫

Θ

L(δ, θ)π(θ | y) dθ.

Associated with the posterior expected loss is the Bayes risk BR(π, δ) which is
the expectation of the frequentist risk with respect to the prior distribution of
θ,

BR(π, δ) = ER(δ, θ) =

∫

Θ

{
∫

Y

L(δ, θ)f(y|θ) dy
}

π(θ) dθ.

An important relation between the posterior expected loss and the Bayes risk
is that the estimator that minimizes ρ(π(θ | y), δ) is also the estimator that
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minimizes BR(π, δ) (Berger, 1985, 159). This follows from Fubini’s theorem
since

BR(π, δ) =

∫

Θ

∫

Y

L(δ, θ)f(y|θ) dy π(θ) dθ

=

∫

Y

∫

Θ

L(δ, θ)π(θ|y) dθm(y) dy =

∫

Y

ρ(π(θ | y), δ)m(y) dy,

where m(y) =
∫

Θ
f(y|θ)π(θ) dθ is the marginal distribution of the data. The

estimator that minimizes the posterior expected loss (equivalently the Bayes
risk) is called the Bayes solution (or Bayes estimator) and will be denoted δB.
The quantity BR(π, δB) will be called the minimum Bayes risk and be denoted
MBR(π).

The Bayes solution is of interest either because one is a Bayesian trusting the
prior used, or as a tool to develop improved estimators in frequentist settings.
In a first part I derive the Bayes solution to the c -Loss function and study
its properties. Thereafter, I use the Bayes estimator to prove that the MLE
is minimax under the c -Loss function. In Section 2.7 I continue the Bayesian
analysis and derive uniformly dominating estimators by Bayesian methods.

2.1.1 The Bayes solution

Let Y1, . . . , Yp be p ≥ 2 independent Poisson random variables with means
θ1, . . . , θp. Assume that the Poisson means are independent and come from a
prior distribution π(θ) on Θ. Consider the posterior expected loss and change
the order of integration and derivation, take the partial derivative with respect
to δj and set this equal to zero. This gives,

E

[

∂

∂δj
Lc(δ, θ) | Y

]

= E

[

2
1

θj
(δj − θj) +

2c

γ

(

p
∑

i=1

δi − γ

)]

= 2δjE[θ
−1
j |Y ]− 2 + 2c

{

p
∑

i=1

δi

}

E[γ−1 |Y ]− 2c = 0.

Since this equation must hold for all j = 1, . . . , p we get the system of equations
given by,

δ1(E[θ
−1
1 |Y ] + cE[γ−1|Y ]) + cE[γ−1|Y ]

∑

{i:i 6=1}

δi = 1 + c

...
...

δp(E[θ
−1
p |Y ] + cE[γ−1|Y ]) + cE[γ−1|Y ]

∑

{i:i 6=p}

δi = 1 + c.
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In Appendix A.3 I solve this system of equations and obtain a general expression
for the j’th coordinate of the Bayes estimator, namely

δBj (Y ) =
1 + c

E[θ−1
j |Y ]

(

1 + cE[γ−1|Y ]
∑p

i=1E[θ
−1
i |Y ]−1

) . (2.2)

In principle, as long as it is possible to explicitly compute the posterior expec-
tations in (2.2), analytic expressions for the Bayes estimator can be obtained.
Here, I will rely on the conjugate Gamma prior distribution. Let the Pois-
son means θ1, . . . , θp be independent Gamma random variables with means a/b
and variances a/b2, denoted G(a, b). If not explicitly stated otherwise, I as-
sume that a > 1. Given the data the distribution of θi is G(a + yi, b + 1) for
i = 1, . . . , p. Some integration included in Appendix A.1 shows that generally
if G ∼ G(α, β) and α > 1, then E[G−1] = β/(α − 1). Thus, with a G(a, b)
prior the posterior expectations in (2.2) are E[θ−1

j |Y ] = (b+1)/(a+ yj − 1) and
E[γ−1|Y ] = (b+ 1)/(pa+ Z − 1) where Z =

∑p
i=1 Yi. Since

p
∑

i=1

{E[θ−1
i |Y ]}−1 =

p
∑

i=1

(

b+ 1

a+ yi − 1

)−1

=
p(a− 1) + Z

b+ 1
,

the latter term in the denominator in (2.2) is cg(z) where g is defined as g(z) =
(p(a−1)+z)/(pa−1+z). In summary, the Bayes estimator with the conjugate
Gamma prior is given by

δBj (y) =
1 + c

b+1
a+yj−1

(

1 + cp(a−1)+z
pa−1+z

) =
1 + c

1 + cg(z)

a+ yj − 1

b+ 1
. (2.3)

Recall that p ≥ 2, and assume that a ≥ 1. Then we see that 0 < g < 1, and
that the first factor in (2.3) is always bigger than one. Note also that we might
write δBj = (1 + c)/(1 + cg(z)){E[θ−1

j |y]}−1 where {E[θ−1
j |y]}−1 is the Bayes

solution under weighted squared error loss L1. Hence

{E[θ−1
j | y]}−1 =

a+ yj − 1

b+ 1
<
a+ yj
b+ 1

= E[θj | y],

where E[θj | y] is the Bayes estimator under the squared error loss function
L0. This shows that the effect of weighting (i.e. L1 vs. L0) is to shrink the
estimates relative to the Bayes estimator under L0. Under the c -Loss function,
this shrinkage effect is counteracted by the term (1 + c)/(1 + cg(z)) which is
increasing in c. This means that as more weight is put on a good estimate of
γ =

∑p
i=1 θi, the Bayes estimator will move closer to E[θj | y]. More succinctly,

when a ≥ 1 we will always have that

{E[θ−1
j |y]}−1 ≤ δBj ≤ E[θj|y]
↑ ↑ ↑
L1 Lc L0,
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where the arrows indicate the Bayes solutions associated with the given loss
function. Where in the interval between {E[θ−1

j | y]}−1 and E[θj | y] the Bayes
solution under the c -Loss function is to be found is a function of Z and the
user-defined constant c. We see that g is strictly increasing in z and that as z
grows g converges to one from below. Thus, the factor (1 + c)/(1 + cg(z)) is
decreasing towards one, which means that

δBj −→ {E[θ−1
j |y]}−1,

as z goes to infinity. This is natural, because a very large Z is unlikely to occur
unless γ is very large. A very large γ means that the Fisher information γ−1

contained in the observation Z is very small, and the second term in the c -Loss
function can be disregarded.

2.1.2 Minimaxity

In this section I prove that the MLE δo(Y ) = Y is minimax under the c -
Loss function. An estimator is minimax if it minimizes the expected loss in
the worst possible scenario. More precisely, the estimator δm is minimax if
supθ R(δ

m, θ) ≤ supθ R(δ, θ) for all estimators δ. From the definition of the
minimum Bayes risk above it follows that

MBR(π) =

∫

Θ

R(δB, θ)π(θ) dθ ≤
∫

Θ

R(δ, θ)π(θ) dθ ≤ sup
θ∈Θ

R(δ, θ),

where δ can be any estimator, hence also the minimax estimator. Therefore,
we have the relation MBR(π) ≤ supθ R(δ

m, θ), where δm is minimax. In order
to prove that the MLE is minimax under the c -Loss function I will use the
following lemma (well known in the literature).

Lemma 2.1.1. Let {πn}∞n=1 be a sequence of prior distributions for which the
minimum Bayes risk satisfies

MBR(πn) → sup
θ
R(δ, θ)

as n→ ∞. Then δ is minimax.

Proof. Assume that MBR(πn) → supθ R(δ, θ) as n → ∞. Let δ∗ be any other
estimator. Then

sup
θ
R(δ∗, θ) ≥

∫

Θ

R(δ∗, θ)πn(θ) dθ ≥ MBR(πn)

for all n ≥ 1. Since this holds for all n we must have that supθ R(δ
∗, θ) ≥

supθ R(δ, θ). Since δ
∗ is any estimator this implies that δ must be minimax.
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Under the c -Loss function the MLE has constant risk

R(Y, θ) = EθLc(Y, θ)

=

p
∑

i=1

θ−1
i Eθ(Yi − θi)

2 + cγ−1Eγ(Z − γ)2 = p+ c.

In view of Lemma 2.1.1, in order to show that the MLE is minimax I must show
that the MBR(πn) converges to p+ c as n goes to infinity for a given sequence
of priors. Such a sequence of priors does, indeed, exist.

Theorem 2.1.2. The MLE δo(Y ) = Y is minimax under the c -Loss function.

Proof. (See Appendix A.4 for a more thorough version of this proof). Consider
the prior sequence {πn}∞n=1 = {G(1, bn)}∞n=1 where bn = b/n. With this prior
sequence the Bayes estimator in (2.3) is given by

δBj =
(1 + c)(p− 1 + z)

p− 1 + (1 + c)z

yj
bn + 1

.

Using that Yi |Z is binomial with mean Zηi and variance Zηi(1 − ηi) where
ηi = θi/γ (see Lemma A.1.1), the risk of δB can be written

R(δB, θ) = EθL(δ
B, θ) = EθE[L(δ

B, θ)|Z]

= Eθ

{

(1 + c)2(p− 1 + Z)2

p− 1 + (1 + c)Z

Z

γ(b+ 1)2

− {2(1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1
+ (1 + c)γ

}

.

Because

MBR(π) = Eπ[Eγ [L(δ
B, θ)]] =

∫

Y

Eπ∗

[L(δB, θ) |Z]m(z) dz,

where m(z) is Negative binomial with parameters p and (b+ 1)−1, and

γ |Z ∼ π∗(γ | z) = G(p+ z, bn + 1),

the minimum Bayes risk can be expressed as

MBR(πn) = EπR(δB, θ) = Em[Eπ∗

[L(δB, θ) |Z]]

= Em

[

1 + c

b+ 1

{

p− c(p− 1)Z

p− 1 + (1 + c)Z

}]

.
(2.4)

Define the integrand in the last line in Equation (2.4) as h(z), so that MBR(πn) =
Em[h(Z)] and use that h(z) is a convex function. Then by Jensen’s inequality
we have that

MBR(πn) = Em [h(Z)] ≥ h(Em[Z] )

≥ (1 + c)p

bn + 1
− 1 + c

bn + 1

cp(p− 1)

bn(p− 1) + (1 + c)p
,

(2.5)
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where I have used that the marginal expectation of Z is Em[Z] = p/bn. The
expression in (2.5) converges to p+c as n→ ∞. Hence, MBR(πn) ≥ p+c for all
n. But since MBR(πn) ≤ supθ R(δ, θ) the minimum Bayes risk must converge
to p+ c as n→ ∞. By Lemma 2.1.1 we then have that the MLE δo(Y ) = Y is
minimax under c -Loss.

This theorem will be important in what follows because it implies that es-
timators that uniformly dominate the MLE are minimax. Moreover, since Y
is a constant risk minimax estimator and inadmissible (see Theorem 2.3.2), it
follows that Y is the worst minimax estimator (Robert, 2001, 97).

2.2 Two crucial lemmata

A crucial identity in proving risk dominance of the James-Stein estimator is
what is known as Stein’s identity. If X is normally distributed with mean ξ
and unit variance, and g is a function that satisfies some very mild conditions
(Stein, 1981, 1136), then Eξ(X − ξ)g(X) = Eξg

′(X) where g′ is the derivative
of g. The importance of this identity derives from the fact that it enables us
to express the improvement in risk of an estimator over the MLE as a function
that is independent of the unknown parameters. In the Poisson setting, an
analogous result holds.

Lemma 2.2.1. If Y is Poisson with mean θ and f is a function such that
f(y) = 0 for all y ≤ 0 and Eθ|f(Y )| <∞, then

Eθf(Y )/θ = Eθf(Y + 1)/(Y + 1) (2.6)

and
Eθθf(Y ) = Eθf(Y − 1)Y. (2.7)

Let Y = (Y1, . . . , Yp) be a p dimensional vector of independent Poisson random
variables with means θ1, . . . , θp, and let F (Y ) = (F1(Y ), . . . , Fp(Y )) be a func-
tion where Fi : N

p → R is such that Fi(y) = 0 if yi ≤ 0 and Eθ|Fi(Y )| < ∞.
Then

EθFi(Y )/θi = EθFi(Y + ei)/(Yi + 1)

and
EθθiFi(Y ) = EθFi(Y − ei)Yi,

where ei is the p× 1 vector whose i’th component is one and the rest are zero.

Versions of this lemma are used and proved in all contributions to the liter-
ature on the simultaneous estimation of Poisson means (see e.g. Tsui and Press
(1982, 94)). It will be used throughout this thesis. For completeness, I include
the proof.
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Proof. The proof of (2.6) is

Eθ[f(Y )/θ] =
∞
∑

y=0

f(y)

θ

1

y!
θye−θ =

f(0)

θ
+

∞
∑

y=1

f(y)
1

y!
θy−1e−θ

= 0 +
∞
∑

y=0

f(y + 1)
1

(y + 1)y!
θye−θ = Eθ[f(Y + 1)/(Y + 1)].

To prove the equivalent identity for the multivariate case condition on {Yj | j 6=
i},

EθFi(Y )/θi = EθE[Fi(Y )/θi |{Yj | j 6= i}] = EθFi(Y + ei)/(Yi + 1).

The proofs of (2.7) and its multivariate extension are similar and are included
in Appendix A.5.

The idea, originally due to Stein (see e.g. Stein (1981)), for finding improved
estimators is to consider competitors that are equal to the MLE plus an extra
term, δ∗(Y ) = δo(Y ) + f(Y ). Then, the goal is to express the difference in risk
R(δ∗, θ)−R(δo, θ) as a function independent of the unknown parameters.

Lemma 2.2.2. If R(δ∗, θ) − R(δo, θ) = EθD(Y ) and D(Y ) ≤ 0 for all Y with
strict inequality for at least one datum Y , then δ∗ dominates δo in terms of risk.
In other words, δo is inadmissible.

This lemma follows from the fact that if X and Y are two random variables
such that X ≤ Y , then EX ≤ E Y . When D is independent of the unknown
parameters I write D = D(Y ), when the difference in loss is not independent of
the unknown parameters it will be denoted D(Y | θ).

2.3 Finding improved estimators

In order to find a class of estimators that improve on the MLE under the c -Loss
function I consider estimators δ∗ = (δ∗1, . . . , δ

∗
p) of the form

δ∗ = (1− φ(Z))Y, (2.8)

where Z =
∑p

i=1 Yi and Eθ|φ(Z)| <∞. To find an expression for the difference
in risk between δ∗ in (2.8) and the MLE δo(Y ) = Y I first look at the difference
of the loss functions. By expanding the squares we get the following expression

Dc(Y | γ) =
p
∑

i=1

1

θi
(φ2(Z)− 2φ(Z))Y 2

i − c
1

γ
(φ2(Z)− 2φ(Z))Z2 +2(1+ c)φ(Z)Z.

Then use the fact that conditional on Z, the random variable Y = (Y1, . . . , Yp)
is multinomial with Z trials and cell probabilites ηi = θi/γ, and apply Lemma
2.2.1. This gives the following lemma.
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Lemma 2.3.1. Under the c -Loss function the difference in risk is given by

Eθ[Dc(Y | γ)] = EθE[Dc(Y | γ)|Z]

= Eθ

{

(φ2(Z)− 2φ(Z))
Z[(p− 1) + (1 + c)Z]

γ
+ 2(1 + c)φ(Z)Z

}

= Eθ

{

(φ2(Z + 1)− 2φ(Z + 1))[(p− 1) + (1 + c)(Z + 1)]

+ 2(1 + c)φ(Z)Z}
= EθDc(Z).

Here Dc is independent of the parameters, so a function φ(Z) that ensures
that Dc(Z) ≤ 0 for all Z with strict inequality for at least one Z yields an
estimator that uniformly dominates the MLE. Assume that φ(z)z ≤ φ(z +
1)(z + 1) for all z ≥ 0, and define

D∗
c (Z) = (φ2(Z+1)−2φ(Z+1))[(p−1)+(1+c)(Z+1)]+2(1+c)φ(Z+1)(Z+1).

Then R(δ∗, θ)−R(Y, θ) = EθDc(Y ) ≤ EθD
∗
c (Y ) for all Y ∈ Y . Treating φ as a

constant, then taking the partial derivative with respect to φ and setting this
equal to zero, we get

1

2

∂

∂φ
D∗

c (Z) = [φ(Z + 1)− 1](p− 1 + (1 + c)(Z + 1)) + (1 + c)(Z + 1) = 0,

which is solved for φc(Z + 1) = (p − 1)/(p − 1 + (1 + c)(Z + 1)). We thereby
obtain the estimator

δc1(Y ) =

(

1− p− 1

p− 1 + (1 + c)Z

)

Y, (2.9)

which is, as expected, equal to δCZ(Y ) for c = 0. In order to show that this
estimator dominates the MLE we must show that its risk is smaller than that
of the MLE. The risk of the MLE is constant and equal to p+ c.

Theorem 2.3.2. For all θ ∈ Θ the estimator δc1 given in (2.9) has smaller risk
than the MLE δo(Y ) = Y when loss is given by Lc in (2.1).
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Proof. Use the expression for Dc above, then

R(δc1, θ) = p+ c+Dc

= p+ c− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (1 + c)(Z − γ))

− φ(Z)[p− 1 + (1 + c)Z]]}

= p+ c− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (1 + c)(Z − γ))− (p− 1)]}

≤ p+ c− 2

γ
Eγ {φ(Z)Z(1 + c)(Z − γ)}

= p+ c− 2(1 + c)Eγ

[

φ(Z)Z2

γ
− φ(Z)Z

]

= p+ c− 2(1 + c)Eγ [φ(Z + 1)(Z + 1)− φ(Z)Z]

< p+ c− 2(1 + c)Eγ [φ(Z + 1)(Z + 1)− φ(Z + 1)(Z + 1)]

= p+ c = R(Y, θ),

for all θ because φ(Z)Z is a strictly increasing function of Z (this will be proved
in a more general setting in Corollary 2.3.3 below).

Since the MLE is minimax, this means that we have found a minimax esti-
mator with uniformly smaller risk than the MLE. In effect, from the the first
inequality of the proof of Theorem 2.3.2 it is easy to see that δc1 is a member of
a larger class of minimax estimators, all with uniformly smaller risk than the
MLE. That is δc1 ∈ Dc where Dc is the class of all estimators of the form

δc(Y ) =

(

1− ψ(Z)

p− 1 + (1 + c)Z

)

Y,

where the function ψ is such that 0 < ψ(z) < 2(p− 1) is non-decreasing for all
z ≥ 0.

Corollary 2.3.3. All estimators δc ∈ Dc have uniformly smaller risk than the
MLE.

Proof. This is basically the same proof as for δc1.

R(δc, θ) = p+ c− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (1 + c)(Z − γ))− ψ(Z)]}

≤ p+ c− 2

γ
Eγ {φ(Z)Z(1 + c)(Z − γ)}

= p+ c− 2(1 + c)Eγ

[

φ(Z)Z2

γ
− φ(Z)Z

]

< p+ c = R(Y, θ),
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since 0 < ψ(z) ≤ 2(p − 1), hence 2(p − 1) − ψ(z) > 0 and we get the first
inequality. The second inequality is obtained by using Lemma 2.2.1 to get rid
of γ, then using that φ(Z)Z is strictly increasing. This function is strictly
increasing because ψ is non-decreasing, hence ψ′(z) ≥ 0 for all z ≥ 0. Denote
G(z) = p− 1+ (1+ c)z, then G′(z) = (1+ c). The first derivative of φ(z)z with
respect to z is then

d

d z
φ(z)z =

(ψ′(z)z + ψ(z))G(z)− (1 + c)ψ(z)z

G(z)2
.

The denominator in this expression is always positive, and the nominator is

(ψ′(z)z + ψ(z))G(z)− (1 + c)ψ(z)z

≥ ψ(z)G(z)− (1 + c)ψ(z)z = (p− 1)ψ(z) > 0,

since 0 < ψ(z) ≤ 2(p − 1) and p ≥ 2. Thus (φ(z)z)′ > 0, which proves the
assertion.

As with δCZ the new estimators δc ∈ Dc shrink the MLE towards the origin,
but the amount of shrinkage is less than for δCZ , and can be controlled by the
statistician. In Figure 2.1 I plot the risk of δc1 for different values of γ. This
plot is obtained by adding p + c to the expression for the difference in risk in
Lemma 2.3.1, which yields an expression the loss of δc1 that is solely a function
of Z, hence R(δc1, θ) is a function of γ only,

R(δc, θ) = Eγ

{

(p− 1)2

p− 1 + (1 + c)(Z + 1)
− 2(p− 1)2

p− 1 + (1 + c)Z

}

+ p+ c.

This risk function can be computed numerically for increasing values of γ in
order to compare the loss of δc1 to that of the MLE. In Figure 2.1 one clearly
sees how the savings in risk are substantial for small values of γ, while for larger
values of γ the risk of δc1 becomes almost indistinguishable from that of the
MLE. In the next section I undertake a more thorough comparison of δc1 and
the estimator of Clevenson and Zidek (1975).

2.4 A comparison of the estimators

Further insight into the difference between the two estimators δCZ and δc1 is
gained by studying how δCZ performs under the c -Loss function and how δc1
performs under the weighted squared error loss function L1. Recall that an
important part of the motivation for the c -Loss function was, in the terminology
of Efron and Morris (1971, 1972), to “limit translation” away from the MLE in
order to achieve more plausible estimates of large θi. The question is whether
this strategy of limiting shrinkage away from the MLE works to the detriment
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Figure 2.1: A plot of R(δc1, θ) with sample size p = 100 and c = 40 for increasing
values of γ =

∑p
i=1 θi. The horizontal line is the constant risk p + c = 140 of

the MLE.

of the uniform dominance under weighted squared error loss, or not. Intuitively,
since in a weighted squared error loss sense

dist(Y, θ) ≥ dist(δCZ , θ),

any estimator on the line segment between Y and δCZ should have smaller risk
than the MLE. Continuing this heuristic argument, since δCZ and Y are the
two limiting cases of δc when c = 0 and c → ∞ respectively, δc should belong
to the class of minimax estimators dominating the MLE when loss is L1. This
is indeed the case.

Corollary 2.4.1. All estimators δc ∈ Dc have uniformly smaller risk than
δo(Y ) = Y under weighted squared error loss L1.

Proof. The risk of δc ∈ Dc under L1 is obtained by setting c = 0 in the second
line in the proof of Theorem 2.3.2, that is

R(δc, θ) = p− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (Z − γ))− φ(Z)[p− 1 + Z]]}

≤ p− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (Z − γ))− ψ(Z)]} ,

where the inequality follows since (p − 1 + Z)/(p − 1 + (1 + c)Z) ≤ 1 for all
values of c ≥ 0. Proceed as in the proof of Corollary 2.3.3.
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A similar result for the estimator of Clevenson and Zidek exposed to the
c -Loss function does not hold in general. To see this, write

φCZ(z) =
ψ(z)

p− 1 + z
=
p− 1 + (1 + c)z

p− 1 + z
φc(z) =

ψ∗(Z)

p− 1 + (1 + c)Z
,

where ψ∗(Z) = {(p− 1 + (1 + c)Z)/(p− 1 + Z)}ψ(Z). The Clevenson and
Zidek estimator can then be expressed as

δCZ =

(

1− ψ∗(Z)

p− 1 + (1 + c)Z

)

Yi.

Here, the nominator in the shrinkage term has

sup
z≥0

ψ∗(Z) = (1 + c) 2(p− 1) ≥ 2(p− 1),

with equality for c = 0 only. This shows that the function ψ∗ does not in general
satisfy the conditions of Corollary 2.3.3. The optimal Clevenson and Zidek esti-
mator in terms of minimizing risk is obtained by setting ψ(Z) in (1.4) equal to
p−1. With this choice of ψ, we see that the estimator satisfies the conditions of
Corollary 2.3.3 provided that c ≤ 1. In conclusion, the estimator of Clevenson
and Zidek does not in general dominate the MLE under c -Loss. This fact is am-
ply illustred by the simulations summarized in Table 2.2. Table 2.1 summarizes

p = 5 p = 10 p = 15
range of θi δCZ δc δCZ δc δCZ δc

(0,4) 34.59 9.84 21.09 6.65 18.71 5.99
(0,8) 25.54 7.45 20.94 6.55 19.12 6.08
(8,12) 18.36 5.51 18.65 5.86 17.82 5.68
(12,16) 14.65 4.46 16.66 5.26 16.55 5.29
(0,12) 14.84 4.49 16.19 5.10 16.36 5.21
(4,16) 13.75 4.16 15.24 4.80 15.76 5.01

Table 2.1: Percentage savings in risk relative to the MLE Y under weighted
squared error loss L1. The parameter c was set to 5 in the simulations.

simulation results for p = 5, p = 10 and p = 15 under the weighted squared er-
ror loss function L1. In these simulations I follow the approach of Hwang (1982,
97-98) and Ghosh et al. (1983), which consists of drawing a sample θi, 1 ≤ i ≤ p
from a uniform distribution on the interval (a, b). Then one observation from
each of the p distributions are generated. This second step is repeated 105

times and the estimated risks of δCZ , δc and the MLE are calculated under L1.
Finally, the percentage savings in risk from using an alternative estimator δ
as compared to the MLE, [R(Y, θ) − R(δ, θ)]/R(Y, θ) × 100 are calculated and
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p = 5 p = 10 p = 15
range of θi δCZ δc δCZ δc δCZ δc

(0,4) -15.41 3.04 -15.18 2.17 -18.37 2.15
(0,8) -15.22 2.26 -16.70 2.19 -19.44 2.22
(8,12) -13.06 1.70 -16.42 2.01 -19.21 2.11
(12,16) -11.61 1.38 -15.86 1.84 -18.76 1.99
(0,12) -12.14 1.38 -16.30 1.79 -19.13 1.97
(4,16) -11.91 1.27 -16.15 1.70 -19.07 1.91

Table 2.2: Percentage savings in risk relative to the MLE under the c -Loss
function. The parameter c was set to 5 in the simulations.

reported in the table. In Table 2.2 the results of the same simulation procedure
with the c -Loss function are summarized. Under weighted squared error loss
we see that the savings in risk are sizable when using the estimator δCZ . As
expected, the largest reduction in risk 34.59%, is obtained for the interval with
the smallest values of θi when p = 5. Under L1 the new estimator δc does not
perform as impressively as δCZ , but still improves on the MLE for all intervals
and all values of p. Under the c -Loss function the new estimator δc outperforms
the estimator of Clevenson and Zidek. In Table 2.2 we clearly see that δCZ is a
lousy estimator when one seeks good estimates of γ in addition the the individ-
ual θi. That being said, the new estimator only leads to an estimated reduction
in risk of around 2% compared to the MLE in these simulations. Keep in mind,
however, that a value of c fine-tuned to the sample size and the expected size
of the parameters, would likely give more improvement in risk (cf. Section 2.5).

In the data that gave rise to the study of Clevenson and Zidek (1975), θi rep-
resented the expected number of oilwell discoveries in the Canadian province of
Alberta obtained from wildcat exploration during month i over a period of thirty
years (Clevenson and Zidek, 1975, 703). In order to compare the estimators on
the wildcat exploration data I follow the strategy of Clevenson and Zidek and use
the observation for every third month of each half year, March and September
in the period from 1953 to 1970. Their strategy is to use the average number of
discoveries in each half year surrounding the monthly observation to provide the
“true” value of the parameter. Table A.1 included in Appendix A.7 summarizes
this empirical comparison. In this study c was set to 40 to limit shrinkage for the
relatively large observations y13 = y16 = 3 and y25 = 5. Despite this large value
of c the new estimator δc differs markedly from the MLE. Under L1 the total
losses are L1(Y, θ) = 39.26, L1(δ

CZ , θ) = 14.34 and L1(δ
c
1, θ) = 19. As predicted

by theory, both δCZ and the new estimator perform much better than the MLE,
giving reductions in loss of 63.47% and 51.60% respectively. Exposed to the c -
Loss function δc and δCZ are not able to match the performance of the MLE.
The loss ratios are Lc(δ

c, θ)/Lc(Y, θ) = 1.63 and Lc(δ
CZ , θ)/Lc(Y, θ) = 5.03,
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which shows that the estimator of Clevenson and Zidek (1975) performs very
poorly when it is penalized for bad estimates of γ.

Recall that this is an empirical comparison and does not invalidate the
theoretical results derived above. To see this I simulated 105 draws from the 36
Poisson distributions in Table A.1 and computed the risk of the three estimators
under L1 and Lc with c = 40. In accordance with theory, δc now beats the MLE
with risk reductions of 6.02% under L1 and 1.58% under the c -Loss function.
The Clevenson and Zidek estimator improves by 57.16% under L1, but once
again performs very poorly under the c -Loss function. Its estimated risk ratio
is R(δCZ , θ)/R(Y, θ) = 4.87.

2.5 A closer look at c

One of the primary motivations for the c -Loss function was to strike a balance
between good risk performance and plausible estimates of the individual param-
eters. Using the new estimator δc, this balancing is controlled by the value of
c. The risk performance that we consider here is with respect to the weighted
squared error loss function (with respect to the c -Loss function the question
“what c” would be tautological). Exposed to L1 the estimator δc minimizes
risk when c is set to zero, but c = 0 might produce non-plausible estimates of
large parameters. The question is therefore how to choose c.

I will now propose one way in which the c parameter can be chosen. Consider
the weighted squared error loss function in estimating γ with δ, namely

L(δ, γ) =
1

γ
(δ − γ)2 . (2.10)

Under this loss function Z =
∑p

i=1 Yi is the MLE, minimax and cannot be
uniformly improved upon (Lehmann, 1983, 277). In addition, the MLE has
constant risk equal to one. Using Lemma 2.2.1 we find that the risk of δc1 under
(2.10) is

R(δc1, γ) = Eγ [L(δ
c
1, γ)] = 1 + Eγ

[

(φ2(Z + 1)− 2φ(Z + 1))(Z + 1) + 2φ(Z)Z
]

.

A well posed question that will determine c is then: given that the statistician
is willing to make a guess at γ and only tolerates a deterioration of risk (under
(2.10)) in using δc1 instead of Z of K%, what c value should she choose? With
a prior guess of γ the risk R(δc1, γ) can be computed and compared to the risk
of the MLE. Since the risk performance of δc1 under (2.10) deteriorates with
lower values of c, K% provides a lower bound on the c value. The upper bound
is naturally provided by the fact that the statistician wants to minimize the
risk under L1, R(δ

c
1, θ) = Eθ

∑p
i=1 θ

−1
i (δci − θi)

2. In other words, we seek the
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θi θ−1
i (δCZ − θi)

2 θ−1
i (δc1 − θi)

2

1.48 33.94 14.94
0.68 39.54 14.24
1.84 30.41 13.05
1.24 35.32 14.43
1.46 33.97 14.59
1.38 34.02 14.09
1.64 31.95 13.60
1.46 33.27 13.48
6.98 -11.38 6.85
6.91 -9.62 7.90
L1 25.14 12.72

Table 2.3: Estimated total and componentwise percentage savings in risk rel-
ative to the MLE under L1. 100000 simulations with p = 10 and c = 3. See
Appendix C.1 for details.

smallest value of c that ensures a deterioration of risk of less than K%, hence
our optimal c, denoted ĉ, is

ĉ = min
c

{

c ∈ [0,∞) | R(δ
c
1, γ)−R(Z, γ)

R(Z, γ)
× 100 ≤ K%

}

. (2.11)

Lower tolerance levels K will increase the size of ĉ (how much depends on the
prior guess of γ and the sample size p), and consequently δc will be pulled
closer to the MLE and the possibility of non-plausible estimates of the large
parameters is reduced.

As an illustration of (2.11) Table A.2 in Appendix A.7 gives the optimal
ĉ -values for five different tolerance levels K and varying prior guesses of γ for
sample sizes of p = 8 and p = 40. (The R-script used to approximate (2.11) is
found in Appendix C.2). A feature of the ĉ -values reported in Table A.2 is that
as a function of γ, ĉ is first increasing, reaching its max for medium sized γ,
then decreasing. This reflects the fact that it is in situations with many small
and a few large Poisson means, that fine tuning of c is most critical.

In Table 2.3 I report the results of a simulation study where most of the
true parameters were small and a few were large. Eight of the p = 10 true
parameters (θi, 1 ≤ i ≤ 8) were generated from a uniform distribution on (0, 2),
while two remaining larger ones (θ9 and θ10) came from a uniform on (5, 8).
The R-script in Appendix C.2 was used to find ĉ. A prior guess of γ of 28 and
a tolerance level of 10% gave ĉ = 3. This rather low tolerance level is meant to
reflect our anticipation of some of the unknown parameters being larger than
the others, and that we desire plausible estimates of these. In Table 2.3 we
see that both δCZ and δc1 improve on the MLE. Considering the parameters
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separately, δCZ performs much better than the MLE in estimating the small
parameters with risk savings well above 30 percent. The new estimator δc1 also
improves on the MLE, though with a lesser amount than δCZ . Crucially, when
it comes to the two larger parameters the estimator of Clevenson and Zidek
loses against the MLE while δc1 improves on the MLE by around seven percent.
This improvement for the two large parameters is in part a product of the low
tolerance level K used to find ĉ.

Due to the fact that both δCZ and δc are constructed to improve the total
risk, a somewhat surprising feature of Table 2.3 is their remarkable performance
in terms of the individual risks when it comes to estimating the (small) param-
eters. A possible explanation for this is simply that with one observation from
each distribution, the MLE lives in N ∪ {0} while δCZ , δc and the parameters
live in R+. Thus, the minimal distance from the MLE to θi is constrained by
the fact that the MLE equals 0, 1, 2, . . . and so on.

In this section I have proposed a method for determining c that relies on
the specification of two conflicting desiderata. There are surely other methods.
A reassuring property of δc ∈ Dc is that they are robust with respect to the
weighted squared error loss function. That is, they are minimax and dominate
the MLE whatever value the parameter c ≥ 0 is given.

2.6 Different exposure levels

So far I have been studying situations with a single observation from each of
the p Poisson distributions, and assumed that the exposures are equal. In
many applications the Poisson counts will either be generated over different
intervals of time, or we might have ni independent observations from each of
the p distributions. In the first case Y1, . . . , Yp are independent Poisson random
variables with means t1θ1, . . . , tpθp, where ti > 0 for i = 1, . . . , p are known
exposures. In the second case, we observe Yi,1, . . . , Yi,ni

∼ P(θi) for i = 1 . . . , p.
Obviously, Yi =

∑ni

j=1 Yi,j , 1 ≤ i ≤ p are Poisson with means niθi. The two
situations are equivalent. In what follows I will stick to the notation where the
exposures are denoted ti.

Recall that parts of the rationale behind the weights in L1 is the fact that θ
−1
i

is the Fisher information in an observation Yi ∼ P(θi). In the exposure/multiple
observations case, the Fisher information in an observation Yi is ti/θi. As a
consequence, the information weighting argument leads to the loss function

L1,t(δ, θ) =

p
∑

i=1

ti
θi

(δi − θi)
2 . (2.12)

Quite intuitively, the amount of information in an observation increases with
the exposure, and the loss function L1,t penalizes bad estimates heavily when
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the exposure is high. If, however, the objective is precise estimates of small θi, it
seems arbitrary to penalize bad estimates as a function of the exposure. In other
words, L1 might still be a reasonable loss function in the exposure/multiple
observations setting. In Corollary 2.6.2 below I show that the same estimator
uniformly dominates the MLE under both L1 and L1,t. In the exposure setting
the MLE is equal to the observed rate, denoted ri = Yi/ti. By Lemma 2.1.1 we
can prove that the MLE is minimax under both loss functions L1 and L1,t.

Lemma 2.6.1. The MLE whose i’th coordinate is given by ri = Yi/ti is minimax
under the loss functions L1 and L1,t as given in (2.12).

Proof. Consider the sequence of priors given by πn = {G(1, bn)}∞n=1 where bn =
b/n. The i’th coordinate of the Bayes estimator under L1,t is then yi/(bn + ti).
The minimum Bayes risk is then

MBR(πn) = EEθ

p
∑

i=1

ti
θi

(

Yi
bn + ti

− θi

)2

= E

p
∑

i=1

ti
θi

{

tiθi
(bn + ti)2

+

(

tiθi
bn + ti

− θi

)2
}

=

p
∑

i=1

{

t2i
(bn + ti)2

+
ti
bn

( −bn
bn + ti

)2
}

=

p
∑

i=1

{

t2i
(bn + ti)2

+
tibn

(bn + ti)2

}

= p−
p
∑

i=1

bn
bn + ti

−→ p = R(r, θ)

when n→ ∞. Under L1 the MBR(πn) goes to
∑p

i=1 1/ti = R(r, θ) when n→ ∞
with the same prior sequence.

I will now prove that the natural generalization of the Clevenson and Zidek
estimator to the exposure setting, dominates the MLE under both L1 and L1,t.

Corollary 2.6.2. Under both L1 and L1,t the estimator given componentwise
by (1− (p− 1)/(p− 1 + Z))ri dominates ri = Yi/ti.

Proof. Write (1− (p− 1)/(p− 1 + Z))ri as ri + fi(Y ) where

fi(Y ) = −(p− 1)Yi/ti
p− 1 + Z

.

This function satisfies Lemma 2.2.1. The difference in risk compared to the
MLE is then

R(δ∗, θ)−R(r, θ) =

p
∑

i=1

ti
θi

{

(ri + fi(Y )− θi)
2 − (ri − θi)

2}

=

p
∑

i=1

ti

{

tif
2
i (Y )

tiθi
+ 2

fi(Y )Yi
tiθi

− 2fi(Y )

}

=

p
∑

i=1

ti

{

tif
2
i (Y + ei)

Yi + 1
+ 2fi(Y + ei)− 2fi(Y )

}

,
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under L1,t, and

Eθ

p
∑

i=1

{

tif
2
i (Y + ei)/(Yi + 1) + 2fi(Y + ei)− 2fi(Y )

}

,

under L1. Hence, it suffices to show that the expression inside the brackets is
smaller than or equal to zero for all Y , with strict inequality for at least one Y .
Let tmin = min1≤i≤p ti. Then,

D(Y ) =

p
∑

i=1

{

tif
2
i (Y + ei)

Yi + 1
+ 2∆ifi(Y + ei)

}

=

p
∑

i=1

1

ti

{

(p− 1)2(Yi + 1)

(p+ Z)2
− 2

(p− 1)(Yi + 1)

p+ Z
+ 2

(p− 1)Yi
p− 1 + Z

}

≤ 1

tmin

{

(p− 1)2

p+ Z
− 2(p− 1) + 2

(p− 1)Z

p− 1 + Z

}

=
1

tmin

p− 1

(p+ Z)(p− 1 + Z)
{(p− 1)(p− 1 + Z)− 2(p− 1)(p+ Z)} < 0

since p ≥ 2. This shows that D(Y ) < 0 for all Y , which means that (1 − (p −
1)/(p− 1 + Z))r is minimax and uniformly dominates the MLE.

In summary, Lemma 2.6.1 and Corollary 2.6.2 show that the exposure-
version of the Clevenson and Zidek estimator

δCZt
i (Y ) =

(

1− p− 1

p− 1 + Z

)

Yi
ti
,

is minimax and uniformly dominates the MLE under both L1 and L1,t.

Next, these results will be extended to a version of the c -Loss function
suitably adjusted to the exposure setting. A good extension of Lc is the loss
function defined by

Lc,t(δ, θ) =

p
∑

i=1

ti
θi

(δi − θi)
2 + c

(
∑p

i=1 δi −
∑p

i=1 θi)
2

∑p
i=1 θi/ti

. (2.13)

The loss function Lc,t penalizes for bad estimates of γ, and in accordance with
the information weighting argument this penalization increases as the exposure
increases. On the other hand, the penalization is decreasing in the size of θi,
reflecting the deference paid to small observations. Note also that when ti = 1
for all i, Lc,t equals c -Loss function. Moreover, a quick calculation shows that
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the MLE has constant risk

R(δo, θ) = p+
c

∑p
i=1 θi/ti

Eθ

(

p
∑

i=1

Yi/ti −
p
∑

i=1

θi

)2

= p+ cEθ

(

∑p
i=1

Yi−tiθi
ti

)2

∑p
i=1 θi/ti

= p+
c

∑p
i=1 θi/ti

Eθ

p
∑

i=1

(

Yi − tiθi
ti

)2

+
2c

∑p
i=1 θi/ti

∑

i 6=j

1

titj
Cov(Yi, Yj)

= p+
c

∑p
i=1 θi/ti

p
∑

i=1

θi
ti

= p+ c,

since Cov(Yi, Yj) = 0 because Yi and Yj are independent for i 6= j.
In order to find an estimator with risk smaller than p+ c, I consider estima-

tors of the form δ∗i (Y ) = (1− φ(Z))Yi/ti for i = 1, . . . , p. The case of equal ex-
posures is straightforward. When the exposures are equal t1 = · · · = tp = t > 0
(equivalently, equal sample sizes), the risk with respect to the loss function in
(2.13) reduces to

R(δ∗, θ) = Eθ







p
∑

i=1

1

tθi
((1− φ(Z))Yi − tθi)

2 +
c

tγ

(

p
∑

i=1

(1− φ(Z))Z − tγ

)2






.

From this expression we see immediately, using the arguments of Section 2.3,
that the improved estimator must be

δci/t =

(

1− p− 1

p− 1 + (1 + c)Z

)

Yi
t
.

In the remainder of this section I derive a class of estimators that dominate the
MLE when the exposures are possibly unequal. To prove dominance I derive
an expression that bounds the difference in risk between estimators of the type
δ∗ and ri. The difference in risk is

EθDc,t(Y, θ) = R(δ∗, θ)−R(r, θ)

= Eθ

{

(φ2(Z)− 2φ(Z))

p
∑

i=1

ti
θi

(

Yi
ti

)2

+ 2φ(Z)Z

}

+
c

W
Eθ







(φ2(Z)− 2φ(Z))

(

p
∑

i=1

Yi
ti

)2

+ 2φ(Z)γ

p
∑

i=1

Yi
ti







,

(2.14)

where W =
∑p

i=1 θi/ti. Let γT =
∑p

i=1 tiθi, so that Z is Poisson with mean γT .
Using Lemma A.1.1 the first term in (2.14) equals

Eθ

{

(φ2(Z)− 2φ(Z))
Z[p− 1 + Z]

γT
+ 2φ(Z)Z

}

.
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Since θi ≥ 0, 1 ≤ i ≤ p we have that
∑p

i=1 θ
2
i ≤ (

∑p
i=1 θi)

2
= γ2, which gives

the following inequality for the second term

c

W
Eθ

{

(φ2(Z)− 2φ(Z))

(

Z

γT

p
∑

i=1

θi
ti

(

1− tiθi
γT

)

+ γ2
Z2

γ2T

)

+ 2φ(Z)γ2
Z

γT

}

= cEθ

{

(φ2(Z)− 2φ(Z))

(

Z

γT
− 1

W
Z

p
∑

i=1

θ2i
γ2T

+
1

W
γ2
Z2

γ2T

)

+ 2φ(Z)
1

W
γ2
Z

γT

}

≤ cEθ

{

(φ2(Z)− 2φ(Z))
1

γT

(

Z − 1

W

γ2

γT
Z +

1

W

γ2

γT
Z2

)

+ 2φ(Z)
1

W
γ2
Z

γT

}

.

Let τ = tmin/tmax and notice that W =
∑p

i=1 θi/ti ≤
∑p

i=1 θi/tmin = γ/tmin and
similarly W ≥ γ/tmax. Thus

1

W

γ2

γT
=

1
∑

i θi/ti

γ2
∑

i tiθi
≥ tmin

γ
∑

i tiθi
≥ tmin

tmax

= τ

and
1

W

γ2

γT
=

1
∑

i θi/ti

γ2
∑

i tiθi
≤ tmax

γ
∑

i tiθi
≤ tmax

tmin

=
1

τ
.

This means that for all θ ∈ Θ we have that τ ≤ γ2(WγT )
−1 ≤ 1/τ . We then

have that the second term in (2.14) is less than or equal to

cEθ

{

(φ2(Z)− 2φ(Z))
1

γT

(

Z − τZ +
1

τ
Z2

)

+ 2φ(Z)
1

τ
Z

}

.

Putting these two terms together, the expression that bounds the difference in
risk is

EθDc,t(Y, θ) ≤ Eθ

{

(φ2(Z)− 2φ(Z))
Z[p− 1 + c(1− τ) + (1 + c/τ)Z]

γT

+ 2
(

1 +
c

τ

)

φ(Z)Z
}

= EθD
∗
c,t(Z, γT ).

Notice that by the assumption φ(z)z ≤ φ(z + 1)(z + 1) combined with Lemma
2.2.1 we have that EθDc,t(Z, γT ) ≤ EθD

∗
c,t(Z) where D

∗
c,t(Z) is independent of

γT . This makes it possible to use the techniques of Section 2.3 to derive explicit
estimators. The main finding of this section can now be stated.

Theorem 2.6.3. If ψ(Z) is a non-decreasing function such that 0 ≤ ψ(Z) ≤
2[p− 1 + c(1− τ)] then the class of estimators given by

δcti (Y ) =

(

1− ψ(Z)

p− 1 + c(1− τ) + (1 + c/τ)Z

)

Yi
ti
,

is minimax and uniformly dominates the MLE Yi/ti under the loss function Lc,t

as given in (2.13).
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Proof. Use the fact that EθDc,t ≤ EθD
∗
c,t , then

R(δct, θ) = p+ c+ EθDc,t(Y, θ) ≤ p+ c+ EγTD
∗
c,t(Z, γT )

= p+ c− 1

γT
EγTφ(Z)Z {2 [p− 1 + c(1− τ) + (1 + c/τ)Z + (1 + c/τ)γT ]

− φ(Z)(p− 1 + c(1− τ) + (1 + c/τ)Z)}

= p+ c− 1

γT
EγTφ(Z)Z {2 [p− 1 + c(1− τ) + (1 + c/τ)(Z − γT )]− ψ(Z)}

≤ p+ c− 1

γT
EγTφ(Z)Z {(1 + c/τ)(Z − γT )}

= p+ c− 2(1 + c/τ)EγT

[

φ(Z)Z2/γT − φ(Z)Z
]

= p+ c− 2(1 + c/τ)EγT [φ(Z + 1)(Z + 1)− φ(Z)Z]

< p+ c− 2(1 + c/τ)EγT [φ(Z + 1)(Z + 1)− φ(Z + 1)(Z + 1)]

= p+ c = R(Y/t, θ),

for all θ because φ(Z)Z is increasing in Z (cf. Corollary 2.3.3).

Notice that when t1 = · · · = tp the ratio τ = 1 and the estimators of
Theorem 2.6.3 reduce to the natural generalization of δc to the equal exposure
case, namely δc/t. Lastly, in order to ensure that the class of estimators in
Theorem 2.6.3 is minimax we need to establish that the MLE is minimax under
the loss function Lc,t in (2.13). Let R1 + Rc denote the two components of the
risk of Lc,t, i.e.

EθLc,t(δ, θ) = EθL1,t(δ, θ) + Eθ c
(
∑p

i=1 δi −
∑p

i=1 θi)
2

∑p
i=1 θi/ti

= R1(δ, θ) +Rc(δ, θ).

From Lemma 2.6.1 we know that Y/t is minimax under L1,t. Moreover, ac-
cording to Corollary 3.2 in Lehmann (1983, 277) the MLE of γ is the unique
minimax solution under any loss function of the form (δ − γ) /Varθ(δ). Since
the MLE of γ is

∑p
i=1 Yi/ti and

Varθ

p
∑

i=1

Yi/ti =

p
∑

i=1

θi/ti = W,

we see that the second term in Lc,t is on this form. Hence
∑p

i=1 Yi/ti is the
unique minimax solution, and from the risk calculation above we have that
Rc(Y/t, γ) = c. Now, assume that δ is any estimator and let the set A ⊂ Θ be
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defined by A = {θ |Rc(δ, θ) ≥ c}. Then

sup
θ
R(δ, θ) ≥

∫

Θ

R(δ, θ) πn(θ) dθ =

∫

Θ

{R1(δ, θ) +Rc(δ, θ)} πn(θ) dθ

=

∫

Θ

R1(δ, θ) πn(θ) dθ +

∫

Θ

Rc(δ, θ) πn(θ) dθ

≥
∫

Θ

R1(δ, θ) πn(θ) dθ +

∫

A

c πn(θ) dθ +

∫

Θ\A

Rc(δ, θ) πn(θ) dθ

≥
∫

Θ

R1(δ, θ) πn(θ) dθ + c ≥
∫

Θ

R(δBn , θ) πn(θ) dθ + c,

where δBn = yi/(bn + 1) is the Bayes solution with respect to the G(1, bn) prior.
From Lemma 2.6.1 we have that the last line above goes to p + c as n → ∞.
This shows that

sup
θ
R(δ, θ) ≥ p+ c = sup

θ
R(Y/t, θ).

Since δ could be any estimator this means that the MLE is minimax under the
loss function Lc,t in (2.13). It follows that the class of estimators in Theorem
2.6.3 is also minimax.

2.7 More Bayesian analysis

In this section I continue the Bayesian analysis of Section 2.1 and use Bayesian
and empirical Bayesian methods to derive estimators in the class Dc. In a first
part I draw on the techniques of Ghosh and Parsian (1981) for the L1-setting
to derive a class of proper Bayes minimax estimators that uniformly dominate
the MLE under c -Loss. Second, I derive the explicit estimator δc1 in (2.9) as
an empirical Bayes estimator. Finally, I drop the assumption of the Poisson
means being independent, and show that δc1 can be derived as a generalized
Bayes estimator.

Let the Poisson means be independent with prior distribution θi | b ∼ G(1, b)
for i = 1, . . . , p. Furthermore, let the b > 0 parameter in the G(1, b) have the
prior distribution

b ∼ π2(b) =
1

B(α, β)
bα−1 (b+ 1)−(α+β), (2.15)

where α and β are positive parameters and B(α, β) = Γ(α)Γ(β)/Γ(α+β). Given
the data and b, the posterior distribution of the Poisson means is G(yi+1, b+1)
for i = 1, . . . , p. Using the results of Section 2.1.1 we then have that given b,
the Bayes solution under the c -Loss function with a G(1, b) prior on Θ is

δj(Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z
{E[θ−1

i |Y, b]}−1,
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where {E[θ−1
i |Y, b]}−1 = Yi/(b + 1). By the tower property of conditional

expectation

{E[θ−1
i |Y ]}−1 = {E[E[θ−1

i |Y, b] |Y ]}−1

= {E[Yi/(b+ 1) |Y ]}−1 = {E[(b+ 1) |Y ]}−1Yi.

Moreover, the joint distribution of Y and b is

f(y, b) =

p
∏

i=1

{
∫

Θ

1

Γ(yi + 1)
θyii e

−(b+1)θi dθi

}

π2(b)

=

{

bp
1

(b+ 1)yi+1

}

π2(b) = bp (b+ 1)−(z+p) π2(b).

Since this is the joint distribution, Bayes’ theorem states that the conditional
distribution of b given Y is proportional to bp (b + 1)−(z+p) π2(b). This shows
that b only depends on Yi through the sum Z =

∑p
i=1 Yi (Ghosh and Parsian,

1981, 283). It follows that E[(b + 1) |Y ] = E[(b + 1) |Z], and that the Bayes
estimator of θi, 1 ≤ i ≤ p is

δj(Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

Yi
E[b+ 1 |Z] . (2.16)

In order to find the conditional expectation in (2.16) it is convenient to first find
the normalizing constant K of the conditional distribution f(b | y) = K−1bp (b+
1)−(z+p) π2(b).

K =

∫ ∞

0

bp+α−1 (b+ 1)−(z+p+α+β) db =

∫ ∞

0

(

b

b+ 1

)p+α
1

b
(b+ 1)−(z+β) db

=

∫ 1

0

up+α 1− u

u
(1− u)z+β−2 du =

∫ 1

0

up+α−1 (1− u)z+β−1 du

= B(p+ α, z + β),

where I have used the change of variable u = b/(b+1). The expectation of b+1
given Z is then

E[b+ 1 |Z] = K−1

∫ ∞

0

bp+α−1 (b+ 1)−(z+p+α+β−1) db

= K−1

∫ ∞

0

(

b

b+ 1

)p+α−1

(b+ 1)−(z+β) db

= K−1

∫ 1

0

up+α−1 (1− u)z+β−2 du =
B(p+ α, z + β − 1)

B(p+ α, z + β)

=
Γ(z + β − 1)

Γ(z + β)

Γ(p+ α + β)

Γ(p+ α + β − 1)
=
p+ α + β + z − 1

z + β − 1
.

By this analysis I reach a conclusion that extends the results of Ghosh and Parsian
(1981) in a L1-setting, to the c -Loss function.
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Proposition 2.7.1. Assume that p > 2 + c and consider the family of prior
distributions in (2.15) where

0 < α ≤ p− 2− c

1 + c

and β > 0. Then the Bayes solution under the c -Loss function is minimax and
uniformly dominates the MLE, hence it is a member of Dc.

Proof. Inserting the expression for E[b+ 1 |Z] in (2.16) we obtain

δj(Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

z + β − 1

p+ α + β + z − 1
Yi. (2.17)

Recall that the estimators in Dc are of the form (1−ψ(Z)/(p− 1+(1+ c)Z))Yi
where ψ is non-decreasing and 0 ≤ ψ(z) ≤ 2(p − 1) for all z (cf. Corollary
2.3.3). By some algebra we obtain that for the Bayes solution we here consider

ψ(z) = p− 1 + (1 + c)z − (1 + c)(p− 1 + z)
z + β − 1

p+ α + β + z − 1

= (1 + c)
(p− 1 + z)(p+ α)

p− 1 + α + β + z
− c(p− 1).

This function is non-decreasing for all z ≥ 0. Moreover, we see that it is
bounded above by

sup
z≥0

ψ(z) = (1 + c)(p+ α) ≤ 2(p− 1),

since α ≤ (p − 2 − c)/(1 + c). This means that the class of Bayes solutions
in (2.17) where α satisfies the condition of the proposition, is minimax and
uniformly dominate the MLE.

In the following, my focus is shifted from a pure Bayes setting to the (para-
metric) empirical Bayes approach. In the context of the empirical Bayes ap-
proach one uses a family of prior distributions π(θi | b) and estimates b via
the marginal distribution of all the data m(y1, . . . , yp | b) (Carlin and Louis,
2009, 226). Above we saw that the joint distribution of Y1, . . . , Yp and b was
bp (b+1)−(z+p) π2(b). It follows that with no prior distribution on the parameter
b, the marginal distribution of all the data is proportional to bp (b + 1)−(z+p).
It is easily seen that this marginal distribution is a Negative binomial with
parameters p and q = (b+ 1)−1 (see Appendix A.1), that is

m(z | b) = Γ(z + p)

z! Γ(p)

(

1− 1

b+ 1

)p(
1

b+ 1

)z

=
Γ(z + p)

z! Γ(p)
(1− q)p qz.

An alternative to estimating b directly is to estimate q = (b+1)−1. This choice
is natural since q appears in the Bayes solution in (2.16). The MLE of q is
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z/(z + p), which is slightly biased towards underestimating q. An unbiased
estimator of q is z/(z + p− 1),

E
Z

Z + p− 1
=

∞
∑

z=0

z

z + p− 1

Γ(z + p)

Γ(z + 1)Γ(p)
(1− q)p qz

= q

∞
∑

z=0

Γ(z + p− 1)

Γ(z)Γ(p)
(1− q)p qz−1 = q.

Inserting the estimator q̂ = z/(p− 1 + z) of q = (b+ 1)−1 in the Bayes solution
in (2.16) we get

δebi (Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z
q̂ Yi =

(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

Z

p− 1 + Z
Yi

=

(

1− p− 1

p− 1 + (1 + c)Z

)

Yi = δc1(Y ).

These calculations show that the estimator δc1 of (2.9) that I derived in Section
2.3, is an empirical Bayes estimator. As a side note, it is interesting that the
argument for and the result of estimating (b + 1)−1 rather than b, parallels
that in a normal setting. In a normal-normal model, i.e. Xi | ξi ∼ N(ξ, 1) and
ξi | τ 2 ∼ N(0, τ 2), the Bayes estimator is (1 − 1/(τ 2 + 1))xi. Here the best
unbiased estimator of (τ 2 + 1)−1 is (p − 2)/||x||2, which inserted in the Bayes
estimator gives the James-Stein estimator (Robert, 2001, 485). Estimating τ 2

directly by the MLE does not yield the optimal James-Stein estimator.
Finally, I show that the estimator δc1 can be derived as a generalized Bayes

estimator. Reparametrize the Poisson means (θ1, . . . , θp) = (α1λ, . . . , αpλ), and
assume that

(α1, . . . , αp) ∼
Γ(
∑p

i=1 ai)
∏p

i=1 Γ(ai)
αa1−1
1 · · ·αap−1

p ,

where
∑p

i=1 αi = 1 and ai > 0 for all i. That is, (α1, . . . , αp) is Dirichlet dis-
tributed with parameters (a1, . . . , ap). In the remainder I define a0 =

∑p
i=1 ai.

In addition, let the parameter λ have the prior distribution π(λ). From Lemma
A.1.1 concerning the relation between the Poisson and the Multinomial distri-
butions, we have that

P (Y1, . . . , Yp |Z) =
P ({Y1, . . . , Yp} ∩ {Z})

P (Z)
=
P (Y1, . . . , Yp)

P (Z)
,

where P (Y1, . . . , Yp |Z) is shown to be the Multinomial distribution with cell
probabilities θ1/γ, . . . , θp/γ. Note that with the parametrization I work with
here, namely θi = αiλ, the cell probabilities are equal to αi. Moreover, the
sum Z =

∑p
i=1 Yi is distributed Poisson with mean

∑p
i=1 αiλ = λ. Using the
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factorization of the likelihood found above we get that the posterior distribution
of θ1, . . . , θp is

π(θ1, . . . , θp |Y ) ∝ P (Y1, . . . , Yp |Z)P (Z)Dirichlet(a1 . . . , ap) π(λ)

=
z!

y1! · · · yp!
αa1+y1−1
1 · · · αap+yp−1

p λze−λ π(λ)

∝ Dirichlet(a1 + y1, . . . , ap + yp)G(z + 1, 1) π(λ),

(2.18)

which also shows that (α1, . . . , αp) and λ are independent. With this parametriza-
tion the Bayes solution under the c -Loss function is

δBj (Y ) =
1 + c

1 + cE[λ−1 |Y ]
∑p

i=1{E[θ−1
i |Y ]}−1

{E[θ−1
j |Y ]}−1. (2.19)

With respect to the posterior distribution in (2.18), the expectation E[θ−1
j |Y ]

in this expression is given by

E[θ−1
j |Y ] =

∫ ∞

0

∫

S

1

αjλ
π(θ1, . . . , θp |Y ) dα dλ

=

∫ ∞

0

∫

S

1

αjλ

{

Γ(a0 + z)
∏p

i=1 Γ(ai + yi)

p
∏

i=1

αai+yi−1
i

}

G(z + 1, 1)π(λ) dα dλ

=

∫ 1

0

G(z + 1, 1)π(λ) dλ

∫

S

αj
Γ(a0 + z)

∏p
i=1 Γ(ai + yi)

p
∏

i=1

αai+yi−1
i dα.

Here the expectation of αj over the simplex S can be computed explicitly,

E[αj |Y ] =

∫

S

Γ(a0 + z)
∏p

i=1 Γ(ai + yi)
α
aj+yj−2
j

∏

i 6=j

αai+yi−1
i dα

=
Γ(aj + yj − 1)

Γ(aj + yj)

∫

S

Γ(a0 + z)

Γ(aj + yj − 1)
∏

i 6=j Γ(ai + yi)
α
aj+yj−2
j

∏

i 6=j

αai+yi−1
i dα

=
Γ(aj + yj − 1)Γ(a0 + z)

Γ(aj + yj)Γ(a0 + z − 1)

×
∫

S

Γ(a0 + z − 1)

Γ(aj + yj − 1)
∏

i 6=j Γ(ai + yi)
α
aj+yj−2
j

∏

i 6=j

αai+yi−1
i dα

=
Γ(aj + yj − 1)Γ(a0 + z)

Γ(aj + yj)Γ(a0 + z − 1)
=

a0 + z − 1

aj + yj − 1
.

Inserting this in the posterior expectation of θ−1
j gives

E[θ−1
j |Y ] =

a0 + z − 1

aj + yj − 1

∫ ∞

0

1

λ
G(z + 1, 1)π(λ) dλ,
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for j = 1, . . . , p. Let λ have the non-informative prior distribution that is
uniform on the positive real line, π(λ) ∝ I(λ > 0) where I(·) is the indicator
function. Despite this being an improper prior, the posterior distribution of λ
given Z is not improper. We have that

E[λ−1 |Z] =
∫ ∞

0

1

λ
G(z + 1, 1)I(λ > 0) dλ =

1

z
,

which gives

E[θ−1
j |Y ] =

a0 + z − 1

aj + yj − 1

1

z
.

In addition, the sum in (2.19) equals

p
∑

i=1

{E[θ−1
i |Y ]}−1 = z

p
∑

i=1

aj + yj − 1

a0 + z − 1
=

(a0 + z − p)z

a0 + z − 1
.

Now, let α1, . . . , αp be uniformly distributed over the simplex S. This is achieved
by setting a1 = · · · = ap = 1. Then the sum a0 = p. In summary, with λ
uniform over R+ and the (α1, . . . , αp) uniform on the simplex S = [0, 1]p, the
Bayes solution under the c -Loss function equals

δBj (Y ) =
1 + c

1 + c 1
Z

Z2

p−1+Z

Yj
p− 1 + Z

=

(

1− p− 1

p− 1 + (1 + c)Z

)

Yj = δc1(Y ).

This means that in addition to being an empirical Bayes estimator, the new
estimator δc1 is also a generalized Bayes estimator.

2.8 Remark I: Estimation of Multinomial prob-

abilities

In the preceeding sections I have several times used the result that (Y1, . . . , Yp)
given Z =

∑p
i=1 Yi is Multinomial with cell probabilities θ1/γ, . . . , θp/γ. We

write
(Y1, . . . , Yp) |Z ∼ Multi(Z, θ1/γ, . . . , θp/γ).

The estimator δc1 yields an estimator of λi = θi/γ, 1 ≤ i ≤ p, namely

δc1/Z =

(

1− p− 1

p− 1 + (1 + c)Z

)

Yi
Z
.

Assume that the loss in estimating λi is the natural counterpart of the c -Loss
function,

∑p
i=1 λ

−1
i (δi − λi)

2 + c (
∑p

i=1 δi − 1)
2
, since

∑p
i=1 λi = 1. Moreover,

assume that n is the known number of independent trials and Yi equals the
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number of outcomes of type i, so
∑p

i=1 Yi = n. We are then in a Multino-
mial situation with p categories. From the heuristic argument above the new
estimator should be

δcM =

(

1− p− 1

p− 1 + (1 + c)n

)

Y

n
.

Using the function φ(n) = (p−1)/(p−1+(1+c)n) the difference in risk between
δcM and the usual estimator of Multinomial cell probabilities is

D = (φ2(n)− 2φ(n))

p
∑

i=1

1

n2λi
Eλ[Y

2
i ] + 2φ(n) + cφ2(n)

= (φ2(n)− 2φ(n))
p− 1 + n

n
+ 2φ(n) + cφ2(n)

= φ2(n)
p− 1 + (1 + c)n

n
− 2φ(n)

p− 1

n
=

(p− 1)2 − 2(p− 1)2

{p− 1 + (1 + c)n}n ≤ 0

for all p ≥ 2. Interestingly, this constant risk estimator dominates the MLE
Yi/n, 1 ≤ i ≤ p even though it underestimates the total probability, that is

δcM1 + · · ·+ δcMp < 1.

If we set c = 0 in δcM we get an estimator that uniformly dominates the
MLE under L1 (Clevenson and Zidek, 1975, 703). Under the squared error
loss function there exists no estimator that uniformly improves on the MLE
(Fienberg and Holland, 1973, 684).

2.9 Remark II: A squared error c -Loss function

In the case of the squared error loss function L0, the analogous extension of the
c -Loss function is

Lc∗(δ, θ) =

p
∑

i=1

(δi − θi)
2 + c∗

(

p
∑

i=1

δi −
p
∑

i=1

θi

)2

. (2.20)

This loss function can be expressed as the quadratic form

Lc∗(δ, θ) = (δ − θ)tA(δ − θ),

where θ = (θ1, . . . , θp)
t and δ = (δ1, . . . , δp)

t are p× 1 vectors of parameters and
estimators respectively, while A is a p× p matrix of the form

A =







1 + c∗ · · · c∗

...
. . .

...
c∗ · · · 1 + c∗






.
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The matrix A is symmetric A = At, from which it follows that A is orthogonally
diagonalizable. That is, there exists an orthogonal matrix Q (which can be
normalized and made into an orthonormal matrix) and a diagonal matrix Λ
such that A = QΛQt (see e.g. Theorem 2 in Lay (2012, 396)). The rows of Q
are the orthonormal eigenvectors ui, 1 ≤ i ≤ p of A and Λ has the eigenvalues
of A on its diagonal and zero elsewhere. From this decomposition of A we get
the following well known inequality that I will use below

xtAx = xtQΛQtx = (Qtx)tΛ(Qtx)

=
∑

i

λi(u
t
ixi)

2 ≤ λmax

∑

i

(utixi)
2 = λmax||x||2, (2.21)

where λi are the eigenvalues of A and λmax = max1≤i≤p λi. We will consider
estimators of the form

δ∗(Y ) = Y + f(Y ),

where fi(Y ) = (f1(Y ), . . . , fp(Y )) satisfies the conditions in Lemma 2.2.1. The
difference in risk between Y + f(Y ) and the MLE under L0 is

Eθ [L0(δ
∗, θ)− L0(Y, θ)]

= Eθ

p
∑

i=1

{

f 2
i (Y ) + fi(Y )Yi − fi(Y )θi

}

= Eθ

p
∑

i=1

{

f 2
i (Y ) + Yi (fi(Y )− fi(Y − ei))

}

= EθD(f(Y )),

where ei is the p× 1 vector with i’th component equal to one a zero elsewhere.
The function f that ensures that D(Y ) ≤ 0 for all Y is the function of Peng
(1975). This function was defined in (1.3) as fi(Y ) = (N0(Y )−2)+hi(Yi)/D(Y ).
The difference in risk between δ∗(Y ) = Y + f(Y ) and δo(Y ) = Y under the loss
function Lc∗ in (2.20) is then

EθDc∗(f(Y )) = Eθ

[

(Y + f(Y )− θ)tA(Y + f(Y )− θ)− (Y − θ)tA(Y − θ)
]

≤ λmaxEθ

[

||Y + f(Y )− θ||2 − ||Y − θ||2
]

= λmaxEθD(f(Y )),

where I have used the inequality in (2.21). The function f that ensures that
Dc∗(f(y)) ≤ 0 for all y must then be that of Peng (1975) divided by the largest
eigenvalue λmax, that is (N(Y )− 2)+hi(Yi)/(λmaxD(Y )).

Notice that we might write A as Ip+ c
∗1p1

t
p where 1p is the p×1 vector with

only ones. If v = (v1, . . . , vp)
t is an eigenvector of the matrix A then

Av − λ v = (Ip + c∗1p1
t
p)v − λ v = 0,
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which on matrix form is






(1− λ)v1
...

(1− λ)vp






+ c∗







v1 + v2 · · ·+ vp
...

v1 + v2 · · ·+ vp






= 0.

From this we see that either the eigenvectors are such that v1 + · · ·+ vp = 0 in
which case the eigenvalue must be one. The other possibility is that v1 = v2 =
· · · = vp−1 = vp in which case the eigenvalue is 1 + p c∗. This shows that the
largest eigenvalue of A is 1 + pc∗. In conclusion, the estimator

δP
∗

i (Y ) = Yi −
(N(Y )− 2)+

(1 + pc∗)D(Y )
hi(Yi),

uniformly dominates the MLE when loss is given by Lc∗ in (2.20).



3

Shrinking towards a non-zero

point

Except for the Bayes estimators in Section 2.1 all the estimators considered
so far shrink the observations towards zero, the boundary of the parameter
space. Consequently, substantial savings in risk are only obtained when the
θi, 1 ≤ i ≤ p are all close to zero. As mentioned in the introduction, an
important question is whether there are estimators that improve on the MLE
that shrink the observations towards some other point than zero. This question
has been answered by the affirmative by Tsui (1981), Hudson and Tsui (1981)
and Ghosh et al. (1983). The impetus for developing such estimators is that
they should give larger savings in risk when the θi are large, and at the same
time maintaining risk dominance relative to the MLE. In Section 3.1 and 3.2 I
present some of these estimators (with respect to L0 and L1 respectively) and
compare them to estimators where the requirement of uniform dominance is
relaxed.

3.1 Squared error loss

Tsui (1981), Hudson and Tsui (1981) and Ghosh et al. (1983) derive estimators
that shrink the observations towards a pre-specified point or some point gener-
ated by the data, while maintaining uniform risk dominance compared to the
MLE. These estimators build on the ideas of Peng (1975) and can be viewed
as extensions of the estimator δP in (1.3). The proofs of risk dominance of
these estimators are similar to that of δP albeit slightly more involved (see e.g.
Ghosh et al. (1983)). In Appendix A.6 I prove the risk dominance of Peng’s
estimator.

The first estimator I present is due to Ghosh et al. (1983). It shrinks the
MLE towards a prior guess ν = (ν1, . . . , νp) in Θ. Let N(Y ) = #{i : Yi > νi)
count the number of Yi bigger than νi, hj =

∑j
k=1 k

−1, and D(Y ) =
∑p

j=1 di(Yi)

43
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where

di(Yi) =

{

{h(Yi)− h(νi)}2 + 1
2
{3h(νi)− 2}+ Yi < νi

{h(Yi)− h(νi)}{h(Yi + 1)− h(νi)} Yi ≥ νi.

Then the estimator δG1 whose i’th component is given by

δG1
i (Y ) = Yi −

(N(Y )− 2)+

D(Y )
(hi(Yi)− h(νi)), (3.1)

shrinks Yi towards the prior guess νi of θi for each i = 1, . . . , p. δG1
i dominates

the MLE under squared error loss when p ≥ 3.
Now, define N(Y ) = #{i : Yi > Y(1)) and Hi(Y ) = h(Yi) − h(Y(1)) with h

as above and Y(1) = min1≤i≤p Yi. Let D(Y ) =
∑p

i=1Hi(Y )H(Y + ei). Then the
estimator given

δG2
i (Y ) = Yi −

(N(Y )− 2)+

D(Y )
Hi(Y ) (3.2)

dominates δo under L0 when p ≥ 4. Finally, the estimator

δG3
i (Y ) = Yi −

(N(Y )− 2)+

D(Y )
{h(Yi)− h(median(Y )}, (3.3)

where the functions are as in δG1 with the νi replaced by median(Y ), dominates
the MLE when p ≥ 6. The estimators δG1, δG2 and δG3 all dominate the
MLE under L0 (given that p is sufficiently large), but as we will see below
(cf. Figure 3.1), the reductions in risk of these estimators are not particularly
impressive. These rather modest reductions in risk makes it tempting to instead
consider estimators that yield substantial savings in risk in plausible regions of
the parameter space, but that fail to be uniformly dominating. As we saw
in the introduction, Berger (1983, 368) proposed that the aim of uniform risk
domination might be too strict. In the same vein, Morris (1983a) thinks that
“statisticians need simple rules that shift towards a good center (near the mean
of the data)”. Following this advice, I therefore develop an estimator that
shrinks the observations towards the mean of the data, while at the same time
insuring against overly bad performance in situations where the θi have little
or nothing in common.

To gain insight into the construction of this estimator, consider the Bayes
estimator of θi, 1 ≤ i ≤ p with a Gamma prior with mean µ = a/b and variance
a/b2,

δBi = µ
b

b+ 1
+

(

1− b

b+ 1

)

yi. (3.4)

Recall that what we are competing against is the risk of the MLE, which is
R(Y, θ) = pθ̄. Defining w = b/(b + 1) the risk of the Bayes estimator can be
written

R(δB, θ) = pθ̄(1− w)2 + w2

p
∑

i=1

(µ− θi)
2 . (3.5)
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The first term in this expression is always less than pθ̄, and as w increases,
expressing more confidence in the prior, the term diminishes. In addition, the
closer the prior mean µ is to θi, 1 ≤ i ≤ p the smaller is the second term. From
this second term it is also clear that there is little to gain from using the Bayes
estimator if we a priori believe that the Poisson means are very heterogenous,
simply because one guess µ at p different θi is doomed to be unsatisfactory. I
desire to find an estimator that acts like (3.4) (shrinks to some common value),
but that does not rely on prior information and does not lead to disastrous
results if the θi are too spread out. The natural place to start is by replacing
µ in the Bayes estimator by the empirical mean. Consider the estimator where
the i’th component takes the form

δi = Bȳ + (1− B)yi. (3.6)

The task is then to find a weight function B that is optimal in terms of risk.
Using that EθYiȲ = p−1Eθ[E[YiZ |Z]] = p−1θi(1 + γ), then

Eθ(Yi − Ȳ )(Yi − θi) = θi − p−1θi

and
Eθ(Yi − Ȳ )2 = θi + θ2i − 2p−1θi(1 + γ) + p−2(γ + γ2).

Under squared error loss the risk of this estimator is

R(δ, θ) = Eθ

p
∑

i=1

((Yi − θi)− B(Yi − Ȳ ))2

=

p
∑

i=1

Eθ

{

(Yi − θi)
2 − 2B(Yi − Ȳ )(Yi − θi) + B2(Yi − Ȳ )2

}

= γ − 2B

p
∑

i=1

Eθ(Yi − Ȳ )(Yi − θi) + B2

p
∑

i=1

Eθ(Yi − Ȳ )2

= pθ̄ − 2B(p− 1)θ̄ + B2(p− 1)θ̄ + B2(p− 1)S2
θ ,

where S2
θ = (p−1)−1

∑p
i=1(θi− θ̄)2 and θ̄ = p−1

∑p
i=1 θi. In terms of minimizing

the risk the optimal B is then

B =
θ̄

S2
θ + θ̄

. (3.7)

In this expression for B we have the unknown quantities θ̄ and S2
θ . An unbiased

estimator of θ̄ is Ȳ . More care must be taken when estimating S2
θ . Define

S2
yy = (p− 1)−1

∑

i(yi − ȳ)2, then Eθ[S
2
yy − Ȳ ] = S2

θ , which suggests estimating
the unknown variance of the parameters by (S2

yy − ȳ)+ = max{S2
yy − ȳ, 0} and

replacing the unknown variance in (3.7) by this unbiased estimate. This yields
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B̂ = ȳ/((S2
yy − ȳ)+ + ȳ) as an estimator of the optimal B. Thereby, we obtain

the estimator

δmi (Y ) =
ȳ

(S2
yy − ȳ)+ + ȳ

ȳ +

(

1− ȳ

(S2
yy − ȳ)+ + ȳ

)

yi. (3.8)

This estimator has some interesting properties. First, it is almost equal to the
empirical Bayes estimator. Exploiting the Negative binomial marginal distri-
bution of the data the parameters a and b can be estimated by the method of
moments. The method of moments estimators of a and b are bȳ and ȳ/((p −
1)/pS2

yy − ȳ) respectively. Since b cannot be negative we consider the positive

part version of this estimator and set b̂mom = ȳ/((p − 1)/pS2
yy − ȳ)+ Conse-

quently, the empirical Bayes estimator is of the form (3.6) where B is estimated
by

B̂eb =
ȳ

(p−1
p
S2
yy − ȳ)+ + ȳ

.

Thus, we see that the two estimators of B are indistinguishable for sufficiently
large p. Second, δm seems to be closely related to the empirical Bayes estimator
in a normal-normal model (see e.g. Morris (1983b)). ConsiderXi | ξi ∼ N(ξi, σ

2)
independent with σ known and ξi ∼ N(µ, τ 2) independent. Then the posterior
distribution ξi | x is N(ξ∗, σ2(1− A)) where A = σ2/(σ2 + τ 2) and

ξ∗ = Aµ+ (1− A)x.

Via the marginal distribution of the data we find the ML-estimates of (µ, τ),
which are µ̂ = x̄ = p−1

∑p
i=1 xi and τ̂

2 = (s2 − σ2)+ = max{0, s2 − σ2}. Then
the empirical Bayes estimator in the normal-normal model with σ known is

δebi =
σ2

σ2 + (S2
xx − σ2)+

x̄+

(

1− σ2

σ2 + (S2
xx − σ2)+

)

xi.

As with the simultaneous estimator of Poisson means δm in (3.8), the target of
shrinkage for δebi is the mean of the observations. The amount of shrinkage is a
function of how much the empirical variance S2

xx exceeds σ2 (Carlin and Louis,
2009, 228). If S2

xx ≤ σ2 the estimator δebi is equal to the MLE of ξ in a model
where the observations are independent and identically distributed from a nor-
mal distribution with mean ξ. The simultaneous estimator of Poisson means
δm shares this property, because if Y1, . . . , Yp are independent and identically
distributed Poisson with mean θ, then Eθ[S

2
yy − ȳ] = 0 and the estimator δm

is equal to the MLE in the one-dimensional case p = 1. Therefore, the term
(S2

yy − ȳ)+ can be viewed as a measure of the amount of heterogeneity in the
data, that is how far the Poisson means θ1, . . . , θp are from being equal. As the
heterogeneity of the data increases the shrinkage towards the mean decreases
and the estimates are pushed towards the observations.
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Figure 3.1: Savings in risk (R(Y, θ) − R(δ, θ))/R(Y, θ) × 100 under L0 for the
estimators presented in Section 3.1. The savings in risk are simulated for six
different intervals with values of p equal to 5, 10 and 15. Estimates based on
10000 simulations.

Hudson (1985) and Ghosh et al. (1983) develop an estimator that instead
of shrinking towards the mean of the data, shrinks towards the geometric mean
of the data. They observe that the function h(Yi) =

∑Yi

k=1 k
−1 used in (1.3) is

close to log Yi when Yi is sufficiently large, and that the log transform of Poisson
data is often seen as approximately normally distributed (Ghosh et al., 1983,
355). They therefore propose a Lindley type estimator (cf. Equation (1.5)) for
the Poisson case

δLpi (Y ) = Yi −
(N(Y )− 2)+

∑p
j=1(h(Yj)− h̄)2

(h(Yi)− h̄),

where N(Y ) = #{i : h(Xi) > h̄} and h̄ = p−1
∑p

i=1 h(Yi). Since h(Yi) ≈
log Yi, we have that h̄ ≈ log (

∏p
i=1 Yi)

1/p
, which is the geometric mean of the

observations.
Figure 3.1 provides a graphical summary of the simulation results for the

six estimators presented in this section for three different values of p and six
different intervals for the unknown parameters.

The estimators δLp and δm perform better than the four other estimators
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for all the intervals. Not surprisingly, when θi ∈ (8, 12) and θi ∈ (12, 16) these
estimators outperform the three others, with savings in risk of about 50%.
Interestingly, it seems that the new estimator δm is much less sensible to the
sample size p than the Lindley type estimator δLp. For the intervals (8, 12) and
(12, 16) we see that the two estimators perform about equally well for p = 10
and p = 15, but that for p = 5 the performance of δm is superior to that of δLp.
To gain insight into this phenomenon, I have compared the variance of the two
estimators when p = 5. In the box plots in Figure 3.2 we see that the means
of the estimates of the Lindley type estimator is closer to the true θ1, . . . , θ5,
but that δLp shows somewhat higher variability than δm. As a consequence, the
estimated savings in risk from using δLp compared to the MLE is 14.74%, while
that of δm is much higher at 62.68%. The findings of these simulations give
credence to the statement of Berger (1983) concerning uniform risk dominance
being a perhaps too restrictive criterion. Since the non-dominating estimators
δLp and δm perform better or equally well for all the intervals, these simulations
indicate that the θi must have very little in common for it to be dangerous
to use non-dominating estimators. Moreover, as we see from Figure 3.1, the
potential gains from using non-dominating estimators are huge.

5
10

15
20

delta^{m}

5
10

15
20

delta^{Lp}

Figure 3.2: True values of the parameters are θ ∈ (8, 12) with p = 5. The box
plots indicate the variance of δLp and δm based on 104 simulations. Estimates
based on 10000 simulations (the same simulations as in Figure 3.1).
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3.2 Weighted squared error loss

Estimators that shrink the MLE towards some non-zero point in the parameter
space under the weighted squared error loss function L1 are not as intensively
studied as their L0-counterparts presented in Section 3.1. One reason for this
is that due to the attention paid to small values of θi under L1, such estimators
are harder to find than under L0. Ghosh et al. (1983, 357) propose an estima-
tor that shrinks the observations towards Y(1) = min1≤i≤p Yi instead of zero.
This shift in point of attraction from zero to a possibly non-zero point is not
detrimental to the risk function optimality. Their estimator is defined by

δGm
i (Y ) = Yi −

(N(Y )− 1)+
∑p

j=1(Yj − Y(1))
(Yi − Y(1)),

where N(Y ) counts the number of observations strictly bigger than Y(1). As
seen from the simulations in Table 3.1 much can be gained from shrinking
towards Y(1) ≥ 0 instead of automatically shrinking towards zero when the
Poisson means are of a certain size. With the possibility of small or zero counts,
however, the gains from using δGm compared to δCZ are negligible.

Under L1 it seems to be difficult to find improved estimators that shrink
down towards and up towards a common point ν, i.e. estimators δ that have
the property that if Yi ≤ ν then δi ≥ Yi and if Yi ≥ ν then δi ≤ Yi. Even
the Bayes estimator under L1 takes this into account. Consider θi, 1 ≤ i ≤ p
independent G(a, b). Then the Bayes estimator under L1 is

E[θ−1
i | data] = a− 1

b

b

b+ 1
+

(

1− b

b+ 1

)

yi. (3.9)

This estimator shrinks towards (a− 1)/b instead of the mean a/b of the prior,
reflecting the great deference paid to small counts under the weighted squared
error loss function. The form of (3.9) proposes a slight modification of δm for
the weighted squared error loss function. Since the weight b/(b+1) is in a sense
estimated by B̂ as given in (3.8), (B̂ − 1)/B̂ is an estimator of 1/b. This gives
a shrink-to-mean estimator suitably adjusted to the L1 loss function, namely

δm1(Y ) =

{

B̂ ȳ + (1− B̂) (yi − 1), if yi ≥ 1
0 if yi = 0 .

(3.10)

As with δm, this estimator shrinks towards the mean of the observations, but
the observations have to be somewhat bigger in order to be pulled upwards to
the empirical mean. In other words, fewer observations are pulled upwards.

The estimator I now develop acknowledges the difficulty of pulling the MLE
up to a common point, and therefore only shrinks observations above a certain
point. Such a scheme is relevant in situations where there exist hypotheses about



50 3. SHRINKING TOWARDS A NON-ZERO POINT
0

20
40

60
80

delta^{CZ}

%
 s

av
in

gs
 in

 r
is

k

(0,4) (0,8) (8,12) (12,16) (0,12) (4,16)

5

1015

51015

51015
51015 5

1015
51015

0
20

40
60

80

delta^{Gm}

%
 s

av
in

gs
 in

 r
is

k

(0,4) (0,8) (8,12) (12,16) (0,12) (4,16)

5

1015

51015 51015
51015 5

1015
5

1015

0
20

40
60

80

delta^{nu}

%
 s

av
in

gs
 in

 r
is

k

(0,4) (0,8) (8,12) (12,16) (0,12) (4,16)

5

1015

51015 5
1015

5
1015

510
15

5
1015

0
20

40
60

80

delta^{m1}

%
 s

av
in

gs
 in

 r
is

k

(0,4) (0,8) (8,12) (12,16) (0,12) (4,16)

1015

5
15

5
1015

5

1015

5

10
15

Figure 3.3: Savings in risk (R(Y, θ) − R(δ, θ))/R(Y, θ) × 100 (under L1) for
the four estimators presented in Section 3.2. The simulation procedure is as
described in Section 2.4, with estimates based on 200000 simulations (2000
simulation of y times 100 simulations of θ).

subsets of the Poisson parameters, where this subset is hypothesized to consist
of parameters that are larger than the remaining parameteres. In effect, the
new estimator shrinks a subset of the observations towards some predetermined
point ν, while the remaining are estimated by the MLE.

Proposition 3.2.1. Define the set Yν = {Yi : Yi ≥ ν} with ν a non-negative
integer, pν =

∑p
i=1 I(Yi ∈ Yν) where I(·) is the indicator function, and let

Zν =
∑p

i=1 Yi I(Yi ∈ Yν). The estimator δνi = Yi + fi(Y ) where f satisfies the
conditions of Lemma 2.2.1 is defined by

fi(Y ) = −I(Yi > ν)
ψ(Z)(Yi − ν)

pν − 1 + Zν − pνν
, (3.11)

where ψ is a non-decreasing function such that 0 ≤ ψ(z) ≤ 2(pν − 1) for all
z ≥ 0. If pν ≥ 2 and at least one Yi is strictly bigger than ν, then δν dominates
δo(Y ) = Y under L0.

Proof. Let ∆if(Y ) = f(Y )− f(Y − ei), then using Lemma 2.2.1 we have that
the difference in risk is

R(δν , θ)−R(Y, θ) = EθD(Y ),
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where D(Y ) is independent of the parameters. Moreover, D(Y ) satisfies

D(Y ) =

p
∑

i=1

{

f 2
i (Y + ei)

Yi + 1
+ 2∆ifi(Y + ei)

}

=

p
∑

i=1

I(Yi + 1 > ν)
ψ2(Z + 1)(Yi + 1− ν)2

(pν + Zν − pνν)2
1

Yi + 1

− 2

p
∑

i=1

∆iI(Yi + 1 > ν)
ψ(Z + 1)(Yi + 1− ν)

pν − 1 + Zν + 1− pνν

≤
p
∑

i=1

I(Yi + 1 > ν)

{

ψ2(Z + 1)(Yi + 1− ν)2

(pν + Zν − pνν)2
1

Yi + 1

− 2∆i
ψ(Z + 1)(Yi + 1− ν)

pν − 1 + Zν + 1− pνν

}

=

pν
∑

j=1

{

ψ2(Z + 1)(Yj + 1− ν)2

(pν + Zν − pνν)2
1

Yj + 1
− 2∆j

ψ(Z + 1)(Yj + 1− ν)

pν − 1 + Zν + 1− pνν

}

≤
pν
∑

j=1

{

ψ2(Z + 1)(Yj + 1− ν)

(pν + Zν − pνν)2
− 2∆j

ψ(Z + 1)(Yj + 1− ν)

pν − 1 + Zν + 1− pνν

}

=
ψ2(Z + 1)

pν + Zν − pνν
− 2ψ(Z + 1) + 2

ψ(Z)(Zν − pνν)

pν − 1 + Zν − pνν

≤ ψ(Z + 1)

pν + Zν − pνν
{ψ(Z + 1)− 2(pν + Zν − pνν)

+2
(Zν − pνν)(pν + Zν − pνν)

pν − 1 + Zν − pνν

}

= K(Z) {(Zν − pν)[ψ(Z + 1)− 2(pν − 1)]

+(pν − 1)[ψ(Z + 1)− 2pν ]} ≤ 0,

where

K(Z) =
ψ(Z + 1)

(pν + Zν − pνν)(pν − 1 + Zν − pνν)
.

The second inequality is obtained because for all Yj ∈ Yν we have that Yj +1 >
Yj + 1 − ν > 0. For the third inequality I have used that the function ψ is
non-decreasing.

So for any point ν for which pν ≥ 2 we have an estimator that uniformly
dominates the MLE. Figure 3.3 gives a visual summary of the simulations com-
paring the estimated risk performances of δCZ and δGm with that of the new
estimators δm1 and δν . In these simulations ν was set to one unit below the
empirical median and ψ to pν − 1. On a side note, it is likely that with a slight
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(0, 4) (0, 8) (8, 12)
p = 5 p = 10 p = 15 p = 5 p = 10 p = 15 p = 5 p = 10 p = 15

δCZ 22.49 32.37 32.06 17.28 15.67 18.53 5.53 7.32 8.22
δGm 16.67 30.97 30.99 16.96 14.97 17.87 17.12 20.18 20.07
δν 19.08 28.95 29.29 15.17 17.77 20.68 17.48 21.86 24.30
δm1 -32.20 25.50 22.44 -11.34 -31.3 -5.22 69.58 77.00 78.87

(12, 16) (0, 12) (4, 16)
p = 5 p = 10 p = 15 p = 5 p = 10 p = 15 p = 5 p = 10 p = 15

δCZ 4.44 5.55 6.14 6.09 10.06 13.02 6.00 7.46 8.05
δGm 15.30 18.27 18.23 16.80 9.33 12.56 8.07 12.08 12.43
δν 15.42 19.77 21.81 16.97 14.22 17.94 7.97 11.99 14.02
δm1 67.38 79.71 81.25 61.20 -45.78 -26.74 -14.08 15.28 22.62

Table 3.1: Percentage improvement in risk compared to the MLE under L1 of
the four estimators presented in Section 3.2. These are the same simulations as
in Figure 3.3.

modification, the estimator δν is a good estimator under c -Loss. A conjecture
is that the estimator Yi + fi(Y ), with

fi(Y ) = −I(Yi > ν)
(pν − 1)(Yi − ν)

pν − 1 + (1 + c)(Zν − pνν)
,

dominates the MLE under the c -Loss function.

Table 3.1 provides a precise summary of the percentage savings in risk com-
pared to the MLE. Two striking features of Table 3.1 are the solid performance
of the estimator δν of Proposition 3.2.1, and the erratic performance of δm1 of
(3.10). The estimator δν appears insensitive to differing sizes of the samples p
and to differing sizes of the parameters. In view of these simulations it appears
hazardous to use δm1 if some of the parameters are thought to be small, while
for the intervals θi ∈ (8, 12) and θi ∈ (12, 16), the risk performance of δm1 is
impressive.

3.3 Treating it as normal

As we have seen, the issue of shrinking towards some other point than the origin
only arises when the Poisson parameters are thought to be of a certain size. If
the Poisson means are thought to be small, there is no reason to shrink anywhere
else than zero. By the central limit theorem the Poisson random variable Yi
with mean θi is approximately normal with mean and variance θi. One way to
see this is to assume that θi is a natural number and think of Yi as the sum of
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θi ∈ (0, 8) θi ∈ (4, 8)
Poisson Normal Poisson Normal

δCZ δm1 δJS δL δCZ δm1 δJS δL

L1 19.44 3.69 15.86 -1105.35 13.31 68.55 10.51 44.13
δP δm δJS δL δP δm δJS δL

L0 4.14 35.31 13.74 -2.67 2.48 72.70 10.35 44.54

Table 3.2: Normal- and Poisson theory estimators on transformed and non-
transformed Poisson data with p = 31. Estimated percentage savings in risk
under L0 and L1 based on 104 simulations.

θi Poisson random variables with mean one. Then,
(

∑θi
j=1 Y

∗
j − θi

)

√
θi

d−→ N(0, 1),

where Y ∗
j ∼ P(1) (Casella and Berger, 2002, 237). In this section I concentrate

on uses of James-Stein type estimators in the Poisson setting. Recall that
the prototypical example of the James-Stein estimator pertains to situations
where X1, . . . , Xp are normal with means ξi, 1 ≤ i ≤ p and equal variance
(Efron and Morris, 1975). Using the Delta method we have that since Yi ≈
N(θi, θi), the random variable Xi = 2

√
Y i is approximately normal with mean

ξi = 2
√
θi and unit variance. For this reason it is tempting to apply the variance

stabilizing transformation to the Poisson observations, treat Xi = 2
√
Y i as

normal, use a James-Stein type estimator and transform back.
In doing so it is illuminating to note the resemblance of δCZ to the James-

Stein estimator in (1.2). If the variance stabilizing transformation 2
√
y has been

applied, then transforming back to the Poisson world we have that

1

4

(

δJSi
)2

=
1

4

(

1− b
∑p

i=1X
2
i

)2

X2
i =

(

1− 4b

Z

)2

Yi.

Since Z has a non-zero probability of being zero, it is reasonable to add some
constant to the denominator above (Tsui and Press, 1982, 96). Hence, we have
an estimator that looks very much like that of Clevenson and Zidek (1975).
Despite this being an approximative argument, the similarity of form between
normal and Poisson shrinkage estimators indicates that James-Stein type es-
timators might be very effective after a variance stabilizing transformation of
the Poisson counts (Hudson, 1985, 248). A quick simulation study corroborates
this speculation. In the simulation study reported in Table 3.2, I compare Pois-
son theory estimators with two James-Stein type estimators, δJS in (1.2) with
b = p− 2 and δL in (1.5), under both L0 and L1.

Under the weighted squared error loss function L1 we see that in the first
interval the performance of the James-Stein estimator almost matches that of
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δCZ . This is probably due to the fact that for the largest θi ∈ (0, 8) the normal
approximation works reasonably well. The new estimator δm1 of (3.10) barely
beats the MLE when the θi are in (0, 8). In this interval the performance of
the Lindley-estimator is extremely bad. Most likely, δL is penalized heavily
for pulling too many observations up towards the empirical mean and thereby
overestimating small means.

When the parameter interval is (4, 8), on the other hand, both δm1 and the
Lindley-estimator outperform the two shrink-to-zero estimators. In this interval
overestimation is not as severly penalized simply because the means are not that
small. The performance of the new estimator δm1 is outstanding, resulting in a
risk reduction of 68.55% compared to the MLE. But, as seen above (cf. Table
3.1), it is very risky to use this estimator if one suspects some of the θi to be
small.

Under the squared error loss function L0 the James-Stein estimator shows
better performance than the estimator of Peng (1975) when θi ∈ (0, 8). As a
consequence of not severly penalizing overestimation of small parameters (using
L0), the best risk performance for θi ∈ (0, 8) is achieved by the shrink-to-mean
estimator δm of (3.8), with a reduction in risk of 35.31% relative to the MLE. For
the second interval θi ∈ (4, 8), δJS once again beats the estimator of Peng. The
two estimators δm and δL show very solid risk performance, beating the two
shrink-to-zero estimators by large amounts. For θi ∈ (4, 8), the performance
of δm is truly remarkable. The reason for δm performing better than δL is
probably that δm reduces to the one-dimensional MLE, namely Ȳ , when the
sample variance is low.

Two findings of this simulation study are worth emphasizing. First, the
James-Stein estimator seems very robust confronted with deviances from the
normal distribution under both L0 and L1. Altough δJS does not beat δCZ

under L1, its performance is rather solid for both intervals. Second, under L0

the (normal theory) James-Stein estimator actually performs much better than
the (Poisson theory) estimator of Peng (1975). I suspect that for intervals with
a lower upper bound than 8, i.e. θi ∈ (0, 4), the estimator of Peng will perform
better than the James-Stein estimator under L0. Whether this is the case, and
how small the θi must be for δP to be the superior estimator (compared with
δJS), is an interesting theme for further study.
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Poisson regression

So far I have been looking at estimators that shrink the observations towards
some point in the parameter space. This point has either been the origin,
some pre-specified point or a point generated by the data. I will now consider
estimators that shrink the observations towards different points in the parameter
space, where these points are functions of covariates. In a first part, I consider
a hierarchical Bayesian regression model. Second, I look at an empirical Bayes
version of this model. These two models are compared to the usual Poisson
regression model and three other regression models. Throughout this chapter I
assume that loss is given by the squared error loss function L0.

To gain intuition into the development of the Bayes model, I start by com-
paring the risks of two Bayes estimators to that of the MLE. In Section 3.1
we saw that the risk pθ̄ of the MLE could be improved upon provided that we
have prior information about the parameters. The risk of the Bayes estimator
µw + (1− w)yi (given in (3.5)) is restated here

R(δB, θ) = pθ̄(1− w)2 + w2

p
∑

i=1

(µ− θi)
2 .

From this risk function, we see how a good prior guess µ of θi decreases the risk.
Importantly, since we make one guess µ for p parameters it is crucial that the
parameters θ1, . . . , θp are not too different. An intuitive way to further improve
the savings in risk is to guess not once, but p times. Thereby replacing µ in
(3.5) (restated above) with µ1 . . . , µp, resulting in the risk function

R = pθ̄(1− w)2 + w2

p
∑

i=1

(µi − θi)
2 . (4.1)

This is the idea behind the pure and empirical Bayes regression models that I
study in Section 4.2. Before I present these two models, three other potential
models are introduced. In Section 4.3 the differences between these estimators

55
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are illustrated and their risk performances are compared by way of a simulation
study.

4.1 Standard and non-standard models

It is worth mentioning that if one thinks that the Poisson means are structured
in some way, but have no information about this structure the estimator δo(Y ) =
Y is a good candidate. This estimator will still be referred to as the MLE, and
serves as the baseline model in the simulations in Section 4.3.

The standard Poisson regression model takes the observations Yi | zi, 1 ≤ i ≤
p to be independent P(exp(ztiβ)). The zi are k × 1 vectors of covariates, and
the k × 1 coefficient vector β is estimated by the maximum likelihood method.
In most applications of the Poisson regression model, the primary interest is
in inference on β. In this thesis, focus is on the Poisson means for which the
Poisson regression model estimates are

θ̂i = exp(zti β̂), 1 ≤ i ≤ p.

Contrary to the estimators that are presented below, the estimated means of
the Poisson regression model all lie on the curve (zi, exp(z

t
i β̂)), 1 ≤ i ≤ p.

In settings where it is thought that there is something to gain from struc-
turing the prior guesses of the Poisson means, some of the means must be
anticipated to be rather large. If this was not the case, one might as well use
δCZ or one of the estimators of Section 3.1. Consequently, in settings where
it is deemed advantageous to structure the prior guesses, the variance stabi-
lizing transformation Xi = 2

√
Yi is likely to work well. This means that one

might use the James-Stein type estimator δEB in (1.6) on the transformed data
X1, . . . , Xp, then transform back 1/4(δEB)2. δEB shrinks the observations to-

wards Zβ̂ where β̂ = (ZtZ)−1ZtX. Z is the p× k design matrix with zti as its
rows.

Hudson (1985) devised a regression method inspired by the estimator δEB

for the Poisson setting. His method consists of transforming each observation
Hi(Yi) =

∑Yi

k=1 k
−1 and use that log(x+ 0.56)/0.56) is a very good approxima-

tion to Hi(x) (Hudson, 1985, 248). Then the fitted values Ĥi = Z(ZtZ)−1ZtH
are calculated, and finally one “transforms” back to the Poisson world Ŷi =
0.56(exp(Ĥ)− 1). The estimator of Hudson (1985) is given componentwise as

δHi (Y ) = Yi −
(N0(Y )− k − 2)+

||H − Ĥ||2
(Hi − Ĥi), (4.2)

if Yi+0.56 is bigger than the shrinkage factor (N0(Y )− k− 2)+/||H− Ĥ||2 and
is equal to Ŷi otherwise. N0(Y ) counts the number of observations bigger than
zero.
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The three models briefly introduced in this section will be compared with
the pure and the empirical Bayes regression models that I study next.

4.2 Pure and empirical Bayes regression

Assume that Yi | zi ∼ P(θi) for i = 1, . . . , p are independent, where zi are k × 1
vectors of fixed covariates. As discussed above, in an attempt to further improve
on the risk pθ̄(1−w)2+w2

∑p
i=1 (µ− θi)

2 I will put some structure on the prior
mean µ, and consider µ1, . . . , µp. Let the Poisson means be

θi ∼ G(bµi, b), 1 ≤ i ≤ p

independent, and model the prior means by µi = exp(ztiβ). If sufficient prior
information is available to determine β and b we have the Bayes estimator
µiw + (1 − w)yi, w = b/(b + 1) whose risk function is given in (4.1). In most
applications the statistician is likely to be uncertain about (β1, . . . , βk, b), and
it is natural to express this uncertainty through probability distributions over
these k + 1 parameters.1 I put a multivariate normal distribution over the
regression parameters β, i.e. β ∼ Nk(ξ,Σ). To describe the uncertainty as-
sociated with the parameter b I use a Gamma distribution, b ∼ G(ζ, η). We
will assume that β and b are independent, which means that the distribution
of the so-called hyperparameters (the parameters in the prior on the prior)
is π2(β, b) = G(ζ, η)Nk(ξ,Σ). In a hierarchical setup like this it is common
to call the θi the individual parameters and (β, b) the structural parameters
(Christiansen and Morris, 1997). In a medical study with p patients for ex-
ample, θi describes a characteristic of patient i, while (β, b) describes how the
differing characteristics of patient i = 1, . . . , p are related.

The parameters of primary interest for inference are the Poisson means
θ1, . . . , θp. Since the posterior distribution of these cannot be derived analyti-
cally, I rely on Gibbs sampling in order to draw samples from the joint posterior
disitribution θ1, . . . , θp, β, b | data. This distribution is

π(θ, β, b | y) ∝
{

p
∏

i=1

P(θi)G(bµi, b)

}

G(ζ, η)Nk(ξ,Σ)

∝
{

p
∏

i=1

bbµi

Γ(bµi)
θyi+bµi−1
i e−(b+1)θi

}

bζ−1e−ηbNk(ξ,Σ)

=
bb

∑p
i=1

µi+ζ−1

∏p
i=1 Γ(bµi)

{

p
∏

i=1

θyi+bµi−1
i

}

e−(b+1)
∑p

i=1
θi−ηbNk(ξ,Σ).

(4.3)

1To quote Gelman and Robert (2013, 3): “(. . . ) priors are not reflections of a hidden
“truth” but rather evaluations of the modeler’s uncertainty about the parameter.”
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The point of the Gibbs sampler is to break a complex problem into a sequence
of smaller problems (Robert and Casella, 2010, 200). So instead of attacking
the joint posterior density above directly, we approach it by way of the full
conditional distributions. These full conditional distributions are given by

θi | β, b, y ∼ G(yi + bµi, b+ 1), (4.4)

for the i = 1, . . . , p Poisson means. For the structural parameters (β, b) we have

β | θ, b, y ∝
{

p
∏

i=1

bbµi

Γ(bµi)
θbµi

i

}

Nk(ξ,Σ), (4.5)

and

b | θ, β, y ∝ bb
∑p

i=1
µi+ζ−1

∏p
i=1 Γ(bµi)

{

p
∏

i=1

θbµi

i

}

e−(pθ̄+η)b. (4.6)

More details on the Gibbs sampler and its implementation are included in Ap-
pendix B. Notice that the posterior expectation of θi, 1 ≤ i ≤ p is

E[θi |Y ] = E[E[θi |Y, β, b] |Y ] = E

[

µi
b

b+ 1
+

(

1− b

b+ 1

)

yi |Y
]

,

which shows that the posterior mean of θi is still some weighted average of
the prior mean µi and the observation yi. In Figure 4.1 we clearly see how
this weighting scheme works. In addition to the observations (circles) and the
Bayes estimates (triangles), the plot contains the true (solid) and the esti-
mated (dashed) regression curves. For this example the true parameters were
β = (0.20, 0.50)t and b = 0.20, then θi, 1 ≤ i ≤ p were drawn from Gamma
distributions with means µi and variances µi/b. The prior on β was Nk(0, Ik)
and b was given a G(2, 3) prior. In order to draw samples from the posterior
distribution the Gibbs sampler was run for 10000 iterations, of which the last
8000 were retained. This gave the posterior estimates reported in Table 4.1.

β̂1 β̂2 b̂
0.045 0.51 0.17

[−0.478, 0.547] [0.430, 0.591] [0.129, 0.223]

Table 4.1: Posterior estimates of the structural parameters (β, b). The second
row contains the highest posterior density regions with 90% probability mass
between the lower and upper limit.

In the plot we see how the model produces estimates of θi that are com-
promises between the observations and the estimated regression line (zi, µ̂i).
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Figure 4.1: The regression model in Section 4.2. The circles are the ML-
estimates (the observations), the triangles are the Bayes estimates. The solid
curve is the unknown regression line and the dotted line is the one based on β̂.

In the context of the regression model above, the empirical Bayes approach
consists of estimating the hyperparameters (β, b) via the marginal likelihood of
all the data m(y1, . . . , yp | β, b). Assuming that the Poisson counts are mutually
independent this marginal distribution is given by

m(y1, . . . , yp | β, b) =
p
∏

i=1

∫ ∞

0

P(θi)G(bµi, b) dθi

=

p
∏

i=1

Γ(yi + bµi)

yi!Γ(bµi)

(

1− 1

b+ 1

)bµi
(

1

b+ 1

)yi

,

which is the product of p Negative binomial distributions with parameters bµi

and (1+b)−1. From this distribution the parameters β and b can be estimated by
the maximum likelihood method and then plugged into the prior distribution,
resulting in the posterior estimator

E[θi |Y ] = exp(zti β̂)
b̂

b̂+ 1
+

(

1− b̂

b̂+ 1

)

yi.
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In the next section I compare the performance of the pure and empirical Bayes
estimators with those presented in Section 4.1.

4.3 A simulation study

Table 4.2 summarizes the simulated risks and percentagewise reductions in risk
relative to the MLE of the estimators presented above. Except for the standard
Poisson regression model, all the models improve on the MLE. This means that
some smoothing towards an estimated regression line improves performance,
while the Poisson regression model obviously smooths too much.

Estimator R( · , θ) % risk reduction
Pure Bayes 673.68 13.54
Emp. Bayes 670.30 13.97
δH 762.74 2.11
Poisson reg. 3327.35 -327.05
1/4(δEB)2 671.24 13.85
MLE 779.15 0.00

Table 4.2: Simulated risks and percentage reductions in risk relative to the
MLE (R(Y, θ) − R( · , θ))/R(Y, θ) × 100. Estimates based on 500 simulations.
A negative “risk reduction” indicates that the estimator performed worse than
the MLE. More details are found in Appendix C.7.

The most surprising feature of Table 4.2 is the performance of 1/4
(

δEB
)2
,

the transformation of an estimator constructed for a normal setting. In view of
the parameter values many of the simulated observations are very small, which
should limit the efficiency of the normal approximation to the Poisson. Despite

this fact, the risk performance of 1/4
(

δEB
)2

is the same as for the Bayes and
empirical Bayes models, with a reduction in risk of 13.85% compared to the
MLE. This is most likely a consequence of using the squared error loss function.
With the squared error loss function the risk-competition is won and lost in
the estimation of large parameters, for which the normal approximation works

well. It is, in other words, unlikely that 1/4
(

δEB
)2

would have done equally
well under L1.

At the same time, the estimator of Hudson (1985), which in a sense is δEB

adjusted to the Poisson distribution, only improves with 2.20% on the MLE.
The unexciting performance of Hudson’s estimator is probably a consequence
of this estimator being constructed with an aim of uniform dominance (this was
the aim, but Hudson (1985, 250-251) only proves dominance approximately).
As a consequence, the estimator δH smooths the observations towards a curve
that is too low in the plane (cf. the estimates in Figure 4.2).



4.3. A SIMULATION STUDY 61

The Bayes estimator and the empirical Bayes estimator show solid perfor-
mance. Deliberately the parameters of the prior distributions were somewhat
misspecified in order to “level the playing field” with the other estimators. As
a result, the empirical Bayes estimator performs slightly better than the pure
Bayesian model.

One advantage of the two Bayesian models compared to the three others,
is that they provide estimates of the between-individual variability b. This is
the variability of the individual parameters θ1, . . . , θp. Therefore, contrary to
the other models, the hierarchical nature of the Bayesian model and the em-
pirical Bayesian model yields a nice summary of the two levels of variation, the
sampling variation and that between the distributions generating the samples
(Christiansen and Morris, 1997, 619).
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Figure 4.2: The box plots summarize the estimates of the intercept and the slope
for the five different models. They are based on 500 simulations. The boxes
indicate the interquartile range, the solid line is the average and the dashed line
connects the 0.025 and 0.975 quantiles.

In interpreting these results it is important to keep in mind that in the simu-
lations θ1, . . . , θp were held fixed. First they were generated from G(bµi, b), 1 ≤
i ≤ p distributions with (β1, β2) = (0.2, 0.5) and b = 0.20, then held constant
for the 500 simulations. Another sample of θ1, . . . , θp is likely to give somewhat
different results. The differing performances of the estimators are functions of
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two things: what the MLE is smoothed towards and by how much. Figure 4.2
therefore provides a graphical summary of the estimates of the intercept and
the slope of the curves that the five models smooth the observations towards.
The average estimate of b for the Bayesian and empirical Bayesian models were
0.23 [0.16, 0.32] and 0.20 [0.14, 0.29] respectively (0.025 and 0.975 quantiles in
the brackets), meaning that on average the pure Bayesian model smoothed the
observations a little more than the empirical Bayesian one.
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Concluding remarks

In this thesis I have derived a class of minimax estimators that uniformly dom-
inates the MLE under the apparently novel c -Loss function. As we have seen
the c -Loss function serves a dual purpose. On one hand, it is in many in-
stances a reasonable loss function in itself, because we seek precise estimates
of θi, 1 ≤ i ≤ p and a precise estimate of γ =

∑p
i=1 θi. On the other hand, it

enables the derivation of a class of minimax estimators that uniformly domi-
nate the MLE under the commonly used weighted squared error loss function.
Clevenson and Zidek’s class of estimators is a subclass of the class Dc derived
in this thesis. The introduction of the c -parameter allows for easy control of
the amount of shrinkage away from the MLE. Situations where such limited
shrinkage is of interest were discussed in Section 2.5 and a method for finding
c was proposed. A direct continuation of this thesis would be to look at other
methods for determining the optimal c -value and, more generally, other meth-
ods for deriving estimators that are optimal under conflicting desiderata when
estimating several Poisson means.

In the following four sections I outline four themes related to this thesis that
ought to be further explored.

5.1 Dependent Poisson means

In the Bayesian models of this thesis the Poisson means θ1, . . . , θp have been
assumed independent (the Dirichlet model being the only exception). In this
section I sketch one way in which the assumption of the θi being independent
might be relaxed. If X is a random variable with cumulative density FX , then
the random variable U = FX(X) is uniformly distributed on the unit interval.
Reverting the argument we have that X = F−1

X (U) have cumulative density FX .
I will now consider a model were the θi come from the conjugate Gamma dis-
tribution, but are dependent. Let the Poisson counts Y1, . . . , Yp be independent
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given θi, 1 ≤ i ≤ p, and assume that the Poisson means are given by

θi = G−1(Φ(Vi); a, b), for i = 1, . . . , p,

where Φ(·) is the standard normal cumulative density function, and G−1 is
the inverse cumulative density function of a Gamma distribution. The p ×
1 vector V = (V1, . . . , Vp)

t is distributed V ∼ Np(0,Σ) where Σ is a p × p
covariance matrix. The covariance structure can for example be hypotesized
to be decreasing in the temporal or spatial distance between the means. A
straightforward way to model this is by the covariance of the normals Vi, 1 ≤
i ≤ p, setting Cov(Vi, Vj) = ρ|i−j|, ρ ≤ 1, i.e. if p = 4 the covariance matrix Σ
takes the form

Σ =













1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ
ρ4 ρ3 ρ2 ρ 1













.

This means that the covariance structure of the Poisson means is modelled via
the covariance structure of a multivariate normal distribution. To get a sense
of how the covariance of the normals translates to the covariance of the Poisson
means, the three panels in Figure 5.1 plot ρ|i−j| and the simulated estimates of
the correlation (b2/a)Cov(θi, θj) for |i − j| = 0, 1, . . . , p − 1. The three panels
in Figure 5.1 suggest that the covariance structure of the multivariate normal
random variables Vi, 1 ≤ i ≤ p translates more or less directly to the covariance
structure of θi, 1 ≤ i ≤ p. If this is in fact the case, it is a very appealing
feature of the model outlined above.

5.2 Constrained parameter space

In many settings with Poisson data the statistician will have information about
constraints on the parameter space (see e.g. (Johnstone and MacGibbon, 1992,
808)). For example, suppose that it is known that θi ≤ θ0 for all i. An inter-
esting scenario is when the upper bound is small, for example θ0 = 1, so that
the parameter space is the simplex S = [0, 1]p. Under the squared error loss
function L0 the risk of the MLE is R(Y, θ) = pθ̄, and supθ R(Y, θ) = p when
the parameter space is S. Notice that any constant estimator not equal to one,
that is δ(Y ) = d = [0, 1)p, has

sup
θ∈[0,1)

R(d, θ) ≤ p.

Intuitively, all estimators δ ∈ [0, 1) (which excludes the MLE) should be mini-
max and have smaller max risk than the MLE. An intriguing question is whether
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Figure 5.1: Estimates of (b2/a)Cov(θi, θj) (solid lines) and ρ|i−j| (green lines)
for |i− j| = 0, 1, . . . , p− 1 with p = 12.

this is in fact the case, and whether we can find estimators with other nice prop-
erties in this setting, for example estimators that uniformly improve on the con-
stant estimator in terms of risk. This relates to how to utilize additional prior
information about the Poisson means. A Bayesian “baseline” model is assum-
ing θ1, . . . , θp independent and uniform over the simplex, i.e. π(θi) = I(θi ∈ S).
The Bayes solution under L0 is then

E[θi | data ] =
∫

Θ0

θyi+1
i eθi dθi

∫

Θ0

θyii e
θi dθi

=
Γ(yi + 2)

Γ(yi + 1)

G(1, yi + 2, 1)

G(1, yi + 1, 1)
,

where G is the cumulative density function of the Gamma distribution. Know-
ing that the Poisson means are constrained to the simplex [0, 1]p also invites
an analysis similar to that in Section 2.7 using a Dirichlet prior directly on
(θ1, . . . , θp). The properties of these Bayes solutions, as well as differing Bayes
solutions under other plausible loss functions, is a theme I would like to inves-
tigate further.
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5.3 Estimation of Poisson means in real time

Assume that we observe Y1 to Yp sequentially, where Yi comes from P(θi(ti −
ti−1)) for i = 1, . . . , p. Assume that all the intervals [ti−1, ti) are of equal length
(this is not a vital assumption for the problem presented). The study starts at
t0 and at t1 the statistician is supposed to provide an estimate of θ1, at t2 an
estimate of θ2 and so on. Whilst the estimates are provided sequentially, the
loss is incurred at the end of the study period. Natural loss functions are any
of those studied in this thesis, i.e. L1, L1,t, Lc or Lc,t.

At the end of the period the optimal estimators in terms of improved risk
relative to the MLE are the estimators I have been studying in this thesis. The
point is that these estimators cannot be used when the estimates are supposed
to be delivered sequentially in real time. They cannot be used simply because
they all involve Z =

∑p
i=1 Yi, which is unknown to the statistician at the point

in time when the estimates are supposed to be provided.
Intuitively, it should be possible to improve on the MLE in such a situation.

It would be interesting to investigate how a, say Ẑ, ought to be constructed in
order to achieve the maximum savings in risk relative to the MLE, and if such
an estimate of Z can be constructed without losing the minimax property of
the estimators studied in this thesis.

5.4 A final note on admissibility

I close off with a note on admissibility and the estimators in the class Dc of
Corollary 2.3.3. In particular, I discuss the question of admissibility of the
estimator that minimizes the c -Loss function, namely δc1 in (2.9). It turns out
that we do not know whether this estimator is admissible or not. In a first part,
I show how the admissibility of Clevenson and Zidek type estimators can be
proven. Thereafter, I substantiate why we are not able to prove admissibility of
the optimal estimator (in terms of minimizing risk) under the c -Loss function.

By way of a Bayesian analysis Clevenson and Zidek derive the estimator

δCZ
m (Y ) =

(

1− m+ p− 1

m+ p− 1 + Z

)

Y. (5.1)

When m = 0 this estimator is equal to the one in (1.4) with ψ(Z) = p − 1.
Importantly, the resulting estimator

δCZ
0 (Y ) =

(

1− p− 1

p− 1 + Z

)

Y,

is the best version of their estimator in terms of minimizing risk under L1.
Clevenson and Zidek show that δCZ

m in (5.1) is admissible for m > 1, since it is
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proper Bayes. Drawing on the heuristic method for determining admissibility
developed by Brown (1979), Clevenson and Zidek suspected that their estimator
is admissible for m ≥ 0. If this is indeed the case, then the best version of their
estimator in terms of minimizing risk, which is obtained by setting m = 0, is
admissible. Admissibility of δCZ

0 is, however, yet to be proven.
The work of Johnstone (1984, 1986) on the connection between admissibility

of estimators and the recurrence of associated Markov chains leads to a nice
theorem for determining the admissibility or inadmissibility of simultaneous
estimators of Poisson means under weighted squared error loss L1 (see e.g.
Robert (2001, 399)). Johnstone (1984, 1986) provides sufficient conditions for
proving the admissibility of generalized Bayes estimators under L1. According
to these conditions (Theorem 8.2.18 in Robert (2001, 399)) a generalized Bayes
estimator of the form

δ(Y ) = (1− φ(Z))Y,

is admissible under L1 if there exist finite K1 and K2 such that
√
zφ(z) ≤ K1

for every z ≥ 0, and for z > K2,

z φ(z) ≥ p− 1.

The Clevenson and Zidek estimator in (5.1) is a generalized Bayes estimator.
To see this, consider the two-stage prior setup of Section 2.7 where θi, 1 ≤ i ≤ p
are independent G(1, b) and b ∼ π2(b). Let now π2(b) ∝ bm−2(b + 1)−m, b > 0.
Then π2 is a proper prior for m > 1, and an improper prior when 0 ≤ m ≤ 1.
The generalized Bayes solution is then (5.1). The function

√
zφ(z) =

√
z

m+ p− 1

m+ p− 1 + z
,

is first increasing, reaching its maximum at z = m + p − 1, then decreasing.
This means that (5.1) satisfies

√
zφ(z) =

√
z

m+ p− 1

m+ p− 1 + z
≤ 1

2

√

m+ p− 1 = K1,

for all z, and for all m ≥ 0. The second of the conditions of Johnstone (1984,
1986) does, however, only hold for m strictly bigger than zero. With φ(z) =
m + p − 1, the second condition implies that there must exist a K2 such that
for all z > K2 the inequality

z m ≥ (p− 1)(m+ p− 1),

holds. Clearly, such a finite value K2 only exists when m > 0. In conclusion,
the work of Johnstone (1984, 1986) has provided the tools for determining the
admissibility of Clevenson and Zidek type estimators. The question concerning
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the admissibilty of δCZ
0 with m = 0 remains open, but with m > 0 very small,

one can get arbitrarily close to δCZ
0 with admissible estimators.

When it comes to the c -Loss function we are further from proving that the
optimal estimator in terms of minimizing risk δc1, is admissible. What we do
know about the estimators in the class Dc is that the class of Bayes estimators
derived in Proposition 2.7.1 are admissible because they are proper Bayes. In
addition, we know that the optimal estimator under the c -Loss function δc1 of
(2.9), restated here

δc1(Y ) =

(

1− p− 1

p− 1 + (1 + c)Z

)

Y,

is very close to a proper Bayes solution. The same two-stage prior setup as for
deriving δCZ

m in (5.1), yields the Bayes solution under c -Loss

δB(Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

Z

m+ p− 1 + Z
Y. (5.2)

This estimator is proper Bayes for m > 1 and generalized Bayes for 0 ≤ m ≤ 1.
With m close to one (i.e. m = 1.0001) we see that the proper Bayes solution
δB is very close to δc1, particularly for large p and/or Z.

To summarize, although it is not known whether δc1 is admissible or not,
I have shown that it is generalized Bayes (see Section 2.7) and that it is in-
distinguishable from a proper Bayes estimator for p and Z of a certain size.
In addition, from the derivation of δc1 in Section 2.3 it follows that δc1 is not
uniformly dominated by any estimator on the form (1− φ(Z))Y .

The theorem of Johnstone (1984, 1986) cannot be used for δB since it only
applies to the weighted squared error loss function L1. A truly interesting
continuation of this thesis would be to look for admissibility conditions for
estimators under the c -Loss function, similar to those Johnstone (1984, 1986)
derive for L1. If such an endeavour is successful, I suspect that it should be
possible to prove that δB in (5.2) is admissible for m > 0, not only for m > 1.
More generally, this line of work is concerned with finding possible admissibility
conditions for optimal simultaneous estimators (in terms of risk) under loss
functions that aim to balance the total and the individual risk. The c -Loss
function is one such loss function, and δc1 is one such compromising estimator.



Appendix A

Some calculations and two tables

This appendix consists of well known results used throughout the text as well
as calculations and proofs that are omitted in the text.

A.1 The Poisson and the Gamma distribution

A Poisson random variable Y with mean θ > 0 has probability mass function

P (Y = y | θ) = 1

y!
θy e−θ.

The moment generating function is

MY (t) = E[etY ] =
∞
∑

y=0

etY
1

y!
θye−1 = e−θ

∞
∑

y=0

(etθ)y

y!
= eθ(e

t−1).

If Y1, . . . , Yp are independent Poisson with means θi, 1 ≤ i ≤ p and Z =
∑p

i=1 Yi,
then the moment generating function of Z is MZ(t) =

∏p
i=1 e

θi(e
t−1) = eγ(e

t−1),
where γ =

∑p
i=1 θi. This shows that Z is a Poisson random variable with mean

γ.
If θ is a Gamma random variable, denoted θ ∼ G(a, b), the probability

density function of θ is f(θ | a, b) = (ba/Γ(a))xa−1e−bx, θ > 0 and a, b > 0.
E[θ] = a/b and Var(θ) = a/b2. Provided that a > 1, the expectation of θ−1 is

E[θ−1] =
ba

Γ(a)

∫ ∞

0

θ−1xa−1e−bθ dθ =
ba

Γ(a)

∫ ∞

0

θa−2e−bθ dθ

=
ba

Γ(a)

Γ(a− 1)

ba−1
=

ba

(a− 1)Γ(a− 1)

Γ(a− 1)

ba−1

=
b

a− 1
.
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The moment generating function of the Gamma distribution isMθ(t) = E[etθ] =
(1−t/b)−a. If θ1, . . . , θp are independent G(a, b), thenMγ(t) =

∏p
i=1(1−b/t)−a =

(1− b/t)−
∑p

i=1
a = (1− b/t)−pa, which shows that γ ∼ G(pa, b).

Lemma A.1.1. Define ηi = θi/γ, then (Y1, . . . , Yp) |Z follows the multinomial
distribution for Z trials with probabilities (η1, . . . , ηp).

Proof. Since the event {Y1 = y1, . . . , Yp = yp} is a subset of the event {Z = z},
{Y1 = y1, . . . , Yp = yp} ∩ {Z = z} = {Y1 = y1, . . . , Yp = yp}. Thus

P (Y1, . . . , Yp |Z) =
P ({Y1, . . . , Yp} ∩ {Z})

P (Z)
=
P (Y1, . . . , Yp)

P (Z)

=
P (Y1) · · ·P (Yp)

P (Z)
=

z!

y1! · · · yp!
θy11 · · · θypp eθ1 · · · eθp

γZe−γ

=
z!

y1! · · · yp!
θy11 · · · θypp
γ
∑

i yi
=

z!

y1! · · · yp!
ηy11 · · · ηypp ,

which is the probability mass function of the Multinomial(Z, η1, . . . , ηp).

When (Y1, . . . , Yp) |Z is Multinomial(Z, η1, . . . , ηp) the expectation is E[Yi |Z] =
Zηi and the variance is Var(Yi |Z) = Zηi(1− ηi).

A result used many times throughout the thesis is the following: Let the
Poisson random variable Y have mean θ and assume that θ ∼ G(a, b). Then
the marginal distribution of Y is

m(y | a, b) =
∫ ∞

0

ba

y!Γ(a)
θa+y−1 e−(b+1) dθ =

ba

y!Γ(a)

Γ(a+ y)

(b+ 1)a+y

=
Γ(a+ y)

y!Γ(a)

(

1− 1

b+ 1

)a(
1

b+ 1

)y

.

This is a Negative binomial distribution with parameters a and (b + 1)−1. Its
expectation is Em[Y ] = a/b and its variance is Varm(Y ) = a/b(1 + 1/b).

A.2 Minimaxity of the MLE under L1

In this section I prove that Y is minimax under L1 by showing that the MBR(π)
converges to R(Y, θ) for a given sequence of priors when loss is L1, cf. Lemma
2.1.1.

Proof. (Minimaxity of MLE under L1). Define µ−1 = (a−1)/b. Then the Bayes
solution under L1 is wµ−1 + (1−w)yi = yi −w(yi − µ−1). The minimum Bayes
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risk is then

MBR(π) = EπEθ

p
∑

i=1

1

θi
(yi − w(yi − µ−1)− θ)2 = p(1− w)2 +

p
∑

i=1

Eπ 1

θi
(µ−1 − θi)

2

= p
1

(b+ 1)2
+ pEπ

{

a− 1

b
− 2

a− 1

b
+
a

b

}

=
p

b+ 1
.

With the sequence of priors πn = G(a, bn), bn = 1/n the MBR(π) converges to
p as n→ ∞.

Under the squared error loss function the MLE has risk R(Y, θ) =
∑p

i=1 θi.
Since Θ = [0,∞) the supremum over this risk is not finite. In effect, there exists
no estimator δc for which supθ R(δ, θ) is finite. Imagine (a game theoretic situ-
ation) where the statistician plays against an intelligent opponent that controls
the state of nature and desires to maximize the loss of the statistician (see e.g.
Berger (1985, 308-309)). It is then easy to see that there exists no strategy
(estimator) δ for which Eθ

∑p
i=1(δi − θi)

2 is finite.

In Section 1.3 I wrote that since the MLE is minimax under L1, it is hard
to find estimators that substantially improve on it over the entire parameter
space. This comment does to a certain extent apply to the MLE under L0 also,
because it is the minimum variance unbiased estimator. The risk of any biased
competitor δ is

R(δ, θ) =

p
∑

i=1

Varθ(δi) +

p
∑

i=1

bias2θ(δi).

It is hard to get a small
∑p

i=1 bias
2
θ(δi) if the θi are very spread out, while

the MLE always has bias equal to zero. This is in some sense parallel to the
minimaxity of the MLE under L1.

A.3 Bayes estimator under c -Loss

In Section 2.1 I derived the equations

δj
(

E[θ−1
j |Y ] + cE[γ−1 |Y ]

)

+ cE[γ−1 |Y ]
∑

{i:i 6=j}

δi = 1 + c, (A.1)
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which must hold for all j = 1, . . . , p. Writing this system of equations on matrix
form and row reduce gives











E[θ−1
1 ] + cE[γ−1] cE[γ−1] · · · cE[γ−1] 1 + c
cE[γ−1] E[θ−1

2 ] + cE[γ−1] · · · cE[γ−1] 1 + c
... cE[γ−1]

. . .
...

...
cE[γ−1] cE[γ−1] · · · E[θ−1

p ] + cE[γ−1] 1 + c











∼











E[θ−1
1 ] + cE[γ−1] cE[γ−1] · · · cE[γ−1] 1 + c
−E[θ−1

1 ] E[θ−1
2 ] · · · 0 0

... 0
. . .

...
...

−E[θ−1
1 ] 0 · · · E[θ−1

p ] 0











.

From this row reduction we see that all the estimators are proportional, and
are on the form

δi = E[θ−1
j ]/E[θ−1

i ]δj, (A.2)

for all i = 1, . . . , p, j = 1, . . . , p. Inserting this in (A.1) yields

δj
(

E[θ−1
j |Y ] + cE[γ−1 |Y ]

)

+ cE[γ−1 |Y ]
∑

{i:i 6=j}

δi = δjE[θ
−1
j |Y ] + cE[γ−1 |Y ]

p
∑

i=1

δi

= δjE[θ
−1
j |Y ] + cE[γ−1 |Y ]δjE[θ

−1
j |Y ]

p
∑

i=1

{E[θ−1
i |Y ]}−1

= δjE[θ
−1
j |Y ]

(

1 + cE[γ−1 |Y ]

p
∑

i=1

{E[θ−1
i |Y ]}−1

)

= 1 + c.

Solve for δj to obtain the Bayes solution in (2.2).

A.4 Minimaxity of the MLE under c -Loss

Here are the calculations involved in the proof of Theorem 2.1.2. The Bayes
estimator we are considering is

δBj (Y ) =
(1 + c)(p− 1 + z)

p− 1 + (1 + c)z

yj
bn + 1

= ψ(z)
yj

bn + 1
,

which defines the function ψ. In the following I drop the subscript on bn to ease
notation. To obtain the expression for MBR(πn) in (2.4) I write the risk of δBj
under Lc as a sum R = EθLc = EθS1 + cEθS2. Look at the expectation of S1
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and use Lemma A.1.1, then

EθS1 = Eθ

p
∑

i=1

θ−1
i

(

ψ(Z)
Yi
b+ 1

− θi

)2

= EθE

{

p
∑

i=1

θ−1
i

(

ψ2(Z)
Y 2
i

(b+ 1)2
− 2ψ(Z)

Yi
b+ 1

θi + θ2i

)

|Z
}

= Eθ

p
∑

i=1

θ−1
i

(

ψ2(Z)
E[Y 2

i |Z]
(b+ 1)2

− 2ψ(Z)
E[Yi|Z]
b+ 1

θi + θ2i

)

= Eθ

∑

i

(ηiγ)
−1

(

ψ2(Z)
[Zηi(1− ηi) + Z2η2i ]

(b+ 1)2
− 2ψ(Z)

Zηi
b+ 1

θi + θ2i

)

= Eθ

{

ψ2(Z)
Z(p− 1 + Z)

γ (b+ 1)2
− 2ψ(Z)

Z

b+ 1
+ γ

}

.

The expectation of the second term cS2 is

EθcS2 = Eθ
c

γ

(

p
∑

i=1

ψ(Z)
Yi
b+ 1

− γ

)2

= Eθ
c

γ

(

ψ(Z)
Z

b+ 1
− γ

)2

= Eθ

{

cψ2(Z)
Z2

γ (b+ 1)2
− 2c ψ(Z)

Z

b+ 1
+ cγ

)

.

Putting the two terms together and inserting the expression for ψ we obtain

R(δB, θ) = EθS1 + cS2

= Eθ

{

ψ2(Z)
Z(p− 1 + (1 + c)Z)

γ (b+ 1)2
− 2(1 + c)ψ(Z)

Z

b+ 1
+ (1 + c)γ

}

= Eθ

{

(1 + c)2(p− 1 + Z)2

p− 1 + (1 + c)Z

Z

γ (b+ 1)2

−2
(1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1
+ (1 + c)γ

}

.

Now, use that the MBR(π) can be expressed as

EπR(δB, θ) = Em
[

Eπ∗
[

L(δB, θ) |Z
]]

where Eπ is the expectation with respect to the prior distribution on θi, E
m is

the expectation taken over the marginal distribution of all the data, and Eπ∗

is the expectation over the posterior distribution of γ given all the data. Since
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γ |Z is distributed G(p+ z, b+ 1) we get that

MBR(π) = Em
[

Eπ∗
[

L(δB, θ) |Z
]]

= Em

{

(1 + c)2(p− 1 + Z)2

p− 1 + (1 + c)Z

Z

(b+ 1)2
Eπ∗

[γ−1 |Z]

− 2
(1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1
+ (1 + c)Eπ∗

[γ |Z]
}

= Em

{

(1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1

−2
(1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1
+ (1 + c)

p+ Z

b+ 1

}

= Em

{

(1 + c)
p+ Z

b+ 1
− (1 + c)2(p− 1 + Z)

p− 1 + (1 + c)Z

Z

b+ 1

}

.

Rearranging the expression we are taking the expectation over gives

MBR(π) = Em 1 + c

b+ 1

{

p+ Z − (1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z
Z

}

= Em 1 + c

b+ 1

{

p+ Z

(

1− (1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

)}

= Em 1 + c

b+ 1

{

p− c(p− 1)Z

p− 1 + (1 + c)Z

}

.

Define the intergrand in this expression as h(z). Its second derivative is

d2

d z2
h(z) =

d

d z

{

d

d z

c(p− 1)2

(p− 1 + (1 + c)z)2

}

= 2
(1 + c)2

b+ 1

c(p− 1)2

(p− 1 + (1 + c)z)3
> 0

for all z ≥ 0. This shows that h is convex. The marginal distribution of Z is
Negative binomial with parameters p and (b+1)−1, so Em[Z] = p/b. Using the
convexity of h we have by Jensen’s inequality that

MBR(π) = Em [h(Z)] ≥ h(Em[Z]) =
(1 + c)p

b+ 1
− 1 + c

b+ 1

c(p− 1)Em[Z]

p− 1 + (1 + c)Em[Z]

=
(1 + c)p

b+ 1
− 1 + c

b+ 1

c(p− 1)p/b

p− 1 + (1 + c)p/b

=
(1 + c)p

b+ 1
− 1 + c

b+ 1

cp(p− 1)

b(p− 1) + (1 + c)p

which is the expression in (2.5) for the MBR in Theorem 2.1.2.
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A.5 Proof of crucial lemmata cont.

The proof of the identity in (2.7) is

Eθθ f(Y ) =
∞
∑

y=0

f(y)
1

y!
θy+1e−θ = 0 +

∞
∑

y=1

f(y)
1

y!
θy+1e−θ

=
∞
∑

y=1

f(y − 1)
y

y!
θye−θ =

∞
∑

y=0

f(y − 1)
y

y!
θye−θ = Eθf(Y − 1)Y

where I have used the assumption that f(y) = 0 for all y ≥ 0. To prove the
multivariate equivalent, condition on {Yj ; j 6= i}, then

Eθθi Fi(Y ) = EθE [θi Fi(Y ) | {Yj ; j 6= i}]
= Eθ Fi(Y − ei)Yi.

A.6 Estimation of Poisson means under L0

In this section I prove that the estimator of Peng (1975) given in (1.3) dominates
the MLE under L0. The proofs of dominance of the generalizations of δP in
(3.1), (3.2) and (3.3) are similar and can be found in Ghosh et al. (1983). The
competitor of the MLE is given componentwise by

δ∗i (Y ) = Yi + fi(Y ),

where f is a function that satisfies Lemma 2.2.1. Let ∆iF (Y ) = F (Y )−F (Y −
ei). Applying Lemma 2.2.1 the difference in risk between δ∗ and δo can be
expressed as

R(δ∗, θ)−R(Y, θ) = Eθ

{

p
∑

i=1

(Yi − fi(Y )− θi)
2 − (Yi − θi)

2

}

= Eθ

p
∑

i=1

{

f 2
i (Y ) + 2fi(Y )(Yi − θi)

}

= Eθ

p
∑

i=1

{

2Yi∆ifi(Y ) + f 2
i (Y )

}

.

So R(δ∗, θ)−R(Y, θ) = 2EθD0(Y ) where

D0(Y ) =

p
∑

i=1

{

Yi∆ifi(Y ) +
1

2
f 2
i (Y )

}

.

Thus, if D0(Y ) ≤ 0 with strict inequality for at least one datum, then δ∗

dominates the ML-estimator.
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Proof. (Peng (1975)) Let Di = D(Y − ei). The estimator δP (Y ) = Y + f(Y ) is
defined by

fi(Y ) = −(N0(Y )− 2)+

D(Y )
hi(Yi),

for i = 1, . . . , p. The case N0(Y ) ≤ 2 is trivial because then D0(Y ) = 0. Assume
that N(Y ) > 2. Then

1

2

p
∑

i=1

f 2
i (Y ) =

1

2

p
∑

i=1

(N0(Y )− 2)2

D2
h2i (Yi) =

1

2

(N0(Y )− 2)2

D
≤ (N0(Y )− 2)2

D
,

with a strict inequality when N0(Y ) > 2. Furthermore,

∆ifi(Y ) = −(N0(Y )− 2)+

D(Y )
hi(Yi) +

(N0(Y − ei)− 2)+

D(Y − ei)
hi(Yi − 1)

≤ (N0(Y − ei)− 2)+∆i
hi(Yi)

D(Y )
,

since (N0(Y − ei)− 2)+ ≤ (N0(Y )− 2)+. And

−∆i
hi(Yi)

D(Y )
= −hi(Yi)

D
+
hi(Yi − 1)

Di

= −hi(Yi)
D

+
hi(Yi − 1)

D
+
hi(Yi − 1)D

DiD
− hi(Yi − 1)Di

DDi

= −∆ihi(Yi)

D
+
hi(Yi − 1)∆iD

DDi

.

Then
p
∑

i=1

Yi∆ifi(Y ) =

p
∑

i=1

{

Yi(N0(Y )− 2)+
(

−∆ihi(Yi)

D
+
hi(Yi − 1)∆iD

DDi

)}

=
(N0(Y )− 2)+

D

p
∑

i=1

{

−Yi∆ihi(Y ) + Yi
hi(Yi − 1)∆iD

Di

}

≤ (N0(Y )− 2)+

D

p
∑

i=1

{

−N0(Y ) + Yi
hi(Yi − 1)∆ih

2
i (Yi)

Di

}

,

since
∑p

i=1 Yi∆ihi(Y ) = p ≤ N0(Y ) and ∆iD(Y ) = D(Y ) − D(Y − ei) =
∑p

j=1[h
2
j(Yj)− h2j(Yj − I(j = i))] = ∆ihi(Yi). Since

∆ih
2
i (Yi) =

(

Yi
∑

k=1

1

k

)2

−
(

Yi−1
∑

k=1

1

k

)2

=

(

Yi
∑

k=1

1

k

)2

−
(

Yi
∑

k=1

1

k
− 1

Yi

)2

= 2
1

Yi

Yi
∑

k=1

1

k
− 1

Y 2
i

,
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we get that

Yihi(Yi − 1)∆i(Yi) = hi(Yi − 1) [2h(Yi)− 1/Yi] = hi(Yi − 1) [2h(Yi − 1) + 1/Yi]

≤ hi(Yi − 1) [2h(Yi − 1) + 2/Yi] = 2h2i (Yi − 1).

Setting all this together gives

D0(Y ) ≤ (N0(Y )− 2)+

D

p
∑

i=1

{

−N0(Y ) + Yi
hi(Yi − 1)∆ih

2
i (Yi)

Di

}

+
(N0(Y )− 2)2

D

= −(N0(Y )− 2)+

D

{

N0(Y )−
p
∑

i=1

Yi
hi(Yi − 1)∆ih

2
i (Yi)

Di

− (N0(Y )− 2)+

}

≤ −(N0(Y )− 2)+

D

{

N0(Y )−
p
∑

i=1

Yi
2h2i (Yi − 1)

Di

− (N0(Y )− 2)+

}

≤ −(N0(Y )− 2)+

D

{

N0(Y )− 2− (N0(Y )− 2)+
}

≤ 0,

provided that N0(Y ) ≥ 3. The inequality is strict when (N0(Y ) − 2)+hi(Yi −
1)∆ih

2
i (Yi) > 0 for at least two observations. In other words, N0(Y ) ≥ 3 and

N1(Y ) ≥ 2.

A.7 Comparing δCZ and δc1 and finding optimal

c

Table A.1 is a reproduction of Table 1 in Clevenson and Zidek (1975, 704)
extended to include the results of using the new estimator δc1 in (2.9). This
table is the basis for the empirical comparison of δCZ and δc1 referred to in
Section 2.4. Below is Table A.2 referred to in Section 2.5, providing a summary
of optimal c -values.
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i yi θi δcz
i

δc
i

(yi − θi)
2/θi (δcz

i
− θi)

2/θi (δc
i
− θi)

2/θi
1 0 1.17 0 0 1.17 1.17 1.17
2 0 0.83 0 0 0.83 0.83 0.83
3 0 0.5 0 0 0.5 0.5 0.5
4 1 1 0.45 0.67 0 0.3 0.11
5 2 0.83 0.91 1.33 1.65 0.01 0.31
6 1 0.83 0.45 0.67 0.03 0.17 0.03
7 0 1.17 0 0 1.17 1.17 1.17
8 2 0.83 0.91 1.33 1.65 0.01 0.31
9 0 0.67 0 0 0.67 0.67 0.67
10 0 0.17 0 0 0.17 0.17 0.17
11 0 0 0 0 0 0 0
12 1 0.33 0.45 0.67 1.36 0.05 0.34
13 3 1.5 1.36 2 1.5 0.01 0.17
14 0 0.5 0 0 0.5 0.5 0.5
15 0 1.17 0 0 1.17 1.17 1.17
16 3 1.33 1.36 2 2.1 0 0.34
17 0 0.5 0 0 0.5 0.5 0.5
18 2 1.17 0.91 1.33 0.59 0.06 0.02
19 1 0.5 0.45 0.67 0.5 0 0.06
20 2 0.5 0.91 1.33 4.5 0.33 1.39
21 0 1.33 0 0 1.33 1.33 1.33
22 0 0.83 0 0 0.83 0.83 0.83
23 0 0.33 0 0 0.33 0.33 0.33
24 1 1.5 0.45 0.67 0.17 0.73 0.46
25 5 1.33 2.27 3.33 10.13 0.66 3.02
26 0 0.67 0 0 0.67 0.67 0.67
27 1 0.67 0.45 0.67 0.16 0.07 0
28 0 0.33 0 0 0.33 0.33 0.33
29 0 0.33 0 0 0.33 0.33 0.33
30 1 0.33 0.45 0.67 1.36 0.05 0.34
31 0 0.5 0 0 0.5 0.5 0.5
32 1 0.83 0.45 0.67 0.03 0.17 0.03
33 0 0.67 0 0 0.67 0.67 0.67
34 1 0.33 0.45 0.67 1.36 0.05 0.34
35 0 0 0 0 0 0 0
36 1 0.5 0.45 0.67 0.5 0 0.06
L1 39.26 14.34 19
Lc Z = 29 γ = 25.98 53.29 268.21 87.05

Table A.1: An empirical comparison of δcz and δc1 on the oil-well exploration
data in Clevenson and Zidek (1975, 707). In this study the parameter c was set
to 40.



A.7. COMPARING δCZ AND δC1 AND FINDING OPTIMAL C 79

Tolerance level K%
p = 40 p = 8

γ 2% 5% 10% 15% 20% 2% 5% 10% 15% 20%
1 7 5 3 2 1 200 200 200 200 200
2 23 17 12 9 7 3 2 1 0 0
3 43 28 19 15 12 6 4 2 1 1
4 59 37 25 19 16 9 5 3 2 2
5 68 41 27 21 18 11 6 4 3 2
6 72 43 29 22 18 12 7 4 3 2
7 73 44 29 23 19 12 7 4 3 2
8 72 44 29 23 19 12 7 4 3 2
9 71 43 29 22 19 12 6 4 3 2
10 70 42 28 22 18 11 6 4 3 2
11 68 41 28 22 18 11 6 4 3 2
12 66 40 27 21 18 11 6 4 3 2
13 64 39 26 21 17 10 6 3 2 2
14 63 38 26 20 17 10 6 3 2 2
15 61 37 25 20 17 10 5 3 2 2
16 60 36 24 19 16 9 5 3 2 2
17 58 35 24 19 16 9 5 3 2 2
18 57 35 23 18 15 9 5 3 2 2
19 56 34 23 18 15 9 5 3 2 1
20 55 33 22 18 15 9 5 3 2 1
21 53 33 22 17 15 8 5 3 2 1
22 52 32 22 17 14 8 5 3 2 1
23 51 31 21 17 14 8 4 3 2 1
24 50 31 21 16 14 8 4 3 2 1
25 50 30 20 16 14 8 4 2 2 1
26 49 30 20 16 13 8 4 2 2 1
27 48 29 20 16 13 7 4 2 2 1
28 47 29 19 15 13 7 4 2 2 1
29 46 28 19 15 13 7 4 2 1 1
30 46 28 19 15 13 7 4 2 1 1
31 45 27 19 15 12 7 4 2 1 1
32 44 27 18 14 12 7 4 2 1 1
33 44 27 18 14 12 7 4 2 1 1
34 43 26 18 14 12 7 3 2 1 1
35 43 26 18 14 12 6 3 2 1 1
36 42 26 17 14 11 6 3 2 1 1
37 41 25 17 13 11 6 3 2 1 1
38 41 25 17 13 11 6 3 2 1 1
39 40 25 17 13 11 6 3 2 1 1
40 40 24 16 13 11 6 3 2 1 1
41 39 24 16 13 11 6 3 2 1 1
42 39 24 16 13 11 6 3 2 1 1
43 39 24 16 13 11 6 3 2 1 1
44 38 23 16 12 10 6 3 2 1 1
45 38 23 16 12 10 6 3 2 1 1
46 37 23 15 12 10 5 3 2 1 1
47 37 23 15 12 10 5 3 2 1 1
48 37 22 15 12 10 5 3 1 1 1
49 36 22 15 12 10 5 3 1 1 1
50 36 22 15 12 10 5 3 1 1 1

Table A.2: Optimal values of c for p = 8 and p = 40 for varying prior guesses of
γ. For simplicity, the c -values were restricted to N∪{0}. They were computed
with the R-script in Appendix C.2.





Appendix B

MCMC for the Poisson

regression model

In order to draw samples from the joint posterior distribution {θi}pi=1, β, c |Y
given in (4.3) I rely on Markov Chain Monte Carlo methods, particularly the
Gibbs sampler (see e.g. Robert and Casella (2010)). The Gamma distribution
of {θi}pi=1 | β, c, data in (4.4) is straightforward to sample from since R and most
other statistical software include routines for sampling from standard distribu-
tions. The full conditional distributions given in (4.5) and (4.6), on the other
hand, are not standard. Therefore I implement two Metropolis-Hastings (MH)
algorithms in order to draw samples from these.

The MH-algorithm for β | {θi}pi=1, c, y in (4.5) is explained in Algorithm
(B.1).

Given β(n) = (β1,(n), . . . , βk,(n))

1. Draw

β(n+1) ∼ Nk(β(n+1) − β(n), Ik)

2. Take

βn+1 =

{

β(n+1) with probability A(β(n+1), β(n))
β(n) with probability 1− A(β(n+1), β(n))

where,

A(β(n+1), β(n)) =
π(β(n+1) | {θi}pi=1, c, y)

π(β(n) | {θi}pi=1, c, y)

(B.1)

The sampling from the full conditional distribution c | {θi}pi=1, β, y works in the
samme manner.

81
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Given c(n)

1. Draw

c(n+1) ∼
N(c(n+1) − c(n), 1)

Φ(c(n))

2. Take

c(n+1) =

{

c(n+1) with probability A(c(n+1), c(n))
c(n) with probability 1− A(c(n+1), c(n))

where,

A(c(n+1), c(n)) =
π(c(n+1) | {θi}pi=1, β, y)

π(c(n) | {θi}pi=1, β, y)

Φ(c(n))

Φ(c(n+1))

(B.2)

where Φ(·) is the standard normal cumulative density function. Finally, these
two MH-algorithms are used in the Gibbs-sampler described in (B.3).

Given (β(0), c(0))

For n = 1, . . . , N

1. Draw

θi,(n+1) ∼ G(θ(n)i,0 /c(n) + yi, 1/c(n) + ti), for i = 1, . . . , p

2. Draw

β(n+1) ∼ π(β | {θi}pi=1,(n+1), c(n), data)

3. Draw

c(n+1) ∼ π(c | {θi}pi=1,(n+1), β(n+1), data)

(B.3)

B.1 The MCMC-algorithm implemented in R

Below are the R-scripts implementing this Gibbs-sampler. The R-function called
MH beta() implements the MH-algorithm in (B.1), while the function MH b()

implements the MH-algorithm in (B.2). Finally, these two algorithms are used
in the Gibbs-sampler, given in the last R-script and called gibbs().

1 require(compiler)

2 enableJIT (3)

3 ## A Gibbs sampler.

4 ##

5 MH_beta <- function(sims ,Bprior ,Sigma ,Z,theta ,b){

6 #---------------------------------
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7 # Bprior = c(\beta_1,...,\ beta_p) is the

8 # prior mean of the regression coefficients

9 # Sigma is the k/times k prior covariance matrix.

10 # Z is the design matrix. Rows = p k\times 1

11 # vectors z_i^t

12 #---------------------------------

13 k <- length(Bprior) # number of regression coeffs.

14 out <- matrix(NA ,nrow=sims ,ncol=k)

15 Bold <- Bprior # use prior as start value

16 for(i in 1:sims){

17 # symmetric proposal

18 Bprop <- Bold + rnorm(k,0,1)

19 # make A (the probability) on log scale

20 mu.prop <- exp(Z%*%Bprop) # \mu_i=\exp(z_i^t\beta)

21 mu.old <- exp(Z%*%Bold)

22 l.A.nom <- sum(log(dgamma(theta ,b*mu.prop ,b))) + sum(log(

dnorm(Bprop ,Bprior ,diag(Sigma))))

23 l.A.denom <- sum(log(dgamma(theta ,b*mu.old ,b))) + sum(log

(dnorm(Bold ,Bprior ,diag(Sigma))))

24 #

25 A <- exp(l.A.nom -l.A.denom)

26 accept <- rbinom(1,1,min(A,1))

27 Bold <- accept*Bprop + (1-accept)*Bold

28 out[i,] <- Bold

29 }

30 return(out)

31 }

32 ##

33 MH_b <- function(sims ,bstart ,zeta ,eta ,B,theta ,Z){

34 #---------------------------------

35 # bstart is the start value of b

36 # (zeta ,eta) are the prior parameters

37 # B = c(\beta_1,...,\ beta_p) is the coefficent vector

38 # Z is the design matrix. Rows = p k\times 1

39 # vectors z_i^t

40 #---------------------------------

41 out <- numeric(sims)

42 p <- length(theta) # number of observations

43 b.old <- bstart

44 # make A (the probability)

45 mu <- exp(Z%*%B)

46 mu.bar <- mean(mu)

47 theta.bar <- mean(theta)

48 W <- sum(mu*log(theta)) # \sum_i \mu_i\log\theta_i

49 for(i in 1:sims){

50 # non -symmetric proposal (b.prop > 0)

51 repeat{

52 b.prop <- b.old + rnorm (1,0,1)

53 if(b.prop >0){

54 break}

55 }
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56 # on log -scale

57 l.A.nom <- sum(log(dgamma(theta ,b.prop*mu ,b.prop))) + log

(dgamma(b.prop ,zeta ,eta))

58 l.A.denom <- sum(log(dgamma(theta ,b.old*mu,b.old))) + log

(dgamma(b.old ,zeta ,eta))

59 # correct for non -symmetric proposal

60 A <- exp(l.A.nom -l.A.denom)*pnorm(b.old ,0,1)/pnorm(b.prop

,0,1)

61 #

62 accept <- rbinom(1,1,min(A,1))

63 b.old <- accept*b.prop + (1-accept)*b.old

64 out[i] <- b.old

65 }

66 return(out)

67 }

68 ##

69 gibbs <- function(sims ,y,Z,Bprior ,Sigma ,bstart ,zeta ,eta ,

subsims =5*10^2, subburnin =2*10^2){

70 #---------------------------------

71 # (i) y = (y_1,...,y_p) are the observations.

72 # (ii) Z is the design matrix. Rows = p k\times 1

73 # vectors z_i^t.

74 # (iii) Bprior = c(\beta_1,...,\ beta_p) are the prior means

of the

75 # regression coefficients.

76 # (iv) Sigma is the k/times k prior covariance matrix.

77 # (v) (zeta ,eta) are the prior parameters for \pi(b) =

Gamma(zeta ,eta)

78 #---------------------------------

79 k <- length(Bprior) # number of regression coefficients/

covariates

80 p <- length(y) # number of observations

81 out <- matrix(NA ,nrow=sims ,ncol=k+p+1)

82 colnames(out) <- c(paste("beta" ,1:k,sep=""),"b",paste("

theta" ,1:p,sep=""))

83 # set coeffs. to start values

84 Bstart <- t(t(Bprior)); B <- Bstart; b <- bstart

85 #

86 counter <- 0

87 for(i in 1:sims){

88 mu <- exp(Z%*%B)

89 # sample \theta <- (\ theta_1,...,\ theta_p)

90 theta <- rgamma(p,y + b*mu ,b + 1)

91 #

92 # MH_beta(sims ,Bprior ,Sigma ,Z,theta ,b)

93 B.sims <- MH_beta(subsims ,Bprior ,Sigma ,Z,theta ,b)

94 B <- colMeans(B.sims[subburnin:subsims ,]);rm(B.sims)

95 #

96 # MH_b(sims ,bstart ,zeta ,eta ,B,theta ,Z)

97 b.sims <- MH_b(subsims ,bstart ,zeta ,eta ,B,theta ,Z)

98 b <- mean(b.sims[subburnin:subsims ]);rm(b.sims)
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99 #

100 out[i,] <- c(t(B),b,theta)

101 counter <- counter + 1

102 if(counter %% 10==0){

103 cat(counter/sims*100,"%","\n")

104 }

105 }

106 return(out)

107 }

108 ####

B.2 Simulation example of pure Bayes regres-

sion

Here is the R-script used for the simulation example in Figure 4.1. This script
shows how the MCMC-algorithm gibbs() can be applied. The script also
produces the MCMC convergence diagnostics plots in Figure B.1 and Figure
B.2.

1 # Section 4.2 R-script

2 #-----------------------------------------

3 #

4 # Import Gibbs -sampler and simulate data

5 #-----------------------------------------

6 source("Ch4_GIBBS.R")

7 # simulate data

8 #--------

9 p <- 40

10 z <- 1:p/5

11 Z <- matrix(NA ,ncol=2,nrow=p)

12 Z[,1] <- 1; Z[,2] <- z

13 b0 <- 0.2 ; b1 <- 0.5 ; bb <- 1/5

14 thetas <- rgamma(p,bb*exp(b0+b1*z),bb)

15 y <- rpois(p,thetas)

16 #-----------------------------------------

17 #-----------------------------------------

18 #

19 # Run the Gibbs -sampler

20 #-----------------------------------------

21 burnin <- 2*10^3

22 sims <- 10^4

23 #

24 # gibbs(sims ,y,Z,Bprior ,Sigma ,bstart ,zeta ,eta ,subsims =5*10^2,

subburnin =2*10^2)

25 ptm <- proc.time()

26 mcmc <- gibbs(sims ,y,Z,Bprior=c(0,0),Sigma=diag (2),bstart=3,

zeta=2,eta =3)

27 print(proc.time() - ptm)
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28 # get estimates

29 mcmc <- mcmc[burnin:sims ,]

30 mcmc <- data.frame(mcmc)

31 beta.mcmc <- colMeans(mcmc)[1:2]

32 b.mcmc <- colMeans(mcmc)[3]

33 theta.mcmc <- colMeans(mcmc)[4: ncol(mcmc)]

34 #

35 # finding HPD regions

36 hpd <- function(k,para){

37 l <- as.numeric(quantile(para ,k))

38 q <- .9 + k

39 u <- as.numeric(quantile(para ,1-q))

40 return(abs(u-l))

41 }

42 alpha <- seq(0,0.1,by =.001)

43 dists <- hpd(alpha ,mcmc$b);a.b <-alpha[which(dists==min(dists

))]

44 dists <- hpd(alpha ,mcmc$beta1);a.beta1 <-alpha[which(dists==

min(dists))]

45 dists <- hpd(alpha ,mcmc$beta2);a.beta2 <-alpha[which(dists==

min(dists))]

46 #

47 cat("beta.hat",beta.mcmc ,"\n","b.hat",b.mcmc ,"\n")

48 cat(quantile(mcmc[,1],c(a.beta1 ,1-a.beta1)),"\n",

49 quantile(mcmc[,2],c(a.beta2 ,1-a.beta2)),"\n",

50 quantile(mcmc[,3],c(a.b,1-a.b)),"\n")

51 # beta.hat 0.04549282 0.5097152

52 # b.hat 0.1727066

53 # -0.4784945 0.5477131

54 # 0.4305788 0.5906947

55 # 0.1292277 0.2229868

56 for(i in seq(1,39,by=2)){

57 cat(sprintf("theta%s",i),theta.mcmc[i],

58 sprintf("theta%s",(i+1)),theta.mcmc[i+1],"\n")}

59 #-----------------------------------------

60 #-----------------------------------------

61 #

62 # Figure 4.1

63 #-----------------------------------------

64 postscript("figure4_1.eps")

65 par(mfrow=c(1,1))

66 plot(z,y,frame.plot=FALSE ,ylab="mle and shrinkage estimates")

67 lines(z,exp(Z%*%c(b0,b1)),lty =1)

68 points(z,theta.mcmc ,pch=2,col="green")

69 lines(z,exp(Z%*%beta.mcmc),lty =2)

70 dev.off()

71 #-----------------------------------------

72 #-----------------------------------------

73 #

74 # MCMC diagnostics Figures B.1 and B.2

75 #-----------------------------------------
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76 emp.points <- function(x){

77 u <- max(density(x)$y)

78 for(i in 1: length(x)){

79 segments(x[i],0,x[i],u*.02)}}

80 postscript("diagnostic1.eps")

81 par(mfrow=c(3,2))

82 ts.plot(mcmc[,1],xlab="iterations",main=expression(beta [1]))

83 plot(density(mcmc [,1]),main=expression(beta [1]));emp.points(

mcmc [,1])

84 ts.plot(mcmc[,2],xlab="iterations",main=expression(beta [2]))

85 plot(density(mcmc [,2]),main=expression(beta [2]));emp.points(

mcmc [,2])

86 ts.plot(mcmc[,3],xlab="iterations",main=expression(b))

87 plot(density(mcmc [,3]),main=expression(b));emp.points(mcmc

[,3])

88 dev.off()

89 postscript("diagnostic2.eps")

90 par(mfrow=c(4,2))

91 for(j in c(1,20,30,40)){

92 ts.plot(mcmc[,j+3],xlab="iterations",main=bquote(expression(

theta [.(j)])))

93 plot(density(mcmc[,j+3]),main=bquote(theta [.(j)]))

94 emp.points(mcmc[,j+3])

95 }

96 dev.off()

97 #-----------------------------------------



88 APPENDIX B. MCMC FOR THE POISSON REGRESSION MODEL

β1

iterations

m
cm

c[
, 1

]

0 2000 4000 6000 8000

−
1.

5
−

0.
5

0.
5

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

β1

N = 8001   Bandwidth = 0.04679

D
en

si
ty

β2

iterations

m
cm

c[
, 2

]

0 2000 4000 6000 8000

0.
3

0.
4

0.
5

0.
6

0.
7

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

β2

N = 8001   Bandwidth = 0.00723

D
en

si
ty

b

iterations

m
cm

c[
, 3

]

0 2000 4000 6000 8000

0.
10

0.
20

0.
30

0.10 0.15 0.20 0.25 0.30 0.35

0
2

4
6

8
12

b

N = 8001   Bandwidth = 0.004184

D
en

si
ty

Figure B.1: Trace plots and non-parametric estimates of the densities for the
parameters β1, β2 and b in the hierarchical Bayesian regression model of Section
4.2.
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Figure B.2: Trace plots and non-parametric estimates of the densities for four
of the estimated Poisson means in the hierarchical Bayesian regression model
of Section 4.2.





Appendix C

Scripts used in simulations

In this section I have included the scripts used for the simulation studies. The
statistical programming language R (R Development Core Team, 2008) is used
for all the scripts.

C.1 Script used in Section 2.4

The script below generates Table 2.1, Table 2.2 and Table 2.3 in Section 2.4.
In addition, the script was used for the empirical comparison of δc1 and δCZ

in the same section, and to make Table A.1. The data y and true are from
Clevenson and Zidek (1975, 704).

1 # Section 2.4 R-script

2 #-----------------------------------------

3 #

4 # Figure (2.1)

5 #-----------------------------------------

6 p <- 100; c <- 40 ;z <- 0:10^3

7 risk <- function(gamma ,p,c){

8 r <- p+c+sum (((p-1)^2/(p -1+(1+c)*z) - 2*(p-1)^2/(p -1+(1+c)*

z))*dpois(z,gamma))

9 return(r)

10 }

11 #

12 risk.list1 <- c()

13 for(gamma in 0:100){

14 risk.list1 <- append(risk.list1 ,risk(gamma ,p,c))

15 }

16 ##

17 postscript("figure2_1.eps")

18 plot (0:100 , risk.list1 ,type="l",xlab=expression(sum(theta[i],i

)== gamma),

19 ylab="risk",ylim=c(min(risk.list1),p+c+15),frame.plot=

FALSE)

20 axis(side =1); abline(p+c,0,lty =2)

91
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21 dev.off()

22 #-----------------------------------------

23 #-----------------------------------------

24 #

25 # Table (2.1) and (2.2)

26 #-----------------------------------------

27 # comparing \delta_1^c and \delta^{CZ}

28 cLoss <- function(est ,theta ,c){

29 gamma <- sum(theta)

30 l1 <- sum(1/theta*(est -theta)^2)

31 l2 <- c/gamma*(sum(est)-sum(theta))^2

32 return(l1+l2)}

33

34 # Ranges

35 range <- matrix(NA ,nrow=6,ncol =2)

36 range[1,] <- c(0,4);range[2,] <- c(0,8)

37 range[3,] <- c(8,12);range[4,] <- c(12 ,16)

38 range[5,] <- c(0,12);range[6,] <- c(4,16)

39 p <- c(5,10,15)

40 ##

41 L1.losses = Lc.losses = matrix(NA,nrow=18,ncol =3)

42 colnames(L1.losses) = colnames(Lc.losses) = c("d.cz","d.c","

ml")

43 sims <- 10^5

44 L1.dcz = L1.dc = L1.ml = 0

45 Lc.dcz = Lc.dc = Lc.ml = 0

46 for(j in 1:3){

47 for(i in 1:6){

48 theta <- runif(p[j],range[i,1], range[i,2])

49 cat(min(theta),max(theta),"\n")

50 for(s in 1:sims){

51 y <- rpois(p[j],theta)

52 z <- sum(y)

53 # estimators

54 d.cz <- (1-(p[j]-1)/(p[j]-1+z))*y

55 c <- 5 # c-parameter

56 d.c <- (1-(p[j]-1)/(p[j] -1+(1+c)*z))*y

57 # L_1-loss (c = 0)

58 L1.dcz <- L1.dcz + cLoss(d.cz ,theta ,0)

59 L1.dc <- L1.dc + cLoss(d.c,theta ,0)

60 L1.ml <- L1.ml + cLoss(y,theta ,0)

61 # L_c-loss

62 Lc.dcz <- Lc.dcz + cLoss(d.cz ,theta ,5)

63 Lc.dc <- Lc.dc + cLoss(d.c,theta ,5)

64 Lc.ml <- Lc.ml + cLoss(y,theta ,5)

65

66 }

67 row <- c(0,6,12)

68 L1.losses[i+row[j],1] <- L1.dcz/sims

69 L1.losses[i+row[j],2] <- L1.dc/sims

70 L1.losses[i+row[j],3] <- L1.ml/sims
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71 #

72 Lc.losses[i+row[j],1] <- Lc.dcz/sims

73 Lc.losses[i+row[j],2] <- Lc.dc/sims

74 Lc.losses[i+row[j],3] <- Lc.ml/sims

75 }

76 }

77 #

78 # percentage saved

79 ch2.table <- function(loss ,out.name){

80 pcs <- matrix(NA ,nrow=18,ncol =2)

81 colnames(pcs) <- c("d.cz","d.c")

82 pcs[,1] <- (loss[,3] - loss [,1])/loss[,1]

83 pcs[,2] <- (loss[,3] - loss [,2])/loss[,2]

84 pcs <- round(pcs*100,2)

85 sink(out.name)

86 r <- c("(0,4)","(0,8)","(8,12)","(12 ,16)","(0,12)",

87 "(4,16)")

88 for(k in 1:6){

89 cat(r[k],"&",pcs [1+(k-1) ,1],"&",pcs [1+(k-1) ,2],"&",

90 pcs [7+(k-1) ,1],"&",pcs [7+(k-1) ,2],

91 "&",pcs [13+(k-1) ,1],"&",pcs [13+(k-1) ,2],"\\\\","\n")

92 }

93 sink()

94 }

95 # write the tables

96 ch2.table(L1.losses ,"table2_1.txt")

97 ch2.table(Lc.losses ,"table2_2.txt")

98 #-----------------------------------------

99 #-----------------------------------------

100 #

101 # Table A.1

102 #-----------------------------------------

103 # Clevenson and Zidek (1975 ,704) data

104 y <- c(0,0,0,1,2,1,0,2,0,0,0,1,3,0,0,

105 3,0,2,1,2,0,0,0,1,5,0,1,0,0,1,

106 0,1,0,1,0,1)

107 true <- c(1.17 ,0.83 ,0.50 ,1.00 ,0.83 ,0.83 ,

108 1.17 ,0.83 ,0.67 ,0.17 ,0.00 ,0.33 ,

109 1.50 ,0.50 ,1.17 ,1.33 ,0.50 ,1.17 ,

110 0.50 ,0.50 ,1.33 ,0.83 ,0.33 ,1.50 ,

111 1.33 ,0.67 ,0.67 ,0.33 ,0.33 ,0.33 ,

112 0.50 ,0.83 ,0.67 ,0.33 ,0.00 ,0.50)

113

114 # make Table A.1

115 ## make a table

116 p <- length(y);

117 c <- 40

118 z <- sum(y)

119 cz <- (1 - (p-1)/(p-1+z))*y

120 delta.c <- (1 - (p-1)/(p -1+(1+c)+z))*y

121 #



94 APPENDIX C. SCRIPTS USED IN SIMULATIONS

122 table <- matrix(NA ,38,8)

123 table [1:36 ,1] <- 1:36; table [1:36 ,2] <- y; table [1:36 ,3] <-

true

124 table [1:36 ,4] <- round(cz ,2); table [1:36 ,5] <- round(delta.c

,2)

125 table [1:36 ,6] <- round ((1/true)*(y-true)^2,2)

126 table [1:36 ,7] <- round ((1/true)*(cz -true)^2,2)

127 table [1:36 ,8] <- round ((1/true)*(delta.c-true)^2,2)

128 # zero is estimated by zero (replace NaN)

129 table [11 ,6:8] <- 0.00; table [35 ,6:8] <- 0.00

130 true[true ==0] <- 1/10^3

131 table [37,] <- c("$L_1$","","","","",round(cLoss(y,true ,0) ,2),

132 round(cLoss(cz ,true ,0) ,2),

133 round(cLoss(delta.c,true ,0) ,2))

134 table [38,] <- c("$L_c$",sprintf("$Z = %s$",round(sum(y) ,2)),

135 sprintf("$\\ gamma = %s$",round(sum(true) ,2)),

136 "","",round(cLoss(y,true ,c) ,2),round(cLoss(cz ,true ,

c) ,2), round(cLoss(delta.c,true ,c) ,2))

137

138 # write to file

139 sink("tableA_1.txt")

140 for(row in 1:38){

141 out <-sprintf("%s & %s & %s & %s & %s & %s & %s & %s \\\\",

table[row ,1],

142 table[row ,2], table[row ,3], table[row ,4], table[row ,5], table[

row ,6],

143 table[row ,7], table[row ,8])

144 cat(out)

145 if(row == 36){

146 cat("\\ hline")}

147 cat("\n")

148 }

149 sink()

150 #-----------------------------------------

151 #-----------------------------------------

152 #

153 # Simulations with CZ -data in Section 2.4

154 #-----------------------------------------

155 Lc.c = Lc.cz = Lc.ml = L1.c = L1.cz = L1.ml = 0

156 sims <- 10^5

157 true[true ==0] <- 1/10^3

158 for(i in 1:sims){

159 p <- 36

160 y.sim <- rpois(p,true)

161 z <- sum(y.sim)

162 # estimators

163 c <- 40

164 delta.cz <- (1 - (p-1)/(p-1+z))*y.sim

165 delta.c <- (1 - (p-1)/(p -1+(1+c)*z))*y.sim

166 # Lc -losses

167 Lc.cz <- Lc.cz + 1/sims*cLoss(delta.cz ,true ,c)
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168 Lc.c <- Lc.c + 1/sims*cLoss(delta.c,true ,c)

169 Lc.ml <- Lc.ml + 1/sims*cLoss(y.sim ,true ,c)

170 #

171 # L1 -losses

172 L1.cz <- L1.cz + 1/sims*sum(1/true*(delta.cz -true)^2)

173 L1.c <- L1.c + 1/sims*sum(1/true*(delta.c-true)^2)

174 L1.ml <- L1.ml + 1/sims*sum(1/true*(y.sim -true)^2)

175 }

176 cat("L1 -losses","\n")

177 cat("CZ",(L1.ml -L1.cz)/L1.ml*100,"\n")

178 cat("delta.c",(L1.ml -L1.c)/L1.ml*100,"\n")

179 cat("Lc -losses","\n")

180 cat("CZ",(Lc.ml -Lc.cz)/Lc.ml*100,"\n")

181 cat("delta.c",(Lc.ml -Lc.c)/Lc.ml*100,"\n")

182 # L1 -losses

183 # CZ 57.16046

184 # delta.c 6.017174

185 # Lc -losses

186 # CZ -387.0966

187 # delta.c 1.583304

188 #-----------------------------------------

189 #-----------------------------------------

C.2 Script used in Section 2.5

This is the script used in Section 2.5 for finding an optimal value of c, and for
the simulation study reported in Table 2.3.

1 # Finding optimal c-values (Table A.2)

2 #-----------------------------------------

3 #

4 phi <- function(k,c){

5 return ((p-1)/(p -1+(1+c)*k))

6 }

7 Ei <- function(z,c,gamma){

8 D <- ((phi(z+1,c)^2 - 2*phi(z+1,c))*(z+1) + 2*phi(z,c)*z)*

dpois(z,gamma)

9 return(D)

10 }

11 c.table40_8 <- list()

12 sample.size <- c(40,8)

13 c <- 0:(2*10^2)

14 G <- 1:50

15 for(u in 1:2){

16 p <- sample.size[u]

17 c.table <- matrix(NA ,nrow=length(G),ncol =5+1)

18 c.table[,1] <- G ; counter <- 2

19 for(tol in c(2,5,10,15,20)){

20 c.hat <- numeric(length(G))

21 for(gamma in G){
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22 loss.det <- numeric(length(c))

23 for(j in c){

24 loss.det[j] <- sum(Ei(1:10^3 ,j,gamma))*100

25 }

26 c.hat[gamma] <- which(loss.det == max(loss.det[loss.det

<=tol])) -1

27 }

28 c.table[,counter] <- c.hat

29 counter <- counter + 1}

30 c.table40_8[[u]] <- c.table

31 }

32 sink("optimal_c.txt")

33 t1 <-c.table40_8[[1]]; t2 <-c.table40_8[[2]]

34 for(r in G){

35 cat(t1[r,1],"&",t1[r,2],"&",t1[r,3],"&",t1[r,4],"&",t1[r

,5],"&",

36 t1[r,6],"&",t2[r,2],"&",t2[r,3],"&",t2[r,4],"&",t2[r,5],

37 "&",t2[r,6],"\\\\","\n")}

38 sink()

39 #-----------------------------------------

40 #-----------------------------------------

41 #

42 # A comparison of \delta^{CZ} and

43 # \delta_1^c under L_1 (Table 2.3)

44 #-----------------------------------------

45 p <- 10 # sample size

46 gamma <- 28 # prior guess

47 K <- 10 # tolerance

48 loss.det <- numeric(length(c))

49 for(j in c){

50 loss.det[j] <- sum(Ei(1:10^3 ,j,gamma))*100

51 }

52 c.hat <- which(loss.det == max(loss.det[loss.det <=K]))-1

53 #

54 p <- 10

55 theta.s <- runif(p-2,0,2)

56 theta.b <- runif (2,5,8)

57 theta <- c(theta.s,theta.b)

58 sims <- 10^5

59 L1.cz = L1.c = numeric(p+1) # (p+1)th is total loss

60 c <- c.hat

61 for(j in 1:sims){

62 y <- rpois(p,theta)

63 z <- sum(y)

64 d.cz <- y - (p-1)/(p-1+z)*y

65 d.c <- y - (p-1)/(p -1+(1+c)*z)*y

66 #

67 # Loss , \delta^{CZ}

68 L1.cz[1:p] <- L1.cz[1:p] + 1/sims*(1/theta*(d.cz - theta)

^2)

69 L1.cz[p+1] <- sum(L1.cz[1:p])
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70 # \delta^{c}

71 L1.c[1:p] <- L1.c[1:p] + 1/sims*(1/theta*(d.c - theta)^2)

72 L1.c[p+1] <- sum(L1.c[1:p])

73 }

74 ## table

75 sink("table2_3.txt")

76 for(i in 1:p){

77 cat(round(theta[i],2),"&",round((1-L1.cz[i])*100,2),

78 "&",round((1-L1.c[i])*100,2),"\\\\","\n")

79 }; cat("\\ hline","\n")

80 cat("$L_1$","&",round((p-L1.cz[p+1])/p*100,2),"&",

81 round((p-L1.c[p+1])/p*100,2),"\\\\")

82 #sink()

83 ##

84 #-----------------------------------------

85 #-----------------------------------------

C.3 Scripts used in Chapter 3

In the R-script below I implement the estimators described in Section 3.1 and
Section 3.2. In addition, the script includes a function makePlot() that is used
for the plots in Figure 3.1 and Figure 3.3. The script is called PoissonEstimators
and is sourced into the two simulation scripts that follow.

1 #--------------------------------------------

2 # Squared error loss estimators L_0

3 #--------------------------------------------

4 #

5 # \delta^{G1}

6 # Ghosh et al (1983, 354) Example 2.1

7 #-------------

8 N <- function(y,nu.i){

9 return(sum(y>nu.i))

10 }

11

12 h <- function(y.i){

13 # h = \sum_{k=1}^{Y_i}1/k

14 out <- 0

15 if(y.i>0){

16 out <- sum(1/(1:y.i))}

17 return(out)

18 }

19 d.i <- function(y.i,nu.i){

20 d <- 0

21 if(y.i < nu.i){

22 d <- (h(y.i)-h(nu.i))^2+.5*max(3*h(nu.i) -2,0)}

23 else{

24 d <- (h(y.i)-h(nu.i))*(h(y.i+1)-h(nu.i))}

25 return(d)

26 }
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27 # the estimator

28 delta.G1 <- function(y,nu){

29 p <- length(y)

30 ests <- numeric(length(y))

31 D <- 0

32 for(j in 1: length(y)){

33 D <- D + d.i(y[j],nu[j])

34 }

35 if(D==0){

36 # Y_i = \nu_i \forall i

37 ests [1:p] <- nu}

38 else{

39 for(i in 1: length(y)){

40 ests[i] <- y[i] - max(N(y,nu[i]) -2,0)*(h(y[i])-h(nu[i])

)/D}

41 }

42 return(ests)

43 }

44 ##

45 #--------------------------------------------

46 # \delta^{G2}

47 # Ghosh et al (1983, 355) Example 2.2

48 #-------------

49 H.i <- function(y,k){

50 y1 <- min(y); out <- 0; h.y1 <- 0

51 if(y1 != 0){

52 h.y1 <- sum(1/(1:y1))}

53 if(y[k] != y1){

54 out <- sum(1/(1:y[k])) - h.y1}

55 return(out)

56 }

57 e.i <- function(n,i){

58 e <- numeric(n);e[i] <- 1

59 return(e)

60 }

61 # the estimator

62 deltaG2 <- function(y){

63 ests <- numeric(length(y))

64 p <- length(y); D <- 0

65 for(j in 1:p){

66 D <- D + sum(H.i(y,j)*H.i(y+e.i(p,j),j))

67 }

68 y1 <- min(y) # min of observations

69 if(length(unique(y))==1){

70 ests [1:p] <- y1

71 }

72 else{

73 for(i in 1:p){

74 ests[i] <- y[i] - max(N(y,y1) -2,0)*H.i(y,i)/D}

75 }

76 return(ests)
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77 }

78 ##

79 #--------------------------------------------

80 # \delta^{G3}

81 # Ghosh et al (1983, 355) Example 2.3

82 #-------------

83 deltaG3 <- function(y){

84 p <- length(y)

85 m <- round(median(y))

86 if(sum(y<=m)<p/2){

87 m <- m - 1}

88 ##

89 return(delta.G1(y,rep(m,p)))

90 }

91 ##

92 #--------------------------------------------

93 # \delta^{P} Peng (1975)

94 #-------------

95 delta.Peng <- function(y){

96 p <- length(y)

97 ests <- numeric(p)

98 N0 <- sum(y==0)

99 const <- max(p-N0 -2,0)

100 H2 <- 0

101 for(j in 1:p){

102 H2 <- H2 + h(y[j])^2}

103 if(H2==0){

104 ests <- rep(0,p)}

105 if(H2 >0){

106 for(i in 1:p){

107 ests[i] <- y[i] - const*h(y[i])/H2

108 }}

109 return(ests)

110 }

111 ##

112 #--------------------------------------------

113 # delta^{Lp}, Lindley type estimator

114 # Ghosh et al (1983 ,355) Equation (2.13)

115 #-------------

116 delta.Lp <- function(y){

117 p <- length(y)

118 if(sum(y)==0){

119 ests <- rep(0,p)}

120 else{

121 h.bar <- 0

122 for(j in 1:p){

123 h.bar <- h.bar + 1/p*h(y[j])}

124 h.s <- numeric(p)

125 for(i in 1:p){

126 h.s[i] <- h(y[i])}

127 N.bar <- sum(h.s > h.bar)
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128 const <- max(N.bar -2,0)

129 D <- sum((h.s-h.bar)^2)

130 if(D==0){

131 ests <-h.bar}

132 else{

133 ests <- y - const*(h.s-h.bar)/D}

134 }

135 return(ests)

136 }

137 ##

138 #--------------------------------------------

139 # delta^{m} Equation (3.8)

140 # Shrink to mean estimator

141 #-------------

142 delta.m <- function(y){

143 p <- length(y)

144 z <- sum(y)

145 if(z==0){

146 ests <- rep(0,p)}

147 else{

148 Syy <- (p-1)/p*var(y)

149 y.bar <- mean(y)

150 Bhat <- y.bar/(max(Syy -y.bar ,0)+y.bar)

151 ests <- Bhat*mean(y) + (1 - Bhat)*y

152 }

153 return(ests)

154 }

155 ##

156 #--------------------------------------------

157 #--------------------------------------------

158 #

159 #--------------------------------------------

160 # Weighted squared error loss estimators L_1

161 #--------------------------------------------

162 #

163 # delta^{m1} Equation (3.13)

164 #-------------

165 delta.m1 <- function(y){

166 p <- length(y); z <- sum(y)

167 if(z==0){

168 ests <- rep(0,p)}

169 else{

170 Syy <- (p-1)/p*var(y)

171 y.bar <- mean(y)

172 Bhat <- y.bar/(max(Syy -y.bar ,0)+y.bar)

173 ests <- Bhat*mean(y) + (1-Bhat)*(y-1)

174 ests[which(y==0)] <- 0

175 }

176 return(ests)

177 }

178 ##
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179 #--------------------------------------------

180 # \delta^{CZ}

181 #-------------

182 delta.cz <- function(y){

183 p <- length(y); z <- sum(y)

184 ests <- (1-(p-1)/(p-1+z))*y

185 return(ests)

186 }

187 ##

188 #--------------------------------------------

189 # \delta^{Gm}

190 # Ghosh et al (1983 ,357) example 2.5

191 #-------------

192 delta.Gm <- function(y){

193 p <- length(y);y.m <- min(y)

194 g <- y - y.m; D <- sum(g)

195 const <- max(sum(y>y.m) -1,0)

196 ests <- rep(p,0)

197 if(D != 0){

198 ests <- y - const*g/D}

199 return(ests)

200 }

201 ##

202 #--------------------------------------------

203 # \delta ^{\nu} Equation (3.14)

204 #-------------

205 delta.nu <- function(y,nu){

206 ind <- function(vec ,cut){

207 # returns I(vec \geq cut)

208 return(as.numeric(vec >= cut))

209 }

210 p.l <- sum(y >= nu)

211 Z.l <- sum(ind(y,nu)*y)

212 ests <- y

213 if(p.l >= 2){

214 ests <- y - ind(y,nu)*(p.l-1)*(y-nu)/(p.l-1+Z.l-p.l*nu)

215 }

216 return(ests)

217 }

218 #--------------------------------------------

219 #--------------------------------------------

220 #

221 # make a plot for one estimator

222 #--------------------------------------------

223 makePlot <- function(estimator ,name ,yrange){

224 plot(NA ,NA ,xlim=c(1,6),ylim=yrange ,xlab="",ylab="% savings in

risk",frame.plot=FALSE ,xaxt=’n’,main=name)

225 p <- c("5","10","15")

226 Axis(side=1,at=c(1:6) ,labels=c("(0,4)","(0,8)","(8,12)","

(12 ,16)","(0,12)",

227 "(4,16)"))
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228 segments (0.2,0,5.8,0,lty =2)

229 for(j in 1: length(savings)){

230 s <- savings [[j]]

231 for(i in 1:3){

232 text(j,s[i,estimator],p[i])}

233 }

234 }

235 #--------------------------------------------

C.4 Script used in Section 3.1

The squared error loss simulation study reported in Section 3.1. The script
generates Figure 3.1 and Figure 3.2.

1 # Section 3.1 R-script

2 # Squared error loss simulations

3 #-----------------------------------------

4 source("PoissonEstimators.R")

5 #

6 #-----------------------------------------

7 sims <- 10^4

8 loss <- c("LG1","LG2","LG3","LPeng","LLindley","Lm")

9 # ranges

10 range <- matrix(NA ,nrow=6,ncol =2)

11 range[1,] <- c(0,4);range[2,] <- c(0,8)

12 range[3,] <- c(8,12);range[4,] <- c(12 ,16)

13 range[5,] <- c(0,12);range[6,] <- c(4,16)

14 size <- c(5,10,15)

15 savings <- list()

16 Estm = EstLindley = matrix(NA ,nrow=sims ,ncol =5)

17 for(j in 1:nrow(range)){

18 pcs <- matrix(NA ,nrow=3,ncol=length(loss))

19 for(pp in 1: length(size)){

20 LMLe = LG1 = LG2 = LG3 = LPeng = LLindley = Lm = 0

21 theta <- runif(size[pp],range[j,1], range[j,2])

22 if((j==3)&(pp==1)){

23 save.theta <- theta}

24 for(k in 1:sims){

25 y <- rpois(size[pp],theta)

26 LG1 <- LG1 + 1/sims*sum(( delta.G1(y,round(theta ,0)) -

theta)^2)

27 LG2 <- LG2 + 1/sims*sum(( deltaG2(y) - theta)^2)

28 LG3 <- LG3 + 1/sims*sum(( deltaG3(y) - theta)^2)

29 LPeng <- LPeng + 1/sims*sum(( delta.Peng(y) - theta)^2)

30 LLindley <- LLindley + 1/sims*sum(( delta.Lp(y) - theta)

^2)

31 Lm <- Lm + 1/sims*sum(( delta.m(y) - theta)^2)

32 LMLe <- LMLe + 1/sims*sum((y-theta)^2)

33 if((j==3)&(pp==1)){

34 # save estimates for comparison
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35 # of the variance of estimators

36 # save.theta is true theta values

37 EstLindley[k,] <- delta.Lp(y)

38 Estm[k,] <- delta.m(y)

39 }

40 }

41 for(q in 1: length(loss)){

42 pcs[pp ,q] <- round((LMLe -get(loss[q]))/LMLe*100,2)

43 }

44 }

45 savings [[j]] <- pcs

46 }

47 #-----------------------------------------

48 #-----------------------------------------

49 #

50 # Figure 3.1

51 #-----------------------------------------

52 # write (Figure 3.1)

53 postscript("figure3_1.eps")

54 par(mfrow=c(3,2))

55 makePlot (1,"delta^{G1}",c(-5,82))

56 makePlot (2,"delta^{G2}",c(-5,82))

57 makePlot (3,"delta^{G3}",c(-5,82))

58 makePlot (4,"delta^{Peng}",c(-5,82))

59 makePlot (5,"delta^{Lp}",c(-5,82))

60 makePlot (6,"delta^{m}",c(-5,83))

61 dev.off()

62 #-----------------------------------------

63 #-----------------------------------------

64 #

65 # Figure 3.2 (box plot)

66 #-----------------------------------------

67 # compare variances of \delta^{Lp} and \delta^{m}

68 myBox <- function(x,yup ,title){

69 boxplot(x,frame.plot=FALSE ,xaxt="n",main=title ,

70 outline=FALSE ,whisklty =0, staplelty=0,ylim=yup)

71 for(i in 1:5){

72 points(i,save.theta[i],pch=1,cex =1.2)

73 q<-quantile(x[,i],c(.025 ,.975))

74 segments(i,q[1],i,q[2],lty =2)

75 segments(i-.2,q[1],i+.2,q[1],lwd =1.2)

76 segments(i-.2,q[2],i+.2,q[2],lwd =1.2)

77 }

78 }

79 postscript("figure3_2.eps")

80 par(mfrow=c(1,2))

81 myBox(Estm ,c(4,20),"delta^{m}")

82 myBox(EstLindley ,c(4,20),"delta^{Lp}")

83 dev.off()

84 ##

85 # the savings in (8,12)
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86 savings [[3]]

87 # [,1] [,2] [,3] [,4] [,5] [,6]

88 # [1,] 4.34 13.13 0.00 0.50 14.74 62.68

89 # [2,] 3.44 14.90 2.70 0.80 39.65 69.80

90 # [3,] 3.91 14.50 3.64 0.89 49.58 76.59

91 ##

92 # the savings in (12 ,16)

93 savings [[4]]

94 # [,1] [,2] [,3] [,4] [,5] [,6]

95 # [1,] 3.51 13.75 0.00 0.24 15.02 65.37

96 # [2,] 2.53 16.77 1.84 0.41 44.04 78.54

97 # [3,] 2.61 15.79 2.26 0.52 52.70 82.01

98 #-----------------------------------------

99 #-----------------------------------------

C.5 Script used in Section 3.2

The weighted squared error loss simulation study reported in Section 3.2. The
script generates Figure 3.3 and Table 3.2.

1 # Section 3.2 R-script

2 # Weighted squared error loss simulations

3 #-----------------------------------------

4 source("PoissonEstimators.R")

5 #

6 #-----------------------------------------

7 sims <- 2*10^3

8 t.sims <- 10^1

9 loss <- c("Lcz","LGm","Lnu","Lm1")

10 # ranges of \theta_1,...,\ theta_p

11 range <- matrix(NA ,nrow=6,ncol =2)

12 range[1,] <- c(0,4);range[2,] <- c(0,8)

13 range[3,] <- c(8,12);range[4,] <- c(12 ,16)

14 range[5,] <- c(0,12);range[6,] <- c(4,16)

15 # sample sizes

16 size <- c(5,10,15)

17 savings <- list()

18 #

19 counter <- 1

20 for(j in 1:nrow(range)){

21 pcs <- matrix(NA ,nrow=3,ncol=length(loss))

22 for(pp in 1: length(size)){

23 Lcz = LGm = Lnu = Lm1 = LMLe = 0

24 for(tt in 1:t.sims){

25 theta <- runif(size[pp],range[j,1], range[j,2])

26 if(sum(theta ==0) >=1){

27 print("trouble"); break}

28 for(k in 1:sims){

29 y <- rpois(size[pp],theta)
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30 Lcz <- Lcz + 1/sims*sum(1/theta*(delta.cz(y)-theta)

^2)

31 LGm <- LGm + 1/sims*sum(1/theta*(delta.Gm(y)-theta)

^2)

32 Lnu <- Lnu + 1/sims*sum(1/theta*(delta.nu(y,median(y)

-1)-theta)^2)

33 Lm1 <- Lm1 + 1/sims*sum(1/theta*(delta.m1(y)-theta)

^2)

34 LMLe <- LMLe + 1/sims*sum(1/theta*(y-theta)^2)

35 }

36 Lcz <- 1/t.sims*Lcz; LGm <- 1/t.sims*LGm;

37 Lnu <- 1/t.sims*Lnu; Lm1 <- 1/t.sims*Lm1;

38 LMLe <- 1/t.sims*LMLe;

39 }

40 for(q in 1: length(loss)){

41 pcs[pp ,q] <- round((LMLe -get(loss[q]))/LMLe*100,2)}

42 colnames(pcs) <- c("cz","min","nu","m1")

43 rownames(pcs) <- c("5","10","15")

44 }

45 savings [[j]] <- pcs

46 cat(counter/nrow(range),"%","\n")

47 counter <- counter + 1

48 }

49 #-----------------------------------------

50 #-----------------------------------------

51 #

52 # Figure 3.3

53 #-----------------------------------------

54 postscript("figure3_3.eps")

55 par(mfrow=c(2,2))

56 makePlot (1,"delta^{CZ}",c(-5,90))

57 makePlot (2,"delta^{Gm}",c(-5,90))

58 makePlot (3,"delta^{nu}",c(-5,90))

59 makePlot (4,"delta^{m1}",c(-5,90))

60 dev.off()

61 #-----------------------------------------

62 #-----------------------------------------

63 #

64 # Table 3.1

65 #--------------------------------------

66 save1 <-cbind(t(savings [[1]]) ,t(savings [[2]]) ,t(savings [[3]]))

67 save2 <-cbind(t(savings [[4]]) ,t(savings [[5]]) ,t(savings [[6]]))

68 est <- c("$\\ delta^{CZ}$","$\\ delta^{Gm}$","$\\ delta ^{\\nu}$"

,"$\\ delta^{m1}$")

69 sink("table3_1i.txt")

70 for(j in 1:4){

71 row <- save1[j,]

72 cat(est[j],"&",row[1],"&",row[2],"&",row[3],"&",

73 row[4],"&",row[5],"&",row[6],"&",

74 row[7],"&",row[8],"&",row[9],"\\\\","\n")

75 }
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76 sink()

77 sink("table3_1ii.txt")

78 for(j in 1:4){

79 row <- save2[j,]

80 cat(est[j],"&",row[1],"&",row[2],"&",row[3],"&",

81 row[4],"&",row[5],"&",row[6],"&",

82 row[7],"&",row[8],"&",row[9],"\\\\","\n")

83 }

84 sink()

85 #-----------------------------------------

86 #-----------------------------------------

C.6 Script used in Section 3.3

Here is the script that compares normal- and Poisson theory estimators under
L0 and L1. The script generates Table 3.2.

1 # Section 3.3 R-script

2 #-----------------------------------------

3 source("PoissonEstimators.R")

4 #

5 # Compare Normal and Poisson estimators

6 #-----------------------------------------

7 #

8 p <- 31

9 sims <- 10^4

10 ranges <- rbind(c(0,8),c(4,8))

11 cz.L1 = m1.L1 = js.L1 = Lindley.L1 = numeric (2)

12 Peng.L0 = m.L0 = js.L0 = Lindley.L0 = numeric (2)

13 for(j in 1:2){

14 theta <- runif(p-2,ranges[j,1], ranges[j,2])

15 theta <- c(ranges[j,1]+.01 , theta ,8) # set boundaries

16 L1cz = L1m1 = L1js = L1Lindley = L1ML = 0

17 L0Peng = L0m = L0js = L0Lindley = L0ML = 0

18 for(i in 1:sims){

19 y <- rpois(p,theta)

20 # CZ -estimator

21 z <- sum(y)

22 cz <- y - (p-1)/(p-1+z)*y

23 # James -Steins and Lindley

24 x <- 2*sqrt(y);

25 js.norm <- x - (p-2)/sum((x)^2)*x

26 js <- 1/4*js.norm^2

27 #

28 x.bar <- mean(x)

29 Lindley.norm <- x.bar + (p-3)/sum((x-x.bar)^2)*(x-x.bar)

30 Lindley <- 1/4*Lindley.norm^2

31 #

32 L1cz <- L1cz + 1/sims*sum(1/theta*(cz -theta)^2)

33 L0Peng <- L0Peng + 1/sims*sum(( delta.Peng(y)-theta)^2)
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34 #

35 # delta^{m} estimators

36 L1m1 <- L1m1 + 1/sims*sum(1/theta*(delta.m1(y)-theta)^2)

37 L0m <- L0m + 1/sims*sum(( delta.m(y)-theta)^2)

38 #

39 L1js <- L1js + 1/sims*sum(1/theta*(js -theta)^2)

40 L0js <- L0js + 1/sims*sum((js -theta)^2)

41 #

42 L1Lindley <- L1Lindley + 1/sims*sum(1/theta*(Lindley -

theta)^2)

43 L0Lindley <- L0Lindley + 1/sims*sum((Lindley -theta)^2)

44 #

45 L1ML <- L1ML + 1/sims*sum(1/theta*(y-theta)^2)

46 L0ML <- L0ML + 1/sims*sum((y-theta)^2)

47 }

48 cz.L1[j] <- round((L1ML -L1cz)/L1ML*100,2)

49 m1.L1[j] <- round((L1ML -L1m1)/L1ML*100,2)

50 js.L1[j] <- round((L1ML -L1js)/L1ML*100,2)

51 Lindley.L1[j] <- round((L1ML -L1Lindley)/L1ML*100,2)

52 #

53 Peng.L0[j] <- round((L0ML -L0Peng)/L0ML*100,2)

54 m.L0[j] <- round((L0ML -L0m)/L0ML*100,2)

55 js.L0[j] <- round((L0ML -L0js)/L0ML*100,2)

56 Lindley.L0[j] <- round((L0ML -L0Lindley)/L0ML*100,2)

57

58

59 }

60 #-----------------------------------------

61 #-----------------------------------------

62 #

63 # Table 3.2

64 #-----------------------------------------

65 sink("table3_2.txt")

66 cat("& $\\ delta^{CZ}$ & $\\ delta^{m1}$ & $\\ delta^{JS}$ & $\\

delta^{L}$ & $\\ delta^{CZ}$ & $\\ delta^{m1}$ & $\\ delta^{

JS}$ & $\\ delta^{L}$\\\\","\n")

67 cat("$L_1$","&",cz.L1[1],"&",m1.L1[1],"&",js.L1[1],"&",

Lindley.L1[1],"&",

68 cz.L1[2],"&",m1.L1[2],"&",js.L1[2],"&",Lindley.L1[2],"\\\\"

,"\n")

69 cat("\\ hline","\n")

70 cat("& $\\ delta^{P}$ & $\\ delta^{m}$ & $\\ delta^{JS}$ & $\\

delta^{L}$ & $\\ delta^{P}$ & $\\ delta^{m}$ & $\\ delta^{JS}

$ & $\\ delta^{L}$\\\\","\n")

71 cat("$L_0$","&",Peng.L0[1],"&",m.L0[1],"&",js.L0[1],"&",

Lindley.L0[1],"&",

72 Peng.L0[2],"&",m.L0[2],"&",js.L0[2],"&",Lindley.L0[2],"\\\\

")

73 sink()

74 #-----------------------------------------
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75 #-----------------------------------------

C.7 Script used in Section 4.3

This is the script for the simulated regressions in Section 4.3. This script pro-
duces Table 4.2 and Figure 4.2.

1 # Section 4.3 R-script

2 #-----------------------------------------

3 source("Ch4_GIBBS.R")

4 #

5 # Program regression models

6 #-----------------------------------------

7 #

8 # \delta^H Hudson (1985) estimator

9 #---------

10 delta.H <- function(y,Z){

11 p <- length(y); H <- numeric(p)

12 k <- dim(Z)[2]; N <- sum(y==0) #observed zeros

13 est <- numeric(p) # the estimates

14 for(i in 1:p){

15 if(y[i] > 0){

16 H[i] <- sum(1/1:y[i])}

17 else{

18 H[i] <- 0}}

19 #

20 beta.hat <- solve(t(Z)%*%Z)%*%t(Z)%*%H

21 H.hat <- Z%*%beta.hat

22 y.hat <- .56*(exp(H.hat) - 1); y.hat[y.hat < 0] <- 0

23 S <- sum((H - H.hat)^2)

24 shrink <- max(p-N-k-2,0)/S

25 for(i in 1:p){

26 if(y[i]+0.56 > shrink){

27 est[i] <- y[i] - shrink*(H[i]-H.hat[i])}

28 else{

29 est[i] <- y.hat[i]}

30 }

31 # transform beta.hat to Poisson world

32 beta.hat <- .56*(exp(beta.hat) - 1)

33 return(list(est ,beta.hat))

34 }

35 ##

36 # \delta^{EB} (James -Stein type)

37 #---------

38 delta.EB <- function(y,Z){

39 p <- length(y); k <- dim(Z)[2]

40 x <- 2*sqrt(y)

41 beta.hat <- solve(t(Z)%*%Z)%*%t(Z)%*%x

42 xi.hat <- Z%*%beta.hat

43 shrink <- (p-k-2)/sum((x-xi.hat)^2)
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44 est <- xi.hat + (1 - shrink)*(x-xi.hat)

45 return(list(est ,beta.hat))

46 }

47 ##

48 # Empirical Bayes regression model

49 #---------

50 eb.fun <- function(y,start.params){

51 logLikNegbin <- function(params){

52 # params = c(beta ,b)

53 b0 <- params [1];b1 <- params [2]

54 b <- params [3]; w <- b/(b+1)

55 mu <- exp(Z%*%c(b0 ,b1))

56 ll <- sum(lgamma(y + b*mu)-lfactorial(y) - lgamma(b*mu) +

b*mu*log(w) + y*log(1-w))

57 # returns negative

58 return(-ll)}

59 fit.eb <- nlm(logLikNegbin ,start.params ,hessian=TRUE)

60 beta.eb <- fit.eb$estimate [1:2]

61 b.eb <- fit.eb$estimate [3]

62 delta.eb <- exp(Z%*%beta.eb)*b.eb/(b.eb+1) + (1-b.eb/(b.eb

+1))*y

63 #

64 return(list(beta.eb,b.eb))

65 }

66 #-----------------------------------------

67 #-----------------------------------------

68 #

69 # Simulation study

70 #--------------------------------------

71 # just give me some truth

72 p <- 40; z <- 1:p/5

73 Z <- matrix(NA ,ncol=2,nrow=p)

74 Z[,1] <- 1; Z[,2] <- z

75 b0 <- 0.2 ; b1 <- 0.5 ; bb <- 1/5

76 theta <- rgamma(p,bb*exp(b0+b1*z),bb)

77 #

78 sims <- 500

79 counter <- 1

80 b.eb = b.Bayes = numeric(sims) # collect the b.hat -params

81 beta.Bayes = beta.Preg = beta.H = beta.eb = beta.EB = matrix(

NA ,nrow=sims ,ncol =2)

82 LBayes = LPreg = LHudson = LEmpBayes = Lefronmorris = Lml = 0

83 for(i in 1:sims){

84 # draw data

85 y <- rpois(p,theta)

86 # Run the Gibbs -sampler

87 #---------------------

88 burnin <- 2*10^2; mcmc.sims <- 5*10^2

89 ptm <- proc.time()

90 mcmc <- gibbs(mcmc.sims ,y,Z,Bprior=c(0,.3),Sigma=diag (2),

bstart=3,zeta=2,eta =3)
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91 print(proc.time() - ptm)

92 # get estimates

93 mcmc <- mcmc[burnin:mcmc.sims ,]

94 beta.Bayes[i,] <- colMeans(mcmc)[1:2]

95 b.Bayes[i] <- mean(mcmc [,3])

96 theta.Bayes <- colMeans(mcmc)[4: ncol(mcmc)]

97 ##

98 # standard Poisson

99 #---------------------

100 beta.Preg[i,] <- glm(y~z,family="poisson")$coeff

101 theta.Preg <- exp(Z%*%beta.Preg[i,])

102 ##

103 # \delta^H Hudson (1985)

104 #---------------------

105 Hudson <- delta.H(y,Z)

106 theta.Hudson <- Hudson [[1]]

107 beta.H[i,] <- Hudson [[2]]

108 ##

109 # Empirical Bayes

110 #---------------------

111 eb.hat <- eb.fun(y,c(.3,.8,1/2))

112 beta.eb[i,] <- eb.hat [[1]]

113 b.eb[i] <- eb.hat [[2]]

114 w.hat <- b.eb[i]/(b.eb[i]+1)

115 theta.eb <- exp(Z%*%beta.eb[i,])*w.hat + (1-w.hat)*y

116 ##

117 # delta.EB var.stab. transform

118 em <- delta.EB(y,Z)

119 # transform to Poisson world

120 theta.EB <- 1/4*em [[1]]^2

121 beta.EB[i,] <- 1/4*em [[2]]^2

122 ##

123 # Loss

124 #----------------

125 LBayes <- LBayes + 1/sims*sum(( theta.Bayes -theta)^2)

126 LEmpBayes <- LEmpBayes + 1/sims*sum(( theta.eb -theta)^2)

127 LHudson <- LHudson + 1/sims*sum(( theta.Hudson -theta)^2)

128 LPreg <- LPreg + 1/sims*sum(( theta.Preg -theta)^2)

129 Lefronmorris <- Lefronmorris + 1/sims*sum(( theta.EB -theta)

^2)

130 Lml <- Lml + 1/sims*sum((y-theta)^2)

131 ##

132 cat(counter/sims*100,"% -------------","\n")

133 counter <- counter + 1

134 }

135 #

136 L0 <- round(c(LBayes ,LEmpBayes ,LHudson ,LPreg ,Lefronmorris ,Lml

) ,2)

137 est <- c("Pure Bayes","Emp. Bayes","$\\ delta^{H}$",

138 "Poisson reg.","$1/4(\\ delta^{EB})^2$","MLE")

139 sink("table4_2.txt")
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140 for(i in 1: length(est)){

141 cat(est[i],"&",L0[i],"&",round((Lml -L0[i])/Lml*100,2),"\\\\

",

142 "\n")

143 }

144 sink()

145 #-----------------------------------------

146 #-----------------------------------------

147 #

148 # Figure 4.2 \beta box plot

149 #-----------------------------------------

150 beta.hats <- cbind(b.Bayes ,b.eb ,beta.Bayes ,beta.Preg ,beta.H,

beta.eb ,beta.EB)

151 # estimated b’s in Bayes and empirical Bayes

152 for(i in 1:2){

153 cat(mean(beta.hats[,i]),quantile(beta.hats[,i],c(.025 ,.975)),

"\n")}

154 # 0.2292195 0.1648957 0.3219973 # Bayes

155 # 0.2002152 0.1403232 0.2915222 # empirical Bayes

156 #

157 quickBox <- function(w,para){

158 boxplot(beta.hats[,w[1]], beta.hats[,w[2]], beta.hats[,w[3]],

159 beta.hats[,w[4]], beta.hats[,w[5]], frame.plot=FALSE ,whisklty

=0,

160 staplelty=0,names=c("Bayes","Poisreg","H","EB","1/4dEB^2"),

161 main=bquote(expression(beta [.( para)]))); i <- 1

162 for(j in w){

163 q<-quantile(beta.hats[,j],c(.025 ,.975))

164 segments(i,q[1],i,q[2],lty =2)

165 segments(i-.2,q[1],i+.2,q[1],lwd =1.2)

166 segments(i-.2,q[2],i+.2,q[2],lwd =1.2); i <- i + 1}

167 }

168 postscript("figure4_2.eps")

169 par(mfrow=c(1,2))

170 quickBox(c(3,5,7,9,11) ,0)

171 quickBox(c(4,6,8,10,12) ,1)

172 dev.off()

173 #-----------------------------------------

174 #-----------------------------------------

C.8 Script used in Section 5.1

This is the script used to make Figure 5.1 in Section 5.

1 # Figure 5.1 (modelling dependent thetas)

2 #-----------------------------------------

3 library(MASS);library(mvtnorm)

4 A.matrix <- function(p,rho){

5 A <- matrix(NA,p,p)

6 for(col in 1:p){



112 APPENDIX C. SCRIPTS USED IN SIMULATIONS

7 for(row in 1:p){

8 A[row ,col] <- rho^(abs(col -row))

9 }

10 }

11 return(A)

12 }

13 #

14 p <- 12

15 postscript("figure5_1.eps") ; par(mfrow=c(3,1))

16 for(rho in c(.8 ,.6 ,.4)){

17 A <- A.matrix(p,rho)

18 sims <- 10^4

19 V <- rmvnorm(sims ,rep(0,p),A)

20 a <- 8; b <- 2.5

21 theta <- qgamma(pnorm(V),a,b)

22 colnames(theta) <- paste("theta" ,1:p,sep="")

23 sd.theta1 <- var(theta [,1])

24 acf.gamma <- numeric(p)

25 for(j in 1:p){

26 acf.gamma[j] <- (b^2/a)*var(theta[,1],theta[,j])

27 }

28 rm(theta)

29 char.rho <- paste("=",rho ,sep=" ")

30 plot(NA,NA,ylim=c(min(acf.gamma),max(acf.gamma)),xlim=c(0,p

+1),

31 frame.plot=FALSE ,xlab="|i-j|",ylab="cf",

32 main=bquote(rho ~ .(char.rho)))

33 for(l in 1:p){

34 segments(l-1,0,l-1,acf.gamma[l],lwd =2)

35 segments(l-.95,0,l-.95,rho^(l-1),lty=1,lwd=1.4,col="green

")

36 }

37 }

38 dev.off()

39 #-----------------------------------------

40 #-----------------------------------------
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