
Fighting fire with fire:
Eliminating standing queues
with large UDP packet floods

Håkon Botnmark Jahre
Master’s Thesis Spring 2015

Abstract

Excessive buffering in network equipment, sometimes called ‘buffer bloat’,
can create very large delays for packets traversing the Internet. This de-
grades the user experience, especially when communication is latency crit-
ical, for example with interactive multimedia applications (Voice-over-IP
etc).
This problem has recently become addressed via Active Queue Manage-

ment mechanisms – however, such mechanisms need to be installed in the
device where the problem occurs. Sometimes, large uncontrolled buffers
cause delay in a device that is far away from the user who suffers from the
problem, and therefore not under control of this user. This thesis presents
a simple software-only solution that can at least partially improve the situ-
ation remotely: a ‘queue flusher’ that monitors the round-trip time of pack-
ets and, upon seeing a significant and sustained growth in delay, floods the
network with a large bulk of packets that are sent in the direction where the
problem is suspected. Evaluation results from a simple emulated network
show that this mechanism can work surprisingly well, with a pronounced
improvement in average delay at the expense of only a limited reduction in
throughput.

i

ii

Contents

Contents iii

List of Figures vii

List of Tables xi

Listings xiii

I Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Structure . 4
1.3 Layers . 4

1.3.1 Link layer . 4
1.3.2 Internet layer . 5
1.3.3 Transport layer . 5
1.3.4 Application layer . 5

2 Transport protocols 7
2.1 UDP/IP . 7
2.2 TCP/IP . 7

2.2.1 TCP protocol . 8
2.2.2 Sliding Window . 8
2.2.3 Silly window syndrome 9
2.2.4 Congestion control . 10

3 Queues 13
3.1 What are queues? . 13
3.2 How queues form . 13
3.3 Scheduling . 15
3.4 Tail-drop discipline . 17

3.4.1 Problems with queues using tail-drop 17
3.5 Queueing discipline . 18
3.6 Queue management . 19
3.7 Active queue managers . 19

3.7.1 RED . 20

iii

3.8 Components of an Active queue manager 21
3.8.1 Congestion indicator . 21
3.8.2 Congestion control function 21
3.8.3 Feedback mechanism . 21
3.8.4 Types of Active queue managers 22

3.9 Congestion control . 23
3.10 CODEL . 23

3.10.1 Estimator . 24
3.10.2 Setpoint . 24
3.10.3 Control loop . 24

3.11 PIE . 25
3.11.1 Random drop . 26
3.11.2 Drop probability calculation 26
3.11.3 Departure rate estimation 26

3.12 FQ CoDeL . 27
3.13 Summary . 27

II Queue flusher 29

4 Queue Flusher 31
4.1 Application . 33

4.1.1 Goals . 33
4.1.2 Requirements . 33

4.2 Data capture . 34
4.2.1 Libraries . 34
4.2.2 Implementation . 36

4.3 Calculating round-trip time . 38
4.3.1 Exponentially weighed moving average 39
4.3.2 Base round-trip time . 39

4.4 Calculating throughput . 40
4.5 Flushing . 41

4.5.1 Determine when to flush the network connection . . . 41
4.5.2 Flushing . 41
4.5.3 Heuristics for enabling the flusher 43

4.6 Flusher placement . 44
4.7 Flusher operation . 45
4.8 Known problems . 48

III Evaluation 49

5 Testing 51
5.1 Testbed . 51

5.1.1 Layout . 51
5.1.2 Real hardware . 52
5.1.3 VM . 52
5.1.4 Containers . 52

iv

5.1.5 Common open research emulator 53
5.2 Simulation . 54

5.2.1 Linux: Queueing Disciplines 54
5.2.2 FreeBSD: IPFW/Dummynet 54

5.3 Data generation and logging . 55
5.3.1 iperf . 55
5.3.2 Web10G . 55
5.3.3 TCP Dump and Synthetic packet pairs 55
5.3.4 TCP Flooder . 56

5.4 Testing . 58

6 Results and discussion 61
6.1 Introduction . 61
6.2 Scenarios . 61
6.3 Results . 63

6.3.1 Throughput . 78
6.3.2 Active queue managers 83
6.3.3 Flusher throughput compared to the threshold of

active queue managers 87
6.4 Conclusion . 94
6.5 Future directions . 95

6.5.1 Use a different number of samples before a flush is
initiated . 95

6.5.2 Use real hardware . 95
6.5.3 Test with several concurrent streams 96
6.5.4 Test the flusher’s effectiveness when the queue is

created by another stream originating from another
place in the network . 96

6.5.5 Test the flusher performance when it runs at a
random node in the network 96

Glossary 103

Acronyms 105

v

vi

List of Figures

3.1 TCP connection startup . 15
3.2 Connection after one RTT . 15
3.3 Queue length vs time . 16
3.4 Queue length when sending one ACK per 16
3.5 PIE Structure [4] . 25

4.1 A network with multiple bottleneck points 31
4.2 Elements involved in the libpcap capture process 35
4.3 Packet list before deletion . 38
4.4 Packet list after deletion . 38
4.5 A network with multiple bottleneck points and flusher

running at consumer router . 44
4.6 A network with multiple bottleneck points and flusher

running at N1 . 45
4.7 A network with multiple bottleneck points and flusher

running at N2 . 45
4.8 Graphs created from logs from a passive flusher 46
4.9 Graphs created from logs from an active flusher 47

5.1 Minimal topology . 52
5.2 Difference between measured RTT and actual RTT with an

active flusher . 58
5.3 Difference between measured RTT and actual RTT with a

passive flusher . 58
5.4 Graphs showing the calculated RTT using SPP in addition

to throughput calculated from the same TCP dumps with an
active flusher and a base RTT of 100 ms 59

6.1 Descriptive example of the boxplots used 64
6.2 Differences in RTT over different queue lengths using a base

RTT of 50 ms, a flooder threshold of 1.5 and TCP Reno 65
6.3 Differences in RTT over different queue lengths using a base

RTT of 50 ms, a flooder threshold of 1.5 and TCP Cubic 66
6.4 Differences in RTT over different queue lengths using a base

RTT of 50 ms, a flooder threshold of 1.7 and TCP Reno 67
6.5 Differences in RTT over different queue lengths using a base

RTT of 50 ms, a flooder threshold of 1.7 and TCP Cubic 68

vii

6.6 Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 2 and TCP Reno 69

6.7 Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 2 and TCP Cubic 70

6.8 Graphs diplaying a passive flusher on a link with a base RTT
of 50 ms and a link using TCP Cubic and a bottleneck buffer
of 100 packets . 71

6.9 Graphs diplaying a passive flusher on a link with a base RTT
of 50 ms and a link using TCP Reno and a bottlenck buffer of
100 packets . 72

6.10 Gain in RTTwith a base RTT of 10ms and a bottleneck buffer
of 100 packets . 72

6.11 Gain in RTTwith a base RTT of 50ms and a bottleneck buffer
of 100 packets . 73

6.12 Gain in RTT with a base RTT of 100 ms and a bottleneck
buffer of 100 packets . 74

6.13 RTT with a base RTT of 10 ms and a bottleneck buffer of
100 packets . 76

6.14 RTT with a base RTT of 50 ms and a bottleneck buffer of
100 packets . 76

6.15 RTT with a base RTT of 100 ms and a bottleneck buffer of
100 packets . 77

6.16 Difference in throughput when the flusher is running on a
link with base RTT of 50 ms, TCP Reno and has a threshold
of 1 . 79

6.17 Difference in throughput when the flusher is running on a
link with base RTT of 50 ms, TCP Cubic and has a threshold
of 1 . 79

6.18 Throughput when using an active flusher and a base round-
trip time (RTT) of 10 ms with a buffer size of 100 packets.
As the differences between the thresholds were miniscule,
only one graph per Transmission Control Protocol (TCP) al-
gorithm is showed. 80

6.19 Throughput when using an active flusher and a base RTT of
50 ms with a buffer size of 100 packets 81

6.20 Throughput when using an active flusher and a base RTT of
100 ms with a buffer size of 100 packets 82

6.21 RTT with a base RTT of 10 ms using TCP Reno 84
6.22 RTT with a base RTT of 10 ms using TCP Cubic 85
6.23 RTT with a base RTT of 50 ms using TCP Reno 86
6.24 RTT with a base RTT of 50 ms using TCP Cubic 87
6.25 RTT with a base RTT of 100 ms using TCP Reno 88
6.26 RTT with a base RTT of 100 ms using TCP Cubic 89
6.27 Throughputs when using TCP Reno and a network RTT of

10 ms and a queue length of 100 packets 90
6.28 Throughputs when using TCP Reno and a network RTT of

50 ms and a queue length of 100 packets 91

viii

6.29 Throughputs when using TCP Reno and a network RTT of
100 ms and a queue length of 100 packets 92

6.30 Throughputs when using TCP Cubic and a network RTT of
100 ms and a queue length of 100 packets 93

6.31 Minimal topology for testing the flusher in a network where
the queue is created by another stream originating from
another place in the network. 97

ix

x

List of Tables

1.1 IPv4 header format . 5

2.1 TCP/IP header format . 8

6.1 Tests where the fast link is 10Mbps and the slow link is 5Mbps 62

xi

xii

Listings

4.1 Flusher pseudocode . 32
4.2 Control loop . 37
4.3 Process packet . 38
4.4 Throughput calculation . 40
4.5 RTT calculation . 41
4.6 Process ACK . 42
4.7 Flooder code . 43
5.1 struct tcp_info [35] . 57

xiii

xiv

Preface

It has been a lot of work to reach the finished thesis you are reading
now. During the item I have been working with this thesis, I have had the
chance to learn about a theme which I previously only had some knowledge
of. Before starting this project, I did not know about the inner workings
of active queue managers. Now, after working on the ‘standing queue’
problem, I have got a new understanding of how traffic in the internet
works.
I would like to thank my friends and family for the support I have

received during my master thesis. A special thanks to my supervisor is in
order, as he has helped a great deal during my time at the university.
It has been a long road, and finally I am about to reach my destination.

xv

xvi

Part I

Background

1

Chapter 1

Introduction

1.1 Motivation

For years, internet providers have pushed higher bandwidths to their
customers. Higher bandwidth is only necessary for the power user who
really have use for more bandwidth. A family where everyone is streaming
video have a higher demand for bandwidth. For the average customer
who spends most of their time browsing the web, however, a few megabits
of bandwidth can be more than enough. In those cases, it is often not
the bandwidth but the network delay that is the main reason for a ‘slow
internet’.
There are several reasons for the latency in a network. First, every

device has a processing delay, which is the time it takes for the device to
process a piece of data. This is often so low that it is almost nonexistent.
At least non-detectable for humans. The other cause is the time it takes for
the data to propagate along a link, which is near constant as it is dictated by
the physical medium the link is made of. The third reason, and the one it is
possible to do something about, is the size of the buffers in the internet. As
each device has a buffer, which is a temporary storage for data before it is
transferred to the next machine, data are queued. The buffer size depends
on the amount of memory available in the device. As memory prices have
declined, the amount of memory in the devices has increased [14].
The role of a buffer is the ability to absorb bursts of data, thus a buffer

needs to be large enough. Big buffers (also called bloated buffers) however,
due to the way most internet devices are set up, induce a large delay when
filled. All data segments passing the buffer have to wait in order to be
forwarded. The incoming data segment gets an additional delay added,
namely the time every packet in front of it needs to get transferred. This
delay may easily be several times larger than the original network latency.
As buffers full of data induce more latency, this is often the reason of

an impression of a slow internet connection. As every connection may get
the same delay, it is more noticeable on short connections than longer file
transfers. If a file transfer take a second more to finish it is perhaps no big
deal, but if every web page opened get an additional second in delay, it is a
big deal.

3

As described in section 3.6, there are solutions to the problem of bloated
buffers and the amount of data queued in them. The solutions need to be
implemented and activated on every intermediate device, thus it may be
difficult to do quickly even though the algorithms are thoroughly tested and
provide reasonable results.
A possible solution could be to let the infrastructure in the internet

be as it is and try to fix the buffer problems in another way. One other
way that is presented in this thesis is a ‘queue flusher’, an application that
monitors network traffic on a machine and tries to ‘flush’ the queue if a
queue discovered. Because the flusher may reside on an arbitrary machine,
it does not have direct control over the buffers as the other solutions have
(as discussed in section 3.6); due to this, it treats the network as a ‘black
box’. It knows the input and output, because it is monitoring the data traffic
to and from the device it is running on, but not what is going on inside. As
long it is capable of monitoring input and output it should be able to do an
approximation and hopefully get a better flowing network.

1.2 Structure

This thesis consists of 3 main parts; Background, Queue Flusher and
Results.
The background section presents the necessary information to give the

reader an overview of previous works and facts that are needed in order to
fully understand why the ‘queue flusher’ works as it does.
This part describes how different algorithms used for data transfer

work, the effects of large temporary storage and some solutions to the
problem described in section 1.1.
The ‘Queue Flusher’ part discusses and describes the ‘queue flusher’.
While the last part presents the environment in which the ‘queue

flusher’ was run, and presents and discusses some test results. The
environment is a homogeneous network where every single variable are
set in order to get understandable results. In addition, the main results
in presented and discussed.

1.3 Layers

This section contains a brief, abstract overview of how the network stack
in an internet connected device works. The layers are non-transparent,
meaning that an application sending data has to trust the following layers
to forward the data to the correct recipient.
The layering of the stack also makes it easier to visualize the flow of data

sent from an application to another.

1.3.1 Link layer

The link layer is the lowest level in the stack. It is responsible for
transferring data to and from the physical network link. Data sent through

4

Table 1.1: IPv4 header format [26, 41]

Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Version IHL DSCP ECN Total Length
4 32 Identification Flags Fragment Offset
8 64 Time To Live Protocol Header Checksum
12 96 Source IP Address
16 128 Destination IP Address
20 160 Options (if IHL > 5)

the link layer get a header (with information of the next node in the
network) appended.
At the link layer, all data are sent to the next reachable node, which may

be either the correct recipient or a network gateway.
All outgoing data from the link layer are temporarily stored in a buffer

which ensures that bursts of data are formed into a steady stream of data.

1.3.2 Internet layer

The internet layer is where subnetwork routing occurs. When data arrive
from the link layer, the link layer header (often an Ethernet header) is
stripped off and the internet protocol (IP) header is parsed. If the recipient
is not the current device, the packet is forwarded to the subnetwork
assumed to know the recipient.
The IP header contains information about who the recipient and sender

are, which protocol is used etc. The IPv4 header is shown in table 1.1. As
the internet has been populated by devices, the number of unique addresses
available is declining. A new version called IPv6 has been designed and it
expands the number of available addresses from 232 to 264, which should be
enough for the foreseeable future.
If the data is sent to the current device (i.e. matching IP-addresses) the

IP-header is stripped and the data is forwarded higher up the chain.

1.3.3 Transport layer

The transport layer handles the redirection of data from the internet layer
to a specific application. A device may have several applications running
concurrently. Each network enabled application gets one, or several port
numbers assigned. A port number is a unique identifier that identifies the
application and the protocol used for the lifetime of the application.
UDP (section 2.1) and TCP (section 2.2) are the most common internet

protocols. UDP was designed for data which do not need reliable transfer,
such as real time communication, streaming etc. while TCP was designed
for reliable data delivery.

1.3.4 Application layer

The application layer is a common denominator for all applications running
on a device, both network connected and not.
It contains protocols such as the hypertext transfer protocol (HTTP).

The common HTTP port is port 80, meaning that an application listening

5

for HTTP traffic has to listen to port 80 (unless the client knows about the
other port). As only one application may be bound to a specific port, no
other applications may listen to port 80 during the duration the web server
is running.

6

Chapter 2

Transport protocols

2.1 UDP/IP

The User Datagram Protocol (UDP) is the preferred protocol for real time
transfers and multicast traffic. UDP is non-responsive, i.e. the protocol
does not have any built in mechanisms for discovering and handling
congestion in the network. When data is sent using UDP, the application
sends the data to the receiver without knowing if the data arrives in order
or if the data arrived at all, making it the programmers task to ensure that
the data arrives at the receiver if necessary.
As UDP is non responsive, wrongly configured applications may have a

huge impact on experienced network speed as they might block data from
other connections in the network, causing congestion.

2.2 TCP/IP

The protocol for reliable transfer of data through the internet is the TCP
protocol. It is a full duplex protocol, allowing a steady stream of data both
ways on a single connection. A full duplex protocol is a protocol where the
data stream is going in both directions simultaneously, as opposed to half
duplex connections where the communication is going in one direction at
a time. TCP’s strength lies in the ability to reliably transfer data through
unreliable networks. The data may take several paths through the network,
allowing packets to be unordered when received. TCP takes measures
to ensure that the receiver can forward the ordered data to the receiving
application.
TCP is byte stream based, the data it receives from the sender

application is read as a continuous stream before converting it into TCP
segments and sends them to the IP module/layer. Each TCP segment may
be as large as 64kilobyte (KB) but is usually the size of the path maximum
transmission unit (MTU) (path MTU) in order to prevent fragmentation.
The path MTU is the MTU for that specific path. In the modern internet it
is restricted by the MTU of the hardware, which typically is 1500 bytes for
wired Ethernet connections.

7

Table 2.1: TCP/IP header format[45]

Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgement number (if ACK set)
12 96 Data offset Reserved NS CWR ECE URG ACK PSH RST SYN FIN Window Size
16 128 Checksum Urgent pointer (if URG set)
20 160 Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)

When an application sets up a TCP connection, the application opens
a socket, an endpoint where the data is sent from and the received data
is received. The socket is identified by the IP address and a port number.
There may only be one socket connected to a port number at a given time,
but a socket may support several TCP connections allowing applications to
have several concurrent TCP connections.

2.2.1 TCP protocol

Each TCP segment has a header and payload. The header contains
information about which port the segment is sent from and which port
it is sent to in addition to a 32 bit sequence number and a 32 bit
acknowledgement number (table 2.1). Data offset describes where the
header ends and the data begin, it is necessary because the header may
contain additional options. Window size describes the size of the senders
sliding window.

2.2.2 SlidingWindow

The sliding window is implemented as a way to control the flow between
the sender and receiver. Both the sender and receiver have their own sliding
window. The ‘receive window’ controls the amount of data being sent to the
device, as it dictates the amount of data it is capable of receiving. Because
the data may be received unordered, the unordered data are stored in the
‘receive window’ until the correct data is received, only then the ordered
data is sent to the application and the correct amount of data are freed from
the window. In order to know which data segments have been received,
each segment has its own sequence number. The sequence number makes
it possible to know the order of the received segments. For each segment
received, the receiver replies with an acknowledgement (ACK). The ACK is
marked with the sequence number of the next packet the receiver expects
to receive.
Using the ACK the TCP protocol is able to calculate the network RTT

and estimate the bandwidth delay product (BDP). The RTT is the time it
takes from the TCP segment is sent until an ACK is received for that specific
segment, and it is a measure of the network delay. If the RTT increases, the
network is under load. If the RTT decreases, the transfer that caused the
delay has stopped.
The BDP is a measure of the amount of bytes a link is able to transport

at a given time. BDP is calculated as displayed in (2.1).

bd p = r t t ×band wi d th (2.1)

8

Say 10 segments are sent, but only segments 1,2,3,5,6,8,9 makes it to
the receiver. The receiver replies with 4, as it is the segment it needs before
the first chunk of data can be sent to the application. When the sender
gets the request for segment 4 it resends the segment. If segment 4 is
received before the new segment come from the sender the new segment
is discarded when it comes because the data is already accepted. Then the
receiver follows the same procedure for segment 7 and 10.
If, however, none of the ACKs are received, a ‘retransmit timeout’ occurs

and the sender sends the data again.
If the ‘receive window’ is full, a packet with window size = 0 is sent to

the sender in order to tell the sender that the receiver can not receive more
data before the current data is sent to the application for processing.
For the sender to know when it can resume sending packages to the

receiver, it sends a window probe, a message with no data, in order to
check whether the receiver is capable of receiving more data. As long as the
window size return 0, the sender keeps probing using set time intervals.
This is a response to the possible deadlock which may appear if a packet
is lost on the way, either if it is the window probe itself or a segment
containing a new, updatedwindow size [7, 8, 45].
Data transfer, window probing and ACKing can in some cases lead to

unnecessary overhead and load; this is especially bad when bandwidth is
scarce. In order to try to decrease the load, TCP has delayed ACKs. Using
delayed ACKs, the receiver waits for a maximum of 500milliseconds before
a proper responsemessage is sent [8]. If a segment carrying data is detected
before the timeout, the ACK is applied to that segment. The process of
sending ACKs and other data merged with an existing segment is known as
piggybacking. Piggybacking is necessary for lowering the overhead as the
ACK is a number in the header. If an empty TCP packet is sent, the overhead
is large as there is no payload. As soon as the TCP header is merged with
payload, the overhead decreases.
For transfer of big segments the link utilisation (throughput) can be

good but if there is a consistent transfer of small segments the overhead per
segment is so high that the throughput is minimised. As an optimisation
Nagle’s algorithm [22, 34] was proposed. The algorithm works by
accumulating sent data until it fits in a single segment, only then the data
is sent. This optimises the throughput by decreasing the header/packet
ratio. If a segment is sent with 1 byte of data, the entire packet has a
size of minimum 41 bytes (this is the minimum due to the fact that TCP
headers may contain extra options). Sometimes Nagle’s algorithm may
cause problems. If an application has to send many small packets, as the
case is in online gaming or other real time applications, Nagle’s algorithm
may cause unwanted delay. It is possible to disable the algorithm by using
the TCP_NODELAY option.

2.2.3 Silly window syndrome

Silly window syndrome (SWS) occurs when the congestion window is in
a state where the data segments sent are so small that the throughput

9

and transfer efficiency decrease. It is most likely to occur in badly
implemented TCP stacks, which does not take the latest improvements into
consideration [10, 43].
The receiver announces the window size as the amount of data it is able

to receive next, and the senders window size is the number of bytes waiting
to be sent. The number of bytes to send is the window size subtracted by
the number of bytes ‘in flight’.
If a receiver announces a window of 1000 bytes, and the senders

segment size is 200 bytes, the sender can send 5 segments. Suppose the
segments are read when they arrive, the receiver still announces a window
if 1000 bytes, but the sender knows that it may only send one packet. If a
segment at the receiver gets read while a segment is received to the queue,
the receiver may announce a window size of say 950 bytes as there are 50
unread bytes. Then the sender responds by sending a segment of 150 bytes.
The next segment has a size of 50 bytes. Each subsequent segment will have
a size of 50 bytes, thus decreasing performance [10]
SWS is not only applicable to the sender. The receiver may also be

responsible for SWS if the receiving application slowly pulls data from the
window. This can be solved by announcing a decrease in window size when
the application is able to receive a lot of data at once [43].
The solution to the sender side SWS is to enable Nagle’s algorithm

which will delay the sending of segments until enough data have accumu-
lated to send a large segment [43].

2.2.4 Congestion control

For TCP to react to an overloaded link it is using congestion control or,
more correctly, congestion avoidance to manage and model the flow of
segments between the sender and receiver.
Congestion occurs when there is more data arriving at a link than the

link is able to transfer. If a link has a bandwidth of 10Mbps and a RTT of
100 ms the link, according to the bandwidth delay product (equation (2.1)),
it has a maximum capacity, one way, of 6250 bytes.

bd p = 1

2
100ms ×1 ·107bps (2.2)

= 5 ·10−3s ×107bps (2.3)

= 5×107−3bi t (2.4)

= 5×104 (2.5)

= 50000bi t = 6250by tes (2.6)

≈ 4 ·1500by tes (2.7)

This means that when 4 Ethernet frames are sent, the link is saturated,
working at full capacity. If more segments were to be sent, they would
be dropped. In reality, networks are much more fragmented, and each
intermediate device (i.e. a router) has its own buffer. It is only when the
buffer is full that the device starts to drop packets and congestion occur.

10

Congestion occurs at the bottleneck link, a place in the network where
a network is connected to a slower network, with lower bandwidth and
packets are filling the buffer to a point where packets are dropped.
When a packet is sent from a link with high bandwidth to a low

bandwidth link, each packet takes longer to transfer. If an Ethernet frame
were routed from a 10Mbps link to a 1Mbps link, the transfer would take 10
times longer on the slow link, assuming the RTT on both links is the same.
When the ACKs are sent from the receiver, each ACK would be sent with a
time difference equal to the transfer time of the slow link. This is known
as the ACK clock and it is stable when the transfer is ongoing (unless the
link to the first machine is congested). The ACK clock is an essential part
of TCP, which helps smooth out traffic and avoid unnecessary queues at
routers [24, 34].
In order for the sender to know which segments it has in flight (on

the link, travelling to the receiver) each sender implements a congestion
window which counts the amount of segments sent. The window is a
counter that counts each sent segment until it has arrived at the receiver
and an ACK is received. When an ACK is received, the congestion window
is incremented.
The initial window size is at most 4 segments [6], this size has recently

been raised to 10 segments in some hosts, e.g. Linux [9]. For each segment
sent, the window size is enlarged by a segment. This makes the window
size double for each RTT [34] and is known as slow start, even though it is
exponentially increasing.
In order to control the slow start, a threshold known as the slow start

threshold (ssthresh) is implemented. When the window size is at the
threshold level or a packet drop occurs, the slow start is discontinued. To
start with, the ssthresh is set arbitrary high to let the congestion window
grow as large as possible. At any given time, when TCP discovers dropped
packets the ssthresh is set to half the size of the current congestion window.
Packet drops are detected by receiving the same ACK three or more times
in a row [33].
Each time the window size reaches the size of the current threshold it

starts growing linearly until packets are being dropped once more. The
new ssthresh is set to half the congestion window size when a drop occurs.
The growth rate of the congestion window when the ssthresh is reached

is roughly 1/congestion window size. With this growth rate the congestion
window size increases by one packet for each sent congestion window.

11

12

Chapter 3

Queues

3.1 What are queues?

All network connected devices have one or more network interface control-
lers(NICs), a physical connection to the network. While most devices only
need one, some devices (e.g. routers) have multiple NICs which connect
the device to different networks. As data is sent from an application, the
outgoing packets are placed in a buffer before they are sent out through the
NIC onto the network. Each NIC has its own internal buffer [32], and the
internet layer (section 1.3.2 on page 5) also has its own [32].
A buffer is a temporary storage (with a predefined size) of data. The

buffer’s main function is to smooth a bursty data stream. In the early days
of networking, when memory was scarce, the buffers were of a limited
size due to the prices of memory. As the prices for memory decreased,
additional memory was added to the devices, leading to overly large buffers
that could hold a lot of data [14, 24].
The data is queued in the buffer before being relayed further. All queues

induce a certain amount of delay as it takes time for the queue to drain. This
time induces delay on every connection using the buffer. Usually the queues
disappear quickly as packets are sent to the next node in the network, but if
a queue forms at the slowest point, the bottleneck, it takes time before it is
gone. If the bandwidth for the incoming packets is higher than the outgoing
bandwidth, the queue length will keep increasing until the buffer overflows.

3.2 How queues form

Queues form when the rate of incoming data is higher than the rate of
outgoing data. When the output rate is lower than the input rate, packets
accumulate and create a temporary queue.

L =λW (3.1)

A definition of queue behaviour is seen in Little’s law (equation (3.1)),
which defines the queue length, L, by multiplying the arrival rate, λ, with

13

the average time,W , each item stay in the queue.

W = L

λ
(3.2)

The average time an item stays in a queue is defined in equation (3.2).
According to [24] there are two types of queues, ‘good’ queues and ‘bad’

queues. They differ in how the queue impacts network performance. A
good queue is a queue that is emptied in one RTT. After one RTT the queue
is gone, and the buffer is ready to get more data. A good queue does not
impact the RTT negatively as the queue does not create a significant delay
for other connections whether it is real time traffic or large file transfers,
and disappears after a single RTT.
A bad queue is a queue that lingers after one RTT. When a bad queue

forms, there are more packets coming before the queue is emptied. Thus,
the queue restricts traffic and creates delay. A reason bad queues form can
be a wrongly calculated congestion window in the TCP stream that sends
data. If the window is calculated to be 10 packets larger than the link is able
to transfer, a queue of length 10 forms in a bottleneck buffer, creating delay
for other traffic. If the packets linger in the buffer after several RTTs it is
defined as a bad queue. ‘Standing queue’ is another name for ‘bad queue’. A
standing queue is a queue which is not emptied when a packet drop occur,
thus inducing an additional delay in the network.
A bad queue can occur when the TCP congestion window is larger than

the actual ‘pipe size’, the amount of data a link is capable of transporting.
Due to the way the TCP congestion avoidance algorithmworks, a bad queue
is not necessarily discovered as it creates delay, not indicating congestion,
as the following example shows.
Figure 3.1 on the facing page displays a path with a bottleneck. The

fastest link has a bandwidth of 100 Mbps and a one way delay of 1 ms,
while the slower link has a bandwidth of 10 Mbps. At connection startup
the congestion window at the sender is negotiated to be 25 packets, not 20
packets which is the link pipe size and the first congestion window is sent
and queued in the bottleneck buffer.
In figure 3.2 on the next page the packets are sent through the

bottleneck towards the receiver. After one RTT the sender receives the first
ACK and the TCP slow start is halted, this causes the congestion window
growth rate to decrease as described in section 2.2 on page 7. The ACKs
arrive with a delay of 9 ms as the packets are transferred from the buffer.
As new packets arrives each millisecond, the packet has to wait for 9 ms
at the bottleneck in order for the packet in the front to be transfered. Each
queued packet has to wait 9 ms longer than the packet in front in the buffer.
When the ACK is received, the TCP algorithm sends the next packet in the
congestion window on to the link. The time between packets is long enough
for a packet to leave the buffer. As the congestion window is larger than the
‘pipe size’, a queue is accumulated in the bottleneck buffer. As new packets
arrive as others leave, the buffer will have a persistent queue which will
continue to grow because of the continually increasing congestion window
size. This is also known as a ‘standing queue’.

14

Figure 3.1: TCP connection startup [24]

Figure 3.2: Connection after one RTT [24]

Figure 3.3 on the next page shows how the queue length at the buffer
and the TCP congestion window size change as the queue persists. The
queue length is the difference between the congestion window size and the
‘pipe size’, which in extreme cases may create a massive delay. The small
variations in queue length are due to small time variations in the sending
and receiving of packets.
Figure 3.4 on the following page shows a good queue, the queue drains

completely before new data arrives. In the figure the receiver sends an ACK
for each window size, which is a fragile method, but it works as the sender
sends the whole congestion window when the ACK arrives.

3.3 Scheduling

Scheduling is a different part of queue handling. The scheduler moves
incoming data to the right queue. The simplest version of scheduling is
to move every packet into the same queue.

15

Figure 3.3: Queue length vs time [24]

Figure 3.4: Queue length when sending one ACK per congestion win-
dow [24]

Using scheduling it is possible to make advanced queuing mechanisms
where different types of traffic gets individual treatment, for instance
ensuring quality of service (QoS) for VoIP and other streams that need low
response time.
The job of a scheduler is to organise data into queues in a buffer. There

are two main groups of schedulers, passive and active. Passive scheduling
is achieved when the scheduler does not implement much logic. Most of the
passive schedulers use either a counter, which determines which queue the
data are going to, or implement no form for logic. Counter based scheduling
may be based on round robin where the queues are traversed in circular

16

order. Each time a new packet arrives, the active queue is switched.

3.4 Tail-drop discipline

Drop-tail queues are the standard queue limitationmethod inmodern com-
puter networks. They are a first in, first out (FIFO) based implementation
which drops data when the queue is full, and thus it is easy to implement
on devices with limited processing power and a limited amount of available
memory. Modern devices create queues by allocating available memory.
Because it is the outgoing bandwidth that limits the amount of sent data at
a given time interval, network devices needs to queue outgoing data.
Using a drop-tail queue, when the queue is full, the overflowing data is

discarded. This forces the responsive connections to reduce their sending
rates. Responsive connections discover when a packet drop occurs. They
may be implemented using UDP, but the most common algorithms are
TCP based, which allows the connection to take appropriate action when
congestion occurs.
With TCP the tail-drop queue causes some connections to get more

resources than others. With a lower RTT the transfer protocol is able to
push more packets onto the link because of each ACK arrive within a short
time of the previous. As TCP sends data only when it gets an ACK, the
amount of allocated bandwidth is higher for connections with a low RTT.
The tail-drop queue disregards real time applications with a low latency

goal. Real time applications send small amounts of data at regular intervals
and they are usually non-responsive. Real time transfers are dependant
on low delay and low send rate variation in order to provide the best user
experience possible. Because drop-tail queues drop data when the queue
is full and real time transfers can be non responsive, the recipient may
experience a drop in performance or frequent lag when the queue is full
due to the amount of packets delaying the ones behind.
A queue with a maximum size of 50 packets will induce a delay of 60 ms

on a 10 Mbps connection when the queue is full. The human brain is able
to process a continuous stream of images into fluid animations when the
images shift at least 24 times per second [29]. A movie at the cinema has
a lower frequency of 24 hertz, the inter-image delay is about 40 ms. If a
packet is able to contain an image, a full queue would induce a 60ms frame
delay, which is about 16 hertz or 16 frames per second and the streamwould
be perceived as choppy.
Using IP telephony, the target delay is 20ms with amaximum of 150ms

[42]. A 60 ms delay may not be noticeable, but it should be avoided for the
perceived quality of the real time stream.

3.4.1 Problems with queues using tail-drop

Lockout

One of the problems with drop-tail queues is lockout. Lockout occurs when
the incoming flows are synchronised. Synchronisation occurs when the

17

queue is full and packet drops have occurred. As packets are dropped, the
flows reacts by decreasing their send rates. The flows with low RTTs may
get an unfair proportion of the queue as the flows with high RTTs may get
a lot of packets dropped due to a nearly full queue.

Global synchronisation

The global synchronisation problem affects all drop-tail queues, as the
drops are more frequent when the queue is full. Each connection that
encounters a full queue drops packets and reduces its send rate. As
almost all packets are dropped, every connection reduces its send rate
simultaneously, making the throughput plummet as no data is transfered
through the link. Because of the TCP designed, each connection increases
their sending rate simultaneously, leading to a full queue and dropped
packets. Thus alternating between empty and full queues, magnifying the
problem.
The solution to global synchronisation is to either drop packets ran-

domly from the queue or enforce a front drop policy. The front drop policy
drops packets from the front of the queue rather than from the end. Thus,
not leading to global synchronisation as not every connection gets dropped
packets simultaneously [24].

Full queues

Another problem with tail-drop queues is the full queues problem, it is a
problem for all algorithms using the tail-drop discipline. A queue should be
able to handle bursts in traffic as packets have a tendency to come in bursts
to the router. A nearly empty queue is able to handle the bursts without
dropping a lot of packets, while a full queue, or a nearly full queue, has to
drop packets as they arrive. This leads to a lot of dropped packets, lower
utilisation of bandwidth, global synchronisation and lockout.
A queue in a non-full state is a well working queue due to its ability to

absorb bursts of data. The queue length should not represent the amount
of data it can hold, but rather the size of the bursts it is able to absorb.
The queue size should be proportional with the outgoing bandwidth from a
device. Higher outgoing bandwidth should translate to a queue which could
absorb more data [24, 34]. But the full queue problem would still persist.

3.5 Queueing discipline

The combination of a scheduler and drop policy is often called a queueing
discipline (qdisc). There are several qdiscs available, the most common
is FIFO, which implements a single queue with tail-drop. There are two
classes of qdiscs;

• Classless queueing discipline

• Classful queueing discipline

18

Classless qdiscs do not implement a lot of logic in the scheduling.

First in, first out

The FIFO qdisc implement a single queue using simple tail-drop. The first
packets which are queued are the first packets to be sent. When the queue
is full, the incoming packets are dropped.

Stochastic Fair Queueing

Stochastic fair queueing is a more advanced qdisc [18]. It has a scheduler
which orders packets into queues based on the connection information (e.g.
sender port and IP address and receiver port and IP address). The queue a
specific packet is sent to depend on the output of the hashing function.
Each queue is a basic FIFO queue with tail-drop. When the queue is

full, new incoming packets are dropped.
Outgoing packets are multiplexed into a stream using round robin,

which selects each queue in succession. For each queue, the first packet
is removed from the queue and multiplexed into the outgoing stream of
data [18].

3.6 Queue management

Queue management is an easy way to restrict and reduce traffic flow. There
are many ways to restrict flows, ranging from drop-tail queues to active
queue management. The method used depends on the hardware deployed
in the network. In the early days of networking, the philosophy was that
the intermediate hardware should do as little processing as possible as the
available resources were limited, such as processing power and memory
capacity.
As the years progressed and processing power and memory have

become cheap, the routers and intermediate network devices have become
more powerful, thus the queue sizes have grown and are delaying data at
bottlenecks. TCP will always make queues grow (equation (3.1) on page 13)
and the challenge is how to limit them most efficiently.

3.7 Active queue managers

The drop-tail queue is a well known queue manager that works on low
performance systems with limited memory. Every device using it has the
possibility of becoming the point of delay in the network. The outgoing
queue from devices should not be the cause of excess delay. When a queue
enforces a delay of several seconds, the performance will suffer. Overly
large queues trick the TCP congestion avoidance algorithm into thinking
there is no congestion on the link, thus the window keeps growing andmore
data are sent as the ACKs keep coming.

19

Active queue management is a countermeasure to the rapidly growing
queues. As modern routers and intermediate network devices have more
processing power than ever before, they are able to run more complex
algorithms in order to limit queue length.

The earliest active queue manager (AQM) versions had a lot of poorly
documented parameters which had to be statically configured in order
to get the AQM to work correctly. If a parameter configuration worked
perfectly for some cases, other cases may have caused the AQM to perform
poorly, thus making the job difficult for anybody wanting to correctly
configure the AQM for several use cases.

3.7.1 RED

After the congestion collapse of 1986, alternative methods were researched.
In an attempt to fix congested networks and optimize performance, the
random early detection (RED) AQM was created. The RED algorithm was
designed to run on intermediate routers, as opposed to the congestion
avoidance algorithms which is implemented at the end points and reacts
when the link has become congested.

RED uses the average queue length to determine the drop probability.
The drop probability increases when the queue length has reached a set
point. When drops occur the queue works as a drop-tail queue, dropping
packets from the end of the queue. Due to the drop-tail discipline, RED
shares the problems of other drop-tail queues. Connections with low RTT
have an advantage over the ones with higher RTT as they would get a bigger
cut of the queue, effectively choking the high RTT connections.

As the queue gets filled, the drop probability rises. When a packet is
received, the algorithm determines whether the packet should be dropped
or not using the drop probability and a drop threshold. The drop threshold
determines whether the drop probability rises. A queue that is filled 50%
when the drop threshold is set to 0, has a 50% drop probability. This
translates to half of the packets received being dropped and the sender
having to transfer them once more when the transmission timer times out,
or when ACKs are received stating that some packets are missing.

When RED drops a packet it either truly drops the packet or sends an
explicit congestion notification (ECN). ECN is sent to the sender from the
receiver in order to get it to reduce its rate. The ECN is suggested as a
replacement for packet drops [17, 19, 28]. Because it has the same effect as
packet drops, ECN is heavily discussed [19].

RED has many parameters and every one of them need to be configured
manually. This raises difficulties using the algorithm, and requires users to
know every detail about the links which are connected to the device running
RED. Every time some parameters change, whether it is RTT, bandwidth or
queue length, the queue manager has to be reconfigured.

20

3.8 Components of an Active queue manager

3.8.1 Congestion indicator

Every AQM has a congestion indicator. The function of the congestion
indicator is to discover possible congestion. Different AQMs have different
congestion indicators.
Rate-based AQMs use the current flow rate as the congestion indicator.

If the output rate drops below a certain level or the arrival rate increases,
which in turn allows the queue to grow if r ateout < r atei n . The congestion
indicator for a rate-based AQM could keep the arrival rate at a certain
percentage of the link capacity [1].
Queue-based AQMs use the queue length as the determining factor

when drops occur. When the queue length is close to a defined target, the
drop probability is higher than for lower queue lengths. The early iterations
of AQMs were queue-based. Queue based congestion indicators will induce
a large drop probability when the queue is almost filled, even when the
incoming rate is lower than the drain rate. This causes a high drop rate
even though the queue length is decreasing, thus leading to a suboptimal
utilisation of the link capacity. In the opposite case, a queue based AQM
drops a fraction of the queue size when the queue length is small even
though the incoming rate is higher than the drain rate, thus leading to
congestion.
Delay-based congestion indicators use the total queue delay when

determining the drop probability. They implicitly control the queue length
by monitoring the amount of time a packet has spent in the queue. Some
AQMs use a predetermined amount of time in order to control packet
drops. For example, some AQMs use 5 ms as a congestion indicator [1, 3,
11]. If a packet spends more than 5 ms in the queue, the packet is dropped.

3.8.2 Congestion control function

The congestion control function decides what should be done when the
congestion indicator changes. It works as a mapping function where the
congestion indicator value is the input and output is the drop probability.
Themarking of packets to be dropped is closely connected to the congestion
control function. The packets to be dropped are determined by the
probability output. Even though the drop-algorithm is often overlooked
(it is common to always only drop the newly arriving packet), different
algorithms can have different outcomes for the same dropping probability
causing variations in queue length, loss and delay.

3.8.3 Feedback mechanism

The feedbackmechanism is responsible for sending feedback when a packet
is not forwarded to its sender when the queue increase over a set point.
Feedback can be sent by dropping packets, in which case the TCP algorithm
detects packet drops (triple-duplicate ACKs or timeout) or by sending an

21

explicit congestion notification (ECN). When an ECN is sent, the packet is
forwarded to the receiver, and the sender receives a notification telling it to
lower the transmission rate and shrink its congestion window.

Packet drop probability

The packet drop probability is a central component in the AQM feedback
mechanism. The probability controls which packets are lost, and at what
rate. A packet drop probability is calculated differently from AQM to AQM.
Rate based AQMs use the incoming and outgoing rate to calculate the drop
probability, while queue based AQMs determine the drop probability by
measuring the queue length against a set point. With delay based AQMs,
the drop probability is determined by calculating the time packets used to
traverse the queue. If the time calculated, and/or measured, exceeds a set
point, the probability is raised.

Packet drop

Packet drop is the usual feedback mechanism used in computer networks.
When a queue is overflowing packets are dropped and the sender responds
to the loss.

Explicit congestion notification

Explicit congestion notification (ECN) is an alternative to packet drop.
The ECN is a marked packet that is replied to the sender which cause
the congestion, in an attempt to reduce the window size. Due to the
marked packet, the connection algorithm does not need to wait for packet
loss and the window size should decrease faster without transmission of
unnecessary packets (which would probably be dropped anyway).
The downside with ECN is that it is not implemented in all TCP

algorithms, as some may chose to ignore the ECN.
Even though ECN is supposed to help congested links, it has proved

to be less effective than dropping of packets [19] when used in networks
with high congestion due to the amount of packets still in the network.
During a congested state, the network cannot handle an increase in packets
in transmission and the best solution may be to drop the packets in order
to clear the congestion.

3.8.4 Types of Active queue managers

There are several types of AQM, depending on which criteria the AQM uses
for discovering a potential queue. The AQM types are

Queue based This type of AQM uses queue length as its congestion
criterion. The AQM starts dropping packets when the queue length is
growing towards itmaximum length; as the queue grows the dropping
probability increases.

22

Rate based Rate based AQMs use the rate of the incoming flow to
determine when data should be dropped.

Load based Load based AQMs use the device load as the congestion
indicator. The drop probability is given by P (dr op) = r atei n/r ateout ,
if P (dr op) is higher than 1 packets are queueing, thus the drop
probability should increase.

3.9 Congestion control

Standard congestion control algorithms are implemented at the connection
end points. The connections using end point congestion control are
reactive, thus the controller reacts after the link has become congested.
The reaction time corresponds to the queue length at the bottleneck. If
the maximum queue length is 1 MB and the bottleneck has a bandwidth of
10Mbps, the congestion control would use up to 8 seconds to react.
Because the AQM is running on the intermediate devices, it could

discover a possible queue in advance, being proactive. If a queue is about to
reach a level where the network performance would suffer, the AQM could
signal the sender to reduce its rate. A signal could be sent in different ways,
either by dropping packets or by sending an ECN if it is supported by the
congestion control algorithm. If the AQM has several queues for the active
connections, it could easily restrict some queues when they become large
while others remain untouched.
AQMs drop packets with a given probability. If the link becomes

congested, the drop probability increases, if the link has more capacity the
drop probability decreases.

3.10 CODEL

CoDel is a queue based AQM designed with the following goals in mind [3]:

• is parameterless – has no knobs for operators, users or implementers
to adjust

• treats ‘good queue’ and ‘bad queue’ differently, that is, keeps delay
low while permitting necessary bursts of traffic

• controls delay while insensitive (or nearly so) to round trip delays,
link rates and traffic loads; the goal is to ‘do no harm’ to network
traffic while controlling delay

• adapts to dynamically changing link rates with no negative impact on
utilisation

• is simple and efficient (can easily span the spectrum from low-end,
Linux-based access points and home routers up to high-end commer-
cial router silicon)

23

The queue length measure is implicit as the CoDel algorithm measures
the queue delay. If the queue delay reaches a point which is higher than the
current set point, it drops a packet.
CoDel differentiates between ‘good queues’ and ‘bad queues’ [3]. A

‘good queue’ is a queue which is gone after one RTT when a drop occurs,
a ‘bad queue’ is a queue which is persistent even after a packet drop has
occurred.
Like other AQMs CoDel has three basic components in order to control

the queue length:

Estimator figure out what we have got

Setpoint know what we want

Control loop if what we have got is not what we want, we need a way to
move it there

3.10.1 Estimator

In order to know the current queue length in the router, an estimation is
needed. The estimator works by tracking the time a packet spent in the
queue. If there is no queue, an incoming packet is sent immediately and
the time spent in the queue is 0. If there is a queue, the time a packet spent
in the queue increases.
In order to determine if a queue is forming, a local minimum is

computed. This local minimum is the minimum amount of time a packet
spent in the queue. The minimum is updated at frequent intervals in order
to assure that the value is not going stale.

3.10.2 Setpoint

The setpoint is the point where the AQM takes action and drops a packet in
order to limit the queue length.
During tests, the optimal setpoint was measured to between 5% and

10% of the RTT while having a near 100% bandwidth utilisation [3]. The
high bandwidth utilisation is the result of a small standing queue. If a queue
is completely empty, the bandwidth utilisation decreases as there are no
more data to send. Thus, a very small standing queue is a good thing.

3.10.3 Control loop

The control loop is the algorithm which determines when packets are
dropped from the queue. Most of the classical control theory deals with
the control of linear, time-invariant, single-input-single-output (SISO) sys-
tems. Control loops for these systems generally come from (well under-
stood) proportional-integral-derivative (PID) controllers [3]. The fact is
that queues are not a SISO system as they do not operate with a single con-
nection, but multiple. Thus, an AQM is a multiple-input-multiple-output

24

Figure 3.5: PIE Structure [4]

(MIMO) system which handle both input and output of different connec-
tions [3]. As the MIMO works on multiple streams, a single packet drop
from a stream will fall short as only the stream which dropped a packet re-
acts. In a MIMO system there will be a need of dropping one packet from
each stream that should react.

As the different type of connections in a MIMO system range from
non-responsive UDP streams to responsive TCP streams, the AQM needs
a drop policy that works on both types.

When a persistent, bad queue occurs a packet drop from the stream
will remove a bit of the queue in an RTT due to the halving of congestion
window which occurs after a packet drop (section 2.2 on page 7) [3,
34, 45]. Because of this, a drop of less than one packet per RTT with
increasing packet drop probability is the way to go. This gradient drop
policy reacts to the load at the bottleneck. The drop probability increases
until the persistent, bad queue is shrinking before reseting when a new bad
queue occurs [3]. The interval between two drops is decreasing in inverse
proportion to the square root of the number of drops since the dropping
state was entered [3]. Thus, packet drops get a slow start, but the packet
drops become more aggressive as the time goes. This is the heart of the
CoDel AQM.

Because the best rate to start dropping is at slightly more than one
packet per RTT, the controller’s initial drop rate can be directly derived
from the estimator’s interval [3].

3.11 PIE

Unlike CoDel, PIE is an AQM which use the dequeue rate to determine the
drop probability for incoming packets.

As shown in Figure 3.5, PIE has the following components:

25

3.11.1 Random drop

For each packet arriving PIE randomly decides on dropping in an attempt
to limit the queue length. The probability, p, is obtained from the ‘Drop
probability calculation’ component [4].
When PIE decides to drop a packet, it drops the packet from the end of

the queue.

3.11.2 Drop probability calculation

PIE drops packets with a certain probability. This probability is defined by
equation (3.4).

est_del = qlen/depar t_r ate (3.3)

p = p +α× (
est_del − t ar g et_del

)+β× (est_del −est_del_old) (3.4)

est_del_old = est_del (3.5)

In equations (3.3) to (3.5) qlen is the current queue length and the
departure rate is determined by depar t_r ate which is obtained from the
‘Departure rate estimation’ block.
The est_del and est_del_old are variables which represent the current

estimation and old estimation of queueing delay, while the target latency
value is represented by t ar g et_del .

3.11.3 Departure rate estimation

Queue draining in a network often varies because of varying conditions like
other queues sharing the same link, or the link capacity fluctuates. Rate
fluctuation is a common problem in wireless networks.
PIE measures the departure rate in the following way:

• If there are enough data in the queue, we are in a measurement cycle.

• If in a measurement cycle, update the current dequeue count.

• If the dequeue count is higher than a given threshold, calculate the
departure rate.

The PIE departure rate is recommended to be set to 16KB assuming
a typical packet size between 1KB and 1.5KB [4]. This threshold is long
enough to calculate an average draining rate but also fast enough to reflect
sudden changes in the draining rate.

26

3.12 FQ CoDeL

FQ CoDel is an AQM which mixes the properties of CoDel with the
FairQueue discipline (section 3.5 on page 19), that queues packets in
different queues based on the result of an hashing algorithm. The FQ CoDel
algorithm is renamed FlowQueue CoDel, not FairQueue CoDel, due to its
impact on flows [5].
Each of the queues is a CoDel-queue which tries to limit the queue

length by limiting the maximum amount of time any packet use through
the queue. If a packet uses more than the set limit, the packet is dropped or
an ECN is sent in reply.
Any packet which is dropped at the end of the queue may cause

global synchronisation where the connections would decrease the rate
simultaneously, thus leading to possible starvation of the link. After which,
every connection tries to increase their window, thus the buffer overflows
due to the amount of data received at once. If the synchronisation is not
solved, the network will vary between starvation and flooding.
FQ CoDel makes a distinction between ‘new’ and ‘old’ queues [5]. New

queues are queues which have no standing queues, whereas the old queues
do. If a queue is standing, it is classified as old, which is the state it is in
until the standing queue is no more. When a standing queue is cancelled,
it is moved from the old list to the new list. For each iteration a certain
number of packets are moved from the queue and sent; if the queue still
has any packets (which does impose more than a RTT in delay) the queue
is classified as old.
Every FQ queue has CoDel implemented, which make the algorithm

hierarchical. Every 100 ms (as described in section 3.10 on page 23) the
minimum value is checked and the packets that have been in the queue for
more than 5 ms are dropped.

3.13 Summary

Queues appear in the buffers of bottleneck devices. The buffers are
implemented as a measure against bursty connections. With the increase
of cheap memory, the device buffers are getting larger. Larger buffers are
able to sustain a larger queue which induces an additional delay for every
connection using the buffer.
If an overly large buffer exists in a heavily used bottleneck node, the

buffer is able to sustain a standing queue that induces several milliseconds,
or even seconds of delay for the other connections. As an increase in
delay is not monitored by TCP, the queue is allowed to grow. The TCP
congestion algorithm decreases the TCP congestion windowwhen it detects
congestion. Congestion is detected by a packet drop.
According to [24] there are two types of queues, ‘good’ and ‘bad’ queues.

A good queue is a queue which drains after one RTT. A bad queue is a queue
that lingers in the buffer after RTT and is the result of a badly configured
buffer. ‘Standing queue’ is another name for a ‘bad’ queue.

27

There are solutions, active queuemanagers (AQMs), to the problem, but
they are often difficult to configure and they need to be implemented and
enabled at all bottleneck nodes in the internet, which is time consuming.
The first AQM, RED, was difficult to configure. Recently other AQMs which
have less configuration parameters, and are largely ‘plug-and-play’, have
been made. Even though the configuration is minimised, the problem of
distributing them to the nodes still persists.

28

Part II

Queue flusher

29

Chapter 4

Queue Flusher

A possible solution to the lack of enabled active queue management
algorithms on routers is a queue flusher. The queue flusher is designed
to run on any network device that is forwarding data from one network to
another. If a queue is detected, the application tries to empty the queue by
sending unusable data in order to fill the queue, thus making a congested
buffer that the responsive connections respond to (sections 2.2 and 3.6 on
page 7 and on page 19). When connections respond, they decrease their
window size, which lessens the amount of ‘in-flight’-packets. The effect is
that the bottleneck buffer is emptied before a new load of packets is queued
at the bottleneck.
Figure 4.1 shows a network with multiple points where a delay inducing

queue may form. Queues often occur in the outskirts of the internet, as
it is where the consumers live and the network is not closely monitored.
They enable their devices, which in many cases are wrongly configured and
have overly large buffers, additionally the bandwidth difference between
nodes make the problem even larger as buffers are not sized correctly for
the current bandwidth. Due to this mismatch, large queues are created and
the network responsiveness and delay suffer [14, 16].
Listing 4.1 on the following page provides a simple algorithmic version

Internet

N1

R1

N2

R2

Figure 4.1: A network with multiple bottleneck points

31

Listing 4.1: Flusher pseudocode

1 program QueueFlusher
2 begin
3 # Inse r t data packet
4 funct ion insert_data_packet (hash , packet)
5 begin
6 f low = get_flow (hash) ;
7 i f packet_ex is t (flow , packet) return ;
8 add_packet (flow , packet) ;
9 end
10

11 # Check ack
12 funct ion check_ack (hash , packet)
13 begin
14 i f not ack return ;
15 f low = get_flow (hash) ;
16 data = get_data_packet (flow , packet) ;
17 packet . r t t = c a l c u l a t e_ r t t (data , packet) ;
18

19 # Flood i f r t t i s above threshold
20 i f packet . r t t > X* base r t t f lood () ;
21 end
22

23 # Capture packets from network i n t e r f a c e
24 while next packet
25 # I f packet not tcp , continue
26 i f packet . type not tcp continue ;
27

28 # Ca lcu la te hash
29 hash = calculate_hash (packet) ;
30

31 insert_data_packet (hash , packet) ;
32 check_ack (hash . inv , packet)
33 loop
34 end

of how the flusher works. For each packet it captures, the flusher, checks
whether the packet is a TCP packet or not. If it is not, the packet is ignored.
If the packet is a TCP packet, a hash of the flow parameters is calculated.
The hash is based on the packet source and destination IP addresses and
port numbers. When the hash is created, the correct stream is found by
matching the hash against hashes of known streams. If the packet exists in
the stream’s list of packet hashes, it is ignored, else its hash is added to the
list.

If the captured packet has the ACK flag set in the packet header, a
lookup using the inverted hash key is done. The inverted hash is calculated
from the same metrics as the regular hash, only the metrics are swapped.
This lets the ACK be looked up in the packet list of the reverse stream (The
ACKs are sent from receiver to sender). If the packet matching the ACK is
found, both throughput and RTT are calculated.

The current RTT is checked against a set threshold of themeasured base
RTT. If r t t > thr eshold ×baser t t then the flooding is initiated.

32

4.1 Application

The queue flusher is a user space process as it (per design) is able to run as
an unprivileged user and not a privileged user. The different types of users
are confined to their spaces [27, 44].
An unprivileged user can execute all programs that do not need special

permissions from the operating system (OS), while a privileged user can
execute programs that need special permissions, such as installing new
software on a computer.
As the queue flusher works in user space it can be prevented from

doing malicious tasks, as opposed to if it was running in kernel mode.
Any application running in kernel mode have the opportunity to crash
the kernel if programmed incorrectly. In Linux and other *NIX variants
only privileged users are able to run programs which enter kernel mode.
Privileged users may be users running as super user (elevated permissions)
or a user who belongs to a certain group which gives the user the right
runtime permissions.
The queue flusher is of the later kind, it can be run by an unprivileged

user who belongs to a certain group or is running the application as a user
with elevated privileges.

4.1.1 Goals

Based on how active queue managers (AQMs) works, the queue flusher
have a set of goals that comply with the ones of AQMs.

Reduce round-trip time The queue flusher should reduce the overall
RTT for connections going through a bottleneck device.

Ensure fairness Fairness is not possible to achieve in a queue flusher
as it does not know how the queue is managed on the bottleneck.
Fairness is achieved by scheduling (section 3.6 on page 19) as the way
the queue is administered is the only way fairness can be achieved.
For responsive streams such as TCP, a FIFO queue using the drop-tail
policy is favoring streams with low RTT [15] regardless of whether the
queue flusher is running or not.

Throughput Connections delayed by a queue should see no improvement
or a slight decrease in throughput while the RTT decrease. Heavy
decrease in throughput indicate the presence of other streams.

4.1.2 Requirements

Every application has its own requirements in order to function properly.
A queue flusher needs to be independent, both in where it is placed in the
network and which protocols it supports. The queue flusher is designed
for working with responsive connections, specifically the TCP. There are
also responsive streams using the UDP, if the queue flusher was supporting
those streams, the side effect could be unnecessary dropping of packets

33

from unresponsive streams (e.g. real-time communication) which could
result in a poorer experience for the end user. Thus, the queue flusher does
not monitor UDP streams, but any responsive UDP stream should react to
the packet drops imposed by the queue flusher.
In order to be able to monitor streams and discover congestion it needs

the following requirements:

Measure round-trip time Measuring of the round-trip time (RTT) is
required for detection of queues in a packet switched network as
the RTT varies according to the queue length in the bottleneck
(section 2.2 on page 7.)

Measure base RTT The base RTT is as important as the RTT as it
describes the lowest measured RTT in the network. The base RTT is
a measure of the latency in the network and a low base RTT indicates
a low response time in the network. As the base RTT is dependent
on the current stream, the base RTT for a stream may be high, even
though the base RTT for that connection is low compared to the base
RTT. This indicates the presence of other streams using the same
path. As the flusher does not know that for certain, it should treat
the base RTT for the current stream as if it is the current base RTT in
the network.

Discrete congestion controls The queue flusher should work for TCP
streams using different congestion avoidance algorithms.

Flush queues The ability to flush queues is an important requirement.
If a queue cannot be flushed, the flusher should retry after a short
period.

Run as backgroud process The flusher has to be able to run as a
background process and not require additional configuration during
its lifetime.

Parameterless The flusher should be able to detect its own network
parameters, complying with the ‘set-it-and-forget-it’ method.

4.2 Data capture

4.2.1 Libraries

There are several methods of capturing packets and the best known is
perhaps libpcap. The data capture libraries provide an easy way to capture
packets as they provide an understandable application programming
interface (API) for programmers to use. Without libraries the programmer
has to use kernel specific APIs in order to capture packets, thus creating an
application which is not easily portable to other systems.

34

Figure 4.2: Elements involved in the libpcap capture process [13]

Libpcap

Libpcap1 is a library specifically developed for capturing packets from the
network as it is designed to provide packet capture capability to operating
systems on the *nix platform (Unix, GNU/Linux, OS X, FreeBSD, BSD,
Solaris . . .). It is also a version for devices running Microsoft Windows,
calledWinPCap.
Applications like Wireshark and TCP Dump use libpcap for data

capture, which makes the library is well known and thoroughly tested.
Libpcap works by hooking into the kernel, which tells the kernel to send

a copy of every captured packet to libpcap. A captured packet may be a
data packet which is either sent, received or passing through the device as
visualised in figure 4.2.
The captured packets get a simple header containing information of the

time the packet was captured and the length of the whole packet including
headers.
One libpcap’s big advantages is the ability to write queries, making

the library responsible for returning the right packets and allowing
the developer to concentrate on the programming task without paying
attention to the kind of packets the library returns.

PF_RING

PF_RING2 is a packet capture library capable of handling large amounts of
data with a low impact on CPU load. It is a less mature library and not as
well known as libpcap.

1http://www.tcpdump.org/
2http://www.ntop.org/products/pf_ring/

35

http://www.tcpdump.org/
http://www.ntop.org/products/pf_ring/

PF_RING differs from libpcap in some aspects. PF_RING does not hold
additional copies of packets as libpcap do. Because libpcap makes a copy of
every packet it captures, there is some overhead and this may cause some
packets to be dropped and the responsiveness may suffer.
As opposed to libpcap, PF_RING only supports the Linux kernel, which

makes it less portable than libpcap as applications using PF_RING cannot
easily be ported to other *nix operating systems. It is possible to provide
fallback to libpcap as there is a PF_RING enabled version of libpcap,
making it possible to use the libpcap API and simultaneously get the speed
of PF_RING on supported devices.

Netmap

A third packet capture library is called Netmap3, it has more in common
with PF_RING than libpcap as it is designed to provide a way to do high
speed packet capture. It was originally developed for FreeBSD, but there is
also a Linux port available.
There is a netmap-libpcap library available for easy porting of existing

libpcap applications.

4.2.2 Implementation

The queue flusher uses libpcap for packet capture as it is the library which
is supported on most platforms and makes porting the application to other
systems easy.
Because TCP packets are the only packets the queue flusher is interested

in, it runs a check on the packet type. If the captured packet is a TCP packet
it is processed by the application, if not, the packet is ignored. When a
packet is known to be a TCP packet, the flusher checks the packet details
against its internal list of connections it has captured packets from. If the
connection is found, the packet is appended to the list of packets captured
from that connection, otherwise it adds a new connection item and adds the
packet to that connection.
The list index is a hashed function using destination IP, source IP,

destination port and source port as input parameters for the hash.
For each captured packet, two hash keys are made for the packet based

on the stream details: the sender and receiver IP and the ports used. One
‘original’ and one ‘inverted’ key are made.
If the current packet is determined to be an ACK (by looking up the

ACK number and checking if the ACK flag [see table 2.1 on page 8] in the
TCP header is set) the ACK is looked up in the list of sent packets for the
connection by using the inverted key, in order to do a lookup in the reverse
stream. If the packet matching the ACK is found the RTT is calculated and
all preceding packets (including the one matching the ACK) are deleted, as
shown in figures 4.3 and 4.4 on page 38. Regardless of whether the packet
is an ACK or not, the packet is added to the list of captured packets for the

3http://info.iet.unipi.it/~luigi/netmap/

36

http://info.iet.unipi.it/~luigi/netmap/

Listing 4.2: Control loop

1 const NUM_SAMPLES = 10
2

3 funct ion controlLoop ()
4 begin
5 while (packet = getPacket (nic)) != NULL do
6 processData (packet) ;
7

8 # I f the flow ex i s t s , f ind the minimum r t t fo r the current
9 # sample and f lood
10 i f (f low = processAck (packet)) != NULL then
11 f o r i = 0 . .NUM_SAMPLES−1 do
12 maxThroughput = max(maxThroughput ,
13 flow−>samples [i] . throughput) ;
14

15 maxRtt = max(maxRtt , flow−>samples [i] . r t t) ;
16 minRtt = min(minRtt , flow−>samples [i] . r t t) ;
17 loop
18

19 # I f minRtt exceeds a threshold and i t i s above 50 ms,
20 # increase sample counter
21 i f (sec (minRtt) > threshold * sec (flow−>baseRtt) and
22 mi l l i s e c (minRtt) > 50) or
23 sec (flow−>ackRecvd − flow−>las tF lood) > 30 then
24

25 flow−>nsamples2++;
26 e l s e i f flow−>nsamples2 > 0 then
27 flow−>nsamples2−−;
28 endi f
29

30 # I f number of samples have exceeded 2; f lu sh
31 i f flow−>nsamples2 > 2 then
32 root−>nsamples2 = 0;
33 f lood = true ;
34 args = {
35 flowRoot = flow ,
36 maxThroughput = maxThroughput ,
37 maxRtt = maxRtt ,
38 }
39 f lood (args)
40 endi f
41 endi f
42 loop
43 end

sender-receiver-stream using the calculated key. For each ACK captured,
the packet information is logged in order to be used when creating graphs.

If the captured ACK has no corresponding packet, it is assumed that the
packet has already been acknowledged and it is removed from the packet
list. Thus, the ACK is erroneous and it is ignored.

37

Listing 4.3: Process packet

1 funct ion processData (packet)
2 begin
3 i f f low = getFlow (packet−>flow) == NULL then
4 f low = addFlow (packet−>flow)
5 end
6

7 flow−>seq == flow−>seq | | packet−>seq ;
8

9 i f isSyn (packet) or i sF in (packet) then
10 packetS ize =1;
11 end
12

13 i f ! isAck (packet) then
14 flow−>recvWndSize = calcWndSize (packet) ;
15 end
16

17 seq = packet−>seq ;
18 flow−>las tAck = nextAck ;
19

20 i f (item = getPacket (flow , seq + packetS ize)) == NULL then
21 item = addPacket (flow , packet) ;
22

23 item−>timeRecvd = packet−>time ;
24 item−>seq = seq ;
25 item−>plen = packetS ize ;
26 item−>to t l en = packetS ize + packet−>headerSize ;
27 end

SEQ: 1 SEQ: 2 SEQ: 3 SEQ: 4 SEQ: 5 SEQ: 6

ACK: 4

SEQ: 7

Figure 4.3: Packet list before deletion

4.3 Calculating round-trip time

The round-trip time is calculated when an ACK is received. As TCP does
not necessarily send an ACK for each packet received (as discussed in
section 2.2 on page 7) the flusher needs to take this into consideration when

SEQ: 5 SEQ: 6 SEQ: 7

Figure 4.4: Packet list after deletion

38

accepting ACKs and calculating the RTT.
When an ACK is received, the corresponding packet is found by

matching the ACK number to the sum of a packet sequence number and
packet length, as the ACK number is the next byte segment that the receiver
expects to receive, and the RTT is calculated.
For each received ACK all packets up to and including the packet cor-

responding to the ACK, are deleted, using only the youngest corresponding
packet when calculating RTT.
For example, if packets 1, 2, . . . , 6 are sent, an ACK for packet 3 will

cause packets 1. . . 3 to be deleted and the RTT is calculated by subtracting
the timestamp of the ACK from the timestamp of packet 3, thus creating an
RTT sample. When calculating the RTT the exponentially weighed moving
average (EWMA) is used, which creates a moving average based on every
sample.
If packet 3 is sent several subsequent times, which indicates a dropped

packet, the packet representation at the flusher is updated with the new
timestamp. This ensures that the RTT is correctly calculated when the ACK
arrives, in addition to limiting the memory footprint of the flusher. This
enables running on devices with limited memory capacity.

4.3.1 Exponentially weighed moving average

The exponentially weighed moving average is known from statistics as a
method for calculating an average value based on several values. As it only
depends on two variables and some constants, the exponentially weighed
moving average (EWMA) does not require a lot of memory in order to be
computed.
EWMA is defined as in equation (4.1) where α denotes the weight of the

variables. The sum α+ (1−α) is always 1 when α ∈ [0,1], thus the variable α
denotes the speed the average increases or decreases based on the data.

Yn =
{

X1

α ·Yn−1 + (1−α) ·Xn if n > 1
(4.1)

The TCP uses α = 7/8 [34] which gives significantly more precedence to
the older RTT values than the newer ones. As the α value is known, the
queue flusher uses the same EWMA value to calculate the current stream
RTT.

4.3.2 Base round-trip time

In order for the flusher to knowwhen it should try to flush a queue, the base
RTT needs to be calculated and monitored as the conditions of the network
dictate how the RTT behave. If a connection has a base RTT of 30 ms and
it suddenly changes to 50 ms, the flusher might cripple the throughput
and cause more problems, not solving them. This highlights the need for
updating the base RTT at set intervals.

39

Listing 4.4: Throughput calculation

1 funct ion calc_throughput (flow , item , time_)
2 begin
3 flow−>numBytes += item−>to t l en ;
4 double t = sec (c l o ck_d i f f (time_ , root−>throughputTime))
5 i f (t >= 1) {
6 root−>throughput = 2* root−>numBytes*8/ t ;
7 root−>numBytes = item−>to t l en ;
8 root−>throughputTime = time_ ;
9 }
10 end

The base RTT is theminimumRTT recorded in the last segment of time.
For each RTT sample that is lower than the current base RTT it is updated.
As mentioned before, the base RTT in the network might change, but it is
a rare event. Due to the event of path change in the network and a rise in
base RTT being rare, the base RTT would only need to be updated once in
a while.
RFC 6817, which describes the LEDBAT algorithm, uses 10 minutes

[30, 31] as a set interval. Similarly, the base RTT of the flusher gets a forced
update each 10 minutes.

4.4 Calculating throughput

The throughput is calculated by summing the amount of data sent during
an interval and dividing it with the length of the interval in seconds. The
calculation is shown in equation (4.2), where n is the number of packets,
payl oadp is the payload of packet p in bytes and i nter val is the set
interval.

thr oug hput =∑
p
= 1n leng th(payl oadp)×8

i nter val
(4.2)

The throughput implementation is as shown in listing 4.4, where the
packet payloads are summed and divided by the current RTT.
The reason for dividing the number of bytes with the i nter val is that

the stream and the capture interval does not match completely. With
an interval of 1 second, the throughput is calculated when the difference
between the current timestamp and the timestamp at the start of the
interval is >= 1, thus it should update when the interval is as near 1 second
as possible.
The throughput calculation is done when the flusher receives an ACK.
When the link is shared by other connections, the throughput decreases

because fewer packets are sent during a specific interval.
The reason for calculating with 1500 bytes is that it is the maximum

payload size of an Ethernet frame.

40

Listing 4.5: RTT calculation

1 funct ion c a l c_ r t t (r t t , rttSample)
2 begin
3 r t t = (1−7/8)* r t t + 7/8* rttSample ;
4 end

4.5 Flushing

Flushing is the operation where the application (the queue flusher) thinks
it has discovered a queue and tries to empty it by ‘flushing’ in order to
get an increase in network performance, while not having a big impact on
throughput.

4.5.1 Determine when to flush the network connection

As ACKs are captured, the current RTT of each ACK is recorded. When an
ACK arrives, the current RTT and throughput is added to an internal buffer
of size 10. This internal buffer is a buffer of recorded samples, and its size
is called the sample size.
For each sample recorded, a counter is incremented by 1. If the packet

is captured during a flush, the RTT and throughput are not added to the
sample buffer and the counter is set to 0.
When the buffer is filled (i.e. the counter have returned to 0, using a

round robin buffer) the stored values are analysed.
The bandwidth delay product (BDP) (see equation (2.1) on page 8)

dictates that a link is able to transport a given number of bytes at any time.
Under the assumption that the BDP is constant, an increase in throughput
will give a decrease in RTT. If however the RTT increases without a decrease
in throughput then there is a queue in the network as packets accumulate
faster than they are transported from the bottleneck, thus giving a higher
RTT which increases for every ACK arriving.
If the sample buffer (of size 10) is filled and the lowest RTT in the sample

buffer is higher than thr eshold ×base RTT and the lowest RTT is higher
than 50 ms, a counter is incremented. When the counter is incremented
more than 2 consecutive times, the flusher is activated, as described in
listing 4.6 on the next page.
The reason for measuring more than 2 consecutive filled buffers is that

the flusher may be flushing. If it is flushing, it is not wanted to start another
flush because that could harm the throughput in the network. Also, it
makes it easier to increase or decrease the amount of RTT samples without
increasing the memory footprint of the flusher.

4.5.2 Flushing

The flusher is a simple algorithm. The input parameters are the highest
throughput measured and the destination of the packets.

41

Listing 4.6: Process ACK

1 funct ion processAck (packet)
2 begin
3 i f ! isAck (packet) then return ;
4 i f packet−>srcIP == loca l IP then return ;
5

6 i f (f low = getFlow (packet)) == NULL then return ;
7

8 flow−>sendWndSize = calcWndSize (packet) ;
9

10 ack = packet−>ack_seq ;
11

12 i f (item = getPacket (flow , packet)) == NULL then return ;
13

14 item−>ackRecvd = packet−>time ;
15

16 rttSample = item−>ackRecvd − item−>timeRecvd ;
17

18 c a l c_ r t t (flow−>r t t , rttSample) ;
19 calc_throughput (flow , item , item−>ackRecvd) ;
20

21 globalTimeBase = globalTimeBase | | item−>ackRecvd ;
22

23

24 // Update i n t e r v a l as descr ibed in RFC6817
25 updateDif f = 600;
26

27 i f sec (item−>ackRecvd − flow−>las tBase) > updateDif f then
28 flow−>baseRtt = rttSample ;
29 flow−>las tBase = item−>ackRecvd ;
30 e l s e i f rttSample < flow−>baseRtt then
31 flow−>baseRtt = min(flow−>baseRtt , rttSample) ;
32 flow−>las tBase = item−>ackRecvd ;
33 endi f
34

35 flow−>maxRtt = max(rttSample , flow−>maxRtt) ;
36

37 // I f not f looding , then add throughput and r t t samples
38 i f ! f lood then
39 flow−>samples [flow−>nsamples] . r t t = flow−>r t t ;
40 flow−>samples [flow−>nsamples] . throughput = flow−>throughput ;
41 flow−>nsamples = (flow−>nsamples +1) mod NUM_SAMPLES;
42 flow−>ok = true ;
43 e l s e
44 flow−>nsamples = 0;
45 flow−>ok = f a l s e ;
46 endi f
47

48

49 return flow ;
50 end

As the flusher starts, it tries to determine the right amount of data to
be sent by using the highest measured throughput and starting with an
RTT value of 2×base RTT in order to calculate the BDP which is used as a

42

Listing 4.7: Flooder code

1 funct ion f lood (args)
2 begin
3 currentRoot = args−>flowRoot ;
4

5 throughput = currentRoot−>maxThroughput ;
6 r t t = currentRoot−>f loodRt t | | 2* currentRoot−>baseRtt ;
7

8 currentRoot−>las tF loodRt t = currentRoot−>las tF loodRt t | |
9 currentRoot−>baseRtt ;
10

11 // Always increment the mu l t i p l i e r
12 mul t i p l i e r = 1 . 2 ;
13

14 currentRoot−>lastFloodMax = max(currentRoot−>lastFloodMax , item−>maxRtt) ;
15

16 r t t = mu l t i p l i e r * r t t ;
17

18 // baseRtt <= r t t <= maxRtt
19 currentRoot−>rt tF lood = max(r t t , 2* currentRoot−>baseRtt) ;
20 currentRoot−>rt tF lood = min(r t t , 2* currentRoot−>maxRtt) ;
21

22 numberOfPackages = throughput * r t t /(8*1500);
23

24 f o r p = 0 . . numberOfPackages−1 do
25 send (args−>re c i p i en t) ;
26 loop
27 end

measure on the amount of UDP packets to send. For each subsequent flush,
the RTT value is raised by 20%. I.e. the previous RTT value is multiplied
by 1.2. An upper limit for the RTT value is set to 2×max RTT. This should
be enough for the flusher to successfully ‘flush’ a queue, even if some of the
packets are dropped before the problematic buffer.
If a flush has not happened during the last 30 seconds, the flusher

forces a flush. The 30 second barrier is arbitrary but necessary in case
the connection has a hugely oversized buffer where data may accumulate
and create a delay of several seconds. Thus, the maximum time to wait is
30 seconds, which should be more than good enough for different network
base RTTs. It may be too high as links with more than 1s RTT are rare
unless the link is relayed by a satellite.

4.5.3 Heuristics for enabling the flusher

The reason for the 50 ms base RTT requirement is to prevent unnecessary
flushing. If there is no lower base RTT limit, the flusher may be activated
even though there is no active queue. Higher RTT measurements may
be the result of delayed ACKs and not only queues. Delayed ACK is a
TCP functionality that avoids sending unnecessary ACKs [8] (section 2.2
on page 7.) An ACK may be delayed up to 500 milliseconds as the
receiver waits for more data to arrive before the ACK is sent [8]. Due

43

Internet

N1

R1

N2

R2

Figure 4.5: A network with multiple bottleneck points and flusher running
at consumer router

to this possible delay a minimum RTT should be measured in order
to get the flusher to slow down and be less aggressive. An aggressive
flusher may lead to a misbehaving network as the flusher may cause
queues and increased delay in the network, if the amount of packets is
miscalculated. The queues form due to the amount of packets sent from an
applicationwhich is non responsive to packet drops. Amiscalculation of the
needed number of packets may be caused by the BDP calculation which is
P f l ood = thr oug hputmax × r t tmax/8×1500, this leads to numerous packets being sent if the
throughput sample is extreme compared to the other throughput samples.
It is therefore better to use the maximum value of the EWMA throughput
and EWMA RTT as the maximum values may not be as extreme due to the
inherent smoothing in the EWMA calculation.

4.6 Flusher placement

As displayed in figures 4.5 to 4.7 on the current page and on the facing page
there are several places in the network where queues may occur. Queues
can occur at every link in the figures. If there is an application in the
N2-network which is transferring a lot of data, or otherwise creating a
queue, the queue will appear in R1 as it is the slowest point. A queue at
this point will impact the data flow to and from the N1-network.
As AQMs is not implemented or enabled in a lot of hardware, the queue

flusher may be a temporary solution. If the flusher is running at N1 or N2
as shown in figures 4.6 and 4.7 on the next page, the queue in R1 should
be dealt with as it is the bottleneck which queues packets that delay every
stream going through the link.
The flusher is displayed by a diamond in the connection between a link

and a node.
In figures 4.5 and 4.6 on this page and on the next page the queue in

R1 is not dealt with because the N1-R1 link is slower than the N2-R1, this

44

Internet

N1

R1

N2

R2

Figure 4.6: A network with multiple bottleneck points and flusher running
at N1

Internet

N1

R1

N2

R2

Figure 4.7: A network with multiple bottleneck points and flusher running
at N2

the link bottleneck is at N1. Even though the queue in N1 is flushed, the
possible queue at R1 is not dealt with due to the flusher not detecting the
queue because of its position in the network. If, however, both N1-R1 and
N2-R1 links have the same bandwidth and base RTT, the bottleneck will be
at R1 and a flusher running at N1 or N2 is equally likely to detect and flush
the queue.

4.7 Flusher operation

Figures 4.8 and 4.9 on the following page and on page 47 shows the flusher’s
logs of RTT and throughput during runs where the flusher is passive and
active.
In the graphs that show the calculated throughput there are spikes

which are a bit higher than the network bandwidth. The reason for those

45

100

120

140

160

180

200

220

240

0 1 2 3 4 5
Time (minutes)

R
T
T
(m
s)

variable RTT Min.RTT Max.RTT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5
Time (minutes)

T
h
ro
u
gh
p
u
t
(m
bp
s)

Figure 4.8: Graphs created from logs from a passive flusher. The
connection has a 50 packet buffer with a base RTT of 100 ms.

spikes may be that some extra packets have been counted during that
specific interval. The flusher updates its throughput each time it gets
an ACK. For every ACK where a corresponding data packet is found, the
throughput is calculated. When the difference between the interval start
and the latest ACK timestamp is greater or equal to the interval, a new
interval is started and the throughput is calculated based on a sum of the
sizes of the packets ACKed during the last interval. The throughput is set
by: thr oug hput = bi t s/t i me, where bi t s is the sum of ACKed packet sizes and
t i me is the time difference between the first and last packet in an interval.
Testing showed that the frequency of throughput spikes rises when the

base RTT is lowered. The spikes may be the result of jitter, as some packets
may come to the receiver earlier than expected. If such an event occurs, the
flusher may calculate a higher throughput because of more ACKs received
in a short period.
Jitter is the change in delay between each received packet. Even

though the packets are sent with a constant delay, the inter-packet delay
may have changed when the packets arrive at the receiver. The changes

46

100

120

140

160

180

200

220

240

0 1 2 3 4 5
Time (minutes)

R
T
T
(m
s)

variable RTT Min.RTT Max.RTT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5
Time (minutes)

T
h
ro
u
gh
p
u
t
(m
bp
s)

Figure 4.9: Graphs created from logs from an active flusher. The
connection has a 50 packet buffer with a base RTT of 100 ms.

in inter-packet delay are known as jitter. Jitter has the most effect on
real-time traffic such as audio streams between participants in an online
chat room. Jitter may not be noticed when transferring large files, its effect
is most noticeable for traffic which demands a highly responsive network.
Jitter is a naturally occurring effect in packet switched networks

because of the changing RTT. When packets are queued, the RTT rises.
When the queue drains there may be small variations in the draining rate.
This causes variations in the inter-packet delay, and is presented as jitter
at the receiver. The jitter is then transferred to ACKs and cause small
variations in the flusher’s throughput calculation.
The throughput jitter is shown in figures 4.8 and 4.9 on page 46 and on

the current page. It is not frequent in none of the graphs, which shows
that it is not necessarily an effect that causes trouble. A slightly higher
throughput is not a problem for the flusher. Neither the spikes in RTT
or the spikes in throughput should effect the flusher negatively, unless the
RTT suddenly have spikes which is double the normal level. If such spikes
occur, the flusher intensifies the flushing as more packets are sent in order

47

to flush the queue.
Even though the throughput jitter occurs more often on connections

with a lower base RTT, the variations is too small to do a big difference.
When the flusher flushes a queue, it sends a certain amount of packets

towards the receiver. As it uses the maximum measured throughput and
the maximum measured RTT in the BDP calculation, a spike doubling the
maximum RTT would double the amount of packets sent. This may cause
the throughput for a connection to be lowered for a longer time as there are
more UDP packets to send.
Such spikes do not occur frequently, but they occur. The reason is the

flusher RTT calculation as the spikes disappears when the same connection
is monitored with other programs.
Figure 4.9 on page 47 shows the effect of a flush with too many packets.

At the 4 minute point the RTT spikes and it is followed by a short period of
low RTT.

4.8 Known problems

As mentioned in the previous section, a problem with the flusher is that
its RTT calculation sometimes calculates a higher RTT. It does not occur
frequently, and it is probably caused by the flusher failing to find the correct
packet even though it exists in its internal lists.

48

Part III

Evaluation

49

Chapter 5

Testing

5.1 Testbed

In order to test the queue flusher, a local testbedwas used. There are several
ways to configure a testbed, ranging from testing on physical hardware to
virtual machines running on a single computer.

5.1.1 Layout

There are several requirements for how the layout of the testbed should be.

Client a client machine for sending data.

Server a server for receiving data.

Router at least one router to route the data between the client and the
server.

Bottleneck the testbed should feature at least one bottleneck in order to
slow down the flow and create a queue.

There are several possible configurations which meet the requirements,
and a minimal topology such as the one displayed in figure 5.1 on the next
page is sufficient for testing and verification of the queue flusher functions.
The topology displayed meets all the set requirements as it contains a
bottleneck, a server, a client and a router.
Testing the queue flusher is an important task as it is the only method to

assure that the application is working correctly. There are several ways to
test the application. A network is required for testing, either real network
using real, physical hardware, a virtual network with virtual hardware or a
combination.
When using a network for testing, a homogeneous network is the

best option for assuring good performance. The reason for using a
homogeneous network environment is that we have full control over the
network and its parameters during testing. If the tests were run using
a real network, the results would have been realistic but it would have
been difficult to detect bad behavior from the application as networks are
heterogeneous due to the number of different configurations.

51

Figure 5.1: Minimal topology

5.1.2 Real hardware

Testing on real hardware would produce the most realistic results as the
data had to be sent from a physical machine, over a link to a router and
forwarded to the server. As each piece of hardware would induce its own
latency, the inherent latency in the network would be constant if not other
means of delaying packets were implemented on the devices.
The downside of using real hardware is that it is bound to a certain

geographical place and all testing would have been done in the lab where
the hardware are. Unless one of themachines are connected to the internet,
all testing would have to be done in one place.

5.1.3 VM

As opposed to real hardware there is virtual hardware such as virtual
machines which runs on a host computer. Because virtual machines run on
a host computer the testbed is fully portable and the virtual machines need
special hardware support in order to work correctly. Due to the nature of
virtual machines and the emulation of specific hardware, the machines run
a bit slower, thus it cannot be fully real time, even though it is close.
A fully virtual machine emulates a full hardware stack, from the CPU to

the display. When running a machine which has the same architecture as
the host machine, the virtual machine gets near native performance if the
host hardware supports virtualization.

5.1.4 Containers

An alternative to fully virtualized machines are containers. Containers
are lightweight machines with a minimal implementation in order to run
services isolated from the host. Each container has a dedicated network
stack and share the rest with the host machine. A container provides an
independent namespace in order for the processes to be isolated from the
host. An application running inside a container sees the container as a fully
functioning machine with no other software running.

52

Containers are available for several operating systems. Linux have
Linux container (LXC) and FreeBSD have Jails. Both LXC and Jails run
processes in isolation from the host and they have a fully functioning
network stack.
As containers are not fully virtual machines they are able to run on

lesser hardware as they have a smaller footprint and does not require
virtualization abilities on the host.

5.1.5 Common open research emulator

Common open research emulator (CORE) [2, 23] is a toolkit for creating
testbeds distributed over one or several machines. The toolkit consists of a
collection of tools, a graphical user interface (GUI) for easy management of
virtual machines and paths, a daemon which communicates with the host
and sets up the network topology described using the GUI.
The CORE project has the following features [2, 23]:

• Network lab in a box

– Efficient and scalable

– Easy-to-use GUI canvas

– Centralized configuration and control

• Runs applications and protocols without modifying them

• Real-time connection to live networks

– Hardware-in-the-loop

– Distributed with multiple COREs

• Highly customizable

In addition, CORE ships with its own container implementation. The
Linux version uses chroot for the containment of applications and netem
for restricting bandwidth, and the FreeBSD version uses Jails and the
bandwidth restriction capability found in the standard firewall packet for
FreeBSD, IPFW [23].
The CORE GUI makes it easy to create a larger network containing

links with different bandwidths. If CORE is installed on several connected
machines, the emulated network may span every single host. This may
be useful if there are many nodes needed in the emulated network. One
of the advantages using CORE is the ability to easily work with different
technologies, as CORE is able to emulate both wired and wireless networks
with nodes disconnecting and reappearing. This is useful for studies of how
the network topology works with moving nodes (e.g. a GSM network). It
is also possible to connect some nodes to the NS-34 network simulator in
order to apply more complex calculations and statistical analysis to links in
the network [2].

4http://www.nsnam.org/

53

http://www.nsnam.org/

5.2 Simulation

In order to be able to have control over the available link bandwidth and
latency there are some available tools. For Linux the queueing discipline
is the standard way of limiting bandwidth, and in conjunction with netem
make it possible to limit both bandwidth and latency for links. Some qdiscs
are advanced enough to prioritize different kinds of traffic and delay others.

FreeBSD has taken another approach by implementing IPFW, a firewall
with functionality for throttling incoming and outgoing connections.

Both qdisc and IPFW are capable of limiting the outgoing queue length,
bandwidth and latency relatively easy. IPFW is the only one that, with
relative ease, is also able to restrict incoming connections without doing
heavy modifications by loading additional kernel modules.

5.2.1 Linux: Queueing Disciplines

Hierarchial token bucket

Hierarchial token bucket (HTB) is one of the qdiscs available in Linux. It
is used for limiting link bandwidth by defining classes and defining how
much bandwidth a class gets. HTB is a classful qdisc which uses the token
generation algorithms used in token bucket filter (TBF).

HTB works, as TBF, by matching packets to available tokens. Tokens
are generated at time intervals according to the preferred bandwidth. When
the tokens are generated at the same speed as incoming data arrives each
piece of data is matched to its token and the data is forwarded. If the
incoming flow of data is slower than the token generation, the data are
forwarded. When the data flow is faster than the token generation, some
data segments will not get a token and will be dropped.

The HTB can be used together with other qdiscs making bandwidth
throttling more defined. Using HTB and netem, an emulation of a slower
link is possible to achieve by limiting bandwidth withHTB and adding delay
with netem.

5.2.2 FreeBSD: IPFW/Dummynet

IPFW is the FreeBSD answer to qdisc and netem. It is a firewall with
features for network emulation. The emulation features include queue
length and bandwidth for incoming and outgoing links. Thus, it is possible
to have a machine functioning as a bottleneck by limiting the outgoing
connection. The main difference between IPFW and qdisc is that IPFW
works on IP ranges whereas the qdisc works on network interfaces.

Being able to work on IP ranges the IPFW could be set up to delay traffic
from several network interfaces by configuring which IP ranges should be
used.

54

5.3 Data generation and logging

5.3.1 iperf

Iperf is a cross-platform software for testing the performance in a network
using TCP or UDP streams. Because iperf can act as both server and
client it inhabits some interesting properties. For TCP it has an option for
choosing congestion control for the specific stream, which makes it a good
choice when testing and studying different congestion controls and queue
management.
There are several options available when configuring iperf, such as the

possibility to set a timer. When the timer is set, iperf tries to get the transfer
finished as near the time as possible. If there are data which have not got
an ACK the transfer will be going until the ACK is received, thus some tests
might go on for longer than the set time.
During, and at the end of, a transfer iperf logs the current bandwidth

measurement and the amount of data transfered since the start. In
addition, it is able to have several streams going from client to server, both
parallel and reverse (meaning the server is the sender and the client is the
receiver).
In 2009 a complete rewrite of iperf (called iperf3) began from scratch

with the goal of reducing and optimising the code. The first major release
of iperf3 was made in January 2014 [40].

5.3.2 Web10G

The Web10G project is the successor for the Web100 project. Both projects
had the goal of implementing diagnostics for TCP streams as defined in RFC
4898 [20].
TheWeb100 project works for older Linux kernels and the development

has stopped. Web10G is the successor of Web100 and it is in active
development and new versions are made as new versions of the Linux
kernel are made available.
Certain information about TCP connections is hidden from the user.

Each TCP connection logs a lot of different metrics in order to provide
optimal performance. Metrics such as cwnd size and rtt are usually
hidden from programmers and the Web100 and Web10G projects are
working on making a method for accessing the metrics.
As Web10G and Web100 are independent projects they need to be

patched into the Linux kernel in order to be used. This means compiling
a new kernel from scratch with the patch applied, which is a bit time
consuming.

5.3.3 TCP Dump and Synthetic packet pairs

TCP Dump5 is a utility that is able to dump the packets it is capturing, to
file. The file consists of the raw packet data that TCP Dump captured. As

5http://www.tcpdump.org/

55

http://www.tcpdump.org/

TCP Dump uses libpcap (section 4.2.1 on page 35) it is possible to define
which packet types it should capture. When used in this thesis, TCP Dump
is set to dump TCP packets only.
Synthetic packet pairs (SPP)6 is a utility used to calculate the RTT based

on captures from TCPDump. For calculations SPP needs some information
about the connection, mainly the sender’s and receiver’s IP addresses and
the TCP dumps for both the sender and receiver. The IP addresses are used
to filter out the ‘correct’ packets and calculate the connection RTT.

5.3.4 TCP Flooder

Starting with the release of Linux kernel version 2.4 [35] there is a way for
retrieving information about a TCP connection by using its internal socket
reference. The data is returned using the struct tcp_info (listing 5.1
on the next page) that contains information about window sizes, maximum
segment sizes, sent and received ACKs, RTT etc.
Because this functionality exists in the Linux kernel there is no need for

patching the kernel to get a subset of the functionality Web10G provides.
As the Web10G provides an API for user space applications to use, an extra
application would be needed to log the congestion window size. Because
the Linux kernel provides the wanted data in an easier way, the information
could be retrieved when flooding the network.
The custom software that was made in this thesis as a way to test

the network is called TCP Flooder as it send data as fast as it is able
to using TCP. Thus floods the network and fills buffers. Some if its
features it shares with iperf, such as the ability to work as server and
client, and a customisable congestion algorithm. It also supports logging
of struct tcp_info to file.
For each packet sent, it pulls information from the socket and writes it

to a file. The application has currently no way of sending a file or stopping
after a given time has passed (which has to be managed externally). The
frequent logging causes rather large log files if the TCP Flooder is run for a
long time because it dumps all the information to a file.

Validating the RTTmeasurements from the Queue Flusher

The logs from the TCP Flooder are handy in several ways not only for
logging the congestion window size, but also to check the correctness of
the calculated RTT from the queue flusher (see section 4.3 on page 38 for
more details). RTT calculated with SPP is also added for further reference.
Figure 5.2 on page 58 shows the RTT measurements taken from the

flusher and the flooder logs during a run where the flusher is active. As
it shows, the RTT measurements from the flusher’s log roughly match the
RTT measurements from the flooder’s log.
In both figures 5.2 and 5.3 on page 58 the dotted vertical line marks the

network base RTT, which in this case is 10 ms.

6http://caia.swin.edu.au/tools/spp/

56

http://caia.swin.edu.au/tools/spp/

Listing 5.1: struct tcp_info [35]

1 /* Metrics . */
2 __u32 tcpi_pmtu ;
3 __u32 tcp i_rcv_ssthresh ;
4 __u32 t c p i_ r t t ;
5 __u32 t cp i_ r t t v a r ;
6 __u32 tcpi_snd_ssthresh ;
7 __u32 tcpi_snd_cwnd ;
8 __u32 tcpi_advmss ;
9 __u32 tcp i_reorder ing ;
10

11 __u32 t cp i_rcv_r t t ;
12 __u32 tcpi_rcv_space ;
13

14 __u32 t cp i_ to t a l_ re t r ans ;
15 } ;
16

17 /* for TCP_MD5SIG socket option */
18 #define TCP_MD5SIG_MAXKEYLEN 80
19

20 struct tcp_md5sig {
21 struct __kernel_sockaddr_storage tcpm_addr ; /* address assoc iated */
22 __u16 __tcpm_pad1 ; /* zero */
23 __u16 tcpm_keylen ; /* key length */
24 __u32 __tcpm_pad2 ; /* zero */
25 __u8 tcpm_key [TCP_MD5SIG_MAXKEYLEN] ; /* key (binary) */
26 } ;
27

28

29 #endif /* _LINUX_TCP_H */

When studying the graph, one have to take into account that the flusher
was started before the flooder, thus, the initial measurements may differ
slightly.
As displayed in figures 5.2 and 5.3 on the next page there are some

minor differences in the measured RTT, but they are not big enough to
invalidate the flusher results. The differences may come from the way the
RTT is measured and calculated in both instances. Both the Linux TCP
algorithm and the flusher use an EWMAwith α= 7/8, and there may be some
differences in the precision of the measurements. In addition, there may
be some minor differences between the runs due to minor variance in the
testbed load.
The calculated RTT from SPP differs from the other RTT calculations in

that it has a larger portion with a high RTT. This increase in high RTT is
probably due to the fact that the SPP manages to calculate a more correct
RTT than the flooder and flusher. Graphs showing the RTT calculations
from SPP shows the effect of the flusher as large spikes, as shown in
figure 5.4 on page 59. The graph shows a run where the base RTT is 100ms,
a run with a lower base RTT would make a graph where the spikes are
difficult to see.
Overall, the RTT difference between the flusher and the flooder is

57

B
as
e
R
T
T

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120 140 160 180 200 220 240
RTT (ms)

P
ro
ba
bi
li
ty

RTTmeasurements using

Flooder

Flusher

Synthetic Packet Pairs

Figure 5.2: Difference between measured RTT and actual RTT with an
active flusher.

B
as
e
R
T
T

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120 140 160 180 200 220 240
RTT (ms)

P
ro
ba
bi
li
ty

RTTmeasurements using

Flooder

Flusher

Synthetic Packet Pairs

Figure 5.3: Difference between measured RTT and actual RTT with a
passive flusher.

too small to ignore the RTT measurements from the flusher. There may
always be differences in measured values due to internal differences in the
calculation of RTT, even though the measurements ideally should be equal
to each other.

5.4 Testing

The technologies used for testing are as described in earlier sections. Using
a Linux host which hosts all other software, containers are used as clients
connected to a discrete network with its own IP range in order to ensure
that the network traffic is not disturbed by passing traffic from other
networks.
The container implementation is the one which is bundled with CORE

58

100

150

200

250

300

350

0 1 2 3 4 5
Time (minutes)

R
T
T
(m
s)

variable RTT Min.RTT Max.RTT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5
Time (minutes)

T
h
ro
u
gh
p
u
t
(m
bp
s)

Figure 5.4: Graphs showing the calculated RTT using SPP in addition to
throughput calculated from the same TCP dumps with an active flusher and
a base RTT of 100 ms.

(section 5.1.5 on page 53) as it is easy to set up and configure. Even though
they are separate implementations, they use a standard Linux container
implementation as a base, thus the CORE container implementations
should work as expected.
For the network emulation, both ipfw and netem are used in separate

configurations. The configuration using ipfw is running in a virtualmachine
due to the way ipfw works. Ipfw is only able to relay data between
separate IP ranges, which is not an easy task when it is running on the host
machine, thus it is running inside a virtual machine. The virtual machine is
running Fedora 18 [12, 38] with the Linux implementation of ipfw. Another
possibility is to use a virtual machine running FreeBSD [36, 39] as it has
ipfw installed as default.
The other possibility for restricting bandwidth and adding delay is a

configuration using bothHTB and netem, which is a Linux native andworks
on links created between virtual machines and containers without having
to deal with IP addresses. As netem and qdiscs are native to Linux it is

59

possible to set up a container based network on the host machine which
provides less overhead than fully viritualized machines. Thus, the reaction
and performance is near real time.
The application used for sending data is the custommade ‘TCP Flooder’

as it supports logging of the congestion window and struct tcp_info in
order to get accurate data from the host.

60

Chapter 6

Results and discussion

6.1 Introduction

This chapter introduces the results of the tests run according to the
scenarios introduced in section 6.2.
The graphs displayed in section 6.3 on page 63 are created from data

collected during runs where the flusher was running. Some graphs show
runs where the flusher is passive, only collecting data, while other graphs
display data from runs where the flusher is active. The software used for
logging the active connections was TCP Dump and the RTT is calculated by
SPP from the dumps generated by TCP Dump. In addition, the throughput
graphs are generated by the same TCP dumps as the RTT.
All runs are done according to the scenarios in section 6.2 with different

network base RTT. Unless otherwise described, the graphs show runs
where the bottleneck buffer is capable of holding a queue with a maximum
length of 100 packets (150 KB). The bottleneck buffer sizes range from 10
packets to 100 packets with an increment of 10 packets. The collected data
is from runs with the following bottleneck buffer sizes: 10, 20, 30, 40, 50,
60, 70, 80, 90 and 100 packets. Every run, whether it was done with an
active or a passive flusher, ran for 5 minutes. 5 minutes should be long
enough to simulate a big file transfer, even though a lower time should
suffice to check the flusher performance.

6.2 Scenarios

The flusher is run on networks that have the configurations that are
presented in table 6.1 on the next page. The scenarios listed are created
to see how the flusher is reacting under certain conditions. Every scenario
is run using both Cubic and Reno as congestion control, using both netem
and ipfw in order to be able to determine if the ‘queue flusher’ has a positive
effect on the RTT. The results are presented and discussed in section 6.3 on
page 63.
The network configurations presented in table 6.1 on the next page are

selected in order to force a bottleneck queue which the flusher should try
to empty. As the network is a ‘black box’ the queue flusher does only know

61

Table 6.1: Tests where the fast link is 10Mbps and the slow link is 5Mbps

Fast link (10 Mbps) Slow link (5 Mbps)
One-way delay One-way delay Total RTT Theoretical link BDP
20 ms 30 ms 100 ms 41
10 ms 15 ms 50 ms 20
2 ms 3 ms 10 ms 4

how many packets are sent and how many ACKs are received. Values such
as RTT and throughput aremeasured and calculated for each received ACK.
The scenarios are run with the mentioned network parameters and with

different flusher thresholds in order to determine which threshold has the
best results with regards to RTT and throughput, and how the flusher
performs in comparison to existing active queue managers. The function
of the thresholds is to determine when the flusher should start flushing. A
threshold of 2×base rtt would cause the flusher to flush when the current
RTT is at least 2×base rtt. The selected thresholds are:

• 1.5×base rtt
• 1.7×base rtt
• 2×base rtt

The BDP values in table 6.1 are calculated as described in section 2.2.4
on page 10, the theoretical BDP is the maximum calculated amount of
packets the sender may send before the packets are queued in the buffer.
The theoretical BDP in table 6.1 is the limit for when packets are queued.

If the congestion window for a connection increases above this threshold,
packets are probably queued. The reason for this is that a TCP connection
observes the link from the outside and therefore the congestion window size
is BDP +queue.

pipe size=
⌊

BDPl i nk

8×1500

⌋
= bband wi d th × r t tc (6.1)

The BDP is a measure of the amount of packets the link is able to
transfer in a RTT, this gives a minimum congestion window value in order
to judge the results.
The calculated BDP is important and needs to be taken into account.

A link with a low BDP results in a more reactive flusher than a link with
higher BDP. The BDP is a measure of the amount of packets the link is able
to transport. A connection with a low BDP would react quicker to packet
loss than a connection with a higher BDP. If the link has a BDP of 4, it takes
3 transferred packets before a connection reacts to a packet loss. A link with
a BDP of 41 would transfer an additional 40 packets before a packet loss is
detected.
The latencies should represent values which are found on connections

in the internet. An RTT of 10 ms is typical when connecting to servers that
are geographically close. A higher RTT indicates connections to servers

62

that are further away. When measuring an RTT of 100 ms or more, the
servers are either on the other side of the earth, the connection is relayed
via satellites or there is some congestion on the link. Thus, the RTTs of
10 ms, 50 ms and 100 ms should represent realistic RTT values.

6.3 Results

Figures 6.2 to 6.7 on pages 65–70 show the differences in measured mean
RTT when the flusher is passive and active, i.e. the connection is making a
queue and the flusher tries to lower the RTT by creating a short congestion
in order to allow TCP to react, and then the queue to drain. Each graph
shows box plots of the measured RTTs in that run.
As stated in [37]: ‘The upper and lower “hinges” correspond to the first

and third quartiles (the 25th and 75th percentiles). The upper whisker
extends from the hinge to the highest value that is within 1.5× IQR of the
hinge, where IQR is the inter-quartile range, or distance between the first
and third quartiles. The lower whisker extends from the hinge to the lowest
value within 1.5×IQR of the hinge. Data beyond the end of the whiskers are
outliers and plotted as points (as specified by Tukey)’. Both the IQR and the
percentiles are calculated as according to [21]. An example plot, describing
the limits are displayed in figure 6.1 on the next page.
The runs have different queue lengths at the bottleneck in order to get a

picture of how the flusher works with different queue lengths.
As the graphs show, the flusher has a significant impact on the mean

RTT when it is running. The mean RTT is significantly lowered when the
flusher is active as opposed to when it is passive, while the maximum RTTs
are equal for a run with a certain queue length. This is because the buffer
is filled during the flushes and some packets experience a maximum delay.
When the buffer is filled a spike occur in the graph, in the box plot the
spikes are represented by the outliers. As the spikes only occur when a
certain condition occurs and the flusher tries to flush the queue, there are
longer periods with lower RTT. This is the reason for the lower mean RTT
when the flusher is active, as opposed to when it is passive.
Figures 6.8 and 6.9 on page 71 and on page 72 show that with the

reaction time of TCP Cubic, the connection seems to be responding faster
to congestion than a connection using TCP Reno. This is also displayed in
figures 6.2 to 6.7 on pages 65–70.
As both figures 6.8 and 6.9 on page 71 and on page 72 display, both

TCP Cubic and TCP Reno are able to fill the bottleneck buffer as the
maximum congestion window size on both runs are about 110 packets,
which is more than four times the link BDP. Table 6.1 on page 62 shows
that the appropriate BDP for a link with an RTT of 50 ms is 20 packets. As
the congestion window roughly doubles each RTT, the congestion window
would be 40 packets within one RTT. 40 packets ‘in-flight’ translates to a
bottleneck queue of 20 packets. If the connection closes, the queue would
drain within one RTT. Any higher queue would take longer to drain and
create extra delay for concurrent connections. A congestion window of 110

63

Maximum

Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)Q3 +1.5× IQR (whisker end)

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

u
p
p
er
w
h
is
ke
r

Q3 (upper hinge)

Median

Q1 (lower hinge)

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

lo
w
er
w
h
is
ke
r

Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)Q1 −1.5× IQR (whisker end)

Minimum

Figure 6.1: Descriptive example of the boxplots used.

packets would roughly translate to a queue of 110− 20 = 90 packets. This
queue would drain after roughly 216 ms, as shown in equation (6.4). As
shown, the time it takes for a queue to drain does not depend on the link
delay.

del ay = 90 packet s

5 Mbps ×15 ms
×15 ms (6.2)

=90×8×1500b

5×106bps
(6.3)

=216 ms (6.4)

The 5 Mbps link with 15 ms delay is the slowest link, which is the link
transferring packets from the bottleneck. This link is listed in table 6.1 on
page 62. The TCP Cubic congestion window size is a bit higher than the
size of the TCP Reno congestion window due to the exponential increase
that TCP Cubic uses, as the next congestion window increase is larger
relative to the last. Regardless, the highest measured congestion window
size when using TCP Cubic seems to be one or two packets more than

64

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.2: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 1.5 and TCP Reno

with TCP Reno. The congestion window size was measured using the logs
from the TCP Flooder, which was introduced in section 5.3.4 on page 56.
The flooder queries the active socket for information, which includes the
current EWMA RTT measurement and the size of the congestion window.
Testing showed that the congestionwindow size pulled from the socket does
not include the initial ‘slow start’ period. This was discovered when the
congestion window logs from the flooder were compared to logs made by
tcpprobe.

As described earlier, an appropriate congestion window size for the link
would be about 40 packets, which is the double of the theoretical BDP
displayed in table 6.1 on page 62. The reason for the double BDP size is
that one BDP takes one RTT to transfer. Thus, the queue in the bottleneck
buffer is a ‘good’ queue as it is able to disappear within one RTT after
the transmission ends. When the congestion window size is more than
the double of the theoretical BDP for a link, the queue at the bottleneck
would not disappear as quickly andwould cause a significant delay for other
connections.

65

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.3: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 1.5 and TCP Cubic

Figures 6.2 to 6.7 on pages 65–70 show that there is no visible difference
between the runs with TCP Cubic and TCP Reno. Because of the different
nature of the two algorithms, some variations were expected. The graphs
do not show a big difference between the two algorithms in any of the runs.
Runs done with different base RTT might display different results because
a different number of packets are sent before the algorithm responds.
Because the maximum buffer size is set for a certain run, the maximum
recorded RTT should be the same regardless of the algorithm used. The
minimum RTT should also be the same. When there are concurrent
connections, the results might be different as the algorithms have to
respond to the additional connection. When those conditions arise, TCP
Cubic might perform better than TCP Reno when the flusher is passive.

Figures 6.10 to 6.12 on pages 72–74 shows the gain in RTT between runs
where the flusher is passive and active. Every figure shows a run with a
maximum queue length of 100 packets at different base RTTs. Because the
graphs show the gain in RTT between runs, negative values indicates that
the RTT was higher when the queue flusher is active than it was when the

66

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.4: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 1.7 and TCP Reno

flusher was inactive. A higher positive difference indicates that the flusher
is doing its job and reducing the mean RTT in the network. A low gain
indicates similar RTT measurements in both runs, even though the RTT
difference is positive. Different runsmay have the same distribution in RTT
even though the mean RTT differ.

As the graphs show, the runs using TCP Cubic as congestion algorithm
usually is the ones where the improvement is best. When using a flood
threshold of 1.5 or 1.7 the improvement is better than if the flood threshold
is set to 2. At runs with low base RTT the improvement is about the
same whether the threshold is set to 1.5, 1.7 or 2 times the base RTT. At
higher RTTs a threshold of 1.5 seems to give the best overall improvement.
The improvements shown in figures 6.10 to 6.12 on pages 72–74 does
display different RTT gains for TCP Reno and TCP Cubic, where TCP Cubic
improves faster. When the base RTT increases, the difference between the
TCP algorithms increases. Figure 6.12 on page 74 shows that for a base
RTT of 100ms, TCP Reno has the best overall improvement. The difference
between the best and worse improvement is about 25ms, which probably is

67

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.5: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 1.7 and TCP Cubic

noticeable. Figure 6.12 on page 74 shows that the TCP Reno, when running
a flusher with a threshold of 1.5 has the best improvement, with the runs
where the threshold is 1.7 and 2, not far behind. It is only in figure 6.12
on page 74 that TCP Reno has the best improvement, with lower base RTT,
TCP Cubic does it better. Figure 6.11 on page 73 shows that the algorithms
have roughly the same improvement when the flusher is active. The main
difference is that TCP Cubic improves faster than TCP Reno, but TCP Reno
has a more linear improvement. There could be multiple reasons for the
lower improvement when the connection uses TCP Cubic. One reason
might be that TCP Cubic is reacting faster than TCP Reno, and the flusher
may flush more often. More often flushes with TCP Cubic may be an effect
of the TCP Cubic exponentially increasing congestion window, as it does
not take as long time to reach the threshold and activate the flusher. When
the flusher is activated, it sends a load of UDP packets to flush the queue
(as described in chapter 4 on page 31). A higher amount of packets on the
link would cause the RTT to spike more often, thus raising the mean RTT
and lowering the overall gain.

68

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.6: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 2 and TCP Reno

Figures 6.13 to 6.15 on page 76 and on page 77 shows graphs of themean
RTT during runs with a base RTT of 10 ms, 50 ms and 100 ms. The graphs
show that the runs with a flood threshold of 1.5 have the lowest mean RTT
in addition to the highest gain when the flusher is passive and active. The
gain is shown in figures 6.10 to 6.12 on pages 72–74.
For lower base RTTs the difference between the different thresholds is

difficult to see, as displayed in figure 6.13 on page 76. What is visible, is
that TCP Cubic has a lower median RTT than TCP Reno. This effect might
be connected to the slow increase of congestion window in TCP Reno. A
slower, steadier increase does not drop packets before the queue is full.
With an increase as the one in TCP Cubic, packets are dropped more often
due to the exponential increase of the congestion window. This might lead
to a slightly lower mean RTT.
When the base RTT is increasing, the improvements becomes more

significant. In the run with 100 ms base RTT (figure 6.15 on page 77) it
is clear that when the flusher is configured with a threshold of 1.5 or 1.7, the
improvements are best. Which is backed by both figures 6.11 and 6.12 on

69

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

R
T
T
(m
s)

Queue flusher status

Active

Passive

Figure 6.7: Differences in RTT over different queue lengths using a base
RTT of 50 ms, a flooder threshold of 2 and TCP Cubic

page 73 and on page 74 and figures 6.14 and 6.15 on page 76 and on page 77.
Studying the graphs for the improvement in RTT and the median RTT for
the runs using TCP Cubic with a flood threshold of 2, displays a trend where
the flood effect is better than it was for TCP Reno. Even though the results
are relatively equal, and TCP Reno has a better improvement in the lower
end of the scale, TCP Cubic does it marginally better when the whole run is
taken into account.

A reason for the slightly lower effectiveness for TCP Cubic connections
probably lies in the way the flusher monitors packets and deciding when to
flush. Because the flusher measure the minimum RTT for ten successive
packets, it requires the measured minimum RTT to be higher than the
base RTT at least three times in a row (as described in section 4.5 on
page 41). Because this is the same as finding the minimum RTT of the last
30 succeeding packets, the time interval might be larger than it optimally
should when operating with TCP Cubic connections. When the connection
bandwidth and RTT differ between connections, the time it takes for the
thirty packets to be captured differ from connection to connection. If a

70

40
60
80
100
120
140
160
180
200
220
240
260
280

0 1 2 3 4 5
Time (minutes)

R
T
T
(m
s)

variable RTT Min.RTT Max.RTT

10
20
30
40
50
60
70
80
90
100
110
120

0 1 2 3 4 5
Time (minutes)

C
W
N
D
(p
ac
ke
ts
)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 1 2 3 4 5
Time (minutes)

T
h
ro
u
gh
p
u
t
(M
bp
s)

Figure 6.8: Graphs diplaying a passive flusher on a link with a base RTT of
50 ms and a link using TCP Cubic and a bottleneck buffer of 100 packets.

packet drop occurs while capturing packets, and the minimum RTT of
the current sample drops below the threshold it takes at least 10 packets
until the flusher tries to flush the connection again, because the flusher
fills three samples of 10 packets and measures the lowest RTT in each
sample. When the minimum RTT in each of 3 successive samples is higher
than or equal to the threshold, the flusher tries to flush the queue. If
the congestion avoidance algorithm is exponentially scaling the congestion
window, such as TCPCubic does, the congestion avoidance algorithmmight
discover a packet drop before the flusher react, due to the amount of packets
needed. When such an occasion happen, the total RTT improvement may
be minimised as the congestion avoidance algorithm is reacting quicker
than the flusher, actively disabling the flusher. This should happen on
connections with a low BDP and a reasonably sized buffer.

The effect of the measured minimum RTT can also be found when
studying the graphs for TCP Reno, but as Reno is increasing the congestion
window slower, there is a higher chance for a successful flush as the flusher
tries to flush the connection as long as the minimum RTT of the last

71

40
60
80
100
120
140
160
180
200
220
240
260
280

0 1 2 3 4 5
Time (minutes)

R
T
T
(m
s)

variable RTT Min.RTT Max.RTT

10
20
30
40
50
60
70
80
90
100
110
120

0 1 2 3 4 5
Time (minutes)

C
W
N
D
(p
ac
ke
ts
)

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0 1 2 3 4 5
Time (minutes)

T
h
ro
u
gh
p
u
t
(M
bp
s)

Figure 6.9: Graphs diplaying a passive flusher on a link with a base RTT of
50 ms and a link using TCP Reno and a bottlenck buffer of 100 packets.

0.00

0.25

0.50

0.75

1.00

-100 -50 0 50 100 150 200
RTT gain (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic

TCP Reno

Figure 6.10: Gain in RTT with a base RTT of 10 ms and a bottleneck buffer
of 100 packets. Only one graph is shown per congestion algoritm as there
is no visible difference betwen the thresholds.

72

0.00

0.25

0.50

0.75

1.00

-200 -150 -100 -50 0 50 100 150 200 250
RTT gain (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic, flusher threshold: 1.5

TCP Cubic, flusher threshold: 1.7

TCP Cubic, flusher threshold: 2

TCP Reno, flusher threshold: 1.5

TCP Reno, flusher threshold: 1.7

TCP Reno, flusher threshold: 2

Figure 6.11: Gain in RTT with a base RTT of 50 ms and a bottleneck buffer
of 100 packets.

30 packets is above the base RTT. Thus, raising the probability for the
flusher to be more active, when dealing with TCP Reno connections where
the buffer is slightly larger than 2×bd p. A consequence of measuring the
minimum RTT of 30 successive packets is that it allows the queue (and the
congestionwindow) to increase by 30 packets because of the reactive nature
of the flusher and the TCP congestion control algorithms. For buffers with
a max queue size set to 30 packets or fewer, the flusher should remain
inactive. If a connection has a high base RTT, the maximum queue length
before the flusher activates is Qleng th +30p, which for a connection with a
base RTT of 100 ms and a bandwidth of 5 Mbps would be a queue length of
12 packets, thus making the minimum queue length 42 packets before the
flusher kicks in. In reality the queue might be as large as 71 packets before
the flusher kicks in, thus creating a queue which is longer than necessary.

Based on the previous reasoning, a smaller packet sample size should let
the flusher respond quicker and be able to be more active when using TCP
Cubic connections, thus reducing the worst case scenario. Even though
a smaller sample size probably is going to help the responsiveness, the

73

0.00

0.25

0.50

0.75

1.00

-200 -150 -100 -50 0 50 100 150 200
RTT gain (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic, flusher threshold: 1.5

TCP Cubic, flusher threshold: 1.7

TCP Cubic, flusher threshold: 2

TCP Reno, flusher threshold: 1.5

TCP Reno, flusher threshold: 1.7

TCP Reno, flusher threshold: 2

Figure 6.12: Gain in RTT with a base RTT of 100ms and a bottleneck buffer
of 100 packets.

sample size should not be smaller than necessary. A sample size of 1 would
flush the moment the measured RTT is higher than the base RTT. In the
same way such responsiveness is good, it is also a bad thing when taking
the flushing into account. As the flusher sends UDP packets in an attempt
to flush the queue, the large amount of sent packets could have a negative
effect on throughput and possibly lead to starvation, which is unwanted.
Starvation is achieved when an unresponsive connection uses the whole
capacity of a link. Because it is unresponsive, other connections do not get
their packets to their receiver and the connection break.
Reducing the sample size to 10 packets shouldmake the flushermore re-

sponsive and avoid starvation of the connection. Following the calculation
described earlier, the flusher would activate when del ay

(
Qleng th +10p

) >
baser t t . The minimum queue length where the flusher would activate is
32 packets, which is more likely to be nearer the congestion window size
on that specific connection, while the higher limit where the flusher could
activate is at 52 packets as the limits would be [32,52] as opposed to [12,72].
The ranges show the bottleneck queue length before the flusher

74

activates. In the best case scenario the 30 packet sample size is better, but
as the maximum value for the 10 packet sample size is lower, the worst
case scenario is definitively better. TCP Reno may fall under the best case
scenario, but the TCP Cubic algorithm would fall under the worst case
scenario due to its exponential nature. Thus, a lower sample size would
lead to a more active flusher when using TCP Cubic. Which in turn allows
it to be better when dealing with TCP Reno as the flusher is more reactive.
Another optimisation is to allow a queue of a certain length regardless of

the bandwidth. When a sample size of a certain number of packets is used,
the time is changing with the bandwidth. Thus, a slow link takes longer to
get to the wanted sample size than a link with higher bandwidth. Using a
time sample could also be a viablemethod to determinewhen to activate the
flusher. As humans measure time in time and not packets, a time limited
function might be appropriate. The possible downside is that it will check a
variable amount of packets in response to the link bandwidth. The sample
size could range from a few packets to several hundred when a sample size
is for instance 100 ms.
There should be little to no serious impact when using a time based

sample size as opposed to a packet based sample size as there are positive
and negative sides with both methods. For a time based sample size, the
bottleneck queue length might be high for a certain connection. Which
could cause, when another connection share the bottleneck, the slower
connection’s RTT to rise because the length of the bottleneck queue length.
This is the case if the queue is a FIFO queue and does not have implemented
an AQM like PIE or CoDel (for a brief on CoDel and PIE see sections 3.10
and 3.11 on page 23 and on page 25). As for the packet limited sample size,
if configured incorrectly it will cripple the effectiveness of the flusher as the
flusher will likely not activate as often and may not discover the buffer size.
While the time limited sample size will check for need of flushing once in
a specified time interval, the packet limited sample size will check for the
need of flushing each time a set amount of packets have been captured. The
packet limited sample size may be better at keeping a low queue length at
the bottleneck, but at the risk of reducing throughput if the sample size
is too small. Reduced throughput is unwanted due to the effectiveness
of other transfers. As the flusher sends unnecessary packets, which only
purpose is to be dropped at the receiver, the packets adds unnecessary
traffic if too many are sent in rapid succession. Due to this, the flusher
should not be overly aggressive, but neither too slow as that may also affect
the overall responsiveness in the network.
A time limited sample size may decrease the throughput of connections

with a high base RTT. If the sample size is not long enough, the flusher
could be trying to flush the queue several successive times. This increase in
packets could negatively impact the network throughput and connections
with high RTTs would react slowly to the flushes.
Another improvementmay be to only let the flusher become active when

the minimum measured RTT in a sample size is a multiple of the network
base RTT and higher than a set point, i.e. 50 ms. This would allow the
flusher to remain inactive if there is an AQM present at the bottleneck or

75

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
RTT (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic

TCP Reno

Figure 6.13: RTT with a base RTT of 10 ms and a bottleneck buffer of
100 packets. Only one graph is shown per congestion algoritm as there
is no visible difference betwen the thresholds.

0.00

0.25

0.50

0.75

1.00

50 100 150 200 250 300
RTT (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic, flusher threshold: 1.5

TCP Cubic, flusher threshold: 1.7

TCP Cubic, flusher threshold: 2

TCP Reno, flusher threshold: 1.5

TCP Reno, flusher threshold: 1.7

TCP Reno, flusher threshold: 2

Figure 6.14: RTT with a base RTT of 50 ms and a bottleneck buffer of
100 packets.

76

0.00

0.25

0.50

0.75

1.00

100 150 200 250 300 350
RTT (ms)

P
ro
ba
bi
li
ty

Run

TCP Cubic, flusher threshold: 1.5

TCP Cubic, flusher threshold: 1.7

TCP Cubic, flusher threshold: 2

TCP Reno, flusher threshold: 1.5

TCP Reno, flusher threshold: 1.7

TCP Reno, flusher threshold: 2

Figure 6.15: RTT with a base RTT of 100 ms and a bottleneck buffer of
100 packets.

if the network base RTT is very low and/or the bottleneck buffer is of a
reasonable size, which cannot support queues that have a large impact on
RTT.

In addition to the flusher activation at the flood threshold and the
minimum measured RTT in the sample size is at least 50 milliseconds, the
flusher also activates when there is at least 30 seconds since the last flush.
This way it should be able to improve the RTT when there is a buffer in the
bottleneck which is capable of holding a very large queue which induces a
large delay. As the forced flush after 30 seconds is implemented in such
a way that it disregards the measured minimum RTT for the last sample
size, the flusher tries to flush at 30 second intervals if none of the other
conditions occurs. Even though the flusher only forces a flush when it is
30 seconds since the last flush, the effect of this should only be visible on
runs where the bottleneck buffer is reasonably sized and the RTT does not
reach the set threshold. On runs where the buffer is able to sustain a queue
that induces a large delay, the forced flush will not happen unless the buffer
never fills and the base RTT is high. This might happen when the flusher is

77

started during an ongoing connection and the bottleneck buffer is huge.
After the first forced flush, the flusher should resume normal operation
where it measures the RTT against a set threshold.

6.3.1 Throughput

The differences in RTT are mainly because the flushing as the flusher sends
UDP packets which momentarily generate more traffic. The increased
traffic fills the buffer and the TCP algorithm shrinks its congestion window.
This is equal to decreasing the load on the link by sending fewer packets.
The expected result is that the throughput decreases during flushes, but it
should improve one RTT after the queue was flushed.
Figure 6.16 on the next page is a box plot showing the differences in

mean throughput for queue lengths from 10 to 100 packets. The run is
made using TCP Reno with a flusher threshold of 1.7 and a base RTT of
50 ms. The flusher threshold marks the threshold for when the flusher
starts to flush. A threshold of 1.7 is equal to measuring RTTs which is
greater than or equal to 1.7×base RTT. When the threshold is exceeded,
the flusher tries to flush the queue.
As figure 6.16 on the facing page shows, the throughput does not suffer

much when the flusher is active. The mean throughput is lower when it is
active, but the maximum throughput is about the same.
The graphs using runs with a base RTT of 50 ms, shows the throughput

declining when the flusher kicks in. As shown in the graph, the throughput
when the flusher is active and passive is equal when the buffer size is
10 packets. The reason for this is that the flusher does not kick in because
of the queue not managing to create a large enough delay. When the buffer
is able to sustain a queue of 60 packets, the throughput has reached its
lowest point. The graphs showed that every increment in queue size above
60 packets did not decrease the throughput further.
When the flusher is not running there is no other traffic on the line and

maximum throughput is achieved. A standing queue in the buffer leads to
the suffering of network responsiveness when throughput is at its highest.
Figure 6.17 on the next page shows the same box plot as figure 6.16

on the facing page. The only difference is that TCP Cubic is used for the
runs, not TCP Reno. As shown, the throughput is almost identical to the
throughput in figure 6.16 on the next page which shows that both TCP Cubic
and TCP Reno are able to sustain the same throughput on long transfers.
As figures 6.18 to 6.20 on pages 80–82 show, there are some differences

in throughput between the runs with different flooder thresholds. In every
figure, an active flusher with a threshold of 1.5 had the biggest impact on
throughput. Even though the threshold had a positive impact on RTT,
the active flusher resulted in an increase in traffic. Thus, lowering the
throughput because of the increased link load.
Figure 6.18 on page 80 shows two graphs, one for TCP Cubic and one for

TCP Reno. The reason is that the difference in throughput was difficult to
see. This may be because of the flusher was configured to flush connections
where the measured RTT was over 50 ms. Giving a standing queue at the

78

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

T
h
ro
u
gh
p
u
t
(M
bp
s)

Queue flusher status

Active

Passive

Figure 6.16: Difference in throughput when the flusher is running on a link
with base RTT of 50 ms, TCP Reno and has a threshold of 1.7.

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100
Queue length (packets)

T
h
ro
u
gh
p
u
t
(M
bp
s)

Queue flusher status

Active

Passive

Figure 6.17: Difference in throughput when the flusher is running on a link
with base RTT of 50 ms, TCP Cubic and has a threshold of 1.7.

79

0.00

0.25

0.50

0.75

1.00

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

TCP Cubic

TCP Reno

Figure 6.18: Throughput when using an active flusher and a base RTT of
10 ms with a buffer size of 100 packets. As the differences between the
thresholds were miniscule, only one graph per TCP algorithm is showed.

bottleneck. As the flusher responds a short time after an RTT of 50 ms is
reached, the differences are minuscule.
When the base RTT is increased, and the BDP follows, the flusher

is responding slower. When the flusher responds slower, the thresholds
get more precedence as they dictate when the flusher should respond to
a queue. As shown in figures 6.19 and 6.20 on the next page and on
page 82, a flusher running with a threshold of 1.5 has a bigger impact on
the throughput than the higher thresholds. The throughput is best when
the flusher runs with a threshold of 2. As shown in figures 6.14 and 6.19 on
page 76 and on the facing page, TCP Cubic has slightly lower RTT than TCP
Reno and in addition to the throughput being slightly lower. This shows
that the exponentially expanding congestion window of TCP Cubic has its
downsides. As TCP Reno has slightly higher overall RTT it does transfer
packets better because of less variation in RTT, giving a higher throughput.
Figures 6.19 and 6.20 on the next page and on page 82 show that there

are some differences between the thresholds. As observed, and discussed
earlier, a lower threshold results in a lower RTT and a lower throughput.
Figure 6.15 on page 77 shows a small increase in RTT when the flusher

threshold is raised from 1.5 to 1.7. The difference in RTT between the
thresholds 1.5 and 1.7 is lower than the RTT increase between the runs
with thresholds 1.7 and 2. This is true for both TCP Cubic and TCP
Reno. A similar correlation is shown in figure 6.20 on page 82, where the
throughput difference between the runs with thresholds of 1.7 and 2 is lower
than it is for the runs with thresholds of 1.5 and 1.7.
The current suggestion for an appropriate flusher threshold is 1.7 ×

base RTT.

80

0.00

0.25

0.50

0.75

1.00

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

TCP Cubic with a flusher threshold of 1.5

TCP Cubic with a flusher threshold of 1.7

TCP Cubic with a flusher threshold of 2

TCP Reno with a flusher threshold of 1.5

TCP Reno with a flusher threshold of 1.7

TCP Reno with a flusher threshold of 2

Figure 6.19: Throughput when using an active flusher and a base RTT of
50 ms with a buffer size of 100 packets.

81

0.00

0.25

0.50

0.75

1.00

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

TCP Cubic with a flusher threshold of 1.5

TCP Cubic with a flusher threshold of 1.7

TCP Cubic with a flusher threshold of 2

TCP Reno with a flusher threshold of 1.5

TCP Reno with a flusher threshold of 1.7

TCP Reno with a flusher threshold of 2

Figure 6.20: Throughput when using an active flusher and a base RTT of
100 ms with a buffer size of 100 packets.

82

6.3.2 Active queue managers

In order to see how the queue flusher’s efficiency compares to existing
technologies, some AQMs needed to be tested. The variants selected were
CoDel and PIE. These are self adjusting AQMs, meaning they generally
work just fine when configured with their default values. In special cases
they may need to be configured differently, but the measurements here are
donewith the default parameter values because the ‘queue flusher’ also uses
an adaptive algorithm.
The default parameters of CoDel and PIE are:

• CoDel [11]

Queue limit 1000 packets

Target queue delay 5 ms

Update interval 100 ms

• PIE [25]

Queue limit 1000 packets

Expected queue delay 20 ms

Drop probability update frequency 30 ms

The runs to measure the performance of both CoDel and PIE weremade
with a passive flusher tomeasure the RTT in addition to TCPDump running
at the sender and receiver. An active flusher should not have an impact due
to the RTT being kept under control by the AQMs. If the flusher had tried to
flush the queue, most of the packets would be dropped as the active AQM
would step into action. As the queue is handled by the AQM, it quickly
drains even though the flusher were flooding the network, which ensure a
responsive network connection.
The reason for not using FQ Codel is that it is essentially the same as

CoDel, it is only the scheduling process that differs. CoDel implements
only one queue, while FQ Codel uses a Fair Queueing scheduler that stores
packets in different queues. The decision of which queue a given packet
is sent to, is done by a hashing algorithm that takes the IP addresses
and ports of the connection into account. As the scheduler is the only
difference between FQ Codel and CoDel and the tests are run with one
lengthy transfer, the FQ Codel results would be indistinguishable from the
results when using CoDel.
As shown in figures 6.21 to 6.26 on pages 84–89 the flusher does a

reasonable job when compared to the existing AQMs. It is expected that the
flusher is not performing as well as CoDel or PIE as it temporarily increases
the link load, causing spikes in the RTT. The existing AQMs know exactly
what is going on inside the device they run on while the flusher has to guess
in order to get a result. The RTT does not spike when a packet is dropped,
this makes the RTT lower when using AQMs.
In the best case scenarios the flusher is almost on par with the PIE AQM

while it differ more in other scenarios. Figures 6.21, 6.23 and 6.25 on the

83

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250 300
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.21: RTT with a base RTT of 10 ms using TCP Reno

current page, on page 86 and on page 88 show runs using TCP Reno. When
the runs with TCP Reno are compared with the runs that used TCP Cubic,
they show a better improvement. The improvement may be caused by the
slower increase of the congestion window. The queue is 100 packets, and
a flush may be able to stop the TCP Reno transmission earlier. A packet
drop may be forced because the UDP packets fill the buffer before the TCP
packets reach the bottleneck. With TCP Cubic, the congestion window
increases exponentially, which may cause the buffer to be fuller when a
flush happens. This suggests that the flush may not have the same effect
with TCP Cubic as with TCP Reno.

As shown in figures 6.21 and 6.22 on this page and on the next page,
TCP Cubic has a slightly better performance than TCP Reno on links with a
low base RTT. The same effect should also be seen on smaller buffer sizes.
When using either TCP Reno or TCP Cubic the RTT is almost on par with
PIE when the link has a low base RTT. The flusher is almost as effective as
PIE because of the probability algorithm PIE uses to determine amaximum
queue length at the router. As the algorithm uses probability and have
target queue delay it does it best to stay below (as described in section 3.11

84

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.22: RTT with a base RTT of 10 ms using TCP Cubic

on page 25), PIE may not have dropped as many packets when the RTT
is as low as 10 ms as the queue will be gone quickly when the maximum
bottleneck queue length is 100 packets.
As figures 6.21 to 6.26 on pages 84–89 show, the flusher does a good

job compared to when it is not active. The RTT differences displayed does
indicate that the flusher does its job properly. At its best, the flusher is on
par with the PIE AQM.
When the flusher is inactive and the queue at the bottleneck is a FIFO

queue, the queue size is allowed to steadily increase before it overflows and
packet drops occur.
With TCP Cubic, which have a more rapid expansion of its congestion

window, the flusher has an effect. The effect is visible, but the flusher may
not be as effective as it is with TCP Reno streams because the TCP Cubic
algorithm detects congestion and reacts before the flusher, which causes
the flusher to be less active when TCP Cubic is used. Because the flusher is
configured with a sample size of 30 packets, it needs the lowest measured
RTT in a sample to be greater or equal to the thr eshold × base RTT.
A smaller sample size may cause the flusher to be more active when a

85

0.00

0.25

0.50

0.75

1.00

50 100 150 200 250 300 350
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.23: RTT with a base RTT of 50 ms using TCP Reno

connection is using TCP Cubic as the amount of sampled packets is smaller.
As shown in figures 6.21 to 6.26 on pages 84–89 when the probability

reaches about 88% the RTT suddenly makes a jump. This jump is caused
by the RTT peaks generated during flushes and is expected.
The flushing increases the amount of large RTT peaks, compared to the

run where the flusher is not running. Frequent peaks have an impact on
jitter. Frequent peaks show that the flusher is active and tries to flush the
connection, and the queues are reduced. Reduced queues are the wanted
effect for a queue flusher.
Compared to the AQMs CoDel and PIE the flusher is indeed doing a

decent job when configured right. As described earlier, the flusher may not
be as active with TCP Cubic connections due to the rapid expansion of the
congestion window. Even though the flusher is less active on a TCP Cubic
connection than a connection using TCP Reno, it does not mean that the
flusher is not working with TCP Cubic.
When the base RTT increases, the difference between the flusher and

the AQMs increases. There may be several reasons for the increase, but the
main reason would be that the TCP algorithms are reacting slower due to

86

0.00

0.25

0.50

0.75

1.00

50 100 150 200 250 300
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.24: RTT with a base RTT of 50 ms using TCP Cubic

the higher base RTT. A higher base RTT impacts both the TCP reaction time
and the reaction time of the flusher. Because the flusher measures the RTT
by monitoring ACKs and it is placed at another spot than the bottleneck,
the flusher reaction increases with the base RTT. The AQM algorithms
are run at the bottleneck, and know every node parameter. Such as the
buffer size and arrival/departure rates. They may react quicker because
they know when the queue is filling the buffer, or when the queue is bigger
than it ideally should be because they are detached from the base RTT of
the connections passing through the bottleneck.

6.3.3 Flusher throughput compared to the threshold of
active queue managers

As presented in section 6.3.2 on page 83 the mean RTTmeasured when the
flusher is active can be almost as good as when AQMs are running at the
bottleneck.
It is obvious that the flusher decreases throughput. It is interesting

to see how the throughput compares to the throughput measured when

87

0.00

0.25

0.50

0.75

1.00

100 150 200 250 300 350 400
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.25: RTT with a base RTT of 100 ms using TCP Reno

using AQMs. Because the throughput did not differ between the runs with
TCP Cubic and TCP Reno, figures 6.27 to 6.29 on pages 90–92 shows the
throughput from the runs using TCP Reno.
When studying the graphs it becomes apparent that the throughput

when CoDel is active, is actually decreasing when the base RTT increases.
A reason for this may be that the CoDel AQM increases its drop probability
when the queue causes a delay of 5 ms [3, 11] (see section 3.10 on page 23).
As the setpoint for the target delay is fixed it ensures a higher throughput
on links with low base RTT. A setpoint of 5 ms may be good for connections
with low base RTT, but connections with higher base RTT should have a
higher setpoint before packets are dropped.
The PIE AQM (see section 3.11 on page 25) is scaling better because its

drop probability is calculated by measuring the transmission rate [4, 25].
Because the drop probability is calculated based on the transmission rate,
PIE allows the queue to be as long as needed for optimal throughput, as
opposed to CoDel.
Figure 6.28 on page 91 shows some difference between the throughput

when the flusher is active and the AQMs are enabled. In the best case the

88

0.00

0.25

0.50

0.75

1.00

100 150 200 250 300 350 400
RTT (ms)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.26: RTT with a base RTT of 100 ms using TCP Cubic

throughput when the flusher is active is almost as good as PIE. As PIE is
optimised for high throughput, its throughput is the benchmark. When
having a base RTT of 50 ms, the 50 ms threshold is basically deactivated
and the given flusher threshold of 1.7 times the base RTT, takes control.
The effect is visible in the graph as the calculated throughput is sub par
during half the run. This suggests that an other fixed threshold might be
appropriate.
When the base RTT increases, the flusher seems to be more effective at

keeping a high throughput. With a base RTT of 100 ms, the impact of the
flusher on the throughput is minimised. This is shown in figure 6.29 on
page 92. And it is actually better than PIE when running on a connection
using TCP Reno.
A probable reason for this is that the flusher is reacting slower than PIE.

This would create fewer packet drops that TCP Reno would react to. In
addition, the TCP Reno algorithm is halving its congestion window for each
packet drop. The halving of the congestion window would happen more
often when the bottleneck queue is short. If TCP Reno did not react to a
packet drop by halving its congestion window, or it could get information

89

0.00

0.25

0.50

0.75

1.00

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.27: Throughputs when using TCP Reno and a network RTT of
10 ms and a queue length of 100 packets.

about how many packets it should drop, the throughput would have been
higher.
When running TCP Cubic, the flusher is almost on par with PIE. This

is shown in figure 6.30 on page 93. A probable reason for this is that the
buffer needs fewer packets to fill, and TCP would therefore react to a filled
buffer. If the base RTT is low, a filled buffer takes proportionally longer to
drain and the TCP packets become a smaller percentage of the total amount
of transfered packets.

90

0.00

0.25

0.50

0.75

1.00

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.28: Throughputs when using TCP Reno and a network RTT of
50 ms and a queue length of 100 packets.

91

0.00

0.25

0.50

0.75

1.00

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.29: Throughputs when using TCP Reno and a network RTT of
100 ms and a queue length of 100 packets.

92

0.00

0.25

0.50

0.75

1.00

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Throughput (Mbps)

P
ro
ba
bi
li
ty

Run

Active flusher with a threshold of 1.7

CoDel

Flusher deactivated

Pie

Figure 6.30: Throughputs when using TCP Cubic and a network RTT of
100 ms and a queue length of 100 packets.

93

6.4 Conclusion

The goal of this thesis was to create a ‘queue flusher’ that detects queues
which induce big delays in a subnetwork. As the queues are forming at the
bottleneck it is detected as an induced delay in the network. The induced
delays may range from non-negligible milliseconds to several seconds. A
delay of several seconds is a bad thing from the user’s point of view as the
user which is performing a task may give it up due to the delay as the user
have limited patience.
Given the fact that a router may be a bottleneck in several networks, a

queue which is affecting one stream is likely affecting every other streams
using that specific bottleneck.
Overly large buffers in routers are an effect of the fact that memory has

become cheap, thus manufactures include vast amounts of memory in their
routers, allowing queues to grow and cause delay in the network.
Active queue managers, as discussed in section 3.6 on page 19, are one

solution to the problem of overly large queues, ‘standing queues’ and ‘buffer
bloat’. Because they are running on the routers, the AQM algorithms have
an inside view of what is happening on the router making them capable to
limit the queues in real time as the queues are expanding. The AQMs need
some configuration, but the two AQMs described in this thesis are mostly
working fine at their default configurations.
If there already are solutions to the ‘standing queues’ problem, why do

we need another? The main problem with AQMs is that they are running
on the routers. Given the number of routers out there, implementing AQM
algorithms on them is a huge task which would take some time. As the
internet grows, it is still a valid problem.
The solution presented in this thesis is a queue flusher which is capable

of running on any device in a network. It monitors the traffic passing
through a device and analyses it. When a possible queue is detected, the
‘queue flusher’ tries to get rid of the queue by sending a lot of unnecessary
UDP packets to the receiver in an attempt to overflow the buffer. A flooded
buffer will incur packet drops which will reduce the congestion window on
the TCP streams passing through the bottleneck.
The ‘queue flusher’ solution differs from the AQMs due to the way it

works. AQMs are running on the routers, giving them the advantage of
being able to control the queue directly. The ‘queue flusher’ on the other
hand, sees the network as a ‘black box’ as it knows what is going in and out
of it, but not how it works. How the ‘black box’ network works is not known
to the flusher, hence it has to estimate the needed amount of packets to
send for the TCP streams to respond. As the flusher is able to measure the
effect, it does not operate in complete darkness. This means the flusher is
able to reduce the amount of packets when needed.
During testing it became clear that the ‘queue flusher’ improves the

responsiveness of the network while reducing the mean RTT, which was
the wanted result. The best results were achieved with TCP Reno streams
as their congestion window does not change its size as rapidly as the
congestion window in a TCP Cubic stream. When using a TCP Cubic stream

94

the results were not as good, which indicates that it would be preferable to
do further work on the flusher to better handle TCP Cubic streams.
The flusher was tested with different RTT and buffer sizes in order

to get a picture of the effectiveness. The tests were also done using a
different flood threshold, which is a multiple of the measured base RTT
in the network. A threshold should not be too high as it would lead to
the flusher being less effective, nor should the threshold be too low as it
would force the flusher to be more active, in extreme cases crippling to the
network throughput. A decent threshold value seemed to be a threshold of
1.7×base RTT as it would not be too aggressive or too loose, enabling the
flusher to flush the queue before it becomes a problem.
When compared to the AQM algorithms, the flusher was on par with

the PIE AQM when it was at its best. On average the flusher improved
the situation when it was active compared to when it was passive. But the
existing AQMs are better due to their inside knowledge.
Does the ‘queue flusher’ work? Yes, it does. It does a decent job as a

temporary fix to the standing queue problem. In the long run the AQM
algorithms are a better solution due to the shortcomings of the flusher and
the fact that the deployment of the queue flusher would also take some
time. Even though the flusher is capable of running at network endpoints,
it would still need to be deployed on a large scale. Thus, it is subject to
the same challenges as existing AQMs. If AQMs like CoDel or PIE were
enabled by default in customer hardware it would improve the overall
responsiveness in the edges of the internet, which is where the queues need
to be handled. The ‘queue flusher’ may serve as a temporary solution until
active queue managers are deployed.

6.5 Future directions

This section addresses directions for future work to be done in order to
improve the efficiency of the flusher and to check the flusher correctness.

6.5.1 Use a different number of samples before a flush is
initiated

The flusher currently works by flushing after at least 3 samples of 10 packets
have been filled and the minimum RTT in all samples is higher than the
flusher threshold. It could be interesting to see if another number of
successive samples has an impact on the flusher effectiveness.
Another sample size may also be preferable.

6.5.2 Use real hardware

The queue flusher should be tested using real hardware in order to test its
effectiveness. The results presented in this thesis is created from logs from
runs where the flusher is tested on virtual hardware.

95

Testing the flusher on real hardware would help test its correctness as
the results would be more realistic.

6.5.3 Test with several concurrent streams

The flusher’s performance in a system with several concurrent streams
should be tested. This would be a natural step before going to the next step
of checking its performance with streams originating from other places in
the network.
To do this test, a slight modification of the original test should be done.

An additional stream should start from the node and send to the receiver.
The flusher should not start two concurrent flushes, but rather flush based
on the RTT of one of the streams.

6.5.4 Test the flusher’s effectiveness when the queue is
created by another stream originating from another
place in the network

An interesting case to test is the flusher effectiveness when another stream
is creating a queue. This scenario is displayed in figure 6.31 on the facing
page. It displays a topology for a network where two streams converge in
a bottleneck. The streams originate from the nodes N1 and N2 while the
bottleneck buffer is positioned at R1.
If the flusher runs on N1, it also needs a stream to originate from

N1 in order to measure the connection base RTT. There is already a
stream originating from N2 which is causing a standing queue at R1. A
standing queue is a ‘bad’ queue which induces delay and impairs network
responsiveness (this is described in chapter 3 on page 13).
The stream originating from N1, where the flusher is, should experience

high delays. If the RTT never exceeds the set flusher threshold, the flusher
tries to flush after 30 seconds. This flushing should have an effect on RTT
if the flusher has not flushed earlier.

6.5.5 Test the flusher performance when it runs at a
random node in the network

In addition to test the flusher effectiveness with concurrent streams
originating from different places in the network, it would be interesting
to see how th flusher responds when it is running at a router-node. The
router-node could be a random router or the bottleneck node.
Using figure 6.31 on the facing page, the flusher could be set to run on

R1 or R2. The flusher may not be able to flush when it is running on the
bottleneck node, but it should be able to flush when it is running on another
node.

96

N1

N2

R1 R2 N3

Figure 6.31: Minimal topology for testing the flusher in a network where
the queue is created by another stream originating from another place in
the network.

97

98

Bibliography

[1] R. Adams. ‘Active Queue Management: A Survey’. In: Communic-
ations Surveys Tutorials, IEEE 15.3 (Mar. 2013), pp. 1425–1476.
ISSN: 1553-877X. DOI: 10.1109/SURV.2012.082212.00018.

[2] J. Ahrenholz. ‘Comparison of CORE network emulation platforms’.
In: MILITARY COMMUNICATIONS CONFERENCE, 2010 - MIL-
COM 2010. Oct. 2010, pp. 166–171. DOI: 10.1109/MILCOM.2010.
5680218. URL: http : / / ieeexplore . ieee . org / xpls / abs _ all . jsp ?
arnumber=5680218.

[3] K. Nichols et al. Controlled Delay Active Queue Management.
Internet-Draft draft-ietf-aqm-codel-00.txt. IETF Secretariat, 24thOct.
2014.

[4] R. Pan et al. PIE: A Lightweight Control Scheme To Address the
Bufferbloat Problem. Internet-Draft draft-ietf-aqm-pie-00.txt. IETF
Secretariat, 27th Oct. 2014.

[5] T Hoeiland-Joergensen et al. FlowQueue-Codel. Internet-Draft
draft-hoeiland-joergensen-aqm-fq-codel-01.txt. IETF Secretariat, 10thNov.
2014.

[6] M. Allman, S. Floyd and C. Partridge. Increasing TCP’s Initial
Window. RFC 3390 (Proposed Standard). Internet Engineering
Task Force, Oct. 2002. URL: http://www.ietf.org/rfc/rfc3390.txt.

[7] M. Bashyam, M. Jethanandani and A. Ramaiah. TCP Sender Clari-
fication for Persist Condition. RFC 6429 (Informational). Internet
Engineering Task Force, Dec. 2011. URL: http : / /www. ietf . org / rfc /
rfc6429.txt.

[8] R. Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122 (INTERNET STANDARD). Updated by RFCs
1349, 4379, 5884, 6093, 6298, 6633, 6864. Internet Engineering
Task Force, Oct. 1989. URL: http://www.ietf.org/rfc/rfc1122.txt.

[9] J. Chu et al. Increasing TCP’s Initial Window. RFC 6928 (Experi-
mental). Internet Engineering Task Force, Apr. 2013. URL: http : / /
www.ietf.org/rfc/rfc6928.txt.

[10] D.D. Clark. Window and Acknowledgement Strategy in TCP. RFC
813. Internet Engineering Task Force, July 1982. URL: http://www.
ietf.org/rfc/rfc813.txt.

99

http://dx.doi.org/10.1109/SURV.2012.082212.00018
http://dx.doi.org/10.1109/MILCOM.2010.5680218
http://dx.doi.org/10.1109/MILCOM.2010.5680218
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5680218
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5680218
http://www.ietf.org/rfc/rfc3390.txt
http://www.ietf.org/rfc/rfc6429.txt
http://www.ietf.org/rfc/rfc6429.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc6928.txt
http://www.ietf.org/rfc/rfc6928.txt
http://www.ietf.org/rfc/rfc813.txt
http://www.ietf.org/rfc/rfc813.txt

[11] CoDel(8) CoDel - Controlled-Delay Active Queue Management
algorithm. 12th May 2012.

[12] Fedora. URL: https://getfedora.com.

[13] Louis Martin Garcia. ‘Programming with Libpcap – Sniffing the net-
work from our application’. In: Hakin9 Vol 3. No. 2 (2/2008). URL:
http://recursos.aldabaknocking.com/libpcapHakin9LuisMartinGarcia.
pdf.

[14] Jim Gettys and Kathleen Nichols. ‘Bufferbloat: Dark Buffers in the
Internet’. In: Commun. ACM 55.1 (Jan. 2012), pp. 57–65. ISSN:
0001-0782. DOI: 10.1145/2063176.2063196. URL: http://doi.acm.
org/10.1145/2063176.2063196.

[15] Stephen Hemminger. [Linux.conf.au 2013] - Bufferbloat from a
plumber’s point of view. 2013. URL: http://mirror.linux.org.au/pub/
linux.conf.au/2013/webm/Bufferbloat_from_a_Plumbers_point_of_
view.webm (visited on 22/01/2015).

[16] Toke Høiland-Jørgensen. Battling Bufferbloat: An Experimental
Comparison of Four Approaches to Queue Management in Linux.
Tech. rep. Roskilde, Denmark: Roskilde University, 17th Dec. 2012.
URL: http://rudar.ruc.dk/handle/1800/9322.

[17] A. Kuzmanovic et al. Adding Explicit Congestion Notification (ECN)
Capability to TCP’s SYN/ACK Packets. RFC 5562 (Experimental).
Internet Engineering Task Force, June 2009. URL: http://www.ietf.
org/rfc/rfc5562.txt.

[18] LARTC. Linux Advanced Routing & Traffic Control. 19th May 2012.
URL: http://www.lartc.org/ (visited on 28/02/2014).

[19] Marek Maowidzki. SIMULATION-BASED STUDY OF ECN PER-
FORMANCE IN RED NETWORKS. URL: http : / / maom _ onet .
republika.pl/papers/ecn/ecn-spects03.pdf (visited on 25/04/2015).

[20] M.Mathis, J. Heffner andR. Raghunarayan.TCPExtended Statistics
MIB. RFC 4898 (Proposed Standard). Internet Engineering Task
Force, May 2007. URL: http://www.ietf.org/rfc/rfc4898.txt.

[21] David S. Moore and George P. McCabe. Introduction to the Practice
of Statistics. W. H. Freeman, 2006. ISBN: 0-7167-6400-8.

[22] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896.
Internet Engineering Task Force, Jan. 1984. URL: http: / /www.ietf .
org/rfc/rfc896.txt.

[23] Office of Naval Research. Common Open Research Emulator
(CORE). 2014. URL: http://www.nrl.navy.mil/itd/ncs/products/core
(visited on 06/01/2015).

[24] Kathleen Nichols and Van Jacobson. ‘Controlling Queue Delay’. In:
Queue 10.5 (May 2012), 20:20–20:34. ISSN: 1542-7730. DOI: 10 .
1145/2208917.2209336. URL: http://doi.acm.org/10.1145/2208917.
2209336.

100

https://getfedora.com
http://recursos.aldabaknocking.com/libpcapHakin9LuisMartinGarcia.pdf
http://recursos.aldabaknocking.com/libpcapHakin9LuisMartinGarcia.pdf
http://dx.doi.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
http://mirror.linux.org.au/pub/linux.conf.au/2013/webm/Bufferbloat_from_a_Plumbers_point_of_view.webm
http://mirror.linux.org.au/pub/linux.conf.au/2013/webm/Bufferbloat_from_a_Plumbers_point_of_view.webm
http://mirror.linux.org.au/pub/linux.conf.au/2013/webm/Bufferbloat_from_a_Plumbers_point_of_view.webm
http://rudar.ruc.dk/handle/1800/9322
http://www.ietf.org/rfc/rfc5562.txt
http://www.ietf.org/rfc/rfc5562.txt
http://www.lartc.org/
http://maom_onet.republika.pl/papers/ecn/ecn-spects03.pdf
http://maom_onet.republika.pl/papers/ecn/ecn-spects03.pdf
http://www.ietf.org/rfc/rfc4898.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.nrl.navy.mil/itd/ncs/products/core
http://dx.doi.org/10.1145/2208917.2209336
http://dx.doi.org/10.1145/2208917.2209336
http://doi.acm.org/10.1145/2208917.2209336
http://doi.acm.org/10.1145/2208917.2209336

[25] PIE(8) PIE - Proportional Integral controller-Enhanced AQM al-
gorithm. 16th Jan. 2014.

[26] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD).
Updated by RFCs 1349, 2474, 6864. Internet Engineering Task
Force, Sept. 1981. URL: http://www.ietf.org/rfc/rfc791.txt.

[27] The Linux Information Project.Root definition. 27th Oct. 2007. URL:
http://www.linfo.org/root.html (visited on 25/04/2015).

[28] K. Ramakrishnan, S. Floyd and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168 (Proposed Stand-
ard). Updated by RFCs 4301, 6040. Internet Engineering Task
Force, Sept. 2001. URL: http://www.ietf.org/rfc/rfc3168.txt.

[29] P. Read, M.P. Meyer and Gamma Group. Restoration of Motion
Picture Film. Butterworth-Heinemann series in conservation and
museology. Butterworth-Heinemann, 2000. ISBN: 9780750627931.
URL: http://books.google.no/books?id=OKZzxUV33zUC.

[30] David Ros and Michael Welzl. ‘Assessing LEDBAT’s Delay Impact.’
In: IEEE Communications Letters 17.5 (2013), pp. 1044–1047. URL:
https://heim.ifi.uio.no/michawe/research/publications/ledbat-impact-
letters.pdf.

[31] S. Shalunov et al. Low Extra Delay Background Transport (LED-
BAT). RFC 6817 (Experimental). Internet Engineering Task Force,
Dec. 2012. URL: http://www.ietf.org/rfc/rfc6817.txt.

[32] Dan Siemon. ‘Queueing in the Linux Network Stack’. In: Linux J.
2013.231 (July 2013). ISSN: 1075-3583. URL: http : / / dl . acm . org /
citation.cfm?id=2509948.2509950.

[33] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit, and Fast Recovery Algorithms. RFC 2001 (Proposed Standard).
Obsoleted by RFC 2581. Internet Engineering Task Force, Jan. 1997.
URL: http://www.ietf.org/rfc/rfc2001.txt.

[34] Andrew S. Tanenbaum and David J. Wetherall. Computer Net-
works. Fifth edition. Pearson Education, Limited, 2011. ISBN:
978-0-13-255317-9. URL: http : / / books . google . no / books ? id =
dHQMkgAACAAJ.

[35] TCP(7) Linux Programmer’s Manual. 31st Mar. 2014.

[36] The FreeBSD Project. URL: https://www.freebsd.org/.

[37] Hadley Wickham. ggplot2: elegant graphics for data analysis.
Springer New York, 2009. ISBN: 978-0-387-98140-6. URL: http : / /
had.co.nz/ggplot2/book.

[38] Wikipedia. Fedora (operating system) — Wikipedia, The Free
Encyclopedia. [Online; accessed 14-January-2015]. 2014. URL: http:
//en.wikipedia.org/w/index.php?title=Fedora_(operating_system)
&oldid=638555212 (visited on 14/01/2015).

101

http://www.ietf.org/rfc/rfc791.txt
http://www.linfo.org/root.html
http://www.ietf.org/rfc/rfc3168.txt
http://books.google.no/books?id=OKZzxUV33zUC
https://heim.ifi.uio.no/michawe/research/publications/ledbat-impact-letters.pdf
https://heim.ifi.uio.no/michawe/research/publications/ledbat-impact-letters.pdf
http://www.ietf.org/rfc/rfc6817.txt
http://dl.acm.org/citation.cfm?id=2509948.2509950
http://dl.acm.org/citation.cfm?id=2509948.2509950
http://www.ietf.org/rfc/rfc2001.txt
http://books.google.no/books?id=dHQMkgAACAAJ
http://books.google.no/books?id=dHQMkgAACAAJ
https://www.freebsd.org/
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book
http://en.wikipedia.org/w/index.php?title=Fedora_(operating_system)&oldid=638555212
http://en.wikipedia.org/w/index.php?title=Fedora_(operating_system)&oldid=638555212
http://en.wikipedia.org/w/index.php?title=Fedora_(operating_system)&oldid=638555212

[39] Wikipedia. FreeBSD — Wikipedia, The Free Encyclopedia. [Online;
accessed 14-January-2015]. 2015. URL: http : / / en . wikipedia . org /
w / index . php ? title = FreeBSD & oldid = 640826741 (visited on
14/01/2015).

[40] Wikipedia. Iperf — Wikipedia, The Free Encyclopedia. [Online;
accessed 8-January-2015]. 2014. URL: http : / /en .wikipedia .org /w /
index.php?title=Iperf&oldid=638979459 (visited on 08/01/2015).

[41] Wikipedia. IPv4 — Wikipedia, The Free Encyclopedia. [Online;
accessed 16-January-2014]. 2014. URL: http: / /en.wikipedia.org/w/
index.php?title=IPv4&oldid=590162375 (visited on 16/01/2014).

[42] Wikipedia. Latency (audio) — Wikipedia, The Free Encyclopedia.
[Online; accessed 24-November-2014]. 2014. URL: http : / / en .
wikipedia.org/w/index.php?title=Latency_(audio)&oldid=635170457.

[43] Wikipedia. Silly window syndrome —Wikipedia, The Free Encyclo-
pedia. [Online; accessed 26-November-2014]. 2014. URL: http://en.
wikipedia.org/w/ index.php?title=Silly_window_syndrome&oldid=
601129926.

[44] Wikipedia. Superuser — Wikipedia, The Free Encyclopedia. 2015.
URL: http://en.wikipedia.org/w/index.php?title=Superuser&oldid=
656626639 (visited on 25/04/2015).

[45] Wikipedia. Transmission Control Protocol — Wikipedia, The Free
Encyclopedia. [Online; accessed 28-January-2014]. 2014. URL: http:
/ / en . wikipedia . org / w / index . php ? title = Transmission _ Control _
Protocol&oldid=592471764 (visited on 28/01/2014).

102

http://en.wikipedia.org/w/index.php?title=FreeBSD&oldid=640826741
http://en.wikipedia.org/w/index.php?title=FreeBSD&oldid=640826741
http://en.wikipedia.org/w/index.php?title=Iperf&oldid=638979459
http://en.wikipedia.org/w/index.php?title=Iperf&oldid=638979459
http://en.wikipedia.org/w/index.php?title=IPv4&oldid=590162375
http://en.wikipedia.org/w/index.php?title=IPv4&oldid=590162375
http://en.wikipedia.org/w/index.php?title=Latency_(audio)&oldid=635170457
http://en.wikipedia.org/w/index.php?title=Latency_(audio)&oldid=635170457
http://en.wikipedia.org/w/index.php?title=Silly_window_syndrome&oldid=601129926
http://en.wikipedia.org/w/index.php?title=Silly_window_syndrome&oldid=601129926
http://en.wikipedia.org/w/index.php?title=Silly_window_syndrome&oldid=601129926
http://en.wikipedia.org/w/index.php?title=Superuser&oldid=656626639
http://en.wikipedia.org/w/index.php?title=Superuser&oldid=656626639
http://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=592471764
http://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=592471764
http://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=592471764

Glossary

bandwidth the measure of the capacity of a circuit or channel. More
specifically, bandwidth refers (1) to the total frequency range on the
available carrier in Hertz (Hz) for the transmission of data, or (2)
the capacity of a circuit in bits per second (bps). There is a direct
relationship between the bandwidth of an analog circuit or channel
and both its frequency and the difference between the minimum and
maximum frequencies supported. Although the information signal
(bandwidth usable for data transmission) does not occupy the total
capacity of a circuit, it generally and ideally occupies most of it.The
balance of the capacity of the circuit may be used for various signaling
and control (overhead) purposes. In other words, the total signaling
rate of the circuit typically is greater than the effective transmission
rate. In an analog transmission system, bandwidth is measured in
Hertz (Hz). In a digital system, bandwidth is measured in bit per
second (bps). 14, 20, 45

congestion window an opening or opportunity for passage of data
frames or packets without the requirement for an acknowledgement
from the receiving device. 11, 14–16, 22, 25, 27, 56, 60, 62–65, 68, 69,
71, 73, 74, 78, 80, 84–86, 89, 94

hertz the measurement of frequency, which previous to 1930 was ex-
pressed as cycles per second (cps). 17

jitter variability in latency of a block, cell, frame, packet, or other message
unit. Data message units can suffer jitter not only due to issues of
signal jitter, but also because they may encounter different levels
of congestion, which may cause them to spend different amounts
of time in queues.These factors, and others, contribute to jitter.
Some applications, such as e-mail, are tolerant of jitter, while other
applications, such as real-time, uncompressed voice, are highly
intolerant of jitter. 46–48, 86

network topology the physical and logical structure of a network. Phys-
ical topology refers to the physical layout of a network, specifically
the physical positioning of the nodes and the circuits that intercon-
nect them. Logical topology refers to the manner in which devices
logically interconnect in a network, and may differ considerably from

103

the physical topology. For example, an Ethernet LAN segment may
comprise a number of workstations and peripheral devices that inter-
connect through a hub, with each device connecting directly to a hub
port.The physical topology is that of a star, but the logical topology
is that of a bus. That is to say that, although the devices connect to
the hub over circuits that emanate from the hub like the rays of a star,
they interconnect through a collapsed bus, or common electrical path,
housed within the hub. LAN and WAN topologies variously include
bus, mesh, partial mesh, ring, star, and tree. 53

packet a collection of data, with a header and checksum. 55

round robin a way of traversing a list, where each item is changed in
succession. 16, 19

throughput the amount of useful data, user data, or payload that can
be processed by, passed through, or otherwise put through a system
or system element when operating at maximum capacity. In this
sense, overhead, i.e., signaling and control data, is of no relevance
except for the fact that it reduces the payload and, therefore, the
throughput. Throughput is always less than bandwidth. In other
words, the transmission rate, or data rate, is always less than the
signaling rate. 9, 32, 40, 41, 45–48, 61, 62, 75, 78–82, 88, 89

104

Acronyms

ACK acknowledgement. 8, 9, 11,
14–17, 20, 22, 32, 36–43, 46,
47, 55, 56, 62, 87

API application programming in-
terface. 34, 56

AQM active queue manager. xi,
20–25, 27, 28, 33, 45, 62, 75,
77, 83–89, 94, 95

BDP bandwidth delay product. 8,
41, 42, 44, 48, 62, 63, 65, 71,
80

CORE common open research emu-
lator. 53, 58, 59

ECN explicit congestion notifica-
tion. 20, 22, 23, 27

EWMA exponentially weighedmov-
ing average. 39, 44, 57, 65

FIFO first in, first out. 17–19, 33,
75, 85

GUI graphical user interface. 53

HTB hierarchial token bucket. 54,
59

HTTP hypertext transfer protocol.
6

IP internet protocol. 5, 7, 8, 19, 32,
36, 54, 56, 58, 59, 83

KB kilobyte. 7

LXC Linux container. 53

Mbps megabit per second. 10, 11,
14, 17, 23, 73

MIMO multiple-input-multiple-output.
25

MTU maximum transmission unit.
7

NIC network interface controller.
13

NS-3 network simulator. 53

OS operating system. 33, 35, 36, 53

path MTU path MTU. 7

PID proportional-integral-derivative.
24

qdisc queueing discipline. 18, 19,
54, 59

QoS quality of service. 16

RED random early detection. 20

RTT round-trip time. 8, 10, 11,
14, 15, 17, 18, 20, 24, 25,
27, 32–34, 36, 38–48, 56–59,
61–96

SISO single-input-single-output. 24

SPP synthetic packet pairs. 55–57,
59, 61

ssthresh slow start threshold. 11

SWS silly window syndrome. 9, 10

TBF token bucket filter. 54

105

TCP Transmission Control Protocol.
5, 7–11, 14, 15, 17–19, 21, 22,
25, 27, 32–34, 36, 38, 39,
43, 55–57, 61–73, 75, 78–80,
84–95

UDP User Datagram Protocol. 5, 7,
17, 25, 33, 34, 42, 48, 55, 68,
74, 78, 84, 94

106

	Contents
	List of Figures
	List of Tables
	Listings
	I Background
	Introduction
	Motivation
	Structure
	Layers
	Link layer
	Internet layer
	Transport layer
	Application layer

	Transport protocols
	UDP/IP
	TCP/IP
	TCP protocol
	Sliding Window
	sws
	Congestion control

	Queues
	What are queues?
	How queues form
	Scheduling
	Tail-drop discipline
	Problems with queues using tail-drop

	Queueing discipline
	Queue management
	aqm
	RED

	Components of an Active queue manager
	Congestion indicator
	Congestion control function
	Feedback mechanism
	Types of Active queue managers

	Congestion control
	CODEL
	Estimator
	Setpoint
	Control loop

	PIE
	Random drop
	Drop probability calculation
	Departure rate estimation

	FQ CoDeL
	Summary

	II Queue flusher
	Queue Flusher
	Application
	Goals
	Requirements

	Data capture
	Libraries
	Implementation

	Calculating round-trip time
	ewma
	Base round-trip time

	Calculating throughput
	Flushing
	Determine when to flush the network connection
	Flushing
	Heuristics for enabling the flusher

	Flusher placement
	Flusher operation
	Known problems

	III Evaluation
	Testing
	Testbed
	Layout
	Real hardware
	VM
	Containers
	core

	Simulation
	Linux: Queueing Disciplines
	FreeBSD: IPFW/Dummynet

	Data generation and logging
	iperf
	Web10G
	TCP Dump and spp
	TCP Flooder

	Testing

	Results and discussion
	Introduction
	Scenarios
	Results
	throughput
	aqm
	Flusher throughput compared to the threshold of aqm

	Conclusion
	Future directions
	Use a different number of samples before a flush is initiated
	Use real hardware
	Test with several concurrent streams
	Test the flusher's effectiveness when the queue is created by another stream originating from another place in the network
	Test the flusher performance when it runs at a random node in the network

	Glossary
	Acronyms

