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Introduction

The study of algebraic geometry has had tremendous success by defining
many geometrical concepts generally and abstractly. Many theoretical re-
sults could not have been proved without this focus. However this tendency
for making theoretical definitions sometimes makes it difficult to find ob-
vious examples or being able to make specific calculations. The theory of
toric varieties is a part of algebraic geometry for which, due to its relation
with combinatorics, many easily computable examples exist.

A toric variety X is a variety which contains an algebraic torus T as an
open dense subset, thus much of the structure of X will be decided by what
happens on the torus. The key idea is that the sets M = Hom(T,C∗)
and N = Hom(C∗, T ) turn out to be free abelian groups of finite order
(lattices), and thus have a combinatorical descripion. Geometrical concepts,
for instance smoothness, completeness, properness, the theory of divisors
and cohomology (and more), can be described in terms of these lattices,
and thus are often much easier to compute than for general varieties.

Given a projective space PN , one has that the set of hyperplanes form a
new projective space (PN )∨. Given any variety X ⊂ PN one can define the
corresponding dual varietyX∨ ⊂ PN∨ which typically will be a hypersurface.
Finding the equation for this is generally very difficult, but there are results
which describe the degree. Gelfand, Kapranov and Zelevinsky showed in
[GKZ94] that for a smooth toric variety XP associated with a polytope P
the degree is given by

degX∨P =
∑
Q�P

(−1)codimQ(dimQ+ 1) Vol(Q) (1)

Our main examples of study will be the weighted projective spaces, a gener-
alization of the usual projective space where each coordinate gets assigned
an integer weight. These are toric varieties, however the weighted projective
spaces are singular, so the formula above does not apply. Following chapter
5 of [Mor11], we will use generalizations of the formula above proved by
Matsui and Takeuchi [MT11] for singular toric varieties, to calculate the
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degree for weighted projective planes. Mork considered only planes of the
form P(1,m, n), while here we consider the more general P(k,m, n).

The theory of dual varieties, though interesting in itself, also relates to
that of discriminantal varieties. Given a general polynomial p of a fixed
degree, one can assoicate another polynomial in the coefficients of p, the
discriminant ∆, with the property that ∆ = 0 whenever p has a double root.
The easiest example of this is a quadratic polynomial p(x) = ax2 + bx + c,
which gives the discriminant ∆p = b2 − 4ac. This notion can be generalized
to polynomials in several variables or to sets of polynomials, and we can
define discriminant polynomials which have analogous properties, we will
use the following: Given a set of monomials A , let CA be the space of all
polynomials which are linear combinations of the monomials in A. Then the
discriminant ∆A(f) is an irreducible polynomial in the coefficents of f ∈ CA
which vanishes when f has a double root.

Now, choosing a polytope P giving a toric variety XP corresponds to choos-
ing a set of Laurent monomials A. Then the dual variety will be exactly the
set

{f ∈ CA|∆A(f) = 0}

Thus we see that descrbining the dual variety can be interpreted as describ-
ing a discriminantal variety of certain Laurent monomials.

Also the degree of the dual variety can be interpreted another way: As the
number of singular curves of a certain type on the variety, called the Severi
degree, hence we can tie this to the subject of enumerative geometry. In
the smooth case the Severi degrees are described as polynomials in the four
topological numbers K · L, L2, K2,c2. The first Severi degree NL,1 equals
exactly the degree of the dual variety, and in the singular case c2 is replaced
by the sum of Euler obstructions of the vertices. In the singular case one
would hope to find corrections to the other numbers which give higher Severi
degrees.

The problem of computing the dual degree of singular toric surfaces has
been the motivating problem behind most of this work. This, it turns out,
is closely related to resolving singularities, weighted blow-ups, continued
fractions and intersection theory, so we give quite a lot of room to these
topics.

In Chapter 1 we go through basic definitions and examples from the theory
of toric varieties. The choice of material is largely motivated by what we
will, in some sense or another, need in later chapters. We also introduce dual
varieties, the formula for computing its degree and the Euler obstruction.
We show how to compute the Euler obstruction in the surface case.

6



In Chapter 2 we study in detail the weighted projective spaces from some
different angles. We study their singularities, the class and Picard groups,
and consider intersection theory on the varieties. We prove a Bezout type
theorem for weigthed projective spaces:

Theorem Given n torus-invariant divisors D1, ..., Dn on P(q0, ..., qn), we
have

D1 · · ·Dn =
Πn
i=1 degDi

q0 · · · qn
We then specialize to the surface case, consider a polytope giving P(k,m, n),
and use this to compute the degree of the dual variety in some special cases.
However we realize we need more machinery for general k,m, n.

In Chapter 3 we start with a diversion into the world of continued fractions.
We see how this relates to both the Euler obstruction and the minimal
resolution of singularities for the singular surface. We show that the Eu-
ler obstruction of a vertex is 0 if and only if the corresponding singularity
is Gorenstein. We give our own toric proofs of the previously known re-
sults that the resolution of singularities is given by a sequence of weighted
blowups, that the self-intersections of the exceptional divisors is described
by HJ-fractions and describe intersection theory on the blown-up surface.
We show a general formula for the dual degree of P(k,m, n) in terms of
HJ-fractions, which can be algorithmically computed:

Theorem Given P(k,m, n), find minimal natural numbers a, b, c such that

k + am ≡ 0 (mod n)

n+ bk ≡ 0 (mod m)

m+ cn ≡ 0 (mod k)

Let n
n−a = a1 − 1

a2− 1

...− 1
ar

, m
m−b = b1 − 1

b2− 1

...− 1
bs

, k
k−c = c1 − 1

c2− 1

...− 1
ct

.

Then degP(k,m, n)∨ equals

3kmn− 2(k + n+m) +

r∑
i=1

(2− ai) +

s∑
i=1

(2− bi) +

t∑
i=1

(2− ci)

We then do a small attempt at going to 3 dimensions, where we find examples
of isolated singularities which have Euler obstruction 1.

In Chapter 4 we see how this relates to curve counting, where we relate our
general toric description to existing counting forumlas which only works for
a subclass of toric varieties, those coming from h-transverse polytopes. We
classify the weighted projective planes which come from h-transverse poly-
topes. We compute the first and second Severi degree for the h-transverse
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varieties, hoping to see new candidates for invariants in the singular case. No
obvious results were found. We conclude with some remarks about possible
further directions one could try.

Throughout we will assume familiarity with basic algebraic geometry, for
instance Hartshorne’s Algebraic Geometry chapter I and II [Har77]. For a
commutative ring R we will write SpecR even though we only ever use closed
points, i.e. we consider the associated variety. This slight abuse of notation
is justified by noting that varieties are a full subcategory of schemes, and
made because much literature are written in the language of schemes.

We work over C, however much of this could be generalized to other fields,
but we do not go into any details here.
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Chapter 1

Toric Varieties

1.1 Definitions and examples

Most of the definitions, claims and propositions in this chapter come from
[CLS11] and [Ful93], most proofs are omitted.

(C∗)n = Spec(C[x1, x
−1
1 , x2, x

−1
2 , ..., xn, x

−1
n ]) is an affine variety which is a

group under componentwise multiplication. An algebraic torus is a variety
isomorphic to (C∗)n. A torus has two associated lattices:

A character of a torus T = (C∗)n is a group homomorphism χ : T → C∗.
One can show that the set of all characters forms a group isomorphic to
M = Zn, given by, for any m = (m1, ...,mn):

χm(t1, ..., tn) = tm1
1 · · · t

mn
n

Thus we see that a character determines a monomial in n variables which
is allowed to have arbitrary integer exponents. This is called a Laurent
monomial.

A one-parameter subgroup of a torus T is a group homomorphism λ : C∗ →
T . The set of all one-parameter subgroups will also be isomorphic to Zn,
denote this lattice by N , given by, for any l = (l1, ..., ln):

λl(t) = (tl1 , ..., tln)

One can define a bilinear pairing M ×N → Z defined explicitly by the dot
product, for m ∈M and l ∈ N as above,

〈m, l〉 =
n∑
i=1

limi
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this translates to, for χm and λl, we have χm ◦λl is a group homomorphism
C∗ → C∗ and thus has to be of the form z 7→ zn. Then 〈χm, λl〉 = n. This
pairing identifies M ' HomZ(N,Z) thus showing they are dual lattices (
some useful facts about lattices are collected in Appendix A).

Also N ⊗ C∗ ∼= T via l ⊗ t 7→ λl(t), leading to the common notation of TN
for the torus.

Definition 1.1.1. A toric variety is an irreducible variety X containing a
torus TN = (C∗)n as a Zariski open subset such that the action of TN on
itself extends to a morphism TN ×X → X.

Example 1.1.2. Pn is a toric variety with torus

TPn = Pn \ V (x0 · · ·xn) = {(1, t1, ..., tn) ∈ Pn|t1, ..., tn ∈ C∗} ∼= (C∗)n

Example 1.1.3. X = V (x3 − y2) ⊂ C2 is a toric variety with torus

X ∩ (C∗)2 = {(t2, t3)|t ∈ C∗} ∼= C∗

Example 1.1.4. Y = V (xy − zw) ⊂ C4 is a toric variety with torus

Y ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 )|ti ∈ C∗} ∼= (C∗)3

Given a torus T with character lattice M ∼= Zn and a finite subset A =
{m1, ...,ms} ⊂ M we can define the associated affine toric variety YA by
defining the map

ΦA : TN → Cs

ΦA (t1, ..., tn) = (χm1(t1, ..., tn), ..., χms(t1, ..., tn))

and letting YA be the closure of the image of the above map. This will be
an affine toric variety with character lattice ZA .

We can also obtain a projective variety from A by a similar construction.
Let

ΨA : TN → Ps−1

ΨA (t1, ..., tn) = (χm1(t1, ..., tn), ..., χms(t1, ..., tn))

The closure of im(Ψ(A )) will be a projective variety denoted by XA . The
character lattice of this variety will be

Z′A = {
s∑
i=1

aimi|ai ∈ Z,
s∑
i=1

ai = 0}
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Example 1.1.5. Let A = {(0, 0), (1, 0), (2, 0), (0, 1)} ⊂ Z2 . Then the
induced map is

ΨA : (C∗)2 → P3

ΨA (s, t) = (1 : s : s2 : t)

This corresponds to an affine open subset Spec(C[x, y, z]/(x2 − y)) which
after homogenizing gives the homogenous coordinate ring C[x, y, z, w]/(x2−
yw).

1.2 Cones and toric varieties

We will now see how to construct affine toric varieties in a systematic way.
Fix dual lattices N ' M ' Zn, which in turn give dual vector spaces
NR = N ⊗ R ' Rn and MR = M ⊗ R ' Rn.

Definition 1.2.1. A convex polyhedral cone in NR is a set of the form

σ = Cone(S) = {
∑
u∈S

λuu|λu ≥ 0} ⊂ NR

where S ⊂ NR is finite. A convex polyhedral cone is rational if σ = Cone(S)
for some S ⊂ N .

Given m ∈MR we can define

Hm = {u ∈ NR|〈m,u〉 = 0} ⊂ NR

H+
m = {u ∈ NR|〈m,u〉 ≥ 0} ⊂ NR

Given a convex polyhedral cone σ we define Hm to be a supporting hyper-
plane if σ ⊂ H+

m. If this is the case we call H+
m a supporting half-space.

Definition 1.2.2. Given a convex polyhedral cone σ ⊂ NR we define its
dual cone by

σ∨ = {m ∈MR|〈m,u〉 ≥ 0 ∀u ∈ σ}

Remark 1.2.3. From [Ful93, p.11] we have a practical procedure for finding
generators of the dual cone of σ: For each set of n− 1 linearly independent
generators of σ, find a vector u annihilating the set. If u or −u is nonnegative
on all generators of σ, it is part of a generating set of σ∨, otherwise it is
discarded. We will freely use this without further reference.

Definition 1.2.4. A face of a cone σ is a set τ = σ ∩Hm for some m ∈ σ∨.
We write this as τ � σ.
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A face of a cone is itself a cone. Faces of dimension 0 are called vertices, of
dimension 1 edges and of codimension 1 facets.

The dual cone will itself be a convex polyhedral cone in MR. There is a
one-to-one inclusion reversing correspondence between faces of σ and faces
of σ∨. Now, given such a cone σ, the lattice points Sσ = σ∨ ∩M ⊂M form
a semigroup. These semigroups will be used to construct toric varieties.

Definition 1.2.5. A convex polyhedral coneσ is strongly convex if {0} is
a face of σ.

Definition 1.2.6. A semigroup is a set S with an associative binary oper-
ation and an identity element.

An affine semigroup is a semigroup such that:

• The binary operation is commutative. We write the operation as +
and the identity element as 0. Then a finite set A ⊂ S gives

NA = {
∑

m∈A amm|am ∈ N} ⊂ S

• The semigroup is finitely generated, meaning there exists a finite A ⊂
S such that NA = S

• The semigroup can be embedded in a lattice M

The key result which will give us toric varieties from cones is the following.

Proposition 1.2.7. (Gordan’s Lemma) For σ a rational polyhedral cone,
Sσ = σ∨ ∩M is finitely generated. Hence Sσ is an affine semigroup.

Given an affine semigroup S ⊂ M we can construct an affine toric variety
as follows: Let the semigroup algebra C[S] be defined by

C[S] = {
∑
m∈S

cmχ
m|cm ∈ C, cm = 0 for all but finitely many m}

Note that choosing S = M we get the algebra of all Laurent monomials in
n variables, thus all such semigroup algebras will be subalgebras of C[M ].

Let Spec(C[S]) be the affine variety with coordinate ring C[S]. Then [CLS11]
shows that

Proposition 1.2.8. Spec(C[S]) is an affine toric variety with character
lattice ZS. If S = NA for a finite set A ⊂M , then Spec(C[S]) = YA

12



It follows that rational polyhedral cones gives affine toric varieties by σ 7→
Uσ = Spec(C[σ∨ ∩M ]). If we also require that σ is strongly convex we get
that the torus of Uσ is TN , or equivalently, that dimUσ = n. Since we are
only interested in these cones, we will from now on always mean a strongly
convex rational polyhedral cone when we say cone.

Example 1.2.9. If σ = Cone({0}) then σ∨ = Cone(±e1, ...,±en) which
gives Uσ ∼= (C∗)n.

Example 1.2.10. If σ = Cone(e1, ..., en) then σ∨ = σ so Uσ = Cn.

One of the reasons for studying toric geometry is that many properties of
varieties can be checked combinatorially in the lattices M or N .

Definition 1.2.11. Given an edge of a cone σ ⊂ NR, the semigroup N ∩ σ
is generated by a unique element called the minimal generator of the edge.

A cone σ is called smooth if the minimal generators of its edges form a
subset of a Z-basis for N .

For a n-dimensional cone being smooth is, by Remark A.0.4, equivalent
to the determinant of the minimal generators being 1, and this generalizes
to arbitrary cones, were we take the determinant in the lattice spanned by
σ∩N . We say that a cone has multiplicity k if the determinant of its minimal
generators equals k. Hence σ is smooth if and only if its multiplicity equals
1.

Not surprisingly this definition is chosen to obtain the following characteri-
zation.

Proposition 1.2.12. Given any cone σ, the associated toric variety Uσ is
smooth if and only if σ is smooth.

The Hilbert basis H(Sσ) of the affine semigroup Sσ is the unique minimal
set of generators for Sσ as a semigroup. Thus C(Sσ) will be generated by
H(Sσ) = {m1, ...,ms} as a C-algebra. Define

Zs →M

ei 7→ mi,

this map will have a kernel K, which records all linear relations among
{m1, ...,ms}. Define the ideal IK ⊂ C[x1, ..., xs] by

IK = 〈xa1
1 · · ·x

as
s − x

b1
1 · · ·x

bs
s |a = (a1, ..., as), b = (b1, ..., bs) ∈ Ns, a− b ∈ K〉

Then Uσ = SpecC(Sσ) = SpecC[x1, ..., xs]/IK . In other words, the ideal of
a toric variety is generated by binomials.

Definition 1.2.13. A cone is simplicial if its generators are linearly inde-
pendent over R.
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σ

Figure 1.1: Hilbert basis for σ = Cone((1, 0), (1, 5)). σ ∩N is generated by
6 elements as a semigroup

1.3 Fans and toric varieties

Definition 1.3.1. A fan Σ in a vector space NR is a finite collection of
cones satisfying:

For all σ ∈ Σ each face of σ is also in Σ.

For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each.

Given a fan Σ denote by Σ(d) the set of d-dimensional cones in Σ.

We will show that from a fan one can construct a general, not necessarily
affine, toric variety, but first we need some more results from semigroup
theory.

Proposition 1.3.2. Take σ a cone and u ∈ Sσ = σ∨ ∩ M . Then τ =
σ ∩ u⊥ = {v ∈ σ|〈u, v〉 = 0} is a rational convex polyhedral cone. All faces
of σ have this form, and Sτ = Sσ + Z≥0(−u).

Proposition 1.3.3. If σ and τ are cones which intersect in a common face
σ ∩ τ , then Sσ∩τ = Sσ + Sτ .

Using this we get the key to constucting our toric varieties. Recall (see
for instance [Har77, II.2]that any affine scheme Spec(A) has a basis for its
topology consisting of the sets D(f) = Spec(A) \ V (f), f ∈ A. These are
called principal open subsets.
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Proposition 1.3.4. If τ is a face of σ then we get an inlcusion Uτ → Uσ
which embeds Uτ as a principal open subset of Uσ.

Proof. By Proposition 1.3.2 any basis element of C[Sτ ] is of the form
χw−nu = χw

χun for w ∈ Sσ and u ∈ Sσ with τ = σ ∩ u⊥. Thus
C[Sτ ] = C[(Sσ)]χu which corresponds to an embedding of the principal
open subset D(χu) by applying the Spec functor.

Now given a fan Σ we can construct an associated toric variety XΣ. Take
the disjoint union of the affine varieties Uσ for all σ ∈ Σ. Glue them along all
common intersections, the above ensures the glueing conditions are satsified.
By Proposition 1.3.3 we can show that XΣ is separated. In fact all normal,
separated toric varieties are of this form. In the literatue one often requires
a toric variety to be normal and separated, and since all varieties we will
study are of this form, we will adopt this convention. Hence any toric variety
is isomorphic to XΣ for some fan Σ.

Proposition 1.3.5. XΣ is smooth if and only if each cone σ ∈ Σ is smooth.

Proof. This follows from Proposition 1.2.12 and the fact that smoothness is
defined locally.

Example 1.3.6. Let N = Zn with standard basis e1, ..., en. Let e0 =
−e1 − e2 − ... − en. Let Σ be the fan consisting of all proper subsets of
{e0, ..., en}. The maximal cones are σi = Cone(e0, ..., êi, ...en). Calculating
the dual cones we get

σ∨0 = Cone(e1, ..., en)

σ∨i = Cone(e1 − ei, e2 − ei, ...,−ei, ..., en − ei), i 6= 0

Uσ0 = SpecC[x1, ..., xn]

Uσi = SpecC[
x1

xi
, ...,

1

xi
, ...,

xn
xi

]

For homogenous coordinates (t0 : ... : tn) on Pn, set xj =
tj
t0

we see that the
Uσi corresponds to the normal open affine cover of Pn by copies of An. Thus
XΣ
∼= Pn.

Example 1.3.7. Given natural numbers q0, ..., qn with gcd(q0, ..., qn) = 1,
consider the quotient lattice Zn+1 by the subgroup generated by (q0, ..., qn),
we write N = Zn+1/Z(q0, ..., qn). Let ui for i = 0, ..., n be the images in N
of the standard basis vectors of Zn+1. This means that in N we have

q0u0 + ...+ qnun = 0

15



ρ0

ρ1

ρ2

σ0

σ1

σ2

Figure 1.2: Fan for P2. The 1-dimensional cones are generated by ρi. The
two-dimensional cones are σi.

Let Σ be the fan consisting of all cones generated by proper subsets of
{u0, ..., un}. We call XΣ a weighted projective space with respect to
the weights (q0, ..., qn), we write this P(q0, ..., qn). Observe that Pn '
P(1, 1, ..., 1). These will be important examples for us.

A variety is said to be complete if it is compact in the Euclidean topology. In
the toric case we have very nice criterion for checking if a variety is complete.
For a fan Σ let its support, |Σ|, be the union (in NR) of all cones in Σ. Then
we have:

Proposition 1.3.8. [Ful93, chp. 2.4] A toric variety XΣ is complete if and
only if |Σ| = NR.

In that case we say that Σ is a complete fan.

Definition 1.3.9. A fan Σ is simplicial if every cone σ ∈ Σ is simplicial.
We say that XΣ is simplicial if Σ is simplicial.

It turns out being simplicial is euqivalent to having at most finite quotient
singularities. This notion will appear later.

1.4 Polytopes and toric varieties

Now that we have constructed general toric varieties from fans, we will
consider another way to get a toric variety, via polytopes. This will only
be the varieties XA we have seen before, where A are all lattice points
contained in a polytope.

16



Definition 1.4.1. A polytope in MR is a set of the form

P = Conv(S) = {
∑
u∈S

λuu|λu ≥ 0,
∑
u∈S

λu = 1} ⊂MR

where S ⊂MR is finite.

A polytope is a lattice polytope if it equals Conv(S) for some S ⊂ M . We
will only be interested in lattice polytopes, so we adopt the convention that
whenever we write polytope, we mean a lattice polytope.

The dimension of a polytope is the dimension of the smallest affine subspace
of MR containing P .

Given a nonzero vector u ∈ NR and b ∈ R we can define the affine hyperplane
Hu,b and closed half-space H+

u,b by

Hu,b = {m ∈MR|〈m,u〉 = b}

H+
u,b = {m ∈MR|〈m,u〉 ≥ b}

Definition 1.4.2. A subset Q ⊂ P is a face of P if there is u ∈ NR \ {0}
and b ∈ R such that

Q = Hu,b ∩ P

P ⊂ H+
u,b

We write Q � P and say that Hu,b is a supporting hyperplane of P . The
dimension of Q is the dimension of the smallest affine subspace of NR con-
taining Q.

Vertices of a polytope P are faces of dimension 0, edges of dimension 1 and
facets of codimension 1.

Any polytope may be written as a finite intersection of closed half-spaces.
When it is full-dimensional we get a unique half-space for each facet F of
P ,

H+
F = {m ∈MR|〈m,uF 〉 ≥ −aF },

where (uF , aF ) ∈ NR × R is unique up to multiplication by a positive real
number. If we choose uF to be the unique minimal generator of the facet
normal, we get a unique facet presentation.

Now given a polytope P we get an associated toric variety XA by letting A
be the points contained in P ∩M . This is not necessarily normal (meaning
all local rings are integrally closed), which we usually want, so we define the
following.
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Definition 1.4.3. An affine semigroup S ⊂ M is saturated if for all k ∈
N \ {0} and m ∈M , km ∈ S implies m ∈ S.

A polytope P ⊂MR is very ample if for every vertex m ∈ P , the semigroup
N(P ∩M −m) is saturated in M .

If the polytope is very ample, it turns out that the variety is normal. It is
shown in [EW91] that any full dimensional polytope has an integer multiple
which is very ample. Then we define the toric variety associated to a poly-
tope P as XA where A = kP ∩M for any k such that kP is very ample. We
will see later that this relates to a certain divisor being very ample. Denote
this variety by XP .

Example 1.4.4. Consider in M = Z2 the polytope ∆2 = Conv(0, e1, e2).
This gives the affine map (x, y) 7→ (1, x, y), hence the closure X∆2 will be
P2. If we instead consider k∆2 = Conv(0, ke1, ke2) we will again obtain P2,
but embedded differently into a bigger space by the Veronese-embedding of
degree k.

In general, the standard n-simplex ∆n = Conv(0, e1, ..., en) ⊂ Zn will give
X∆n = Pn, while multiplying the polytope with an integer corresponds to
different embeddings of Pn into bigger projective spaces. The same phenom-
ena happens for any very ample polytope.

We can also construct a fan associated to a full dimensional polytope P ,
called the normal fan of P . Let the facet presentation of P be given as

{m ∈MR|〈m,uF 〉 ≥ −aF F is a facet of P}

To each vertex v ∈ P ve can define the cone Cv = Cone(P ∩M − v) ⊂MR.
This gives a dual cone σv = C∨v ⊂ NR. For a face Q � P containing v,
we get a cone Qv ⊂ Cv. This is in fact a bijective inclusion preserving
correspondence via the maps

Q 7→ Qv = Cone(Q ∩M − v)

Qv 7→ Q = (Qv + v) ∩ P

In particular we have the equality σv = Cone(uF | facets F containing v).

Generalising this to any face Q � P , set σQ = Cone(uF | facets F containing
Q). The collection {σQ|Q � P} turns out be our desired fan ΣP . When P
is very ample we have XP = XΣP .

Example 1.4.5. Consider again ∆2 = Conv(0, e1, e2) ∈ Z2. We see that
C0 = Cone(e1, e2), Ce1 = Cone(e2,−e1 − e2) and Ce2 = Cone(e1, e1 − e2).
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Calculating the dual cones we get σ0 = Cone(e1, e2), σe1 = Cone(e2,−e1 −
e2) and σe2 = Cone(e1,−e1−e2). We recognize this as the fan from Example
1.3.6 as expected.

Definition 1.4.6. Let P ⊂MR be a polytope. Given a vertex, consider the
set of all minimal generators of the edges emanating from v. If these form
a subset of a Z-basis for M then the corresponding vertex is smooth. P is
smooth if all vertices are smooth.

Again this definition fits with the other ones.

Proposition 1.4.7. For a full dimensional polytope P , the toric variety XP

is smooth if and only if P is a smooth polytope.

Proof. The normal fan of P has maximal cones generated by, for each vertex
v, the minimal generators emanating from v. Thus, for each vertex v we
need the cone Cv to be smooth. But Cv is smooth if and only if its dual σv
is smooth, since if a maximal cone σ is smooth, we can choose a basis for
the lattice e1, ...en such that σ = Cone(e1, ...en). But then it is self-dual, so
the dual is smooth as well. But Cv we know to be smooth if and only if the
generators are subset of a Z-basis.

1.5 Toric morphisms

Assume we have a Z-linear map of lattices φ : N1 → N2 and cones
σ1 ∈ (N1)R, σ2 ∈ (N2)R such that φR(σ1) ⊂ σ2. Then we get an induced
morphism

φ∨ : M2 →M1

which in turn induces a morphism

C[σ∨2 ∩M2]→ C[σ∨1 ∩M1]∑
ciχ

mi 7→
∑

ciχ
φ∨(mi)

that induces a map

Spec(C[σ∨1 ∩M1]) = Uσ1 → Uσ2 = Spec(C[σ∨2 ∩M2])

Definition 1.5.1. Let N1, N2 be lattices, Σ1 be a fan in (N1)R, Σ2 a fan in
(N2)R. A morphism φ : XΣ1 → XΣ2 is toric if it maps the torus TN1 into
the torus TN2 and φ|TN1

is a group homomorphism.
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Definition 1.5.2. A Z-linear map φ̄ : N1 → N2 is compatible with the
fans Σ1 and Σ2 if for every cone σ1 ∈ Σ1 there exists σ2 ∈ Σ2 such that
φR(σ1) ⊂ σ2, where φR is the induced map N1 ⊗ R→ N2 ⊗ R.

By the remarks above, a compatible φ̄ induces maps Uσ1 → Uσ2 for all
σ1 ∈ Σ1, σ2 ∈ Σ2. It turns out these glue to a morphism XΣ1 → XΣ2 . In
fact we have the following characterization:

Theorem 1.5.3 (Thm 3.3.4 [CLS11] ). A Z-linear map φ̄ : N1 → N2

compatible with the fans Σ1 and Σ2 induces a toric morphism φ : XΣ1 →
XΣ2.

Conversely a toric morphism XΣ1 → XΣ2 induces a Z-linear map φ̄ : N1 →
N2 which is compatible with Σ1 and Σ2.

Example 1.5.4. The map A2 → P2 given by (x, y) 7→ (1, x, y) is a toric
morphism induced by the identity map Z2 → Z2.

1.6 The orbit-cone correspondence

Another well known fact about toric varieties is that one has a bijective
dimension-reversing correspondence between the cones σ ∈ Σ and the orbits
under the torus action. More precisely:

Theorem 1.6.1. [CLS11, Thm. 3.2.6] Given a toric variety XΣ coming
from a fan Σ in NR we have the following:

There is a 1 − 1-correspondence between cones σ ∈ Σ and orbits under the
group action by TN given by

σ 7→ O(σ) = TN(σ)

where N(σ) = N/Nσ and Nσ is the lattice spanned by σ ∩N .

Let n = dimN . Then dim(O(σ)) = n− dim(σ).

For a cone σ ∈ Σ we have

Uσ = ∪τ�σO(τ)

The closure O(τ) of an orbit is given by

O(τ) = ∪τ�σO(σ)
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Example 1.6.2. Consider P2 with coordinates (t0 : t1 : t2). The torus
(C∗)2 are the points (1, a, b), with a, b 6= 0. Under this action there are 7
orbits: Oi = {ti 6= 0, tj = 0, j 6= i}, Oij = {ti, tj 6= 0, tk = 0}, O012 =
{t0, t1, t2 6= 0}. Consider the fan for P2 with cones generated by proper
subsets of {e1, e2, e0 = −e1 − e2}. With the notation as in Example 1.3.6
we get the correspondence

O0 ↔ Cone(e1, e2)

O1 ↔ Cone(e0, e2)

O2 ↔ Cone(e0, e1)

O01 ↔ Cone(e2)

O02 ↔ Cone(e1)

O12 ↔ Cone(e0)

O012 ↔ Cone({0})

Remark 1.6.3. It turns out the orbit closures O(τ) are themselves toric
varieties, constructed from a fan the following way: For a cone σ containing
τ consider its image σ in N(τ)R. Then

Star(τ) = {σ ⊂ N(τ)R|τ � σ ∈ Σ}

is a fan in N(τ)R and XStar(τ)
∼= O(τ).

Example 1.6.4. Consider the fan Σ1 with 2-dimensional cones Cone(e1, e1+
e2) and Cone(e2, e1 + e2) and their faces. Let Σ2 be the fan for C2 given by
Cone(e1, e2) and its faces. The identity mapping Z→ Z is compatible with
the fans, hence it induces a map XΣ1 → XΣ2 = C2.

By the orbit-cone correspondence the 1-dimensional cone σ1 generated by
e1 + e2 corresponds to an orbit, whose closure is a divisor D isomorphic to
Star(σ1). This is the fan of P1: For instance choose v1 = (1, 0), v2 = (1, 1)
as basis for Z2 In this basis, the cones containing σ1 will be Cone(v1, v2),
Cone(v2 − v1, v2) and Cone(v2). The quotient lattice Nσ1 is generated by
v1, so the images of these cones will be Cone(v1), Cone(−v1) and Cone({0})
which we recongize from Example 1.3.6 as the fan for P1.

By removing all cones containing σ1 from Σ1 we see that XΣ1 \D is isomor-
phic to C2 \ {0}. Hence XΣ1 is the classical blowup of C2 at 0, which can
also be checked by considering coordinate rings of affine charts.

In general the blowup Bl0(Cn) is the subvariety of Pn−1 × Cn defined by
V (xiyj − xjyi|1 ≤ i < j ≤ n) for coordinates x1, ..., xn on Pn and y1, ..., yn
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on Cn. In the toric case we can generalize this as above, the fan for Cn
is Cone(e1, ..., en) and its faces. Create a new fan Σ by adding the 1-
dimensional cone e0 = e1 + e2 + ... + en and let Σ consist of all cones
generated by proper subsets of {e0, e1, ..., en}. By checking on coordinate
rings we get that XΣ equals Bl0(Cn).

1.7 Divisors on toric varieties

We will look at the concepts of divisors on toric varieties. Let Div(X) be the
group of Weil divisors on X and let Div0(X) be the set of principal divisors,
that is divisors of the form div(f) for some f ∈ C(X)∗. The class group of
X is defined as Cl(X) = Div(X)/Div0(X). We define Cartier divisors as
follows.

Definition 1.7.1. A Weil divisor D on X is called Cartier if there exists
an open cover {Ui} and fi ∈ C(Ui) such that D|Ui = div(fi). The set of
Cartier divisors will be denoted by CDiv(X).

The Picard group of X is defined as Pic(X) = CDiv(X)/Div0(X).

Now let XΣ be the toric variety associated to a fan Σ in NR. The n − k-
dimensional orbits of the torus action correspond to k-dimensional cones
of Σ. Thus for each 1-dimensional cone ρ ∈ Σ we get a corresponding
codimension 1 orbit, whose closure is a divisor invariant under the torus
action, denoted by Dρ. Letting uρ ∈ NR be a minimal generator of ρ , one
can compute that for any character χm, its divisor is given by

div(χm) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ

Using this we can compute the class and Picard groups by the following
exact sequences.

Proposition 1.7.2. Let DivTN (XΣ) =
⊕
ZDρ ⊂ Div(XΣ). Then the fol-

lowing sequence is exact

M → DivTN (XΣ)→ Cl(XΣ)→ 0

where the first map is m 7→ div(χm) and the second sends an element of
DivTN (XΣ) to its equivalence class in Cl(XΣ). The sequence is left exact if
and only if {uρ} spans NR.

For Cartier divisors one obtains a similar exact sequence

M → CDivTN (XΣ)→ Pic(XΣ)→ 0

where CDivTN (XΣ) is the group of TN -invariant Cartier divisors.
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Thus we see that the divisors invariant under the torus action determine
these important groups.

Proposition 1.7.3. [CLS11, Prop. 4.2.2] Let σ be a cone. Then any TN -
invariant Cartier divisor on Uσ is the divisor of a character χu ∈M .

One is often interested in when a Weil divisor is Cartier. We present an
example followed by a more general characterization.

Example 1.7.4. Take σ = Cone((2,−1), (−1, 2)). Then a Weil divisor
aD1 + bD2 is Cartier if and only if it equals div(χu) for some u ∈ M . This
amounts to there existing u = (p, q) such that

div(χu) = (2p− q)D1 + (2q − p)D2

Solving for p and q we get

p =
2a+ b

3
and q =

a+ 2b

3
,

which have solutions if and only if a ≡ b (mod 3).

Proposition 1.7.5. [Ful93, Exc. Ch. 3.3] Let D =
∑

ρ aρDρ. Then D is
Cartier if and only if for each maximal cone σ ∈ Σ there is mσ ∈ M with
〈mσ, vρ〉 = −aρ for all ρ ∈ σ(1), where vρ is the minimal generator of ρ.
We call {mσ} the Cartier data of D.

Proof. We proceed exactly as in the example above. D is Cartier on a
maximal cone σ if and only if it equals div(χu) for some u ∈M . That is if

div(χu) =
n∑
i=1

〈vρ, u〉Dρ =
∑
ρ

aρDρ

In other words, if 〈vρ, u〉 = aρ for all ρ ∈ σ(1). To be consistent with the
literature we pick mσ = −u to get the minus sign.

Given a full dimensional polytope P ⊂ MR we get an induced divisor DP

defined as follows. Let the facet presentation of P be given as

{m ∈MR|〈m,uF 〉 ≥ −aF —F is a facet of P}

A facet F of the polytope correponds to a n− 1-dimensional face of a cone
σ∨ which in turns corresponds to a 1-dimensional cone σ, which gives the
divisor Dσ, here denoted by DF . Define DP =

∑
aFDF . This will always

be an ample Cartier divisor. We have
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Theorem 1.7.6. [CLS11, Thm. 6.2.1]

There is a one-to-one correspondence between the following sets

{P ⊂MR|P is a full dimensional polytope}

{(XΣ, D)|Σ complete fan ⊂ NR , D is a torus-invariant ample divisor}

The first map sends P to (XΣP , DP ).

The second map sends XΣ and D =
∑
aρDρ to

PD = {m ∈MR|〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}

P is a very ample polytope if and only if DP is a very ample divisor. Dif-
ferent multiples lP correspond to different divisors lDP which in turn gives
different embeddings of the variety in projective spaces.

1.8 Intersections of divisors

Given a divisor D on XΣ one can associate a sheaf OXΣ
(D) defined by

OXΣ
(D)(U) = {f ∈ C(XΣ)∗| div(f)|U +D|U ≥ 0} ∪ {0}

The global sections of this sheaf is described in terms of the lattice as follows:

Γ(XΣ,OXΣ
(D)) =

⊕
div(χm)+D≥0

C · χm

We now wish to define an intersection product on our varieties, we follow
the presentation in [CLS11, ch. 6]. Given a smooth complete irreducible
curve C on a variety X, one has that any divisor D on C is a weighted sum
of points D =

∑
aiPi, ai ∈ Z, Pi ∈ C. Thus we can define the degree of D

as degD =
∑
ai.

For general, non-smooth curves C we do not necesarily have this property,
however we will consider the normalization C of the curve C which is a map

φ : C → C

such that C is normal. It turns out C is smooth, hence we can define the
degree of a divisor: For a divisor D on X, consider the composed map
f : C → X. Define C ·D = deg(f∗D).
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In nice cases this behaves as one would expect of an interesection product,
i.e. if D and C intersect transversally, we have C · D = |C ∩ D|. We also
have that the intersection product has the following properties:

C · (D + E) = C ·D + C · E

C ·D = C · E when D is linearly equivalent to E

Repeatedly applying the first also shows that

(kC) ·D = k(C ·D) when k ∈ Z

As usual, in the toric case there are quite explicit ways of computing inter-
section products. In particular we will use the following result

Proposition 1.8.1. [CLS11, Prop. 6.3.8] Let C = O(τ) be a complete
torus-invariant curve in XΣ, where τ = σ ∩ σ′ ∈ Σ(n− 1) for σ, σ′ ∈ Σ(n).
Let D be a Cartier divisor and let mσ,mσ′ be Cartier data corresponding to
σ, σ′. Pick u ∈ σ′ ∩N which maps to the minimal generator of the quotient
(N/Span(τ) ∩N)R. Then

D · C = 〈mσ −mσ′ , u〉

For simplicial toric varieties, every Weil-divisor has an integer multiple which
is Cartier (they are called Q-Cartier). Any toric surface will by simplicial,
hence we have that for any Weil divisor D and curve C one can define
D·C = 1

l (lD)·C ∈ Q. One can check that the propositions above generalizes
to Q − Cartier divisors, i.e. one obtains Cartier data mσ ∈ MQ. The
concept of pullbacks of divisors also generalizes to Q-Cartier divisor, and by
reformulating [CLS11, Prop 6.2.7] we get the following result.

Proposition 1.8.2. Given a toric morphism of simplicial toric vareties φ :
XΣ′ → XΣ, let Σ(1) = {σ1, ..., σs} and Σ′(1) = {τ1, ..., τr} and let D1, ..., Ds,
E1, ..., Er be the corresponding torus-invariant divisors. Let u1, ..., ur be the
minimal generators of τ1, ..., τr. Then

φ∗(

s∑
i=1

aiDi) =

r∑
j=1

−〈mσj , φ(uj)〉Ej

where mσj is Q-Cartier data of the maximal cone σj such that φ(τj) ⊂ σj.

Inspired by the calculations in the appendix of [LO14] we get the following
result.

25



Proposition 1.8.3. Given a two-dimensional toric variety, let ρ0, ..., ρn−1

be the 1-dimensional cones of the normal fan, and D0, ..., Dn−1 be the prime
torus-invariant divisors. Let di,i+1 be the determinant of the matrix with
columns minimal generators of ρi, ρi+1. Let di be determinant of the matrix
formed by ρi−1, ρi+1 (take indices modulo n). Then

Di ·Dj =


− di
di−1,idi,i+1

if j = i
1
di,j

if j = i+ 1
1
dj,i

if j = i− 1

0 else

Proof. Let σi = Cone(ρi, ρi+1) be the maximal cones of Σ. Let ui be the min-
imal generator of ρi. Assume without loss of generality that ρ1 = Cone(e1).
We wish to find the intersections for D1. To find D1 ·D1, observe that there
exists Cartier data mσ0 ,mσ1 ∈MQ such that

〈mσ0 , u0〉 = 0

〈mσ0 , u1〉 = −1

〈mσ1 , u1〉 = −1

〈mσ1 , u2〉 = 0

Letting mσ0 = (x, y),mσ1 = (u, v), u0 = (a, b), u2 = (c, d) we get

ax+ by = 0

x = −1

u = −1

uc+ vd = 0

Solving we get y = a
b , v = c

d

Now since Nρ1 = N/(ρ1 ∩ N) are just the lattice points on the y-axis, a
point of σ1 mapping to the minimal generator of Nρ1 will be of the form
(l, 1) for some l. We have that mσ1 − mσ2 = (0, ab −

c
d), so we get D2

1 =

〈(0, ab −
c
d), (l, 1)〉 = a

b −
c
d = ad−bc

bd = − d1
d0,1d1,2

.

For D2 there also exist Cartier data corresponding to σ0, σ1, let these by
abuse of notation be denoted (x, y), (u, v). Then one gets the equations

ax+ by = 0

x = 0
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u = 0

uc+ vd = −1

Solving yields v = −1
d

Then D1 ·D2 = 〈(0, 1
d), (l, 1)〉 = 1

d = 1
d1,2

Similarly D1 ·D0 = 1
−b = 1

d0,1

For any i 6= 0, 1, 2 we get x = y = u = v = 0, hence D1 ·Di = 0. Doing this
computation for all Di yields the result.

Given any normal variety X, there is an associated canonical sheaf, con-
structed as wX = Ω̂n, that is the n-th exterior product of the pushforward
of the sheaf of Kähler differentials on the smooth locus of X. This sheaf will
be isomorphic to O(KX) for some Weil divisor KX . In the toric case one
can choose KXΣ

=
∑

ρ−Dρ where Dρ are all torus-invariant prime divisors.
As a corollary of the above we obtain:

Corollary 1.8.4. Given a two-dimensional toric variety, let ρ0, ..., ρn−1 be
the 1-dimensional cones of the normal fan. Let di,i+1 be the determinant of
the matrix with columns minimal generators of ρi, ρi+1. Let di be determi-
nant of the matrix formed by ρi−1, ρi+1 (take indices modulo n). Then

K2
XΣ

= KXΣ
·KXΣ

=
n−1∑
i=0

(
1

di−1,i
+

1

di,i+1
− di
di−1,idi,i+1

)

1.9 Ehrhart polynomials

Given a full dimensional lattice polytope P ⊂ MR one can define the func-
tions

L(P ) = |P ∩M |

L∗(P ) = | Int(P ) ∩M |

which counts the lattice points of the polytope and interior lattice points.

Using sheaf cohomology on the sheaves O(lDP ) one shows the well-known
fact:

Proposition 1.9.1. Let P ⊂ MR be a full dimensional lattice polytope.
Then there exists a polynomial EP (x) ∈ Q[x] such that for l ∈ N

EP (l) = L(lP )
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If l is positive, we also have

EP (−l) = (−1)nL∗(lP )

This coincides with the Hilbert polynomial χ(O(lDP )).

Example 1.9.2. Consider the polytope P = Conv(0, e1, e2, ..., en) ⊂ Zn
which gives Pn.

The set lP ∩ M corresponds bijectively to (m1, ...,mn) ∈ M such that∑n
i=1mi ≤ l, mi ≥ 0. This easily corresponds bijectively to all mono-

mials in n variables of degree ≤ l which in turn corresponds bijectively to
monomials of degree l in n + 1 variables. By a well-known combinatorical
argument this is

(
n+l
n

)
. Thus

|lP ∩M | =
(
n+ l

n

)
Now, the interior lattice points can be described as the (m1, ...,mn) such
that

∑n
i=1mi < l, mi > 0. Setting (k1, ..., kn) = (m1 − 1, ...,mn − 1) we get

a bijective correspondence to (k1, ..., kn) ∈M such that
∑n

i=1 ki ≤ l−n− 1,
ki ≥ 0. This is exactly the lattice points of (l−n−1)P , where this is empty
if l − n− 1 < 0. Thus

| Int(lP ) ∩M | =
(
l − 1

n

)
Picking EP (x) = (x+n)(x+n−1)···(x+1)

n! we can verify that EP (x) satisfies the
required properties.

Let P have dimension n. The normalized volume Vol(P ) is the Euclidean
volume scaled such that Vol(Conv(0, e1, e2, ..., en)) = 1. It can be shown
(for instance in [BR07, Lemma 3.19]) that

Vol(P )

n!
= liml→∞

L(lP )

ln

This shows that EP (l) has degree n and the leading coefficient is V ol(P )
n! .

If we now are in dimension 2 one can be more specific: By the remarks
above the leading coefficient is Vol(P )

2 which equals the Euclidean area of P ,
denoted Area(P ). The constant term has to be 1 since L(0) = 1. Inserting
l = 1 and l = −1 we get

Area(P ) + b+ 1 = L(P )

Area(P )− b+ 1 = (−1)2L∗(P ) = L∗(P )
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Solving for b we obtain b
2 = L(P )− L∗(P ) = |∂P ∩M |. Thus

EP (x) = Area(x) +
1

2
|∂P ∩M |x+ 1

Also, as a corollary of this, solving for the area we obtain the famous Pick’s
formula.

Proposition 1.9.3. (Pick’s Formula) The area of a 2-dimensional lattice
polytope is given by

Area(P ) = | Int(P ) ∩M |+ 1

2
|∂P ∩M | − 1

We can give another interpretation of the Ehrhart polynomial in the 2-
dimensional case in terms of intersections of divisors.

Proposition 1.9.4. (Riemann-Roch for surfaces) [CLS11, Prop. 10.5.2]
Let D be a divisor on a smooth projective surface X with canonical divisor
KX . Then

χ(O(D)) =
D ·D −D ·KX

2
+ χ(OX)

For a smooth polytope one then obtains, since χ(OX) = 1 for a smooth
complete toric surface, that

EP (l) = χ(O(lDP )) = l2
DP ·DP

2
− lDP ·KX

2
+ 1

For a general, not necessarily smooth polytope, one can pick a resolution of
singularities X and pull the divisor DP back to a divisor φ∗DP . Using sheaf
cohomology one obtains that χ(O(lφ∗DP )) = EP (l). From Riemann-Roch
one then obtains:

EP (l) =
1

2
(φ∗DP · φ∗DP )l2 − 1

2
(φ∗DP ·KXΣP

)l + 1,

We also have that D2
P = φ∗D2

P and KX · φ∗DP = KXΣP
·DP , this will be

shown later, see the remarks following Proposition 3.4.5. As a consequence
one obtains by combining with the description above:

Proposition 1.9.5. Let P be a 2-dimensional polytope. Then

DP ·DP = Vol(P )

−DP ·KXΣP
= |∂P ∩M |
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1.10 Dual Varieties

We will now define and look at some examples of dual varieties. We will
follow the presentation used in [GKZ94].

For a finite dimensional vector space V let P(V ) be the set of 1-dimensional
subspaces of V . Then Pn = P(Cn+1).

If W ⊂ V is a vector subspace then P(W ) is a subset of P(V ), these are
called projective subspaces. Projective subspaces of dimension 1 are called
lines, of dimension 2 planes and of codimension 1 hyperplanes.

Now consider P(V ) for a vector space V . Hyperplanes in V ∨, the dual
vector space, form a new projective space P(V )∨ = P(V ∨). Conversely, to
a point p ∈ P(V ) one can associate a hyperplane p∨ in P(V )∨; the set of
all hyperplanes in P(V ) containing p. Thus P(V )∨)∨ is isomorphic to P(V ).
Set P = P(V ).

Now let X ⊂ P be a closed irreducible subvariety. A hyperplane H ⊂ P is
said to be tangent to X if there exists a smooth x ∈ X such that x ∈ H and
the tangent space to H at x contains the tangent space to X at x. Denote
by X∨ ⊂ P∨ the closure of the set of all hyperplanes tangent to X. This is
the dual variety to X.

When X is smooth and does not lie in any hyperplane the definition of dual
variety has a geometric interpretation: H ∈ X∨ if and only if H ∩ X is
singular.

In the general case we can consider the set I0
X ⊂ P × P∨ of pairs (x,H)

where x ∈ Xsm (the smooth locus of X) and H is the hyperplane tangent
to X at x. The projection pr1 : I0

X → Xsm makes I0
X a projective bundle

over Xsm of dim n−dimX − 1. Hence I0
X and its closure IX are irreducible

varieties of dim n− 1.

From this we expect the dimension of X∨ to be n − 1. The number codim
X∨ − 1 is called the defect of X, typically this is 0, in which case X∨ is
defined by a single polynomial, which we will call ∆X .

Example 1.10.1. Consider the Veronese embedding X of P1 in Pd = P(V ∨)
given by

(x, y) 7→ (xd : xd−1y : xd−2y2 : ... : xyd−1 : yd)

Let z0, ..., zd be coordinates on Pd. Any linear form l =
∑d

i=0 aizi is
uniquiely determined by its values on X which is a binary form f(x, y) =∑d

i=0 aix
iyd−i. De-homoginizing we get f(x) =

∑d
i=0 aix

i. The condition
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that l ∈ X∨ translates to f(x) having a double root. Hence ∆X is the
normal discriminant of a polynomial in one variable.

To justify calling these notions dual we have:

Theorem 1.10.2. [GKZ94] For any projective variety X ⊂ P, we have
(X∨)∨ = X. More precisely, if z is a smooth point of X and H a smooth
point of X∨, then H is tangent to X at z if and only if z, regarded as a
hyperplane in P∨, is tangent to X∨ at H.

The case we will be primarily interested in is a toric variety coming from
a polytope P . For smooth polytopes [GKZ94] shows, by considering the
discriminant variety of the associated Laurent monomials, a formula for the
degree of the dual variety:

degX∨P =
∑
Q�P

(−1)codimQ(dimQ+ 1) Vol(Q) (1.1)

In the singular case this doesn’t work, however [MT11] shows a similar
formula involving Euler-obstructions as correction terms.

Proposition 1.10.3. For any lattice polytope P we have

deg(XP )∨ =
∑
Q�P

(−1)codimQ(dimQ+ 1) Vol(Q) Eu(Q)

Again the volume is normalized with respect to the lattice. Unless explicitly
stated otherwise, we will always by Vol(P ) mean the volume normalized
with respect to the lattice spanned by lattice points in P (sometimes in
dimension 1/2 we write length/area instead).

This degree is 0 if and only if the variety is defect. To be able to compute
this we must now consider the Euler obstruction.

1.11 Euler obstruction of toric varieties

The local Euler obstruction was introduced in [Mac74] as a way of construct-
ing Chern classes for singular varieties. On the smooth locus of a variety it
is constantly equal to 1. To calculate it we will use a formula for the Euler
obstruction of toric varieties proved in [MT11, Ch. 4].

Let N ∼= Zn be a lattice of rank n, and let σ be a cone in NR. One
can describe the Euler obstruction combinatorically by induction on the

31



codimension of the faces of σ∨. Given two faces ∆α and ∆β of σ∨ such that
∆β � ∆α consider the following:

Let L(∆β) be the smallest linear subspace in MR containing ∆β. This will
have dimension the same as dim ∆β. Now let L(∆β)′ = MR/L(∆β) and let
pβ : MR → L(∆β)′ be the projection. Then M ′β = pβ(M) ⊂ L(∆β)′ is a
lattice of rank n− dim ∆β. Also Kα,β = pβ(∆α) ⊂ L(∆β)′ is a convex cone
with apex 0.

Definition 1.11.1. Given ∆α and ∆β of σ∨ such that ∆β � ∆α we define
the normalized relative subdiagram volume RSVZ(∆α,∆β) of ∆α along ∆β

by
RSVZ(∆α,∆β) = Vol(Kα,β \Θα,β)

where Θα,β is the convex hull of Kα,β∩M ′β \{0} in L(∆β)′. Vol(Kα,β \Θα,β)
is the normalized dim ∆α − ∆β-dimensional volume with respect to the
lattice M ′β ∩ L(Kα,β) . If ∆α = ∆β we set RSVZ(∆α,∆β) = 1.

Using this we have that the values of the Euler-obstruction on the faces of
σ∨ are determined by this function.

Proposition 1.11.2. [MT11, Cor 4.4] The values of Eu(∆α) are deter-
mined by induction on the codimension of the faces of σ∨ by the following:

Eu(σ∨) = 1

Eu(∆β) =
∑

∆β�∆α
(−1)dim ∆α−dim ∆β−1 RSVZ(∆α,∆β) Eu(∆α)

The case we are interested in is the Euler-obstruction of the vertices of a
toric variety coming from a n-dimensional polytope P . By the definition
of the normal fan, we have that given a vertex v the corresponding cone
Cv = Cone(P ∩M − v) is dual to a cone σ in the normal fan. Thus we get
a 1 − 1 inclusion preserving correspondence between faces of P and faces
σ∨ = Cv. Hence we can describe the Euler-obstruction on the codimension
of the faces of P by inheriting the above. In other words:

Corollary 1.11.3. The values of Eu(∆α) for a face ∆α of P are determined
by induction on the codimension of the faces of P by the following:

Eu(P ) = 1

Eu(∆β) =
∑

∆β�∆α
(−1)dim ∆α−dim ∆β−1 RSVZ(∆α,∆β) Eu(∆α)

To simplify calculations, we observe the following:

Proposition 1.11.4. If dim ∆α − dim ∆β = 1 then RSVZ(∆α,∆β) = 1.
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Proof. This follows almost by construction: The quotient lattice M ′β will be
a 1-dimensional lattice isomorphic to Z. Then the projection of ∆α must be
either Cone(1) or Cone(−1) (since we assume cones are strongly convex),
thus it follows RSVZ(∆α,∆β) = 1.

Setting ∆α = P in the above, we get Eu(∆α) = RSVZ(P,∆α) = 1, thus we
deduce:

Corollary 1.11.5. Given a polytope P , let dimP = n. Then for any (n−1)-
dimensional face ∆ � P we have Eu(∆) = 1.

Remark 1.11.6. This could also be deduced from the known fact that
normal toric varieties are smooth in codimension 1.

We are mainly interested in the Euler obstruction of the vertices of a 2-
dimensional polytope P ⊂MR. By the Corollary 1.11.3 we get for a vertex
v, letting e1, e2 be the edges of P containing v:

Eu(v) = RSVZ(e1, v) Eu(e1) + RSVZ(e2, v) Eu(e2)− RSVZ(P, v),

By Proposition 1.11.4 Eu(ei) = RSVZ(P, ei) = 1 and RSVZ(ei, v) = 1 for
i = 1, 2, thus we reduce calculations to:

Eu(v) = 2− RSVZ(P, v)

To calculate RSVZ(P, v) we get that M ′v will equal MR. Hence KP,v will just
be the cone generated by the polytope P with apex v. Then VolZ(KP,v\ΘP,v)
will be the area removed, if we instead of P consider the convex hull of the
points of (P \ {v}) ∩M . Hence we obtain

Proposition 1.11.7.

Eu(v) = 2−Vol(P \ Conv((P \ v) ∩M))

where Conv((P \ v) ∩M) is the convex hull of the lattice points of P with
the point v removed.

Remark 1.11.8. Since we define RSV for polytopes via its definition for
cones, one can also get a formula for the Euler-obstruction of a vertex in
terms of cones. In that case one would get analogously

Eu(v) = 2−Vol(σ∨ \K(σ∨)),

where σ is the cone corresponding to v and K(σ∨) = Conv(σ∨ ∩ (M \ {0})).
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P

Figure 1.3: The polytope P = Conv((0, 0), (0, 2), (1, 3), (3, 0)). Removing
the vertex (1, 3) we get the right figure. VolZ(P ) = 11 while the volume of
the new polytope is 8. Hence Eu(1, 3) = 2− 11 + 8 = −1.
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Chapter 2

Weighted Projective Spaces

2.1 Definition and examples

Definition 2.1.1. Let q0, ..., qn ∈ N satisfy gcd(q0, ..., qn) = 1. Define
P(q0, ..., qn) = Cn+1 \ {0}/ ∼ where ∼ is the equivalence relation:

(a0, ...an) ∼ (b0, ..., bn)⇔ ai = λqibi ∀i for some λ ∈ C∗

We call P(q0, ..., qn) weighted projective space corresponding to q0, ..., qn.

We observe that P(1, ..., 1) = Pn. Also we see that if we consider the poly-
nomial ring S = C[x0, ..., xn] where the grading is given by deg xi = qi
we can define varieties the following way: Call a monomial Πxαii weighted
homogeneous of degree d if Σαiqi = d. Then zerosets of polynomials are
well defined on P(q0, ..., qn) for weighted homogeneous polynomials, hence
we can define varieties the usual way.

Example 2.1.2. We can embed P(1, 1, 2) in P3 by the map:

(a0, a1, a2) 7→ (a2
0, a0a1, a

2
1, a2)

By considering affine patches it is easy to see this is injective. We will show
that the image is exactly V (y0y2−y2

1) where yi are homogenous coordinates
of P3:

One inclusion is obvious, so assume (y0, y1, y2, y3) satisfies y0y2 = y2
1.

If y0 = 0 then y1 = 0 hence either we are in (0 : 0 : 0 : 1) or (0 : 0 : 1 : y3)
which obviously is in the image.

If y0 6= 0 we can set y0 = 1⇒ y2 = y2
1 hence we have the point (1 : y1 : y2

1 :
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y3) which also is in the image.

On the affine set where y3 6= 0 we see (by differentiating) that (0 : 0 : 0 : 1)
is a singular point.

One can also view P(1, 1, 2) from a different perspective. Consider the poly-
tope P = Conv(0, 2e1, e2) ⊂ R2. This induces the map (C∗)2 → P3 given
by:

(s, t) 7→ (1 : s : s2 : t)

The toric variety corresponding to the polytope, XP , will be the Zariski
closure of the image. We see that affinely this is V (x2

1 − x2). Homogenizing
we get V (x2

1 − x2x0). We see that this is the same as we had before, hence
XP ' P(1, 1, 2).

Now we can show that P(1, 1, 2) is singular in a different way: We know XP

is smooth if and only if P is a smooth polytope. (0, 1) is not smooth, since
the vectors (0,−1) and (2,−1) do not generate Z2, for instance (1, 0) is not
in their span.

Given a ring R and a group G acting on it, one gets a subring

RG = {x ∈ R | gx = x ∀g ∈ G}

In [CLS11, Ch. 5.1] it is shown that the fan Σ from Example 1.3.7 in fact
gives the same variety as in the definition above. The defining equivalence
relation can also be described as a group action by C∗ on Cn+1\{0}. We have
an open affine cover of the form SpecC[x0, ..., x̂i, ..., xn]µqi for µqi induced
by the global action by C∗ as follows: Let (t0 : t1 : ... : tn) be coordinates on
P(q0, ..., qn). Then we get an open cover by the sets Xi = {ti 6= 0}. On Xi

we can set ti = 1 which forces λ ∈ C∗ to satisfy λqi = 1, hence we get that
Xi is isomorphic to the orbits of the action

µqi ×Xi → Xi

(ζ, (1, t1, ..., tn)) 7→ (1, ζq1t1, ..., ζ
qntn) (2.1)

where µqi is the set of qi roots of unity, and ζ is a primitive qi-th root of
unity.

On coordinate rings this is exactly the equalityXi = SpecC[x0, ..., x̂i, ..., xn]µqi .
From this one gets that

C[x0, ..., x̂i, ..., xn]µqi = C[xm0
0 · · ·x

mn
n |

∑
j 6=i

mjqj ≡ 0 (mod qi)]
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Example 2.1.3. Consider P(2, 3, 5). Then we have the open affine cover

X0 = SpecC[x1, x2]µ2 = SpecC[x2
1, x1x2, x

2
2]

X1 = SpecC[x0, x2]µ3 = SpecC[x3
0, x

2
0x2, x0x

2
2, x

3
2]

X2 = SpecC[x0, x1]µ5 = SpecC[x5
0, x0x1, x

5
1]

As in [CAMMOG14] one can also describe the points of P(q0, ..., qn) as the
orbits of the action of G = µq0 × µq1 × ...× µqn on Pn given by

G× Pn → Pn

(ζµ0 , ..., ζµ0), (t0 : ... : tn) 7→ (ζq0µ0
t0 : ... : ζqnµntn)

This is induced by the branched covering map

Pn → P(q0, ..., qn)

(t0 : ... : tn) 7→ (tq00 : ... : tqnn ) (2.2)

which has degree q0 · · · qn and is unramfied where all coordinates are nonzero.
The fiber over a point p = (1 : tq11 : ... : tqnn ) consists of the following points:
Let ζq0 , ..., ζqn be primitive qi-th roots of unity. Then the points of Pn of
the form (ζ l0q0 : ζ l1q1t1 : ..., ζ lnqntn), 0 ≤ li < qi, all map to p. If any of these
points are equivalent under the equivalence relation defining Pn, one needs

to have c ∈ C∗, c 6= 1, such that c = ζ
li−l′i
qi for all i. If for some i, li = l′i,

then c = 1. Otherwise, c has to simultaneously be a qi-th root of unity, for
all i. But the set of simultaneous q0, ..., qn-th roots of unity are exactly the
gcd(q0, ..., qn)-th roots of unity. Since gcd(q0, ..., qn) = 1, we have c = 1, and
all points are different. Hence we have q0 · · · qn points in the fiber on the
torus.

In general set Yi1,...,is = {ti1 , ..., tis 6= 0, tj = 0, j 6= is}. Then on Yi1,...,is
we, by the same argument as above, have qi1 · · · qis elements in the fiber,
however now they are not necessarily all different. One checks that, in Pn,
µgcd(qi1,...,is ) acts on the fiber by multiplication with a primitive element,
making every point equivalent to gcd(qi1 , ..., qis) other points. Thus the
fiber of a point in Yi1,...,is has size

qi1 ,...,qis
gcd(qi1 ,...,qis ) .

This map turns out to be a toric morphism described as follows:

Recall that the fan Σ1 for Pn consists of all cones generated by proper subsets
of the basis elements {e0, ..., en} in the lattice N1 = Zn+1/Z(1, ..., 1). The
fan Σ2 for P(q0, ..., qn) consist of all cones generated by proper subsets of the
basis elements {v0, ..., vn} in N2 = Zn+1/Z(q0, ..., qn). Consider the map

φ̄ : N1 → N2
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ei 7→ qivi

Then φ̄(Cone(ej | j ∈ I)) ⊂ Cone(vj | j ∈ I), hence the mapping is compati-
ble with the fans, so it induces a toric morphism Pn → P(q0, ..., qn). We will
check that this is the same map as above.

The dual lattices are M1 = {(m0, ...,mn) ∈ Zn+1|
∑n

i=0mi = 0} and M2 =
{(m0, ...,mn) ∈ Zn+1|

∑n
i=0miqi = 0}.The induced map on these are

φ̄∨ : M2 →M1

(m0, ...,mn) 7→ (m0q0, ...,mnqn)

Meaning that the associated map C[σ∨2 ∩M2]→ C[σ∨1 ∩M1] sends a monomial
xm0

0 · · ·xmnn to ym0q0
0 · · · ymnqnn .

Writing this as a map of polynomial rings on the coordinate rings of the
affine sets corresponding to Cone(e1, ..., en) ∈ Σ1 and Cone(v1, ..., vn) ∈ Σ2

we get
C[x1, ..., xn]µq0 → C[y1, ..., yn]

xm1
1 · · ·x

mn
n 7→ ym1q1

1 · · · ymnqnn

where
∑n

i=1miqi ≡ 0 (mod q0). By exercise 3.2.P [Vak] we get that the
map induced by the Spec-functor looks like

SpecC[y1, ..., yn]→ SpecC[x1, ..., xn]µq0

(a1, ..., an) 7→ (aq11 , ..., a
qn
n ),

which we recognize as an affine patch of the map (2.2). By doing this for all
maximal cones we get that the two maps are the same.

There are characterizations of when P(q0, ..., qn) ' P(s0, ..., sn) in terms of
the weights, see for instance [RT11]. For a given set of weights (q0, ..., qn)
we will describe its reduction (q′0, ..., q

′
n). Set:

di = gcd(q0, ..., q̂i, ..., qn)

ai = lcm(d0, ..., d̂i, ..., dn)

Setting q′i = qi
ai

we obtained the reduced weights (q′0, ..., q
′
n). We have:

Proposition 2.1.4. [RT11, Prop 1.26] There is an isomorphism

P(q0, ..., qn) ' P(q′0, ..., q
′
n)

.
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One upshot is that one can always assume the weights are reduced, i.e. that
gcd(q0, ..., qi, ...qn) = 1 for all i, we will always do this. In particular, in the
surface case P(k,m, n), we can always assume that gcd(k,m) = gcd(k, n) =
gcd(m,n) = 1.

As noted before, P(q0, ..., qn) is a singular variety, we will describe this in
more detail.

For a fan Σ, [CLS11, Thm. 11.4.8] shows that Σ is simplicial if and only if
XΣ has only finite quotient singularities, i.e., for every point p there exists
a finite subgroup G ⊂ GL(n,C) such that p is analytically equivalent to
0 ∈ Cn/G. Thus P(q0, ..., qn) has only finite quotient singularities.

Proposition 2.1.5. [CLS11, Prop 11.1.2] The singular locus of XΣ equals,

(XΣ)sing = ∪σ singular O(σ)

Proposition 2.1.6. [CLS11, Prop. 3.3.11] Let N ′ ⊂ N be a sublattice, with
dimNR = n, dimN ′R = k. Let Σ′ be a fan in N ′R, via the inclusion this is
also a fan in NR. Extend a basis for N ′ to a basis for a sublattice N ′′ ⊂ N
of finite index. Set G = N/N ′′. Then we have

XΣ′,N ' (XΣ′,N ′ × (C∗)n−k)/G

where XΣ′,N is the variety associated with Σ′, considered as a fan in N .

Recall again the fan from Example 1.3.7: Take Zn+1 with basis e0, ..., en
and let ui be the image of ei in the quotient lattice N = Zn+1/(q0, ..., qn).
Let Σ be the collection of cones Cone(uj |j ∈ J) for all proper subsets J ⊂
{0, ..., n}. Set σj1,...,js = Cone(uj1 , ..., ujs). Let (t0 : ... : tn) be coordinates
on P(q0, ..., qn), and set Xj1,...,js = {(t0 : ... : tn) ∈ P(q0, ..., qn)|tj1 = ... =
tjs = 0, ti 6= 0, for i 6= js}. Then we have O(σj1,...,js) = Xj1,...,js .

For a cone σ ∈ Σ we will use Proposition 2.1.6 to describe the group actions,
whereN ′ is the sublattice ofN spanned by the generators of σ, and Σ′ the fan
of all subcones of σ, thus XΣ′,N = Uσ, and XΣ′,N ′ ' Cdimσ by construction
of the lattice N ′.

Since constructing an explicit basis for N is some work, we will instead use
a trick for computing the indices of sublattices: By Proposition A.0.5 the
vector w0 = (q0, ..., qn) ∈ Zn+1 can be extended to a basis {w0, ..., wn} for
Zn+1. Letting {v1, ..., vs} be the generators of σ, considered as vectors in
Zn+1, extend the set {w0, v1, ..., vs} to a basis for a sublattice of finite index
l in Zn+1. Taking the quotients by the basis vector w0 we obtain that N ′

has index l in N as well.

As an example, take σ1,...,n = Cone(u1, ..., un). Then det(w0, u1, ..., un) = q0,

thus N ′ has index q0 in N . The corresponding orbit closure O(σ) will be
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the point (1 : 0 : ... : 0), thus this is a singular point. We also get a n open
neighbourhood of the point

Uσ1,...,n ' XΣ′,N ' Cn × {pt}/Zq0 ,

and we recognize the above as exactly the action 2.1 on the set {t0 6= 0}.
We see that σ has multiplicity q0, which is singular if q0 > 1. Similarly for
other maximal cones σ0,...,̂i,...,n, the corresponding multiplicity is qi.

Next we take σ2,...,n = Cone(u2, ..., un). The corresponding orbit closure
will, by the orbit-cone correspondence, be the the points (1 : t : 0 : ... : 0),
for t 6= 0. We want to expand the set {w0, u2, ..., un) to a sublattice of Zn+1,
so let (x0, ..., xn) be any vector in Zn+1. Taking determinants of the n + 1
vectors, we get q0x1 − q1x0. The minimal value this can obtain by choosing
x0, x1 ∈ Z is gcd(q0, q1). Thus the multiplicity of σ2,...,n is gcd(q0, q1). If this
multiplicity is greater than 1, wee see that the entire orbit closure will be
singular, thus we do not have isolated singularities. We also have

Uσ2,...,n ' (Cn−1 × C∗)/Zgcd(q0,q1)

which is the induced action by 2.1 on the set {t0, t1 6= 0}.

Generally for any cone σj1,...,js , let I = {i0, ..., in−s} = {0, ..., n}\{j1, ..., js}.
Extending the set {w0, ej1 , ..., ejs} to a basis for a full dimensional sublattice
of Zn+1 we see, by taking determinants, is equivalent to expanding the vector
(qi0 , ..., qin−s) to a basis for a sublattice of Zn−s+1. By Proposition A.0.5 we
can always extend 1

gcd(qi0 ,...,qin−s )(qi0 , ..., qin−s) to a basis for Zn−s+1. Using

this, we obtain that the multiplicity of σj1,...,js will be gcd(qi0 , ..., qin−s).
Then we have

Uσj1,...,js ' (Cs × (C∗)n−s)/Zgcd(qi0 ,...,qin−s )

which is the set {ti0 , ..., tin−s 6= 0}.

Hence we have that the orbit closure O(σj1,...,js) will be singular if and only
if gcd(qi0 , ..., qin−s) > 1.

Note also that the orbit closure O(σj1,...,js) by Remark 1.6.3 is isomorphic
to P(qi0 , ..., qin−s), where now the weights aren’t necessarily reduced. Hence
we obtain that all orbit closures are themselves weighted projective spaces.

Summing up, we obtain:

Proposition 2.1.7. P(q0, ..., qn) is nonsingular in codimension k if for all
{j1, ..., jk}, the corresponding gcd(qi0 , ..., qin−k) = 1. In particular:

P(q0, ..., qn) is nonsingular in codimension 1 .
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P(q0, ..., qn) has isolated singularities if and only if it is nonsingular in codi-
mension n− 1 if and only if gcd(qi, qj) = 1 for all i, j.

For surfaces we will always have isolated singularities, but in larger dimen-
sions we might have larger singular locus, for instance P(2, 2, 3, 3) does not
have isolated singularities.

2.2 Divisors on Weighted Projective Space

We will describe Cl(P(q0, ..., qn)) and Pic(P(q0, ..., qn)) (cf. [CLS11, Ex. 4.1.5
and 4.2.11]).

Let N ∼= Zn+1/Z(q0, ..., qn) and M be the dual lattice:

M = {(a0, ..., an) ∈ Zn+1|a0q0 + ...+ anqn = 0}

Let u0, ...un ∈ N be images in N of the standard basis e0, ..., en of Zn+1.
Define maps

M → Zn+1 : m 7→ (〈m,u0〉, ..., 〈m,un〉)

Zn+1 → Z : (a0, ..., an) 7→ a0q0 + ...+ anqn

If we can show that these maps form an exact sequence:

0→M → Zn+1 → Z→ 0

we have by Proposition 1.7.2 that Cl(P(q0, ..., qn) ∼= Z.

That the first map is injective follows from the properties of the dual pairing:
If m,m′ ∈ M has the same image we have 〈m −m′, ui〉 = 0 for all i hence
m = m′. Since gcd(q0, ..., qn) = 1 we can find (a0, ..., an) such that a0q0 +
...+ anqn = 1. Thus we see that the last map is surjective.

That the sequence is exact in the middle follows from the definition of M
and ui, hence we are done.

For the Picard group we use Proposition 1.7.5 to determine when a general
Weil divisor D =

∑
biDi is Cartier. Assuming D is Cartier we know that for

each maximal cone there exist Cartier-data mσ ∈M . As before let e0, ..., en
be a basis for Zn+1 such that in N the relation

∑n
i=0 qiei = 0 holds. Let σ

be a maximal cone, assume without loss of generality σ = Cone(e1, ..., en).
Then mσ = (m0, ...,mn) has to satisfy, for i = 1, ..., n,

〈mσ, ei〉 = mi = −bi
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Since mσ ∈M , it must satisfy
∑n

i=0miqi = 0, so we must have

m0q0 −
n∑
i=1

biqi = 0

This implies that q0|
∑n

i=0 biqi. Similarly for the other maximal cones we
get that for all i, qi|

∑n
i=0 qibi. Thus any Picard-divisor maps to a multiple

of lcm(q0, ..., qn) ∈ Cl(P(q0, ..., qn)) ≡ Z.

By much linear algebra [RT11, thm 1.19] show that, in the reduced case,
the Picard group actually equals the subgroup generated by lcm(q0, ..., qn).

Since Cl(P(q0, ..., qn)) ≡ Z, we can define a degree function deg(
∑n

i=0 aiDi) =∑n
i=0 aiqi.

The Cox ring associated to a toric variety XΣ is the graded polynomial ring
S = C[xρ|ρ ∈ Σ(1)] where deg xρ = degDρ. In our case we get

S = C[x0, ..., xn] , deg xi = qi

In [CLS11, Ch. 5.3] it is shown that if degD = degE, then O(D) ≡ O(E).
Thus all sheaves associated to divisors of a given degree d are isomorphic,
denote this isomorphism class by O(d). Let Sd be the d-th graded piece of
S. Then we have

Proposition 2.2.1.
Γ(XΣ,O(d)) ≡ Sd

Thus the global sections of the sheaf O(d) corresponds to all weighted ho-
mogenouos polynomials of degree d in n+ 1 variables.

2.3 Intersection theory on Weighted Projective
Space

We now wish to look at intersection theory on our varieties. For any n-
dimensional variety X let Zk(X) be the free abelian group generated by
the set of irreducible closed subvarieties of dimension k on X. Note that
Zn−1(X) = Div(X). As in the case of divisors we define rational equiv-
alence: Let α ∈ Zk(X) be equivalent to zero if there exists finitely many
(k + 1)-dimensional subvarieties Vi ⊂ X such that α is the divisor of a ra-
tional function on Vi for all i. Then the k-th Chow group Ak(X) is Zk(X)
modulo rational equivalence. In the toric case this behaves very well as a
generalization of divisors:
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Proposition 2.3.1. [Ful93, Ch.5.1] For a toric variety XΣ, Ak(XΣ) is
generated by the classes of the orbit closures O(σ) of the cones σ ∈ Σ(n−k).

In the toric case, if Σ is complete and simplicial, setting Ak(XΣ) =
An−k(XΣ), one can define a product

Ak(X)⊗Q×Al(X)⊗Q→ Ak+l(X)⊗Q

which agrees with geometric intersection in nice cases. This makes the
groups of cycles into a graded ring A•(XΣ)Q.

To compute intersections we will also consider the Chow ring of a toric
variety, as defined in [CLS11, Ch. 12.5].

Given a fan Σ, let Σ(1) = {ρ1, ..., ρr}. Denote by ui the minimal generator
of ρi. We will consider two ideals I , J in the polynomial ring Q[x1, ..., xr].
Let

I = 〈xi1 · · ·xis | all ij distinct and ρi1 + · · ·+ ρis is not a cone in Σ〉

J = 〈
r∑
i=1

〈m,ui〉xi| where m ranges over a basis of M〉

I is called the Stanley–Reisner ideal. The Chow ring RQ(Σ) is defined as

RQ(Σ) = Q[x1, ..., xr]/I + J

For completeness we also note that there is a third algebraic object one could
consider, the singular cohomology ring H•(XΣ,Q). Then we have:

Theorem 2.3.2. [CLS11, Thm 12.5.3] If XΣ is complete and simplicial,
then

RQ(Σ)Q ∼= A•(XΣ)Q ∼= H•(XΣ,Q).

The weighted projective space is both complete and simplicial , so the the-
orem applies. Letting Σ be the normal fan for P(q0, ..., qn) we see that

I = 〈x0 · · ·xn〉

Since we are now over Q, a basis for M = {m ∈ Zn+1|
∑
qimi = 0} will be

(qi, ...,−q0, ...0) for i = 1, ...n. This gives the ideal

J = 〈qix0 − q0xi|i = 1, ..., n〉

Doing the computations, we can eliminate x1, ..., xn since xi = qi
q0
x0., so the

Chow ring will be
RQ(Σ) ∼= Q[x0]/xn+1

0
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The 1-graded part of RQ(Σ) corresponds to divisors, with x0 correspond-
ing to D0, thus we can compute generalized intersections of divisors from
this. Taking any torus-invariant divisor D =

∑n
i=0 aiDi, let d = degD =∑n

i=0 aiqi. Then in the Chow ring, D gets mapped to
∑n

i=0 aixi =∑n
i=0 ai

qi
q0
x0 = x0

q0

∑n
i=0 aiqi = x0

q0
degD.

Taking n different divisors D1, ..., Dn with degDj = dj , it then follows,

D1 · · ·Dn =
Πn
j=1dj

qn0
Dn

0

thus we have determined intersections of divisors modulo Dn
0 . To obtain

actual numbers for these intersections, we need to normalize, which amounts
to finding a natural candidate for the self-intersection Dn

0 . This is possible
by generalizing Proposition 1.9.5, saying that for a 2-dimensional polytope
P , the associated divisor DP has self-intersection equal to Vol(P ). This can
be generalized as follows (reformulating the statement a bit for our needs,
to avoid having to introduce too many definitions):

Theorem 2.3.3. [CLS11, Thm 13.4.3] Let P be a very ample polytope
giving the variety XΣP embedded in Ps, where s = |P ∩M |. Define Dn

P =
deg(XΣP ⊂ Ps). Then

Dn
P = Vol(PD)

To apply this, we need to make a diversion to describe a polytope giving
P(q0, ..., qn). However this will be useful anyway, since we need the polytope
to compute Euler-obstructions of our varieties.

From [RT11, Remark 1.24 and Cor 1.25] we have the following polytope:

Given (q0, ..., qn) and M ∼= Zn+1, let δ = lcm(q0, ..., qn). Consider the n+ 1
points of MR ∼= Rn+1:

vi = (0, ...,
δ

qi
, ...0)

Let ∆ be the convex hull of 0 and all vi. Intersecting ∆ with the hyperplane
H = {(x0, ..., xn)|

∑n
i=0 xiqi = δ}, we get a n-dimensional polytope P . Then

XP
∼= P(q0, ..., qn) and the associated divisor DP will be δ

q0
D0 (to see that

Proposition 1.7.6 is still fulfilled, note that P is only full-dimensional in the
lattice generated by H. Getting DP = δ

q0
D0 really corresponds to choosing

(q1 · · · qn, 0..., 0) as the origin of the lattice generated by H, while a different
choice of origin would result in a different, although linearly equivalent,
divisor).

If we then can determine the volume of P , we have a way of naturally
determining Dn

0 , since one then would have

Vol(PD) = Dn
P =

δn

qn0
Dn

0
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implying that Dn
0 = Vol(PD)

qn0
δn .

To determine the volume of P , we will use the generalized cross product
(see [Mas83]). For n vectors v1, ..., vn ∈ Rn+1, let A be the matrix with i-th
row vi. We can define the cross product v1 × · · · × vn ∈ Rn+1 by having the
k-th coordinate be (−1)k times the n× n minor of A obtained by removing
the k-th column. This cross product is orthogonal to all vi and satisfies

|v1 × · · · × vn| = Vol(v1, ..., vn)

where Vol(v1, ..., vn) is the n-dimensional volume of the parallelotope
spanned by v1, ..., vn. (For the more algebraically inclinced, this product can
be expressed by exterior algebra operations as the Hodge dual *(v1∧· · ·∧vn).)

To determine the volume, we first need to normalize with respect to the
lattice, i.e. we need to determine the volume spanned by a basis. To find a
basis for the lattice spanned by H, we need to cleverly choose vectors. First
we choose an edge of the polytope P , say the edge v0v1, which is generated
by (− δ

q0
, δq1 , 0, ..., 0). For simpler notation set qi1,...,is = gcd(qi1 , ..., qis). The

primitive generator of the edge v0v1 will be e1 = (− q1
q01
, q0q01

, 0, ..., 0). Now,
choose any lattice point of H of the form

(x20, x21,
q01

q012
, 0, ..., 0),

this exists since the numbers obtained as integral linear combination of q0, q1

are exactly all multiples of q01, and δ − q2
q01

q012
is such a multiple (the sub-

scripts are chosen for notational purposes which will become clear) . Set e2

as the difference between this point and v0, in other words

e2 = (x20 −
δ

q0
, x21,

q01

q012
, 0, ..., 0)

In general, for all 2 ≤ s ≤ n find a lattice point of the form

(xi0, xi1, ..., xi(s−1),
q0...s−1

q0...s
, 0, ..., 0).

This is equivalent to saying

xi0q0 + xi1q1 + · · ·+ xi(s−1)qs−1 +
q0...s−1

q0...s
qs = δ,

and set

es = (xi0 −
δ

q0
, xi1, ..., xi(s−1),

q0...s−1

q0...s
, 0, ..., 0).

Then we have

Proposition 2.3.4. The n vectors {e1, ..., en} constructed above, are a basis
for the lattice spanned by H.
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Proof. We will use Lemma A.0.2 to show this. Assume we have a lattice
point l =

∑n
i=1 ciei, where 0 ≤ ci < 1 for all i. Then it suffices to show

that all ci = 0. We will show this by descending induction on cn. Let
l = (y0, ..., yn). Then we have, by definition of H,

n∑
i=0

qiyi = δ (2.3)

Consider the (n + 1)-the coordinate. Since the basis is constructed in such
a way that the only vector having nonzero (n + 1)-th coordinate is en, we
must have yn = cn

q0,...,n−1

q0,...,n
. When we defined weighted projective space we

assumed q0,...,n = 1. Thus we must have yn = cnq0,...,n−1. Now consider
(2.3) modulo (q0,...,n−1): The righthand side is 0 and the first terms q0y0 +
... + qn−1yn−1 will be zero, since, in general integral linear combinations of
a set of integers are exactly the multiples of their greatest common divisor.
Thus we must have

qnyn ≡ qncnq0,...,n−1 ≡ 0 (mod q0,...,n−1).

Now since cn < 1, we have cnq0,...,n−1 < q0,...,n−1, and if 0 < cn there must be
some prime power pr dividing q0,...,n−1 which does not appear in cnq0,...,n−1.
But then we must have that p divides qn, which implies q0,...,n > 1 which is
a contradiction. Thus cn = 0.

Assume in general we have proved that cn = cn−1 = ... = cs+1 = 0. We
will show that cs = 0. We will use the same method as above: Since
cs+1 = ... = cn = 0, we have a linear combination l =

∑s
i=0 ciei. In the set

{e1, ..., es}, the only vector with (s + 1)-th coordinate nonzero will be es.
Thus we must have ys = cs

q0,...,s−1

q0,...,s
. Considering (2.3) modulo q0,...,s−1 we

get

qsys ≡ qscs
q0,...,s−1

q0,...,s
≡ 0 (mod q0,...,s−1).

Now, since l is a lattice point, cs
q0,...,s−1

q0,...,s
is an integer k <

q0,...,s−1

q0,...,s
. Rewriting

the above we get

qs
q0,...,s

kq0,...,s ≡ 0 (mod q0,...,s−1) (2.4)

since kq0,...,s = csq0,...,s−1 < q0,...,s−1, we must have, if 0 < cs, that there is
a prime power pr in the prime factorization of q0,...,s−1, which appears to
a smaller degree in the prime factorization of csq0,...,s−1. By the previous
equality, the highest power of p which can appear in q0,...,s will also be smaller
than r, say it is (r− t). But to satisfy (2.4) we must also have that p divides
qs

q0,...,s
, which implies that pr−t+1 divides qs, but then pr−t+1 will divide q0,...,s

which is a contradiction. Thus we must have cs = 0.
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The last case is an exception. If s = 0 we have l = c0e0, but by construction
of e0 as a primitive vector we must have c0 = 0. Hence we are done.

Now we can use this to calculate the normalization of the volume.

Proposition 2.3.5. The volume of the parallelotope spanned by e1, ..., en is√
q2

0 + ...+ q2
n.

Proof. The coordinates of z = e1×· · ·×en will be (modulo a sign) the n×n
minors of the matrix A with row i equal to ei.

A =



− q1
q01

q0
q01

0 0 · · · 0

x20 − δ
q0

x21
q01

q012
0 · · · 0

x30 − δ
q0

x31 x32
q012

q0123

. . . 0
...

...
...

. . .
. . . 0

xn0 − δ
q0

xn1 xn2 xn3 · · · q0,...,n−1

q0,...,n


Set z = (z0, ..., zn). We see immediately that z0 = q0 and z1 = q1, since
the corresponding minors are lower triangular and q0,...,n = 1. To cal-
culate zs we get, by expanding along the columns from the right, that
zs = (−1)sq0,...,s det(Ds) where Ds is the s × s submatrix from the upper
left of A. Consider such a Ds:

Ds =



− q1
q01

q0
q01

0 0 · · · 0

x20 − δ
q0

x21
q01

q012
0 · · · 0

x30 − δ
q0

x31 x32
q012

q0123

. . . 0
...

...
...

. . .
. . . 0

...
...

...
. . .

. . . q0,...,s−2

q0,...,s−1

xs0 − δ
q0

xs1 xs2 xs3 · · · xs(s−1)


Enumerating the columns 0, ..., s− 1, after multiplying column i by qi (thus
changing the determinant by a factor of q0 · · · qs−1) for all i, observe that,
by the construction of ei, the sum of all rows except the last one are 0.
For i = 0, ..., s − 2 do successively the column operation: add column i to
column i+1. This will not change the determinant, and observe that by the
remark about the row sums, the new matrix will be lower triangular. Thus
the determinant will be the product of the diagonal elements.

Diagonal entry number r will be equal to xr0q0−δ+xr1q1 + ...+xr(r−1)qr−1,
which by construction equals − q0,...,r−1

q0,...,r
. So we get

1

q0 · · · qs−1
det(Ds) = (−1)s

q0 · · · qs
q0,...,s
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implying that zs = qs.

The result now follows from the fact that |z|2 = q2
0 + · · · q2

n.

By this result, we have that a Euclidean volume of

√
q2
0+···q2

n

n! will be normal-
ized to 1 in the lattice spanned by H. Using this we have:

Proposition 2.3.6. The volume of P is δn

q0···qn .

Proof. The edges emanating from v0 are spanned by the vectors

wi = (− δ

q0
, 0, ...,

δ

qi
, 0, ..., 0),

for i = 1, ..., n. The Euclidean volume of P will be |w1×···×wn|
n! . The corre-

sponding matrix is
− δ
q0

δ
q1

0 0 · · · 0

− δ
q0

0 δ
q2

0 · · · 0

− δ
q0

0 0 δ
q3
· · · 0

...
...

...
. . .

. . . 0

− δ
q0

0 0 0 · · · δ
qn


We see that w1×· · ·×wn = ( δn

q1···qn ,
δn

q0q2···qn , ...,
δn

q0···q̂i···qn , · · · ,
δn

q0···qn−1
). This

implies that

|w1 × · · ·wn|2 =
δ2nq2

0 + δ2nq2
1 + ...+ δ2nq2

n

q2
0 · · · q2

n

=

giving

|w1 × · · ·wn| =
δn

q0 · · · qn

√
q2

0 + ...+ q2
n.

Combinining this with the normalization yields the result.

Finally we can return to intersection theory on P(q0, ..., qn). Recall that we

wanted to have Dn
0 = Vol(PD)

qn0
δn . Inserting the above gives Dn

0 =
qn0

q0···qn .
Combining this with the previous calculations, we obtain a Bezout type
theorem for weighted projective space:

Theorem 2.3.7 (Bézout’s Theorem). Given n torus-invariant divisors
D1, ..., Dn on P(q0, ..., qn), we have

D1 · · ·Dn =
Πn
i=1 degDi

q0 · · · qn

48



2.4 Weighted projective plane

Specializing to the surface case, we can now determine some things about
the divisors on the weighted projective plane.

Proposition 2.4.1.

K2
P(k,m,n) =

(k +m+ n)2

kmn

Proof. This follows from Theorem 2.3.7, but to illustrate how to compute
intersections for general singular toric varieties, we will instead prove this
by using the formula from Corollary 1.8.4.

Example 1.3.7 describes the fan of P(k,m, n), the one-dimensional cones are
Cone(e1),Cone(e2),Cone(e3) in N = Z3/Z(k,m, n). We will describe this
more explicitly: Choose e, f ∈ Z such that me+nf = 1. Then a Z-basis for
Z3 will by Remark A.0.4 be

v1 =

 0
−f
e

 , v2 =

1
0
0

 , v3 =

 k
m
n


thus the quotient N = Z3/v3Z is generated by v1, v2. Expressing the ei in
this basis we get

e1 = v2, e2 = −nv1 − kev2 + ev3, e3 = mv1 − kfv2 + fv3

So the images of the ei in N will be

ρ1 =

(
0
1

)
, ρ2 =

(
−n
−ke

)
, ρ3 =

(
m
−kf

)

Now by the notation from Corollary 1.8.4, di = di−1,i+1 = −di+1,i+2. Thus

K2
XΣ

=
2∑
i=0

(
1

di−1,i
+

1

di,i+1
− di
di−1,idi,i+1

)

=
2∑
i=0

(
di−1,idi+1,i+2 + di,i+1di+1,i+2 + d2

i+1,i+2

di−1,idi,i+1di+1,i+2
)

=
(d0,1 + d1,2 + d2,0)2

d0,1d1,2d2,0

Then
d0,1 = det((0, 1), (−n,−ke)) = n
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m

n −n

−m

Figure 2.1: Left: Polytope giving P(1,m, n) Right: Its normal fan

d1,2 = det((−n,−ke), (m,−kf)) = k

d2,0 = det((m,−kf), (0, 1)) = m

K2
XΣ

=
(k +m+ n)2

kmn

If one would use our Bezout’s theorem, we would easily obtain the same
as above, since it implies that C · D = degC degD

kmn . Since degKP(k,m,n) =

−k −m− n this gives K2
P(k,m,n) = (k+m+n)2

kmn .

We now consider in more detail the polytope P giving XP = P(k,m, n).
Again we assume that k,m, n pairwise have no common factors.

From [Mor11] we have that Conv(0,me1, ne2) will be a polytope giving
P(1,m, n). We want the more general polytope, but when we are in this
special case, we will use this instead.

As in section 2.3 we get the following: In R3 consider the cone generated
by the points (0, 0, 0), (mn, 0, 0), (0, nk, 0), (0, 0,mk). Intersecting this with
the plane xk+ ym+ zn = kmn gives a well-defined 2-dimensional polytope
P with XP = P(k,m, n).

Describing this more explicitly, consider the map:

φ : P(k,m, n)→ PN

defined by sending coordinates (x, y, z) on P(k,m, n), for each natural num-
ber solution (r, s, t) of the equation
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x

y

z

Figure 2.2: The polytope for P(2, 3, 5)

kr +ms+ nt = kmn (2.5)

(N is the number of such solutions −1), to the coordinate (xryszt). Note
that such (r, s, t) are in a one-to-one correspondence with lattice points in
P . Also, by construction, this map is well defined. One can also consider
the same map as going from (C∗)3, and in that case the closure of the image
is exactly the toric variety XP .

We now wish to find how many solutions we have, i.e., the number of lattice
points in P .

The lattice points along the edges of P will be needed several times, and
they are easy to describe, so we collect them in the following lemma.

Lemma 2.4.2. The lattice points along the edges of P are the following:

Points on the edge where x = 0 are (0, nk − ln, lm) where l = 0, ..., k
Points on the edge where y = 0 are (mn− jn, 0, jk) where j = 0, ...,m
Points on the edge where z = 0 are (mn− im, ik, 0) where i = 0, ..., n

Proof. We only do the x = 0 case.

We wish to find integral solutions to my+nz = kmn⇔ my = n(km−z) with
y, z positive. All solutions listed above obviously works. Since gcd(m,n) = 1
n has to divide y. Letting l run as above we see that this is in fact all
solutions.
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Proposition 2.4.3. The number of lattice points of P is kmn+k+m+n
2 + 1.

For now, let the number of solutions be f(m,n, k). To show the proposition
we will consider the number of solutions (x, y) of mx+ ny = kmn− kj for
j ranging from 0 to mn.

Lemma 2.4.4. As j ranges from 0 to mn − 1, kmn − kj ranges over all
classes modulo mn.

Proof. Assume kmn− kj ≡ kmn− ki (mod mn). Then,

kj ≡ ki (mod mn)

hence i ≡ j (mod mn) since gcd(mn, k) = 1.

If we now consider the general equation mx+ ny = s for any s ∈ N. Let s0

be the reduction of s modulo mn.

Lemma 2.4.5. The number of solutions positive integral solutions to mx+
ny = s is s−s0

mn + 1 or s−s0
mn .

Proof. First if s ≡ 0 (mod mn) it is easy to see that there are s
mn + 1

solutions: Let s = mnl. Then (nj,m(l − j)) for 0 ≤ j ≤ l are all solutions
since gcd(m,n, ) = 1. Then we have two cases:

If s0 can be written as a linear combination s0 = am + bn where a, b are
nonnegative integers, then our equation is equivalent to m(x−a)+n(y−b) =
s− s0 which by the above has s−s0

mn + 1 solutions for (x− a, y − b). If there
were solutions with 0 < x < a, then n has to divide a − x, so a − x = nt
giving s0 = (nt+ x)m+ bn > mn, which is a contradiction.

Else, s0 +mn can be written as such a linear combination (since all numbers
≥ nm can be written this way), hence our equation is m(x−a) +n(y− b) =
s−mn− s0, which by the above has s−s0

mn solutions.

Then by combining Lemmas 2.4.4 and 2.4.5 we get that the s0 will vary
through all numbers less than mn, hence we get

f(m,n, k) = 1 +
mn−1∑
j=0

kmn− kj
mn

−
mn−1∑
j=0

j

mn
+ g(m,n),
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where g(m,n) is the number of s0 ≤ mn which cannot be written as a linear
combination as in the proof above. The extra 1 corresponds to the single
solution corresponding to j = mn. Writing out the sums we get

f(m,n, k) =
kmn

2
+
k

2
− mn

2
+

3

2
+ g(m,n) (2.6)

The polytope Conv(0,me1, ne2) giving P(1,m, n) has lattice points corre-
sponding to all solutions (x, y) such that nx+my ≤ mn. We see that these
are in one to one correspondence with solutions (x, y, z) of nx+my+z = mn.
Lemma 5.2.4 [Mor11] (or an easy counting argument) counts the number of

these, yielding f(m,n, 1) = (m+1)(n+1)
2 + 1 .

Inserting this into (2.6) with k = 1, we get g(m,n) = mn+m+n−1
2 . Inserting

this back in the general (2.6) we get the result

f(m,n, k) =
kmn+ k +m+ n

2
+ 1

We could also obtain this easier, using the extended machinery of Ehrhart
polynomials:

Proof. The Ehrhart polynomial is given by EP (x) = Area(P )x2 + 1
2 |∂P ∩

M |x + 1. We know that the number of lattice points equals EP (1). By
Lemma 2.4.2 |∂P ∩M | = k + m + n. In the next section we compute the
volume to be kmn. Combining these yields the result.

The lattice points in the plane kx +my + nz = kmn form a 2-dimensional
lattice L which, after choosing a point of origin, say (mn, 0, 0), is isomorphic
to the lattice M = {(x, y, z) ∈ Z3| kx + my + nz = 0} under (x, y, z) 7→
(x −mn, y, z). Thus for N = Z3/(k,m, n)Z the dual pairing L × N sends
(x, y, z), (r, s, t) to r(x−mn) + sy + tz.

Using this we can determine the associated divisor DP . This is determined
by the facet presentation, i.e. we want to find ai such that P is given by

〈m,ui〉 ≥ −ai

where the ui are basis vectors for N . We can determine ai by choosing
a point on the corresponding facet, corresponding to where each of the
coordinates are 0. Choosing

m0 = (0, 0, km)

m1 = (mn, 0, 0)

m2 = (0, kn, 0)
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we get
〈m0, u0〉 = −mn

〈m1, u1〉 = 0

〈m2, u2〉 = 0

Thus DP = mnD0, which was what we expected.

If we now wish to find the normal fan of P , we wish to find vectors ui in N
orthogonal to the edges of P . The edges are generated by

v0 = (0,−n,m)

v1 = (−n, 0, k)

v2 = (−m, k, 0),

giving the equalities in the quotient N ,

u0 = (0,−m,−n) = (k, 0, 0)

u1 = (−k, 0,−n) = (0,m, 0)

u2 = (−k,−m, 0) = (0, 0, n),

which are exactly the 1-dimensional cones from Example 1.3.7, so we recover
the normal fan as expected.

2.5 Degree of duals

We now wish to calculate the degree of the dual variety of P(k,m, n). We
have from Proposition 1.10.3

degX∨P(k,m,n) = 3 Vol(P )− 2E(P ) +
∑

v vertex ∈P
Eu(v)

By Proposition 2.1.7 the singularities of P(k,m, n) will always be isolated,
at the points corresponding to the vertices. Since the Euler-obstruction
equals 1 on the smooth locus of a variety, we need to determine the Euler
obstruction of the vertices. Recall that this was given by Proposition 1.11.7:

Eu(v) = 2−Vol(P ) + Vol(Conv(P \ v))

Without loss of generality we still consider the vertex (mn, 0, 0) as the origin
of our plane. We will find two different bases for the lattice, each containing
a vector generating one of the edges.

Lemma 2.5.1. There exists a solution of (2.5) of the form (r, s, 1)
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x

y

z

v

w

Figure 2.3: P(2, 3, 5) with the basis {v, w}

Proof. We wish to find a solution to kr + ms + n = kmn. If we consider
this modulo k we see that for any 0 ≤ s0, s1 ≤ k − 1,

ms0 + n ≡ ms1 + n (mod k)

Thus s0 ≡ s1 (mod k).

Hence letting s vary from 0 to k − 1 we see that all modulo classes will
appear, in particular there is a s such that ms+ n ≡ 0 (mod k). Therefore
ms+ n = kv. Then choosing r = mn− v proves the lemma.

From Lemma 2.5.1 we obtain there exist solutions of (2.5) of the form (a, 1, b)
and (c, d, 1). Pick these such that b and d are the least possible. Then we
can consider the lattice vectors

v = (−n, 0, k) (along the edge y = 0)
w = (a−mn, 1, b)

Lemma 2.5.2. The vectors v, w form a basis for the lattice spanned by the
lattice points of the plane (2.5).

Proof. By Lemma A.0.2 it is enough to show that T (v, w)∩M = 0. Assume
that sv + tw = l is a lattice point, where 0 ≤ s, t < 1. Then by considering
the y-coordinate we see that t = 0. But then l = sv, and by Lemma 2.4.2
we see that s = 0.
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Remark 2.5.3. Note that this is only the 2-dimensional case of Proposition
2.3.4.

Similarly v′ = (−m, k, 0) and w′ = (c−mn, d, 1) will be a basis corresponding
to the other edge lying next to our chosen vertex.

From Proposition 2.3.5 a Euclidean area of
√
k2+m2+n2

2 will have normalized
area of 1.

From Lemma 2.4.2 we get that the length of the edges of P is k + m + n.
Also the volume of our polytope P is mnk, by calculationing the area of P
the triangle (for instance |(0,−nk,mk)× (−nm, 0, km)|). To summarize

Vol(P ) = kmn

E(P ) = k +m+ n

What remains is finding the Euler-obstruction of the vertices, we will try to
calculate this as well.

Call the polytope we get when we remove a vertex P ′. Consider the line l
through (mn− n, 0, k) spanned by the vector w− v = (a+ n− nm, 1, b− k)
(Alternatively this is the line through the points (a, 1, b) and (nm−n, 0, k).
This will by definition be a supporting halfspace of P ′, since P ′ is the convex
hull of the remaining lattice points. Similarly the line l′ through (mn −
m, k, 0) spanned by w′−v′ will also be a supporting halfspace. If these lines
intersect in a lattice point (or are the same line), then P ′ is defined by these
and we can calculate the new area. In general there can be any number
of edges to the new polytope, and we will need more general methods to
compute this.

Now we can find some Euler-obstructions:

Proposition 2.5.4. Consider P(k,m, n). Then Eu(0, 0,mk) = 0 if and
only if m+ k ≡ 0 (mod n)

Proof. We wish to find solutions of the form (1, b, a), (d, 1, c) with b, d mini-
mal. That is

k + bm ≡ 0 (mod n)

dk +m ≡ 0 (mod n)

We see that if k + m ≡ 0 (mod n) then we can choose b = d = 1, and we
will remove two triangles spanned by basis vectors, so the Euler obstruction
is zero by the above. Conversely if the removed area is two, then the points
(1, b, a), (d, 1, c) coincide, so b = d = 1, hence k +m ≡ 0 (mod n).
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x

y

z

l

l’

Figure 2.4: For the vertex (0, 10, 0) in P(2, 3, 5) we see that the lines l, l′ are
the same line. We see that the removed area consists of 3 triangles spanned
by basis vectors, hence Eu(0, 10, 0) = 2− 3 = −1

Remark 2.5.5. Of course similar results also holds for the other vertices,
by cyclicly permuting k,m, n.

In general one cannot find a closed formula for the Euler-obstruction, as it is
realated to the behaviour of continued fractions, for which there is no closed
formula, we will see this in detail in the next chapter. However in special
cases, where there are relations between the numbers k,m, n, it is possible
to find a formula, as the following proposition shows.

Proposition 2.5.6. degP(m,n,m+ n)∨ = 3mn(m+ n)− 5(m+ n) + 4

Proof. Consider P(m,n,m+ n), we will find the degree of P(m,n,m+ n)∨.

From Proposition 1.10.3 we have

degP(m,n,m+ n)∨ = 3mn(m+ n)− 2(2m+ 2n) +
∑
v∈P

Eu(v)

Now we proceed as described above.

From Lemma 2.5.4 we get

Eu(0, 0,mn) = 0

57



Consider now (n(m + n), 0, 0). As above we need to find minimal b, d (for
lattice points (a, 1, b) and (c, d, 1)) such that

n+ b(n+m) ≡ 0 (mod m)

dn+m+ n ≡ 0 (mod m)

Reducing, this amounts to

(b+ 1)n ≡ 0 (mod m)

(d+ 1)n ≡ 0 (mod m)

So b = m− 1 = d.

Solving for a and c we obtain a = n(m + n) − (m + n) + 1 and c = n(m +
n)− n− 1. A calculation now shows that the two lines l, l′ we get when we

remove this vertex will be the line through

n(m+ n)−m− n
0
m

 spanned

by

 1
1
−1

 and the line through

n(m+ n)− n
m
0

 spanned by

−1
−1
1

.

Now we have thatn(m+ n)−m− n
0
m

+m

 1
1
−1

 =

n(m+ n)− n
m
0

 .

Thus the two lines are really the same, hence it defines the new polytope
P ′, so the total area removed will be the area of the triangle spanned by the
vectors −m− n0

m

 −nm
0

 .

A calculation shows that the area is given by

4A2 = m2(m2 + n2 + (m+ n)2

Hence the normalized volume is m, giving a total Euler obstruction of

Eu(n(m+ n), 0, 0) = 2−m

A similiar calculation for (0,m(m+ n), 0) yields

Eu((0,m(m+ n), 0) = 2− n
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Hence the degree we are looking for is

degP(m,n,m+ n)∨ = 3mn(m+ n)− 2(2m+ 2n)− (m+ n) + 4

= 3mn(m+ n)− 5(m+ n) + 4

Proposition 2.5.7. For odd m > 1,

degP(m− 2,m,m+ 2)∨ = 3m3 − 19m+ 3

Proof. Consider P(m−2,m,m+2). Again we will find the Euler obstruction
of the vertices.

For (0, 0,m(m− 2)) we wish to find lattice points (1, b, a) and (d, 1, c) with
minimal b, d. This gives

m− 2 + bm ≡ 0 (mod m+ 2)

d(m− 2) +m ≡ 0 (mod m+ 2)

which gives:
−2(b+ 2) ≡ 0 (mod m+ 2)

−2(2d+ 1) ≡ 0 (mod m+ 2),

resulting in b = m and d = m+1
2 .

One calculates that a = m2 − 3m+ 1 and c = m2 − 5
2m+ 1

2 . Then we get a
basis consisting of (0,−m− 2,m), (1,−2, 1) and

(1, b, a) +
m− 1

2
(1,−2, 1) =

(1,m,m2−3m+1)+
m− 1

2
(1,−2, 1) = (

m+ 1

2
, 1,m2− 5

2
m+

1

2
) = (d, 1, c),

so that these lines define P ′. Then we get:

Eu(0, 0,m(m− 2)) = 2− m+ 3

2
=
−m+ 1

2

Similarly solving for lattice points (a, 1, b) and (d, 1, c) with minimal b, c one
gets b = m−3

2 , c = m− 4, implying that a = m2 + 3m
2 −

3
2 , d = m2 +m+ 1,

so we obtain a basis consisting of (m, 2−m, 0), (1− 2, 1). Then since

(m2 +m,m− 2, 0) +
m− 3

2
(1,−2, 1) = (m2 +

3m

2
− 3

2
, 1,

m− 3

2
)
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we can again calculate the area yielding

Eu(m(m+ 2), 0, 0) = 2− m− 1

2
=
−m+ 5

2

By Remark 2.5.5,
Eu(0, (m− 2)(m+ 2), 0) = 0.

So degP(m− 2,m,m+ 2)∨ = 3(m− 2)(m+ 2)m− 2(3m)−m+ 3 = 3m3 −
19m+ 3
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Chapter 3

Resolution of singularities

3.1 Continued fractions and resolution of singu-
larities

The presentation in this section mainly follows [PP07], but with a view
towards [CLS11] and [Dai06]. We refer some propositions and write out
some proofs.

Given a rational number λ, we can consider two different expansions as a
continued fraction:

λ = b1 −
1

b2 − 1
...− 1

br

= a1 +
1

a2 + 1
...+ 1

as

the first is called the Hirzebruch-Jung continued fraction and will be denoted
by λ = [b1, ..., br]

−. The second is called the Euclidean continued fraction
and is denoted by λ = [a1, ..., as]

+.

We will say that the length of the continued fraction λ = [b1, ..., br]
± is r.

Given λ, one can calculate the Euclidean continued fraction by the Euclidean
algorithm(hence the name), while one can calculate the HJ fraction by doing
a modified Euclidean algorithm:

Let λ = d
k . Set r0 = k. Find r1, q1 ∈ N such that d = r0q1 − r1 where 0 <

r1 < r0. Then find r2, q2 such that r0 = r1q2− r2 with 0 < r2 < q2. Proceed
in general to find ri, qi such that ri−1 = riqi+1 − ri+1, where 0 < ri < qi.
Then d

k = [q1, ..., qs]
−.

For theoretical reasons we will also construct these another way. Define two
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sequences of polynomials with integer coefficients inductively by

Z±(∅) = 1

Z±(x) = x

Z±(x1, ..., xn) = x1Z
±(x2, ..., xn)± Z±(x3, ..., xn) when n ≥ 2

Proposition 3.1.1. [x1, ..., xn]± = Z±(x1,...,xn)
Z±(x2,...,xn)

for n ≥ 1

Proof. We prove this by induction. The case n = 1 is clear. Assume the
proposition is true for n− 1. Then

Z±(x1, ..., xn)

Z±(x2, ..., xn)
=

x1Z
±(x2, ..., xn)± Z±(x3, ..., xn)

Z±(x2, ..., xn)
=

x1 ±
Z±(x3, ..., xn)

Z±(x2, ..., xn)
=

x1 ±
1

Z±(x2,...,xn)
Z±(x3,...,xn)

=

x1 ±
1

[x2, ..., xn]±
=

[x1, ..., xn]±

Proposition 3.1.2. Z±(x1, ..., xn) = Z±(x1, ..., xn−1)xn ±Z±(x1, ..., xn−2)
for n ≥ 2.

Proof. Again we proceed by induction. The case n = 2 is obvious. Assume
it holds for all k ≤ n . Then

Z±(x1, ..., xn+1) =

x1Z
±(x2, ..., xn+1)± Z(x3, ..., xn+1) =

x1(Z±(x2, ..., xn)xn+1 ± Z±(x2, ..., xn−1))±
(xn+1Z

±(x3, ..., xn)± Z±(x3, ..., xn−1)) =

xn+1(x1Z
±(x2, ..., xn)± Z±(x3, ..., xn))±

(x1Z
±(x2, ..., xn−1)± Z±(x3, ..., xn−1)) =

Z±(x1, ..., xn)xn+1 ± Z±(x1, ..., xn−1)

where we use the induction hypothesis in the second equality.
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Taking a short break from the general theory, we will also need the following
result, a proof can be found in [PP07].

Lemma 3.1.3. Assume λ > 1 ∈ Q has HJ-fraction λ = [(2)m1 , n1 +
3, (2)m2 , n2 + 3, ..., (2)ms+1 ]− where ni ≥ 0 and (2)mi denotes mi consec-
utive 2’s, where mi ≥ 0 (i.e. an empty string of 2’s also gives a mi).

Then λ
λ−1 = [m1 +2, (2)n1 ,m2 +3, (2)n2 ,m3 +3, ...,ms+3, (2)ns ,ms+1 +2]−.

Example 3.1.4. If λ = [2, 2, 2, 3, 4, 2, 2, 3]− then

m1 = 3, m2 = 0, m3 = 2, m4 = 0

n1 = 0, n2 = 1, n3 = 0

so λ
λ−1 = [5, 3, 2, 5, 2].

Using the above, we prove the following result on lengths of HJ-fractions
which will be needed later.

Proposition 3.1.5. Let d
k = [b1, ..., bs]

−. Then

s = 1 +
r∑
i=1

(ci − 2)

where d
d−k = [c1, ..., cr]

−.

Proof. Setting λ = d
k , we have that λ

λ−1 = d
d−k , so the continued fractions

are related as in Lemma 3.1.3. Consider all ci 6= 2 (i.e., all ci ≥ 3). Assume
there are t of these. From Lemma 3.1.3, each of these contribute ci − 3 to
the length of the HJ-fraction of d

k . Also, each of the t+ 1 (possibly empty)

strings of 2’s each contribute one to the length of the HJ fraction of dk . From
the lemma one thus sees that the total length s = t+ 1 +

∑
i,ci 6=2(ci − 3) =

1 +
∑

i,ci 6=2(ci − 2). Since
∑

i,ci=2(ci − 2) = 0 we can add this, yielding
s = 1 +

∑
i(ci − 2), which was what we wanted to show.

It turns out that this result is also in [Oda88, Lemma 1.22].

Back to the general theory, given a 2-dimensional lattice L ∼= Z2 and a line
l through the origin of LR with slope λ ∈ Q, one can consider the cone
generated by the positive x-axis and this line. In fact all 2-dimensional
strongly convex rational polyhedral cones are of this form:

Proposition 3.1.6. Given any 2-dimensional cone σ one can choose a basis
{e1, e2} for the lattice L such that in this basis σ = Cone(e1, ke1+de2) where
d > k > 0 and gcd(d, k)= 1.

63



Proof. By Proposition A.0.5 we can always choose a primitive generator of
an edge of σ, v, as the first basis vector of our lattice. Let (e1 = v, e′2)
be a basis for the lattice. The other facet of the cone will in this basis be
generated by a vector w = ae1 + be′2. Now let d = |b| and k = a mod d,
where 0 < k < d.

Then w = (a− k+ k)e1 + sign(b)de′2 = ke1 + d(sign(b)e′2 + a−k
d e1). Thus we

see that in the new basis {e1, e2 = sign(b)e′2 + a−k
d e1}, w = ke1 + de2.

Definition 3.1.7. We say that a cone σ is of type (d, k) if it can be written
as in Proposition 3.1.6 with parameters d, k. We will use the method from
the proof above to turn a cone into a (d, k)-cone.

Note also that some literature, notably [CLS11] and [Ful93], use a different
convention for a (d, k)-cone, so that results sometimes look a bit different.

Now assume that the lattice we are in is the familiar character lattice M
with basis e1, e2, we also have its dual N with induced dual basis e∗1, e

∗
2.

Proposition 3.1.8. Assume σ∨ is a (d, k)-cone in MR with respect to
{e1, e2}. Then σ is a (d, d − k)-cone in NR with respect to the basis
{e∗2, e∗1 − e∗2}.

Proof. Recall that the dual is defined as σ∨ = {m ∈MR|〈m,u〉 ≥ 0 ∀u ∈ σ}.
Since σ = Cone(e1, ke1 + de2), we see that xe∗1 + ye∗2 ∈M is in σ∨ if

x ≥ 0

dy + kd ≥ 0

This is exactly Cone(e∗2, de
∗
1 − ke∗2) = Cone(e∗2, (d− k)e∗2 + d(e∗1 − e∗2))

Now given a (d, k)-cone σ ⊂ NR, we can consider the supplementary cone σ0

which is Cone(−e1, (d, k)). That is σ∪σ0 is the halfplane y ≥ 0. Rotating the
coordinate system 90 degrees clockwise turns σ0 into Cone((0, 1), (d,−k))
which is isomorphic to the dual cone σ∨, by Proposition 3.1.8. Thus the
dual will be isomorphic to the supplementary cone.

Define K(σ) = Conv(σ ∩ (N \ {0})). Let P (σ) be the boundary of K(σ),
V (σ) the set of vertices and E(σ) the set of edges. P (σ) is a connected
polygonal line with endpoints coinciding with the generators of σ. We index
the edges such that the first edge E1 is the edge bordering the x-axis and
then clockwise along the boundary.

Let A0 = (1, 0). Define Ai, i ≥ 0 as the sequence of integral points as one
goes along the enumerated edges of P (σ). Since λ is rational this is a finite
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sequence, the last point we denote by Ar+1. [CLS11, Thm 10.2.8] shows
that the primitive generators of OAi is the Hilbert basis of the semigroup
σ ∩N .

By construction and Lemma A.0.2, we see that each pair (OAi, OAi+1) is
a basis for N . Also the slopes of the set {OAi} have to be increasing with
increasing i, since Ai are on the boundary of a convex set. Thus we have
relations:

rOAi−1 + sOAi = OAi+1

tOAi + uOAi+1 = OAi−1

⇒ (rt+ s)OAi + (ru− 1)Ai+1 = 0

⇒ rt+ s = 0, ru = 1

If r = u = 1 we get s = −t and

sOAi +OAi−1 = OAi+1

But this contradicts the increasing of the slopes. Thus we must have r =
u = −1 and s = t resulting in the relation

OAi−1 +OAi+1 = biOAi (3.1)

By convexity we must have bi ≥ 2.

Proposition 3.1.9. OAi = Z−(b1, ..., bi−1)OA1 − Z−(b2, ..., bi−1)OA0 for
i ≥ 2. In particular the slope of OAr+1 = λ in the basis (−OA0, OA1) equals
[b1, ..., br]

−.

Proof. The first assertion is proved by induction on i. For i = 2 this is just
the relation above. For general i we have

OAi+1 = biOAi −OAi−1

= bi(Z
−(b1, ..., bi−1)OA1 − Z−(b2, ..., bi−1)OA0)

−Z−(b1, ..., bi−2)OA1 + Z−(b2, ..., bi−2)OA0

= OA1(biZ
−(b1, ..., bi−1)− Z−(b1, ..., bi−2))

−OA0(biZ
−(b2, ..., bi−1)− Z−(b2, ..., bi−2))

= OA1Z
−(b1, ..., bi)−OA0Z

−(b2, ..., bi),

where the last equality is by Proposition 3.1.2

That [b1, ..., br]
− is the slope in the chosen basis follows directly from Propo-

sition 3.1.1.
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Observation 3.1.10. If now [b1, ..., br]
− = e

f for some e, f , then we see
that the line OAr+1 is generated by both (k, d) and −fOA0 + eOA1. Since
d > k, OA1 = (1, 1) in the standard basis, hence (k, d) = (e − f, e), which
results in [b1..., br]

− = d
d−k .

Now we finally can relate this to toric varieties. Given a singular affine toric
surface Uσ we will describe how to resolve its singularity.

Definition 3.1.11. Given a singular variety X, a resolution of singularities
is a smooth variety Y with a proper morphism φ : Y → X which induces an
isomorphism on the smooth locus: Y \ φ−1(Xsing) ∼= X \Xsing.

A resolution of singularities for X is called minimal if for every other res-
olution of singularities ψ : Z → X there exists a ρ : Z → Y such that the
diagram is commutative:

Y

Z X

φ
ρ

ψ

For surfaces, being a minimal resolution of singularities turns out to be
equivalent to no component of the exceptional divisor E = φ−1(O) having
self-intersection -1.

In general resolutions of singularities exist in characteristic 0. In the toric
surface case this can be constructed explicitly using the above. Given σ
construct the points Ai as above. Let σi = Cone(OAi). Let Σ be the fan
with 2-dimensional cones Cone(σi, σi−1) for i = 0, ..., r. The identity map on
the lattice N induces toric morphisms Uσi → Uσ which glue to a morphism
φ : XΣ → Uσ.

Proposition 3.1.12. The morphism φ is a resolution of singularities for
Uσ.

Proof. As remarked above, each pair OAi, OAi+1 is a basis for the lattice,
hence each cone in the fan Σ is smooth. ThusXΣ is smooth. It is the identity,
except at its singular point, thus it is a resolution of singularities.

In fact it turns out that this is the minimal resolution.

Proposition 3.1.13. The exceptional divisor φ−1(0) has r components
D1, ..., Dr and the self-intersection of Di equals −bi. Hence φ is the minimal
resolution.
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Figure 3.1: Left: Fan for P(1, 1, 4) Right: Fan for H4.

Proof. From Proposition 1.8.3 we see thatDi·Di = − det(OAi−1,OAi+1)
det(OAi−1,OAi) det(OAi,OAi+1) .

det(OAi−1, OAi) = det(OAi, OAi+1) = 1, since both pairs are bases of the
lattice. Since OAi−1 +OAi+1 = biOAi we get that

det(OAi−1, OAi+1) = det(OAi−1, biOAi − OAi−1) = det(OAi−1, biOAi) =
bi ⇒ D2

i = −bi

That φ is minimal follows from the fact that bi ≥ 2.

Example 3.1.14. Consider P(1, 1,m). Its normal fan of this will have 1-
dimensional cones generated by u1 = e1, u2 = e2, u3 = −e1 − ne2, where
e1, e2 are the standard basis vectors of the plane.

Cone(u1, u3) and Cone(u1, u2) are smooth, so the only place one does any-
thing will be Cone(u1, u3) =Cone(e2,−e1 − ne2). We see we have to add
u4 = Cone(−e2) to get a smooth fan. The resulting smooth variety is called
the Hirzeburch surface Hn.

Turning Cone(u1, u3) into the form of a (d, k)-cone we use the proof of
Proposition 3.1.6. Choose new basis v1 = e1, v2 = −e1 − e2. Then the
singular cone will ba a (n, n − 1)-cone with respect to this basis. Picking
m = 4, we get a (4, 3)-cone. We see that(

−1
−4

)
+

(
1
0

)
= 4

(
0
−1

)
which comes from the fact that 4

4−3 = 4 = [4]−.
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Euclidean(ordinary) continued fractions also appear in this setting, giving a
sort of duality property. Again we must first do some work.

Assume gcd(d, k) = 1. Let d
k = [a1, ..., ar]

+ and define associated integer
sequences Pi and Qi for 0 ≤ i ≤ r by

P0 = 1, P1 = a1, Pi = aiPi−1 + Pi−2

Q0 = 0, Q1 = 1, Qi = aiQi−1 +Qi−2

Proposition 3.1.15. The Pi and Qi are increasing sequences of natural
numbers satisfying [a1, ..., ai]

+ = Pi
Qi

and Pi−1Qi − PiQi−1 = (−1)i for 1 ≤
i ≤ r

Proof. The first equality is proved by induction on the length i. Observe
that continued fractions are well-defined for all rational numbers ai, hence
assuming the equality for n we get [a1, ..., an+1]+ = [a1, ..., an + 1

an+1
]+ =

(an+ 1
an+1

)Pn−1+Pn−2

(an+ 1
an+1

)Qn−1+Qn−2
=

Pn+
Pn−1
an+1

Qn+
Qn−1
an+1

= an+1Pn+Pn−1

an+1Qn+Qn−1
= Pn+1

Qn+1
.

The second equality follows directly by induction since

PiQi+1 − Pi+1Qi = Pi(ai+1Qi + Qi−1) − Qi(ai+1Pi + Pi−1) = PiQi−1 −
QiPi−1 = (−1)i+1

Now given a type (d, k) cone σ ⊂ N defined by a line l one can consider
also the cone σ′ = Cone((0, 1), (k, d)). Let Θ = Conv(σ ∩ (N \ {0}) and
Θ′ = Conv(σ′ ∩ (N \ {0}). Then construct vectors as follows:

Let u−1 = (1, 0), u0 = (0, 1), ui = Qiu−1 + Piu0 for i = 1, ..., r. Then we
have:

Proposition 3.1.16. Θ has vertex set {ur}∪{uj |j odd } while Θ′ has vertex
set {ur}∪{uj |j even }. For all 1 ≤ i ≤ r ui−2ui is and edge of the respective
convex hull containing ai + 1 lattice points.

Proof. We prove this by induction on r. Since ur = ku−1 + du0 and d > k,
the ray starting at u−1 and going through u1 = u−1 + a1u0 intersects the
line l at a point between u−1 +

⌊
d
k

⌋
u0 and u−1 +(

⌊
d
k

⌋
+1)u0. Since

⌊
d
k

⌋
= a1

we see that the segment u−1u1 is an edge of Θ.

By Proposition 3.1.15 (ui−1, ui) is a basis for all 0 ≤ i ≤ r. In particular
u0 = (0, 1), u1 = (1, a1) is a basis. Now(
k
d

)
= k

(
1
a1

)
+ (d− ka1)

(
0
1

)
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Then we can repeat the entire process above in this new basis. Then we
want the continued fraction of k

d−ka1
= 1

d
k
−a1

= [a2, ..., ar]
+. We get the

same vectors ui, thus by induction the vertices of Θ,Θ′ are given by ui.

Now ui − ui−2 = aiui−1 hence the edge has ai + 1 lattice points.

From this we see that ordinary continued fractions give the vertices of the
convex hulls of both a cone and its dual, while HJ-fractions give all the
lattice points on the edges of one of them.

Example 3.1.17. Consider P(1,m, n). The normal fan will have 1-
dimensional cones generated by v1 = e1, v2 = e2, v3 = −ne1 − me2 where
e1, e2 are the standard basis vectors of the plane.

Assume without loss of generality that m > n. Then Cone(v1, v3) is a
(m,m − n)-cone with respect to the basis {v1 = e1, v2 = −e1 − e2}. By
considering the continued fraction of m

n−n we can apply the previous result
to the third quadrant to obtain vertices ui on both sides of the vector v3.
Consider the set of all lattice points {Aj} on edges ui−2ui. Refine the fan
by adding Cone(OAj) for all j. Then the fan is smooth, hence this will be
the minimal resolution of singularities as constructed above.

For explicit calculations, pick m = 7, n = 4. Then 7
7−4 = 7

3 = [2, 3]+. Doing
the procedure above we get

P0 = 1 P1 = 2 P2 = 7

Q0 = 0 Q1 = 1 Q2 = 3

u−1 = v1 =

(
1
0

)
u0 = v2 =

(
−1
−1

)
u1 = v1 + 2v2

(
−1
−2

)
u2 = 3v1 + 7v2 =

(
−4
−7

)
,

since this is with respect to the basis {v1 = e1, v2 = −e1 − e2}. To get a
smooth fan we have to add all the ui as well as cones generated by lattice
points on the interior of edges ui−2ui. The edge u−1u1 has a1 +1 = 3 lattice
points and the edge u0u2 has a2 + 1 = 4 lattice points, thus we will also
have to add cones generated by the additional vectors, i.e.(

0
−1

) (
−2
−3

) (
−3
−5

)
,

adding all these cones, produces a smooth fan, see Figure 3.1.

Of course we could also do this cone by cone using HJ-fractions, consider
our (7, 3)-cone, then 7

7−3 = 7
4 = [2, 4]−. The first added 1-dimensional cone
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Figure 3.2: Left: fan for P(1, 4, 7) Right: Resolution of singularities

will be generated by w1 = v1 + v2 = (0,−1) the rest have to satisfy the
recursion relation 3.2.2, so w2 = 2w1 − w0 = (−1,−2), w3 = 4w2 − w1 =
(−4,−7). The other cone Cone(v2, v3) is a (4, 1)-cone with respect to the
basis f0 = (0, 1), f1 = (−1,−2). Then, since 4

4−1 = 4
3 = [2, 2, 2]−, we must

have cones generated by z0 = f0 = (0, 1), z1 = f0 + f1 = (−1,−1), z2 =
2z1 − z0 = (−2,−3), z3 = 2z2 − z1 = (−3,−5), z4 = 2z3 − z2 = (−4,−7).
This is exactly the cones we found using Euclidean continued fractions.

3.2 Euler-obstructions from HJ-fractions

Now we can return to task of calculating the Euler-obstruction of the vertices
of the polytope P giving P(k,m, n). We have the following proposition.

Proposition 3.2.1. [GS82] Let p ∈ S be a normal cyclic surface singularity,
and X → S a minimal resolution of p with exceptional curves Ei. Then

Eup(S) =
∑

i(2 + Ei · Ei)

We will prove this for toric surface singularities.
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Proof. Given any toric surface, consider a singular vertex v . From Remark
1.11.8 we have that Eu(v) = 2 − Vol(σ∨ \ K(σ∨)) where σ is the cone
corresponding to v and K(σ∨) = Conv(σ∨ ∩ (M \ {0})).

Assume σ∨ is a (d, k)-cone, then σ is a (d, d − k)-cone. From Proposition
3.1.13 Ei ·Ei = −bi where d

k = [b1, ..., br]
−. Using the construction of K(σ∨)

from above, and that each OAi, OAi+1 is a basis for the lattice, so that each
such pair will contribute a triangle of normalized area 1, Vol(σ∨ \K(σ∨)) =
1 + s where s is the length of the HJ-fraction of d

d−k . Thus what we wish to
show is that 2− (1 + s) = 1− s =

∑
i(2 +Ei ·Ei) =

∑
i(2− bi). But this is

just Proposition 3.1.5.

Combining this with Proposition 3.1.13, we get the following corollary.

Corollary 3.2.2. Given a (d, k)-cone in MR (equivalently a (d, d− k)-cone
in NR) and let v be the singular point, write

d

k
= b1 −

1

b2 − 1
...− 1

br

Then Eu(v) =
∑r

i=1(2− bi).

We can apply this to make our earlier calculations easier. Consider again the
case P(m,n,m+n) from Proposition 2.5.6. In this case we have the familiar
polytope P . As remarked before for each vertex v, Cone(P − v) = σ∨,
where σ is the cone of the normal fan corresponding to v . From the proof
of Proposition 2.5.6 we see that for v = (n(n + m), 0, 0) we have basis
e1 = (−m − n, 0,−m), e2 = (1, 1,−1) for the lattice. Then the other edge
emanating from the vertex is generated by (−n,m, 0) = e1 +me2, hence it is
a (m, 1)-cone. Since m

1 = [m]−, by the remarks above Eu(n(n+m), 0, 0) =
2−m.

More generally we consider P(k,m, n) for arbitrary k,m, n. Look at the
vertex v = (0, 0,mk) of the polytope P . From Lemma 2.4.2 one sees that the
edges emanating from v are generated by (0,−n,m) and (−n, 0, k). Now we
wish to find a basis for the lattice containing one of these vectors. Without
loss of generality pick e1 = (0, n,−m). Now we wish to find a second basis
vector, one way to do this is as before: let (1, a, d) be the point in P with
minimal a. Then e2 = (1, a, d − mk) will be a second basis vector (this
generates the line through (1, a, d) and (0, n,mk−m), the first lattice point
along the edge generated by e1). Now

(−n, 0, k) = −ae1 + ne2

Hence it is a (n, n − a)-cone. Thus if n
n−a = [a1, ..., ar]

− then Eu(v) =∑
i(2− ai).
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Similarly for the vertex (0, kn, 0) pick lattice point (b, e, 1) with b minimal
to obtain the basis e1 = (m,−k, 0), e2 = (b, e − kn, 1). Then the vector
generating the second edge is (0,−n,m) = −be1 +me2. Thus it is a (m,m−
b)-cone. Letting m

m−b = [b1, ..., bs]
−, then Eu(v) =

∑
i(2− bi).

For (mn, 0, 0) pick lattice point (f, 1, c) with c minimal, obtaining basis
e1 = (−n, 0, k), e2 = (f −mn, 1, c). Then (−m, k, 0) = −ce1 + ke2. So it is
a (k, k − c)-cone. Letting k

k−c = [c1, ..., ct]
− then Eu(v) =

∑
i(2− ci)

Observe that finding lattice points of the polytope (1, a, d), (b, e, 1), (f, 1, c)
with minimal a, b, c corresponds to finding minimal a, b, c such that

k + am ≡ 0 (mod n)

n+ bk ≡ 0 (mod m)

m+ cn ≡ 0 (mod k)

Collecting this together we get the following way of determining the degree
of the dual variety of a weighted projective space.

Theorem 3.2.3. Given P(k,m, n), find minimal natural numbers a, b, c
such that

k + am ≡ 0 (mod n)

n+ bk ≡ 0 (mod m)

m+ cn ≡ 0 (mod k)

Let n
n−a = [a1, ..., ar]

−, m
m−b = [b1, ..., bs]

−, k
k−c = [c1, ..., ct]

−.

Then degP(k,m, n)∨ equals

3kmn− 2(k + n+m) +

r∑
i=1

(2− ai) +

s∑
i=1

(2− bi) +

t∑
i=1

(2− ci)

Remark 3.2.4. As we only wish to get the singularity into the form of a
(d, k)-cone, any basis will suffice for doing this. Our choice of using a vector
with one coordinate equal to 1 is just one choice which always will work.

Proposition 2.1.6 implies that a (d, k)-cone gives an action of a finite abelian
group on C2. By the dicussion in [CLS11, Prop 10.1.2] this will be of the
form:

Uσ ∼= C2/µd

ζd · (x, y) = (ζdx, ζ
−k
d y),

where µd are the d-th roots of unity, and ζd is a choice of primitive root.
In the case of P(k,m, n) with coordinates (x0 : x1 : x2), consider X0 =
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{x0 6= 0}. By the above this set comes from a (k, c)-cone, where m+ cn ≡ 0
(mod k), thus the action is given by

ζk · (x1, x2) = (ζkx1, ζ
−c
k x2),

By applying the above n times, we have that the orbit of (x1, x2) also can
be decribed as :

(ζnk x1, ζ
−cn
k x2) = (ζnk x1, ζ

m
k x2)

Thus we recover the action on affine coordinate rings we described in 2.1
(with switched coordinates, this corresponds to choosing minimal c such
that m + cn ≡ 0 (mod k). If we instead chose c such that cm + n ≡ 0
(mod k) we would have coordinates ordered normally).

Using Theorem 3.2.3 it is easier to find closed formulas in special cases.

Proposition 3.2.5. For k ≥ 1, degP(2k− 1, 2k, 2k+ 1)∨ = 24k3 − 20k+ 3

Proof. We wish to find minimal a, b, c satisfying

2k − 1 + a2d ≡ 0 (mod 2k + 1)

b(2k − 1) + 2k + 1 ≡ 0 (mod 2k)

c(2k + 1) + 2d ≡ 0 (mod 2k − 1)

Some easy algebra shows that a, b, c must satisfy

a ≡ −2 (mod 2k + 1)

b ≡ 1 (mod 2k)

2c ≡ −1 (mod 2k − 1)

Resulting in a = 2k − 1, b = 1, c = k − 1. Now

2k + 1

2k + 1− (2k − 1)
=

2k + 1

2
= [k + 1, 2]−

2k

2k − 1
= [2, ..., 2]−

2k − 1

2k − 1− (k − 1)
=

2k − 1

k
= [2, k]−

Combining these yields the formula.
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Proposition 3.2.6. degP(m,n,m+ 2n)∨ = 6mn2 + 3m2n− 7n− 9
2m+ 5

2

Proof. Following Theorem 3.2.3 we want minimal a, b, c such that

m+ an ≡ 0 (mod m+ 2n)

mb+m+ 2n ≡ 0 (mod n)

n+ (m+ 2n)c ≡ 0 (mod m)

One sees that a = 2, b = n − 1, c = m−1
2 (m has to be odd, if not then

gcd(m,m+2n) 6= 1). Now m+2n
m+2n−2 = 2−m+2n−4

m+2n−2 = 2− 1
m+2n−2
m+2n−4

= [2, ..., 2, 3]−

where the 3 is by induction, since 3
1 = [3]−. The HJ-fraction n

n−(n−1) =
n
1 = [n]−. Also m

m−m−1
2

= m
m+1

2

= [2, m+1
2 ]−. Combining these yields the

formula.

The following Python code will for any given k,m, n, calculate the dual
degree.

from math import ∗

de f deg (k ,m, n ) : #Calu la te the degree
a=minsol (k ,m, n)
b=minsol (n , k ,m)
c=minsol (m, n , k )
A=fracsum (n , n−a )
B=fracsum (m,m−b)
C=fracsum (k , k−c )
deg=3∗k∗m∗n−2∗(k+m+n)+A+B+C
return deg

de f minsol (x , y , z ) : #Find a , b , c
f o r i in range (1 , z ) :

i f ( x+y∗ i ) % z == 0 :
re turn i

de f fracsum (d , k ) : #Calu la te sum 2−b i
sum =0
HJ=f r a c (d , k )
f o r i in range ( l en (HJ ) ) :

sum += 2−HJ [ i ]
r e turn sum
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de f f r a c (d , k ) : #Find HJ−f r a c t i o n o f d/k
HJ= [ ]
whi l e k != 0 :

q=i n t ( c e i l (d/ f l o a t ( k ) ) )
HJ . append ( q )
r=q∗k−d
d=k
k=r

return HJ

3.3 Gorenstein singularities

Definition 3.3.1. A variety is called Gorenstein if the canonical divisor is
Cartier.

For an affine toric surfaces, it is easy to classify which are Gorenstein.

Proposition 3.3.2. [CLS11, Exc. 8.2.13] An affine toric surface Uσ is
Gorenstein if and only if σ is a (d, 1)-cone.

Proof. Assume σ is a (d, k)-cone and the canonical divisor is Cartier. Then
there exists Cartier-data mσ = (x, y) such that

〈mσ, (1, 0)〉 = 1

〈mσ, (k, d)〉 = 1

The first equation gives x = 1. Since gcd(k, d) = 1 the second equation can
only be true if either x or y is 0. Thus y = 0, which forces k = 1.

Conversely, if we have a (d, 1)-cone, (1, 0) will be Cartier-data for the canon-
ical divisor, hence it is Cartier.

We say that a singularity of a surface is Gorenstein if it is contained in an
affine open neigbourhood which is Gorenstein.

Proposition 3.3.3. [CLS11, Exc. 8.3.2] A weighted projective space
P(q0, ..., qn) is Gorenstein if and only if qi|q0 + ...+ qn for all i.

Proof. This follows directly from the facts that the canonical divisor has
degree −q0 − ... − qn and that the Picard group is the subgroup of the
classgroup generated by lcm(q0, ..., qn).
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From this one can easily find the Gorenstein planes.

Corollary 3.3.4. The only weighted projective planes which are Gorenstein
are P(1, 2, 3), P(1, 1, 2) and P(1, 1, 1).

Also we can generalize Proposition 2.5.4 to arbitrary surface singularities.

Proposition 3.3.5. A toric surface singularity has Euler-obstruction 0 if
and only if it is Gorenstein.

Proof. Let the singularity be given as a (d, k)-cone in NR. Let d
d−k =

[b1, ..., br]. By Corollary 3.2.2 the Euler-obstruction is 0 if and only if all
bi = 2. Now if the singularity is Gorenstein, then k = 1, so d

d−k = d
d−1 . It is

easy to check that the HJ-fraction of d
d−1 is a chain of d− 1 2’s.

Conversely if the singularity has Euler-obstruction 0, then all bi’s are 0,
but by the above this implies that in MR it is a (d, d − 1)-cone, so it is a
(d, 1)-cone in NR.

3.4 Weighted blow up

In example 1.6.4 we defined the classical blow up Bl0(Cn) as a subvariety of
Pn−1×Cn and saw that it can be realized at the level of cones. We now wish
to define a weighted blowup, and relate this to the resolution of singularities
presented earlier. The idea of this comes from [ABMMOG14], where this is
done in coordinates. Here we will translate into the toric language of cones
and fans lying in vector spaces coming from lattices.

Definition 3.4.1. Given a fan Σ ∈ NR and a cone σ ∈ Σ with dim(σ) =
dim(N). We define the weighted blowup of XΣ with respect to the weights
(q1, ..., qn) in the point corresponding to σ as XΣ′ where Σ′ is defined as
follows: Let σ = Cone(e1, ..., en) and set e0 =

∑n
i=1 qiei. Then Σ′ is the fan

consisting of all proper subsets of {e0, e1, ..., en}.

Remark 3.4.2. This is a special case of what [CLS11] calls the star subdi-
vision, which they use to construct a general resolution of singularities for
toric varieties of any dimension. Since we here are interested in an explicit
resolution for the 2-dimensional case, we will only need the weighted blowup.

Example 3.4.3. To motivate this definition, do a weighted (q1, ..., qn)
blowup of Cn at its maximal cone, i.e., at 0, to obtain the variety XΣ′ .
Then by Remark 1.6.3 we see that the divisor corresponding to the new
1-dimensional cone σ = Cone(e0) = Cone(

∑n
i=1 qiei) is Star(σ). This will

be the fan in Z/Z(q1, ..., qn) with cones generated by the image of all proper
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subsets of {e1, ..., en}, which is exactly the fan for P(q1, ..., qn) by example
1.3.7. Also XΣ′ \Dσ = Cn \ {0}, so we have a morphism φ : XΣ′ → Cn such
that φ−1(0) = P(q1, ..., qn), which is an isomorphism away from 0.

The following is proved in [ABMMOG14], here we do our own proof using
toric methods.

Proposition 3.4.4. Given a (d, k)-cone σ ⊂ NR. Then the resolution of
singularities φ : XΣ → Uσ constructed in Proposition 3.1.12 is obtained by
a sequence of weighted blowups.

Proof. Recall that one way of constructing the Hirzebruch-Jung continued
fraction of d

d−k was the following: Set r−1 = d, r0 = d − k. Inductively

find ri, qi such that ri−1 = riqi+1 − ri+1, where 0 < ri < qi. Then d
d−k =

[q1, ..., qs]
−.

The blowups resulting in the resolution of singularities will be (ri, 1)-blowups
for i = 0, ..., s − 1. Starting with Cone((1, 0), (k, d)) we first do a (r0, 1) =
(d− k, 1)-blowup, giving

û1 = d

(
1
1

)
Then we perform a (ri, 1)-blowup on the new Cone(ûi, (k, d)) giving the next
cones

û2 = (d− k)

(
q1 − 1
q1

)
û3 = ((d− k)q1 − d)

(
q1q2 − q2 − 1
q1q2 − 1

)
We see that ûi isn’t a primitive vector. Recall that the resolution of sin-
gularities constructs 1-dimensional cones v0, v1, ..., vs, vs+1 that satisify the
relation vi−1 +vi+1 = qivi. We will show that ûi = ziui for a natural number
zi, such that the ui’s satisfies ui−1 + ui+1 = qiui. This will imply ui = vi,
thus the sequence of weighted blowups gives the same fan as the resolution
of singularities.

We will prove this by induction on the length s of the HJ-fraction of d
d−k .

Based on our calculations of the first cones, our induction hypothesis will
be that zi = ri−2, for i ≥ 1 , in other words that ûi = ri−2ui for some ui
satisfying ui−2 + ui = qi−1ui−1. Assume this holds for i. Then

ûi+1 =

(
k
d

)
+ riui = ri−2ui − ri−1ui−1 + riui

by the induction hypothesis. Now by definition ri + ri−2 = qiri−1, so riui +
ri−2ui = qiuiri−1, giving ûi+1 = qiuiri−1 − ri−1ui−1 = ri−1(qiui − ui−1),
which is exactly what wanted to show.
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We will now give formulas for intersection of divisors on the weighted blowup.
This is also proved in [ABMMOG14], but again we give our own proof by
toric methods.

Take a 2-dimensional simplicial toric variety XΣ. Let Σ(1) = {ρ1, ..., ρn},
with minimal generators u1, ..., un and associated divisors beD1, ..., Dn. Per-
form a weighted (p, q)-blowup at a maximal cone σ, without loss of generality
let σ = Cone(ρ1, ρ2), to obtain a new fan Σ′ with a new 1-dimensional cone
τ with associated divisor E, and a morphism φ : XΣ′ → XΣ. Let the divisor
on XΣ′ associated with ρi be denoted D′i. For a divisor D =

∑n
i=1 aiDi on

XΣ, let D′ =
∑

i=1 aiD
′
i be the corresponding divisor on XΣ′ , this is called

the strict transform of D. Assume we have written σ as a (d, k)-cone, with
ρ1 as the first basis vector. Set e = gcd(dq, p+ kq). Then we have:

Proposition 3.4.5. In the above setup, let D =
∑n

i=1 aiDi, C =
∑n

i=1 biDi

be any torus-invariant divisors on XΣ. Then

φ∗D = D′ +
a1p+ a2q

e
E

φ∗D · E = 0

E2 = − e2

dpq

D′ · E =
a1e

dq
+
a2e

dp

D′ · C ′ = D · C − a1b1p

dq
− a1b2 + a2b1

d
− a2b2q

dp

φ∗D · φ∗C = D · C

Proof. After performing a (p, q)-blowup at Cone((1, 0), (k, d)) we get that τ
is generated by (p + kq, dq). However this isn’t necessarily primitive, so a
primitive generator will be v = 1

e (p + kq, dq). From Proposition 1.8.3 we
have

D′1 · E =
1

det(u1, v)
=

e

dq

D′2 · E =
1

det(v, u2)
=

e

pd

D′i · E = 0 when i = 3, ..., n

E2 = − det(u1, u2)

det(u1, v) det(v, u2)
= − e2

dpq
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From Proposition 1.8.2 we have that

φ∗D =
n∑
i=1

aiD
′
i − 〈mσ, v〉E

where mσ = (x, y) is Q-Cartier data of σ. By definition this has to satisfy:

〈mσ, (1, 0)〉 = −a1

〈mσ, (k, d)〉 = −a2

implying that x = −a1, y = a1k−a2
d . Then we get

φ∗D =
n∑
i=1

aiD
′
i +

a1p+ a2q

e
E

Using the intersection numbers listed above we get

φ∗D ·E =
n∑
i=1

aiD
′
i ·E +

a1p+ a2q

e
E2 =

a1e

dq
+
a2e

dp
+
a1p+ a2q

e
(− e2

dpq
) = 0

Next we use that

D′ = φ∗D − a1p+ a2q

e
E

C ′ = φ∗C − b1p+ b2q

e
E

thus

D′ · C ′ = D · C + (
a1p+ a2q

e
)(
b1p+ b2q

e
)E2

combining this with the above calculations gives the desired result. The last
claim is proved by applying the previous ones, we have:

φ∗D · φ∗C =

φ∗D · (C ′ + b1p+ b2q

e
E) =

φ∗D · C ′ =

D′ · C ′ + a1p+ a2q

e
E · C ′ =

D · C − a1b1p

dq
− a1b2 + a2b1

d
− a2b2q

dp
+
a1p+ a2q

e
(
b1e

dq
+
b2e

dp
) = D · C
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Now we can prove the the claims made before Proposition 1.9.5. Take a
surface XΣ, and let XΣ′ be the minimal resolution of singularities. By the
above, this is obtained by a sequence of weighted blowups, let the exceptional
divisors be E1, ..., Es. Then we have that

KXΣ
·DP = φ∗KXΣ

· φ∗DP

now, φ∗KXΣ
= −

∑
ρD
′
ρ +

∑s
i=1 ciEi for some coefficients ci ∈ Q. By

Proposition 3.4.5 a pulled back divisor intersects all exceptional divisors
trivially, so we get

(−
∑
ρ

D′ρ +

s∑
i=1

ciEi) · φ∗DP = −
∑
ρ

D′ρ · φ∗DP =

−
∑
ρ

D′ρ · φ∗DP −
s∑
i=1

Ei · φ∗DP = KXΣ′ · φ
∗DP

which shows that KXΣ
·DP = KXΣ′ · φ

∗DP , which was what we wanted.

From the above we could also recover the self-intersections of the minimal
resolution of singularities. For a (d, k)-cone in NR, the first blowup is a
(d− k, 1)-blowup. Then e = gcd(d, d) = d, p = d− k, q = 1, so E2 = − d

d−k .

Now if this continued fraction has length 1, say d
d−k = [l]−, we get that

E2 = −l as before. Otherwise we could do further blowups, and check that
we would get the same self-intersections, however we will not do the details
here.

3.5 Going to 3 dimensions

We will attempt to look at the Euler obstructions of some singularities of
3-dimensional varieties.

From 1.10.3 we get the formula for the degree of the dual variety:

degX∨ = 4 Vol(P )− 3A(P ) + 2
∑
e�P

Vol(e) Eu(e)−
∑
v∈P

Eu(v),

where A(P ) is the sum of the normalized areas of the faces of P while e the
is collection of all edges of P , and the last sum is over all vertices v of P .

Again the hard part is finding the Euler-obstruction of the vertices. From
Corollary 1.11.3 we get

Eu(v) = Eu(P ) RSVZ(P, v)−
∑
i

Eu(fi) RSVZ(fi, v)+
∑
j

Eu(ej) RSVZ(ej , v),
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where fi loops over all facets of P containing v, while ej over all edges of P
containing v.

By Proposition 1.11.4 RSVZ(ej , v) = 1 for all j and by Corollary 1.11.5
Eu(fi) = 1 for all i. RSVZ(fi, v) will as before equal Vol(fi \ Conv(fi \ v)).

If we now assume that the singularities are isolated, we get that Eu(ej) = 1
for all edges ej . Combining all this, we have reduced the calculations to

Eu(v) = RSVZ(P, v)−
∑
i

RSVZ(fi, v) + #edges

Combining Proposition 3.2.1 with Proposition 1.11.7 we obtain that
RSV (fi, v) = 2 +

∑s
i=1(bi − 2) = 2 − Eufi(v) where the edges emanat-

ing from fi form a (d, k)-cone and d
k = [b1, ..., bs]

−. By Eufi(v) we mean the
Euler-obstruction of v considered as a point of the affine variety associated
with the cone generated by fi, which is not the same as Eu(v).

The only remaining term turns out to be problematic, since RSVZ(P, v) =
Vol(Conv((P \ {v}) ∩M)) is difficult to calculate in general. There isn’t
even a unique minimal desingularization of 3-dimensional singularities, as
the following example from [CLS11] shows:

Example 3.5.1. Let N ∼= Z3 with basis e1, e2, e3 and take σ =
Cone(e1, e2, e1 + e3, e2 + e3). Then we have the de-singularizations:

Σ1 = {Cone(e1, e2, e2 + e3),Cone(e1, e1 + e3, e2 + e3) and their subcones}

Σ2 = {Cone(e1, e2, e1 + e3),Cone(e2, e1 + e3, e2 + e3) and their subcones}

Both Σ1 and Σ2 are desingularizations, but there is no map between them.
If we also let τ = e1 + e2 + e3, then

Σ3 = {Cone(e1, e2, τ),Cone(e1, e1 + e3, τ),Cone(e2, e2 + e3, τ),Cone(e1 +
e3, e2 + e3, τ) and their subcones} is a common desingularization.

There are different ways of computing resolutions which are canonical in
some form or other, see [Dai02], but, as far as we know, none will yield
formulas for the Euler-obstruction as we want.

However if we restrict ourselves to simple cases, we may compute this.

Consider a polytope P = Conv(p1, ..., ps) ∈ Z2. Let σ∨ ⊂ M = Z3 be
Cone((1, p1), ..., (1, ps)). Assuming the cone has an isolated singularity, we
can compute the Euler-obstruction, by the formula above.
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Since the polytope P lives in height 1, the term RSVZ(σ∨, v) will equal the
area of P , which we can compute by Pick’s formula Proposition 1.9.3

RSV(σ∨, v) = 2| Int(P ) ∩ Z2|+ |∂P ∩ Z2| − 2

The sum −
∑s

i=1 RSVZ(fi, v), where fi are the 2-dimensional faces of σ∨

equals the sum of the areas of fi. This equals −|∂P ∩ Z2|. Thus we obtain:

Proposition 3.5.2. For an isolated singularity of the form described above,
we have

Eu(v) = 2| Int(P ) ∩ Z2| − 2 + s

We could also have calculated Euler-obstructions for non-isolated singular-
ities, but calculations get pretty messy and our primary example (see the
next section) has only isolated singularities.

3.6 P(1, k,m, n)

Going back to the case of X = P(1, k,m, n). From [RT11, Prop 1.22]
we have that a polytope P for X will be the convex hull of the points
(0, 0, 0), (mn, 0, 0), (0, kn, 0), (0, 0, km) ⊂MR for a 3-dimensional lattice M .

We find the first terms needed in the formula.

VolZ(P ) = k2m2n2

A(P ) = kmn+ k2mn+ km2n+ kmn2 = kmn(1 + k +m+ n)

E(P ) = k +m+ n+mn+ kn+ km

By Proposition 2.1.7 the singularities are isolated if and only if gcd(k,m) =
gcd(k, n) = gcd(m,n) = 1. Since we assume the weights are reduced, this
will always happen. By the discussion in the previous section, we have that:

Eu(v) = RSVZ(P, v)− RSVZ(f1, v)− RSVZ(f2, v)− RSVZ(f3, v) + 3.

This can also be formulated as

Eu(v) = RSVZ(P, v) + Euf1(v) + Euf2(v) + Euf3(v)− 3.

Choose v1 = (mn, 0, 0). Then we have 3 edges emanating from v1, e1 =
(−1, 0, 0), e2 = (−n, 0, k) and e3 = (−m, k, 0). Cone(e2, e3) will as before
be a (k, k − c) cone where m+ cn ≡ 0 (mod k). Since

(−n, 0, k) = n(−1, 0, 0) + k(0, 0, 1),
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we get that Cone(e1, e2) is a (k, n′)-cone where 0 < n′ < k and n ≡ n′

(mod k). Similarly since

(−m, k, 0) = m(−1, 0, 0) + k(0, 1, 0),

Cone(e1, e3) will be a (k,m′)-cone where 0 < m′ < k and m ≡ m′ (mod k).
As usual we get similar results for the other vertices by cyclicly permuting
k,m, n.

In specific cases we can use computer programs, here matlab, to calculate
the missing term RSVZ(P, v), as in the following example.

Example 3.6.1. Consider P(1, 2, 3, 5). The polytope P has vertices v0 =
(0, 0, 0), v1 = (15, 0, 0), v2 = (0, 10, 0), v3 = (0, 0, 6). Using matlab we calcu-
late that

RSV (P, v1) = 4

RSV (P, v2) = 5

RSV (P, v3) = 6

We have e1 = (−1, 0, 0), e2 = (−5, 0, 2), e3 = (−3, 2, 0). Using the above we
get c = 1 thus Cone(e2, e3) is a (2, 1)-cone. Also since

5 ≡ 1 (mod 2)

3 ≡ 1 (mod 2)

Cone(e1, e2) and Cone(e1, e3) will be also be (2, 1)-cones. A (2, 1)-cone has
Euler-obstruction 2− 2 = 0, thus for all facets fi we have Eufi(v1) = 0.

Summing up we get that Eu(v1) = 4 + 0 + 0 + 0− 3 = 1.

For v2 we have edges generated by (0,−1, 0), (3,−2, 0), (0,−5, 3) that

5 ≡ 2 (mod 3)

thus both facets involving (0,−1, 0) are (3, 2)-cones, which have Euler-
obstruction 0. Solving 5 + 2b ≡ 0 (mod 3) for minimal b gives b = 2, thus
the third facet is a (3, 1)-cone, which has Euler-obstruction −1. Summing
up we get Eu(v2) = 5 + 0 + 0− 1− 3 = 1.

The edges generated by v3 are generated by (0, 0,−1), (0, 5,−3), (5, 0,−2).
Then we have a (5, 2)-cone, giving Euler-obstruction −1 and a (5, 3)-cone
also giving Euler-obstruction −1. Solving 2 + 3a ≡ 0 (mod 5), we get a = 1
and Euler-obstruction 0. Summing up we get Eu(v3) = 6−1−1+0−3 = 1.
Thus

degP(1, 2, 3, 5)∨ = 4 ∗ 900− 3 ∗ 330 + 2 ∗ 41− 4 = 2688.

83



This example is very interesting, as it shows a variety with only isolated
singularities which has Euler-obstruction constantly equal to 1. In dimension
two [MT11] shows that for toric varieties coming from polytopes, the Euler-
obstruction is constantly equal to 1 if and only if the variety is smooth. They
conjecture it will also hold for dimensions n ≥ 3. Assuming our calculations
are correct, this is a counterexample to this conjecture.

Example 3.6.2. Consider P(1, 2k − 1, 2k, 2k + 1) for k ≥ 1. By using the
calculations of Proposition 3.2.5 and the above methods to get in general

Eu(v1) = RSV (P, v1)− 4k + 4

Eu(v2) = RSV (P, v2)− 2k − 1

Eu(v3) = RSV (P, v3)− k − 3

Using matlab to calculate RSVZ(P, vi) for k = 1, ..., 6 we get the following
candidates for the Euler obstructions

Eu(v1) = 2k2 − 6k + 5

Eu(v2) = 1

Eu(v3) = 1

To prove this in general, one would have to describe the 3-dimensional convex
hull in some systematic way.

Matlab-code computing the convex hulls: Note that this is a brute force
method, we find all lattice points of the polytope and compute the convex
hull when we remove a vertex, already for pretty small values computa-
tions takes time. Since we only are interested in what happens close to
the vertices, we could restrict ourselves to each of the regions containing a
vertex, and compute using only a selection of lattice points, thus speeding
computations a lot.

f unc t i on [ w 1 , w 2 , w 3 ] = c h u l l (k ,m, n)
A=n o v e r t i c e s (k ,m, n ) ;
A=[A; 0 0 k∗m; 0 k∗n 0 ;m∗n 0 0 ] ;
[ K 1 v 1 ] = convhul l (A( 1 : end −1 , : ) ) ;
[ K 2 v 2 ] = convhul l (A( [ 1 : end−2,end ] , : ) ) ;
[ K 3 v 3 ] = convhul l (A( [ 1 : end−3,end−1:end ] , : ) ) ;

M=kˆ2∗mˆ2∗n ˆ2 ;
w 1 =M−6∗v 1 ;
w 2 =M−6∗v 2 ;
w 3 =M−6∗v 3 ;
end
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% f i n d l a t t i c e po in t s except the v e r t i c e s :
f unc t i on A = n o v e r t i c e s (k ,m, n)
N=n∗m∗k ;
A = [ ] ;
f o r x = 0 :m∗n−1

f o r y = 0 : n∗k−1
f o r z =0:m∗k−1

i f k∗x+m∗y+n∗z<=N
A=[A; x y z ] ;

end
end

end
end
end
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Chapter 4

Counting curves on weighted
projective planes

4.1 h-transverse polytopes

There has been a lot of work in recent years in enumerative geometry, trying
to answer the following question. For an irreducible surface, in a given linear
system L, how many curves with δ nodes pass through a sufficient number of
general points? This is called the Severi-degree NL,δ. For smooth surfaces
this question has been solved, with the result that the Severi degree is a
polynomial in the four Chern numbers K2, L2, L · K, c2, where K is the
canonical divisor, L is a divisor in the linear system and c2 is the second
Chern class. In the case of singular surfaces there is not much data yet, but
one would hope to obtain similar results. This relates to our interests by
the following characterization of the Severi degree NL,1.

Consider a (non-defect) variety X embedded in a projective space P via L.
Then the dual variety is a hypersurface in the dual space (P)∨. Intersect-
ing X∨ with a general line in the dual space gives a number of intersection
points equal to degX∨ by Bezout’s Theorem. A line L ⊂ P∨ corresponds to
a 1-dimensional family of hyperplanes in P. The hyperplanes H ⊂ P corre-
sponding to a point in L ∩X∨ are exactly those which contain the tangent
space of a point x ∈ X, in other words those which intersect X in a singular
curve. By choosing L sufficiently general, one gets that all singularities will
be nodes and that L intersect X∨ transversally, hence NL,1 = degX∨.

In [AB13] Ardila and Block, using tropical geometry, showed how to calcu-
late severi degrees for singular toric varieties coming from polytopes which
are h-transverse, meaning all the slopes of 1-dimensional cones of the nor-
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mal fan has integral (or infinite) slope. Their answer is a polynomial in the
slopes and lengths of the polytope, however this isn’t as satisfying as one
would hope. In [LO14] Liu and Osserman improves on this for what they
call strongly h-transverse polytopes (meaning h-transverse and Gorenstein,
see below), giving polynomials in the number of vertices with a fixed de-
terminant. They also have correction terms which gives formulas for the
general h-transverse case.

Translating this into our language, we will see that the h-transverse condition
constitutes quite a restriction on the toric variety. Given a polytope P , it
either has a unique top vertex vt, or there is a horizontal edge at the top
and similarly for the bottom vertex vb (if it exists). All vertices except those
at the top or bottom are called internal vertices, and they are quite special.
Choose an internal vertex. The edges emanating from the vertex must be
generated by

{
(
a
1

)
,

(
b
−1

)
}

for a, b not both 0. By turning this into a (d, k)-cones, we get that they are
all Gorenstein singularities or smooth.

If there is a unique top (or bottom) vertex then it is generated by

{
(
−a
−1

)
,

(
b
−1

)
}

Since

(
−a
−1

)
=

(
b
−1

)
+ (a+ b)

(
−1
0

)
this is a (a+ b, 1)-cone in MR, which

is a (a+ b, a+ b− 1)-cone in NR.

If there isn’t a unique vertex on the top, there are two vertices along the
horizontal edge. The rightmost will be generated by

{
(
−1
0

)
,

(
a
−1

)
}

which is smooth. Similarly the other vertex will also be smooth.

Thus we can conclude that a h-transverse polytope has at most 2-non Goren-
stein singularities, which have to correspond to (l, 1) and (k, 1)-cones in MR
for some l, k. The strongly h-transverse condition mentioned above is simply
requiring all singularities to be Gorenstein.

Using this we can classify the weighted projective planes which are h-
transverse.

Proposition 4.1.1. The only weighted projective planes which come from
a h-transverse polytope are P(m,n,m+ n) and P(1, 1, n) for m,n ≥ 1.
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Proof. Consider P(k,m, n). We will split into 3 cases. First assume that
k,m, n > 1, so there are 3 singular points. Then one singularity has to be
Gorenstein, assume it is the vertex with determinant n, while the other 2
have to be (l, 1)-cones in MR. Using Theorem 3.2.3 we must have a = 1, b =
m− 1, c = k − 1, in other words

k +m ≡ 0 (mod n)

n+ (m− 1)k ≡ 0 (mod m)

m+ (k − 1)n ≡ 0 (mod k)

The bottom two can be reformulated as

n ≡ k (mod m)

m ≡ n (mod k)

The planes P(m,n,m + n) obviously satisfies this. Checking if there are
other cases, we get k + m = ns for s ≥ 1. Inserting this into the the other
equations we get s = kt+ 1 = mr+ 1 for some t, r ≥ 0. Since gcd(k,m) = 1
we get s = mkl + 1. Inserting this back in the original equation we get
k + m = n(mkl + 1), for which the only integral solution is l = 0. Thus
we have found all that could possibly be h-transverse. Choosing the basis
v = (1, 1,−1), w = (n,−m, 0) one checks that P(m,n,m + n) is in fact
h-transverse:

The edges of the polytope are generated by (n,−m, 0) = w, (m+n, 0,−m) =
mv + w, (0,m+ n,−n) = nv − w. The normal directions of these will have
slopes 0,m, n, so it is h-transverse.

Assume then we have one smooth vertex and two singular ones. If the
internal vertex is the smooth one, we get the same restrictions as before
with n = 1. So we have

k − 1 ≡ 1 (mod m)

m− 1 ≡ 1 (mod k),

giving k − 1 = ms and m− 1 = kt for s, t ≥ 1. Inserting one into the other
gives m(st− 1) = −1− t. The righthand side is negative, while the lefthand
is ≥ 0, thus we have no solutions.

If instead the smooth vertex is at the top or bottom, assume here top, we
have m = 1. Then we get

k + 1 ≡ 0 (mod n)

1 ≡ n (mod k),
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m

1

Figure 4.1: h-transverse polytope giving P(1, 1,m).

giving k + 1 = ns and n − 1 = kt for t, s ≥ 0. Inserting one into the other
yields n(st − 1) = t − 1. This can have solutions if and only if t = s = 1.
Thus P(n− 1, 1, n) is the only possible solution. Choosing the same basis as
the previous example works also in this case.

If there are 2 smooth vertices, it is easy to find a 2-dimensional polytope
which is h-transverse which gives P(1, 1, n) (see figure 4.1 ).

4.2 The number of curves

The Severi degree NL,δ can be computed in terms of coefficients QL,i, where

NL,1 = QL,1 and NL,2 = QL,1
2
+QL,2

2 , where d = degL ∈ Cl(X). There are
formulas for QL,δ for larger δ, and polynomials in them giving larger Severi
degrees , but the combinatorical calculations get very messy so we will not
consider that here.

In the smooth case one has from [KP99]

QL,1 = 3L2 + 2L ·K + c2

QL,2 = −42L2 − 39L ·K − 6K2 − 7c2

For a h-transverse polytope one can calculate the coefficients QDP ,δ for suf-
ficiently large polytopes P , meaning that the lengths of the edges of P is at
least δ.

By combining examples 8.2 and 8.3 [LO14] we have

QL,1 = 3L2 + 2L ·K + 4− tdet(P )− bdet(P ) + v′1

QL,2 = −42L2−39L·K+8 idet(P )+C(tdet(P ))+C(bdet(P ))−9v′1+2v′2−76

where tdet(P ) (bdet(P )) is the determinant of the unique top (bottom)
vertex if it exists, or 0 if not, idet(P ) are the sum of the internal determinants
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and v′i are the number of internal vertices of determinant i. C(0) = 0 and
C(p) = 19p−18 for p > 0. The intersections can be calculated by computing
lengths and areas by Proposition 1.9.5.

Going to the case of the weighted projective plane P(k,m, n), recall that
the polytope P gives the divisor DP with degDP = kmn. Hence we can
calculate the Severi degrees for d = lkmn, l ∈ N, where multiplying by l
corresponds to multiplying the polytope with l, or equivalently multiplying
the divisor DP by l. Also note that intersections are more convieniently
computed by Bézout’s Theorem 2.3.7.

For P(1, 1,m) we get d = lm (l > 1 for δ = 2 by the restriction that the
length of the edges must be at least δ) so

D2
P =

(lm)2

m
= l2m

DP ·K =
lm(−m− 2)

m
= −lm− 2l

bdet(P ) = 0

tdet(P ) = m

idet(P ) = 0

v′1 = v′2 = 0

This gives:

Proposition 4.2.1. For P(1, 1,m) we have

QlDP ,1 = 3l2m− 2lm− 4l −m+ 4

QlDP ,2 = −42l2m+ 39lm+ 78l + 19m− 94

giving the Severi degrees

N lDP ,1 = 3l2m− 2lm− 4l −m+ 4

N lDp,2 =
1

2
(9l4m2 − 12l3m2 − 24l3m− 2l2m2 − 2l2m

+16l2 + 4lm2 + 31lm+ 46l +m2 + 11m− 78)

Note that setting m = 1 in the above correctly reduces to the smooth case.
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For P(m,n,m+ n) we similarly get

D2
P = mn(m+ n)l2

DP ·K = −2l(m+ n)

bdet(P ) = n

tdet(P ) = m

idet(P ) = m+ n

v′1 = 0

v′2 = 0 unless m = n = 1, in which case v′2 = 1

yielding

Proposition 4.2.2. For P(m,n,m+ n) not equal to P(1, 1, 2) we have

QlDP ,1 = 3mn(m+ n)l2 − 4l(m+ n)−m− n+ 4

QlDP ,2 = −42mn(m+ n)l2 + 78l(m+ n) + 27(m+ n)− 112.

If m = n = 1 we get almost the same formula, but the constant term of
QlDP ,2 is −110 instead of −112.

Note that setting l = 1 in the above gives back the dual degree we calculated
before, as expected, see for instance Proposition 2.5.6. Larger l corresponds
to the dual degree for the variety XlP .

Note also that the formula for QDP ,1 above is easily deduced from our old
formula for the dual degree. As noted before one may have a number of
Gorenstein singularities, each contributing an Euler obstruction of 0, one
may have a number of smooth vertices each contributing 1 and the top and
bottom contribute 2− tdet(P ) and 2− bdet(P ). Thus∑

Eu(vi) = 4− tdet(P )− bdet(P ) + v′1

as expected.

Then we can ask if we can find new topological numbers to replace the ones
that appear in the smooth case? For QDP ,1, c2 is replaced by the sum of
Euler-obstructions of the vertices. Trying this in the formula for QDP ,2 gives
no satisfactory candidate for K2. So it seems difficult without more data to
make qualified guesses, since the singularities of the h-transverse varieties
aren’t very general.

4.3 Resolution of singularitites revisited

Given the singular surface P(k,m, n), one can as before construct the res-
olution of singularities, here denoted X. This is a smooth surface, so we
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can calculate the Severi degrees by the ordinary formula. The topological
numbers needed are calculated by well-known results.

Using the facts about Chern classes from [CLS11, Ch. 13.1] one has that for
a smooth complete toric surface XΣ the Euler-characteristic e(XΣ) = |Σ(2)|,
the number of 2-dimensional cones. This also equals the second Chern class
c2 by [CLS11, Prop. 13.1.2].

Theorem 4.3.1. [CLS11, Thm 10.5.3, Noether’s Theorem] Let X be a
smooth complete projective variety with canonical divisor KX . Then

K2
X = 12− e(X)

Thus for a smooth toric surfaceK2
X = 12−c2. The computation ofQL,1, QL,2

then reduces to
QL,1 = 3L2 + 2L ·K + c2

QL,2 = −42L2 − 39L ·K − 6(12− c2)− 7c2 = −42L2 − 39L ·K − c2 − 72

Now given the polytope P for P(k,m, n), let XΣ be the minimal resolution
of singularities. By the remarks at the end of section 3.4 we have that
D2
P = D2 and D ·KX = DP ·KXP . So these numbers will be equal for both

surfaces. What remains is to describe c2 in terms of k,m, n.

What we need to determine is the number of 2-dimensional cones in the
fan Σ, this equals the number of 1-dimensional cones. By the construction
of Σ and Proposition 3.1.13 this will be the original 3 plus the number of
exceptional divisors in the resolution of each singularity, i.e. the length of
the appropriate HJ-fraction. Using the notation of Theorem 3.2.3 we see
that we will get

c2 = 3 + r + s+ t

where as before

n

n− a
= [a1, ..., ar]

− m

m− b
= [b1, ..., bs]

− k

k − c
= [c1, ..., ct]

−

Alternatively this can be formulated in terms of the continued fractions of
the form λ

λ−1 : By Proposition 3.1.5 we have r = 1 −
∑u

i=1(2 − di) where
n
a = [d1, ..., du] and similar results for s and t. Summing up we have the
following.

Proposition 4.3.2. Given P(k,m, n), find minimal natural numbers a, b, c
such that

k + am ≡ 0 (mod n)

n+ bk ≡ 0 (mod m)
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m+ cn ≡ 0 (mod k)

Let n
a = [d1, ..., au]−, m

b = [e1, ..., ev]
−, k

c = [f1, ..., fw]− and XΣ be the
minimal desingularization of P(k,m, n) and c2 its second chern class. Then

c2 = 6−
u∑
i=1

(2− di)−
v∑
i=1

(2− ei)−
w∑
i=1

(2− fi)

Remark 4.3.3. It is not clear how to interpret this formula if one or more
of the vertices of P(k,m, n) already are smooth, but if we by convention set
the corresponding continued fraction equal to [1]− we obtain a consistent
formula, for instance for P(1, 1, 1) we set d1 = e1 = f1 = 1 giving the correct
answer c2 = 3.

Applying this to our h-transverse polytopes, we get for P(1, 1,m) the desin-
gularization Hm, see example 3.1.14. P(1, 1,m) has two smooth vertices and
the last a (m,m−1)-cone in NR. Since m

m−1 = [2, ..., 2]− we get
∑

(2−2) = 0,
so c2 = 4. Thus for Hm with D being the pullback of DP we have

QlD,1 = 3l2m− 2lm− 4l + 4

QlD,2 = −42l2m+ 39lm+ 78l − 76

For P(m,n,m + n) we have a = 1, b = n − 1 and c = m − 1. Thus
c2 = 6− (2−m− n) + 0 + 0 = 4 +m+ n which gives

QlD,1 = 3mn(m+ n)l2 − 4l(m+ n) + 4 +m+ n

QlD,2 = −42mn(m+ n)l2 + 78l(m+ n)−m− n− 76

4.4 Further research

Some directions could be investigated further.

One could try to do more computations in the 3-dimensional case, at least in
the case of P(1, k,m, n), or for other 3-dimensional singular varieties. The
general 3-dimensional weighted projective space seems difficult to handle,
since its polytope will be embedded in a 4-dimensional vector space the
same way the polytope giving the weighted plane is embedded in R3. To
handle 3-dimensional polytopes one would need a systematic way of handling
3-dimensional convex hulls. The numerical data suggest that it should be
possible to find closed formulas in at least some cases, for instance P(1, 2k−
1, 2k, 2k + 1).
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In the surface case one could continue to do calculations on other families
of singular varieties or one could try to say more about curve counting
on the weighted projective planes, as we tried in the last chapter. Ardila
and Block [AB13] write that they suspect Severi degrees of all large toric
surfaces are polynomial, however for the time being, using tropical geometry
to count curves only works in the h-transverse case. The results of Ardila
and Block give polynomials in lengths and directions of the polytopes, while
[LO14] have polynomials in the Gorenstein case involving determinants of
vertices. Since all singularities of h-transverse polytopes only depend on one
variable (i.e., either are (d, 1)-or (d, d−1)-cones) we suspect that a formulas
for general toric varieties might have two parameters for each singularity
(instead of 1, direction/determinant), as well as some glueing parameters
describing how the different cones are related.

The success of the Euler-obstruction as a modified c2 in the formula for QL,1

leads one to hope that it should work for higher QL,i as well. Under current
knowledge this seems problematic, at least if we still want only 4 topological
numbers, since no suitable candidate for K2 exists. For instance, consider
QDP ,2 in the case P(1, 1,m), letting c2 be the sum of Euler-obstructions force
K2 = 11 − 2m, but this doesn’t fit in the formulas for QDP ,3 and QDP ,4,
computed by Florian Block (private correspondence).

In [Dai06] there is proved a Noether’s theorem for singular surfaces

Proposition 4.4.1. [Dai06, Proposition 4.9] The self intersection of the
canoncial divisor on a singular toric surface XΣ is

K2
XΣ

= 12− Σ(2) +
∑
σi

di − k1 + 1

di
+
di − k̂i + 1

di
− 2 +

si∑
j=1

(bj − 3),

where the sum is over all singular cones σi, σi is a (di, ki)-cone, di
di−ki =

[b1, ..., bsi ]
− and k̂i is the unique integer 0 ≤ k̂i < di such that kik̂i ≡ 1

(mod di).

One might hope that this could hint at a suitable candidate for a modified
K 2. Since we are counting curves, we need an integer value, while on the
general surface intersection products take values in Q. Other invariants that
are integer valued might be what we need.

One could also do more computations and experimentation on the resolution
of singularities, hoping that the formulas for the smooth resolved surface
might be related to the singular case. As seen in Proposition 4.3.2 c2 for
the resolved surface is related to the Euler obstructions of the duals of the
cones in the fan. Maybe this invariant may appear in a general formula.
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Another possible approach to work more on this, is to consider the covering
map (2.2)

P2 → P(k,m, n)

(X : Y : Z) 7→ (Xk : Y m : Zn)

Using the results for the smooth P2, one might attempt to use this map to
say something about the Severi degrees of P(k,m, n).
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Appendix A

Lattices

We will give some well known results on lattices and bases of them. Given
a lattice M of dimension n in a vecor space, we wish to know when a
given set of linear independent vectors b1, ..., bn ∈ MR = M ⊗ R is a basis
for the lattice. Consider the set of points in MR given by T (b1, ..., bn) =
{
∑n

i=1 cibi|0 ≤ ci < 1}. We have that:

Lemma A.0.2. b1, ..., bn is a basis for the lattice M if and only if
T (b1, ..., bn) ∩M = {0}

Proof. Assume (b1, ..., bn) is a basis. Let x ∈ T (b1, ..., bn) ∩M . Then x =∑n
i=1 cibi =

∑n
i=i nibi for 0 ≤ ci < 0, ni ∈ Z. Thus 0 =

∑n
i=1(ci − ni)bi.

Since the bis are linearly independent this implies that ci = ni, hence ci = 0.

Assume T (b1, ..., bn)∩M = {0}. Pick a lattice point x ∈M . Since b1, ..., bn is
a basis for the vector space MR we can find di ∈ R such that x =

∑n
i=1 dibi.

Let di = ni + ci where ni ∈ Z and 0 ≤ ci < 1. Then x −
∑n

i=1 nibi ∈
T (b1, ..., bn) ∩M = {0}, hence ci = 0 for all i. Thus b1, ..., bn is a basis for
M .

Sometimes we are also interested in different bases for the same lattice.
Given n linearly independent vectors B = {b1, ..., bn} define the lattice gen-
erated by B as L(B) = {

∑n
i=1 Zbi} = {Bx|x ∈ Zn} where B is the matrix

with columns bi.

Lemma A.0.3. Two bases B, C for MR generate the same lattice L if and
only if B = CU for a matrix U with integral coefficients and determinant
= ±1.
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Proof. Assume that B and C generate the same lattice. Then we have equa-
tions bi =

∑j
i=1 aijci which is equivalent to B = CU for a matrix U with

integral coefficients. By switching the roles of B and C we get C = BV , thus
B = BV U . Taking determinants we get 1 = det(V )det(U) which implies
that det(U) = ±1 since U and V has integral coeffiecients, and therefore
also integral determinant.

Now assume that B = CU for a matrix U with integral coefficients and
determinant = ±1. Using Cramer’s rule on the equation Ux = ei one shows
that each column of U−1 also has integral coefficents, and the determinant
also equals ±1. Hence we have B = CU and C = BU−1. Thus L(B) ⊂ L(C)
and L(C) ⊂ L(B), hence they are equal.

Remark A.0.4. In particular n vectors generate Zn if and only if their
determinant equals ±1.

We can define the determinant of a lattice as the determinant of a basis. By
the lemma above this will be independant of choice of basis. This will also
be the volume of any fundamental domain T (b1, ..., bn) where {b1, ..., bn} is
a basis. For our purposes we usually want to normalize the lattice-volume
such that the volume spanned by a simplex is 1, and this equals det(b1,...,bn)

n! .
We will also need the following result:

Proposition A.0.5. [Cas97, Cor.3 p. 14] Any lattice vector v =
(v1, ..., vn) ∈ Zn with gcd(v1, ..., vn) = 1 can be extended to a basis for Zn.

Definition A.0.6. Given a lattice L ∼= Zn, we define its dual lattice L∨ as
the following set:

L∨ = {x ∈ LR|〈x, y〉 ∈ Z ∀y ∈ L}

where we use the normal inner product on LR ∼= Rn.

From the inner product on LR we inherit a pairing

L× L∨ → Z

which induces isomorphisms

L∨ ' HomZ(L,Z)

L ' HomZ(L∨,Z)

Proposition A.0.7. The dual of the lattice N = Zn+1/(q0, ..., qn) is

M = {(m0, ...,mn) ∈ Zn+1|
n∑
i=0

miqi = 0}
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Proof. N∨ = HomZ(Zn+1/(q0, ..., qn),Z). This amounts to, for each basise-
lement ei of Zn+1, assigning a value mi ∈ Z. However, since the element
(q0, ..., qn) must map to zero, we must have

∑n
i=0miqi = 0.
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