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Gene pleiotropy constrains gene expression
changes in fish adapted to different thermal
conditions
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Understanding the factors that shape the evolution of gene expression is a central goal in

biology, but the molecular mechanisms behind this remain controversial. A related major goal

is ascertaining how such factors may affect the adaptive potential of a species or population.

Here we demonstrate that temperature-driven gene expression changes in fish adapted to

differing thermal environments are constrained by the level of gene pleiotropy estimated by

either the number of protein interactions or gene biological processes. Genes with low

pleiotropy levels were the main drivers of both plastic and evolutionary global expression

profile changes, while highly pleiotropic genes had limited expression response to

temperature treatment. Our study provides critical insights into the molecular mechanisms

by which natural populations can adapt to changing environments. In addition to having

important implications for climate change adaptation, these results suggest that gene

pleiotropy should be considered more carefully when interpreting expression profiling data.

DOI: 10.1038/ncomms5071 OPEN

1 Division of Genetics and Physiology, Department of Biology, University of Turku, Pharmacity, Itäinen Pitkäkatu 4, 20520 Turku, Finland. 2 Centre for
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T
he significance of gene expression pattern modification as a
component of the adaptation process has received
considerable attention recently1–4. Gene expression has

been connected to many facets of evolution, either via adaptive
changes or by plastic responses5, including population divergence
in natural systems6–8 and human populations1, sexual
dimorphism9,10, sex chromosome evolution10,11, speciation12,13,
as well as community and eco-evolutionary dynamics14. Despite
this, several key questions regarding gene expression adaptation
remain open3. First, whether or not gene expression changes tend
to be neutral, or affected by natural selection, remains a point
of contention3,7,13,15. Recent efforts have focused on refining
models of gene expression evolution to better assess gene
expression adaptation1,3,16, including application of a QST� FST

framework7,17, but several key questions regarding gene
expression adaptation remain unanswered3. For example, gene
expression evolution is typically driven by regulatory mutations
as revealed by studies of genome-wide adaptive gene expression
variation1–4,18,19; however, a mechanistic framework for
understanding how gene expression evolution leads to modified
biological function and phenotypic adaptation is still
underdeveloped in evolutionary and molecular biology. One
approach to address this problem is to view gene expression
evolution in the context of the interactome, the complex network
of all molecular interactions20. Biological function is rarely the
property of single gene products, but rather is carried out by
proteins that cooperate with each other often at stoichiometric
ratios. As a consequence, interacting proteins have expression
profiles that tend to co-evolve21. What factors, if any, can
influence gene expression evolution in the protein interaction
network is, however, unknown.

The importance of pleiotropy, that is, when one locus affects
multiple phenotypic characters, has been an active topic of
discussion in evolutionary biology for many years and remains
controversial22,23. At the molecular level, pleiotropy and
predictions of its consequences are generally built within the
framework of Fisher’s geometric model, also summarized as the
‘cost of complexity’, which predicts that complexity associated
with pleiotropy will constrain adaptive evolution24–26. Gene
pleiotropy has been found to positively correlate with the number
of biological processes or protein–protein interactions (PPI) in
which a gene is involved, but not with the number of molecular
functions27. Pleiotropy at the molecular level is thus the result of
single molecular functions involved in multiple biological
processes through interactions with other gene products.
Historically, this has been called type II pleiotropy with the
alternative hypothesis being that molecular pleiotropy is
conferred by multiple molecular functions of a gene product
(type I pleiotropy)26,27. Under this view, several studies have
highlighted the importance of gene pleiotropy as a constraining
factor in the rate of molecular evolution and in gene expression
variation. For example, proteins with more interactions were
found to have slower amino acid substitution rates in
Saccharomyces28–30, Caenorhabditis30 and Drosophila30. Further,
they have been found to show lower interspecific gene expression
divergence in Saccharomyces and Drosophila, as well as lower
population-level gene expression variation31. Gene pleiotropy, as
estimated by number of PPI, may thus have a role in gene
expression evolution but more research is required to clarify this
relationship. Key questions in particular that have yet to be
addressed empirically are how gene pleiotropy affects gene
expression evolution in varying environmental conditions and
whether pleiotropy constrains adaptation at the gene expression
level.

We study a metapopulation of European grayling (Thymallus
thymallus), a spring-spawning, freshwater salmonid fish with high

homing propensity that has undergone contemporary evolution
of early life-history traits in response to temperature32,33. Fish
colonized Lesjaskogsvatnet (62�140N 8�250E), a lake in southern
Norway, following an upstream watercourse manipulation in the
late 1880s (E25 generations) and subsequently established
spawning sub-populations in tributaries with contrasting
thermal characteristics, namely warmer versus colder relative to
each other33,34 (Fig. 1 and Supplementary Table 1). Earlier
research has provided convincing evidence that rapid adaptation
of early life-history traits to differing thermal conditions has
occurred in just 25 generations32,33, despite low effective
population sizes, low levels of genetic divergence and variability
at assumedly neutral molecular markers33,35,36 (Supplementary
Table 2). As such, regulatory evolution leading to differences in
gene expression is a likely to be a molecular mechanism driving
the observed adaptations4.

Here we show that gene pleiotropy has a constraining effect on
protein expression change in European grayling sub-populations
adapted to different thermal environments. We first confirm that
juvenile grayling development rates conform to those expected
under the local adaptation hypothesis using a common garden
experiment with temperatures resembling the alternative natal
environments. Next, using samples collected from the same
experiment, we employ high-resolution mass spectrometry and
measure gene expression directly at the protein level from
embryos of similar developmental stage from both temperature
treatments. We describe the general effect of gene pleiotropy on
protein expression profiles following adaptation rather than
providing a list of specific candidate genes responsible for the
adaptations. We find that the global proteomic thermal profiles
include both plastic and evolutionary components, and that
protein expression responses negatively correlate to the level of
gene pleiotropy.

Results
Development supports the local thermal adaptation hypothesis.
Grayling development rates in the common garden experiment
were faster in the temperature most resembling the natal envir-
onment. Time to hatch was consistently longer in the cold tem-
perature treatment. However, within a given temperature
treatment, ‘local’ grayling, that is, grayling whose thermal origin
was most similar to the temperature treatment, hatched sig-
nificantly earlier than ‘non-local’ grayling (Fig. 2). In the 6 �C
treatment, 50% of cold thermal origin embryos were estimated to
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Figure 1 | Map of Lesjaskogsvatnet in Norway and the sampling locations

of the sub-populations. Blue and red colour indicates cold and warm

thermal origin, respectively. Scale bar, 3 km.
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hatch on average 8.2 degree-days before 50% of warm thermal
origin embryos had hatched (Binomial logistic regression:
P¼ 0.025, cold: n¼ 380, degree-day50%¼ 191.3, s.e.¼ 2.53; warm:
n¼ 549, degree-day50%¼ 199.5, s.e.¼ 2.54). In the 10 �C treat-
ment, 50% of warm origin embryos hatched on average 13.8
degree-days earlier than cold origin grayling (Binomial logistic
regression: P¼ 0.0012, cold: n¼ 234, degree-day50%¼ 180.5,
s.e.¼ 2.44; warm: n¼ 215, degree-day50%¼ 166.7, s.e.¼ 2.76)
(Fig. 2 and Supplementary Table 3). As rapid development has
been shown to provide fitness benefits in salmonid fishes37, these
results represent an archetypal case supporting the local
adaptation hypothesis38.

Expression profiles have plastic and evolutionary components.
We tested the effect of temperature treatment, that is, 6 �C versus
10 �C, on the global protein expression profiles, and of thermal
origin, that is, cold versus warm sub-populations. For this, we
summarized the expression values of the 408 quantified proteins
remaining after filtering (790 proteins were identified in total)
along the first component (PC1) of a principal component
analysis (PCA) and analysed the PC1 values with a general linear
mixed model (GLMM). We found a highly significant effect of
temperature treatment on protein expression profiles and a sig-
nificant effect of thermal origin but no interaction between them
(Fig. 3 and Supplementary Fig. 1). In other words, we observed a
strong plastic component, that is, expression change between
different temperature treatments in samples of the same thermal

origin, as well as an evolutionary component, that is, expression
difference between samples of differing thermal origin in the
same temperature treatment, with each component having an
independent effect on the grayling protein expression profiles.

The expression profiles were generally very consistent between
the replicate sub-populations of different thermal origin in both
temperature treatments. For instance, hierarchical clustering of
normalized protein expression levels grouped cold and warm sub-
populations separately when reared in the natal-resembling
temperature (Supplementary Fig. 2). The congruity of expression
profile between the replicate populations, combined with the very
recent divergence time (25 generations) of the sub-populations
indicate that adaptation to the natal environment (either cold or
warm streams) may have played a significant role in the evolution
of their expression profiles. To investigate this further, we
compared the level of protein expression divergence between cold
and warm thermal origin sub-populations to the level of genetic
divergence at assumedly neutral microsatellite markers using a
QST� FST framework17 with a view to determining whether the
null hypothesis of neutral evolution could be rejected. The mean
QST between sub-populations was 0.086 and 0.076 for the cold
and warm temperature treatments, respectively, which is four to
five times higher than the mean FST that was 0.017. Further, 139
(cold temperature treatment: 34.1%) and 124 (warm temperature
treatment: 30.4%) of the 408 proteins analysed had QST values
larger than the upper bound of the FST 95% confidence
interval, which is highly significantly more than expected by
chance (w2-test: cold temperature treatment: Po1.00E� 16,
w2¼ 145.0, df¼ 1, n¼ 408; warm temperature treatment:
Po1.00E� 16, w2¼ 122.2, df¼ 1, n¼ 408). These findings thus
suggest that the observed differences in expression levels between
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Figure 2 | Development rates of grayling juveniles in the common garden

experiment. Degree-days (temperature in �C� number of days elapsed

since egg fertilization) to 50% of the eggs to hatch were higher for the

grayling in the cold temperature treatment. However, within a given

temperature treatment, ‘local’ grayling hatched significantly earlier than

‘non-local’ grayling. P-values for differences in hatching time between

populations within a temperature treatment were calculated using hatching

data pooled per thermal origin of sub-populations (Binomial logistic

regression: *Po0.05; **Po0.01. 6 �C: ncold¼ 380, nwarm¼ 549; 10 �C:

ncold¼ 234, nwarm¼ 215). Blue and red colour indicates cold and warm

thermal origin, respectively. Error bars represent s.e.
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Figure 3 | Global proteomic profiles of grayling juveniles raised in the

common garden experiment. An overview of individual grayling protein

expression profiles on the first principal component (PC1: 36.7% of

the variance in expression level of the quantified proteins). The GLMM

revealed a highly significant effect of temperature treatment on protein

expression profiles (plastic component; GLMM, type II Wald’s F tests with

Kenward–Roger df: P¼8.4E�07, F¼ 53.68, df¼ 1, df.res¼ 18, n¼ 24), a

significant effect of thermal origin on protein expression profiles

(evolutionary component; P¼0.039, F¼ 24.22, df¼ 1, df.res¼ 2, n¼ 24)

and no interaction between them (P¼0.790, F¼0.07, df¼ 1, df.res¼ 18,

n¼ 24). Symbols indicate different sub-populations and colours reflect

thermal origin and temperature treatment (blue¼ cold thermal origin

�6 �C, light blue¼ cold thermal origin � 10 �C, pink¼warm thermal origin

�6 �C, red¼warm thermal origin � 10 �C). Lighter colours indicate ‘non-

local’ origin-treatment combinations. Black-coloured horizontal lines

represent the average over all six biological replicates of the same thermal

origin within a temperature treatment. These results are based on the 244

proteins with no missing values.
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cold and warm origin sub-populations, that is, the evolutionary
component of protein expression profiles, also include a strong
adaptive component.

Gene pleiotropy constrains protein expression responses. We
then tested the effect of gene pleiotropy on the plastic and evo-
lutionary components of the protein expression profiles using a
GLMM that also incorporated gene pleiotropy as an independent
variable. For gene pleiotropy, we used the two alternative esti-
mators, Gene Ontology (GO) and PPI, assigned to the human
orthologues of the 408 proteins quantified in our experiment. The
three GO categories, biological process (GO-BP), molecular
function (GO-MF) and cellular component (GO-CC), were tested
independently. We found a highly significant effect of the inter-
action between gene pleiotropy and thermal origin, and the
interaction between gene pleiotropy and temperature treatment
when gene pleiotropy was estimated as either PPI or GO-BP but
not with GO-MF or GO-CC (Fig. 4 and Supplementary Figs 3
and 4).

Genes with low pleiotropy drive expression profile changes.
Based on the above result, we sought to confirm the expected
restrictive effect of gene pleiotropy on the plastic and evolu-
tionary responses to temperature treatment observed in Fig. 3.
For this, we separated the proteins into two groups, high and low
pleiotropy, using the median values of PPI and GO-BP, and
repeated the GLMM analysis of the PC1 values for each case. We
found that genes with low pleiotropy were the main drivers of

protein expression profile change due to thermal origin and
temperature treatment (Fig. 5 and Supplementary Fig. 5).

No influence of potential biases in GO and PPI estimation. We
investigated whether our findings could be driven by biases (a) in
the number of GO annotations from proliferating semantically
similar terms that do not represent distinct GO-BP, GO-CC
and GO-MF39 or (b) in the PPI data set from the presence of
few well-studied proteins for which many interactions have been
reported40,41. For this, we repeated the analyses after summarizing
the GO annotations assigned to each protein by grouping terms of
similar meaning using different similarity thresholds42,43 and
performed bootstrap analysis on all data sets. We found that our
observations remained unchanged and highly significant after GO
summarization and had very strong bootstrap support, thus
suggesting that it is unlikely our results are biased by these factors
(Supplementary Data 1 and 2). We further employed a spectral
counting approach to obtain rough estimates of protein expression
levels (Supplementary Methods) and found that the effect of gene
pleiotropy remains very significant after expression level is taken
into account (Supplementary Fig. 6). This result further suggests
that our findings are not due to any confounding factor linked to
the expression level of the studied proteins44.

Similar results using predicted PPI proxies in zebrafish. To
further validate our findings on PPI in the case of teleost fish, we
used the results produced by an in silico method that predicts
conserved PPI or interologs, that is, orthologous pairs of
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Figure 4 | Constraining effect of gene pleiotropy on plastic and evolutionary protein expression responses. (a,b) Plastic response of protein expression

is represented as the difference in mean protein expression level between 6 �C and 10 �C temperature treatments in grayling of cold (blue colour)

and warm (red colour) thermal origin. (a) Pleiotropy estimated by PPI: GLMM, type II Wald’s F tests with Kenward–Roger df: P¼ 1.04E� 25, n¼ 960,

bootstrap support¼ 100%. (b) Pleiotropy estimated by GO-BP: P¼4.99E�05, n¼960, bootstrap support¼81%. (c,d) Evolutionary response in protein

expression represented as the difference in mean protein expression level between grayling of cold and warm thermal origins in the 6 �C (� symbol,

continuous line) and 10 �C (þ symbol, dashed line) temperature treatment. (c) Pleiotropy estimated by PPI: P¼ 7.05E� 10, n¼ 960, bootstrap

support¼ 93%. (d) Pleiotropy estimated by GO-BP: P¼ 1.04E�04, n¼ 960, bootstrap support¼ 76%. P-values for the plastic response represent the

interaction between gene pleiotropy and temperature treatment, and for evolutionary response the interaction between gene pleiotropy and thermal

origin. Mild jittering of the points along the x axis was applied to improve plot clarity. Lines are linear regression fits used for visualization. These results

derived from GLMM analysis on mean standardized protein expression levels of grouped proteins (bin¼ 10 proteins).
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interacting proteins in different species45,46. Using zebrafish
(Danio rerio) PPI proxies predicted with high confidence (40.9)
in the Funcoup database47, we found that the constraining
effect of gene pleiotropy on both the plastic and evolutionary
responses in grayling remained strong and significant (Fig. 6,
Supplementary Fig. 7 and Supplementary Data 2).

Upstream regulators link expression to phenotypic evolution.
To elucidate the biological causes and further explore the bio-
logical meaning of our observations, we searched for upstream
regulators such as transcription factors that were predicted to

have driven the observed gene expression changes48. We
identified seven significantly activated or inhibited transcription
factors in total, including hsf1 and hsf2, and myc and mycn, out of
73 occurrences of transcription factors known to regulate the
genes observed in our data (Supplementary Table 4).

Discussion
We demonstrate empirically for the first time that gene pleiotropy
constrains both plastic and evolutionary, presumably adaptive,
components of gene expression change. We also reveal that genes
with low levels of pleiotropy are of particular significance during
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Figure 5 | Global proteomic profiles of genes with differing pleiotropy levels in grayling from the common garden experiment. Greater differences

were observed for genes with lower pleiotropy levels than for genes with higher pleiotropy levels. (a) Low PPI. GLMM, type II Wald’s F tests with

Kenward–Roger df: PPL¼ 2.25E�07, n¼ 24; PEV¼0.03, n¼ 24. (b) High PPI. PPL¼0.37, n¼ 24; PEV¼0.80, n¼ 24. (c) Low GO-BP. PPL¼ 1.26E�06,

n¼ 24; PEV¼0.04, n¼ 24. (d) High GO-BP. PPL¼ 2.04E�05, n¼ 24; PEV¼0.06, n¼ 24. Significance was calculated using the PC1 coordinates in each

case in a GLMM: PPL is the significance of the plastic component and PEV is the significance of the evolutionary component. PC1 described (a) 46.2%,

(b) 22.2%, (c) 42.3% and (d) 29.2% of the variance. Symbols indicate different sub-populations and colours reflect thermal origin and temperature

treatment (blue¼ cold thermal origin �6 �C, light blue¼ cold thermal origin � 10 �C, pink¼warm thermal origin �6 �C, red¼warm thermal origin

� 10 �C). Lighter colours indicate ‘non-local’ origin-treatment combinations. Black-coloured horizontal lines represent the average over all six biological

replicates of the same thermal origin within a temperature treatment. These results are based on the 244 proteins with no missing values.
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Figure 6 | The constraining effect of gene pleiotropy using predicted protein interactions. (a) Predicted PPI for H. sapiens. GLMM, type II Wald’s
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predictors of PPI for D. rerio. Mild jittering of the points along the x axis was applied to improve plot clarity. Lines are linear regression fits used for visualization.

Continuous lines, � 6 �C temperature treatment; dashed lines, þ 10 �C temperature treatment; blue colour: cold thermal origin; red colour: warm thermal

origin.
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the initial phases of evolution. Strong plastic and significant
evolutionary components in the global protein expression profiles
(Fig. 3) give support at the molecular level for local adaptation of
the grayling sub-populations, and furthermore, provide an ideal
opportunity for elucidating the relative importance of plastic and
adaptive responses during rapid fisherian evolution. The resulting
significant effect of the interaction between either GO-BP or PPI
and thermal origin and temperature treatment (Fig. 4 and
Supplementary Data 1 and 2) indicates an effect of gene
pleiotropy on both plastic (interaction with temperature treat-
ment) and evolutionary (interaction with thermal origin) protein
expression responses. Differences in protein expression between
experimental groups, that is, the extent of expression change,
were also decreasing with increasing pleiotropic level for both
plastic and evolutionary responses (Fig. 4). These findings are
consistent with Fisher’s prediction that pleiotropy restricts
adaptation24,25, because trade-offs between changes in
expression that favour one process but harm others are more
likely to be in highly pleiotropic genes. These findings are also in
concordance with the observation that genes with many genetic
interactions confer robustness to environmental and stochastic
change49. By comparison, genes with low pleiotropy had a
stronger effect on both plastic and evolutionary responses (Fig. 5),
which indicates that genes with a low level of pleiotropy may play
a particularly important role during the early phases of rapid
evolution. At the interspecific level, Lemos et al.31 observed a
negative association between number of PPI and levels of gene
expression variation in two Drosophila species. As such, the role
of gene pleiotropy as described here may span a large range of
evolutionary time scales.

Our results on gene pleiotropy are in concordance with the
current view that molecular-level pleiotropy is generally the result
of a given molecular function being involved in multiple
biological processes (type II pleiotropy)26,27. GO-MF had no
significant effect on either plastic or evolutionary protein
expression response (Supplementary Figs 3 and 4 and
Supplementary Data 1 and 2), which is contrary to what would
be expected with type I pleiotropy. In the type II view of
molecular-level pleiotropy, more biological processes have been
further suggested to distribute to more cellular components27. In
line with this finding, we observed a weakly significant association
between GO-CC and both plastic and evolutionary gene
expression responses (Supplementary Figs 3 and 4 and
Supplementary Data 1 and 2).

By ensuring that the GO and PPI data sets yielded unbiased
and meaningful results in European grayling, we also provide a
general strategy for the use of this kind of information in non-
model species. GO-BP annotations are well suited for cross-
species use50, and correcting GO annotations for semantic
similarity can help reduce biases in gene pleiotropy estimation
coming from genes annotated with multiple terms for the same
biological process39. This kind of annotation bias has earlier been
a criticism of studies linking PPI and rate of evolution40,41. We
tested our data for many semantic similarity thresholds and
annotation sets (human, zebrafish, whole UniProt) to take this
factor fully into account (Supplementary Data 1). By
bootstrapping, we further tested the sensitivity of both the GO
and PPI data sets to the influence of a small number of proteins
with many annotations. High bootstrap values in almost every
case support our conclusions (Supplementary Data 1 and 2).
Finally, use of predicted protein interactions can help overcome
the lack of PPI information in species outside a few genomic
models47,51. Another approach would be the use of PPI
information from well-defined interactomes as gene pleiotropy
estimates are based on PPI number, which seems to be
an evolutionarily conserved metric in interologous networks52.

We employed both strategies by counting PPIs either as high-
quality experimentally observed annotations assigned to human
orthologues or as predicted for zebrafish (Supplementary Fig. 7
and Supplementary Data 2). To avoid incorrect orthologue
identification, we used a rather conservative E-value threshold for
blastp (r3.00E� 18). All results corroborated that PPI, a proxy
for gene pleiotropy, constrain both plastic and evolutionary gene
expression responses (Figs 4 and 6, Supplementary Figs 3 and 4
and Supplementary Data 2).

Associating the observed gene expression profiles with
upstream regulators links our observations at the molecular level
with a phenotypic trait, larval growth, which has been shown
earlier to undergo temperature-driven adaptive evolution in this
study system32,33. Myc-target genes are evolutionarily conserved
from teleost fishes to mammals and have functional roles for the
control of growth during embryonic development via cell
proliferation and differentiation53. hsf1 is known as the master
regulator of the heat-shock response in vertebrates and hsf2
modulates its activity54,55. Heat-shock regulators are an integral
part of the heat-shock response, which has been used to evaluate
the acclimation ability and thermal tolerance of species in light of
climate change55. Many factors can influence protein turnover to
regulate protein expression levels inside the cells56,57 but the
transcription factor analysis described here provide insights into
the larger biological role of the studied proteins.

Given our findings, we suggest that the level of pleiotropy of a
given gene should have a much more central role when
interpreting the biological meaning of gene expression data.
Not all proteins seem to have the same capacity to change their
expression level as our study shows that proteins with fewer
interactions (also more peripheral in the interactome) or involved
in fewer biological processes have greater plastic and evolutionary
responses to temperature. Accordingly, those low-pleiotropic
proteins were driving the observed differences in the global
expression profiles. Limitations surrounding gene expression
interpretations based on fold-change cut-offs and the correspond-
ing tests have been described58,59, but a method that takes into
account gene pleiotropy could prove valuable for interpretation of
gene expression profiling studies in the future. For example,
pleiotropic level could be used to weigh the significance of
expression-level change, with higher weight being given to
changes in genes with higher pleiotropy.

Further, we anticipate our findings to serve as a starting point
to answer many exciting new questions posed by evolutionary
and molecular biologists; for example, are the constraints
imposed by gene pleiotropy different at the proteome and
transcriptome levels60? This question is important given the
discordance between changes in protein and mRNA expression
levels61,62. At the proteome level, we have shown that gene
pleiotropy constrains both plastic and evolutionary gene
expression responses. At the transcriptome level, previous
results have revealed that protein interactions constrain gene
expression variation and gene expression divergence between
species31. The degree of overlap between these findings remains
unclear. Pleiotropic constraints may also play a role in various
aspects of gene expression control61,63; for instance, they may
influence translation and transcription rates that in turn have
been found to be good predictors of protein expression levels61.
Furthermore, follow-up studies to clarify associations between
expression changes in specific proteins and their effects on
fitness-related traits would also be worthwhile. Other intriguing
questions include: how are pleiotropic constraints affected by the
modularity of biological networks20 or by tissue specificity44?
What is the relative importance of gene pleiotropy for plastic and
evolutionary or adaptive responses over longer evolutionary
periods? Answering such questions will help further elucidate the
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role of gene expression regulation in evolution and allow for a
better understanding of the molecular basis of adaptation.

Methods
Sample collection and common garden experiment. Full details are available in
Thomassen et al.33 and Haugen and Vøllestad64. Animal sampling and
experimentation were performed in compliance with the recommendations of the
Norwegian Animal Research Authority (permission ID 2008/7368.5). Briefly,
samples were obtained from grayling spawning sites from four sub-populations in
Lesjaskogsvatnet (Fig. 1). The mean summer, June–July, temperatures in the four
streams investigated here differ strongly, with the two small and warm streams,
Steinbekken and Sandbekken, being approximately 1–1.5 �C warmer than the large
and cold streams, Hyrjon and Valåe (Sandbekken 8.44±0.52 �C (n¼ 4 years);
Steinbekken 8.81±0.60 �C (n¼ 4); Hyrjon 7.40±0.94 �C (n¼ 8); Valåe
7.28±0.69 �C (n¼ 7)). This results in a large temperature-sum difference among
streams during egg and larvae development. Developing embryos in the cold
streams experience more time at or below 6 �C compared with the warm streams
where embryos are subjected to temperatures of 9 �C or higher for longer periods
(Supplementary Table 1). In June 2007, adult grayling were captured at the four
spawning sites using fyke nets and stripped of gametes, which were subsequently
transported on ice to the Veterinary Institute of Norway, Oslo (5 h drive). Gametes
were stripped on 12 June 2007 for the warm sites and on 23 June 2007 for the cold
sites. This time difference exemplifies the difference in the thermal environments of
the streams (time taken to reach the minimum water temperature for spawning).
Samples were the product of artificially fertilized gametes of multiple individuals
per sub-population (Steinbekken 20~, 16#; Sandbekken 17~, 11#; Hyrjon 4~,
3#; Valåe 20~, 24#). Fertilized eggs were placed in porous containers suspended
in the large treatment tanks as described previously33,64. Each of the tanks
contained two replicate containers from each sub-population. The water
temperatures of the cold and warm temperature treatments across the experiment
were 5.83±0.43 �C (n¼ 764) and 10.02±0.28 �C (n¼ 440), respectively, to
represent lower and upper temperatures experienced by developing grayling larvae
in nature33 (Supplementary Table 1). Each day post fertilization, approximately five
individuals (eggs or larvae) were randomly sampled from each sub-population in
each temperature treatment. Samples were visually inspected and whether an
individual had hatched or not was recorded. Samples used for the proteomics
experiment were immediately frozen on dry ice and transferred to � 80 �C within
B30 min for storage. Grayling embryos selected for protein extraction were of
similar developmental stage as estimated based on the number of degree-days
(temperature in �C� number of days elapsed since fertilization) in relation to the
average number of degree-days to 50% hatching in the sub-population—
temperature treatment (Supplementary Table 3). The effect of thermal origin on
the number of degree-days to 50% hatching was tested by performing a binomial
logistic regression using a generalized linear model. The generalized linear model
was performed with a logit link function and with the count of the hatched and
not-hatched individuals per sampling day as the dependent variable, and the
number of degree-days and thermal origin as independent variables. Degree-day
values for a 50% probability of hatching for each experimental group and s.e. were
estimated using the dose.p function from the MASS library in R65.

Measuring protein expression levels. Details about the protein extraction,
peptide-level iTRAQ labelling, fractionation by isotope coded affinity tag proce-
dure, liquid chromatography–tandem mass spectrometry and protein quantifica-
tion parameters can be found in the Supplementary Methods. The mass
spectrometry files (*.RAW), the processed peaklists (*.mgf), the search databases
(*.fasta) and the results of the ProteinPilot searches (*.xml) for both the validation
and the actual experiment have been deposited in the ProteomeXchange con-
sortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository66 with the data set identifier PXD000368.

Three embryos per sub-population per common garden temperature treatment,
24 samples (that is, 3 embryos� 4 sub-populations� 2 temperature treatments),
were labelled by iTRAQ, fractionated by strong cation exchange chromatography
and combined accordingly to minimize batch effects (Supplementary Table 5).
Protein identification and quantification were done using the ProteinPilot v.4
programme (Applied Biosystems). As a search database, we used all Atlantic
salmon (Salmo salar) submitted in the UniProt database (www.uniprot.org) as of
March 2012 (13,035 amino acid sequences). Maximum false discovery rate
correction for protein identification was performed using a decoy database as
implemented in ProteinPilot and was set to 5%, whereas minimum confidence for
peptide identification was 95%. A collection of 248 sequences of common-
contaminant proteins, provided by Applied Biosystems, was also included in the
search database. Contaminant and decoy hits were filtered and samples were
divided into four groups of six samples each, namely the grayling embryos from
each of the cold/warm thermal origin with each of the 6 �C/10 �C temperature
treatments. Proteins were also filtered for missing values so that each group had at
least three valid ratios. Ratios were then log2-transformed and then loess-
normalized across biological replicates using the median values as a reference set.
For these transformations, we used DanteR, an R package for the analysis of
proteomic data (updated edition of DAnTE67). The accuracy of the quantification

method was evaluated using a six-protein mix provided with the iTRAQ kit
(Supplementary Methods, Supplementary Fig. 8 and Supplementary Data 3).

Statistical analyses. R scripts for all statistical analyses are available in
Supplementary Data 4. All GLMM analyses verified the assumptions required for
linear modelling between dependent variables and continuous predictors, namely
normal distribution of the residuals, and the absence of strong heteroscedasticity
(Supplementary Figs 9 and 10).

To test the effect of thermal origin (cold versus warm sub-populations),
temperature treatment (6 �C versus 10 �C) and their interaction on the protein
expression profiles, we used the coordinates of normalized expression ratios
(Supplementary Data 5) along the first component (PC1) of a PCA. We used PCA
because it inherently focuses on summarizing the differences in expression between
thermal origins and temperature treatments, without the need to standardize for
the direction of change in expression for each protein in every sample. Next, a
GLMM analysis was performed with the PC1 coordinates as a dependent variable.
Thermal origin, temperature treatment and their interaction were used as
independent, categorical, fixed factors and sub-population as a random factor
(Supplementary Methods). Hierarchical clustering was performed directly on the
log2-transformed and loess-normalized data using Euclidean distances. Gene
expression data were visualized as heatmaps.

QST� FST comparisons were made to assess the role of divergent selection in
protein expression divergence betweeen sub-populations. FST was calculated
using Weir and Cockerham’s y (theta) and QST was calculated using the formula
s2

GB/ (s2
GBþ 2s2

GW), where s2
GB is the among sub-population and s2

GW is the
average within sub-population component of protein expression variance in
each temperature treatment68. Variance components for every protein were
estimated using a restricted maximum likelihood approach, with sub-population as
a random factor. By repeating this procedure for all of the proteins in both
temperature treatments (N¼ 408þ 408, because of the two temperature
treatments), we obtained the QST distributions68. FST was estimated using data for
19 microsatellites genotyped at 38–44 individuals per sub-population (data from
Junge et al.35 where the sub-populations are labelled STE07: Steinbekken, SAN07:
Sandbekken, SHYR08: Hyrjon and VAL07: Valåe). Weir and Cockerham’s FST can
produce slightly negative estimates, thus any negative values of FST were adjusted to
zero; hence, FST had the same range as QST. The FST sampling distribution was
estimated from 1,000 resamples with the hierfstat R package69, using similar
sample size to that used in QST estimations (n¼ 3 per population). The upper 95%
confidence interval of the FST sampling distribution was set as the threshold for the
neutral divergence expectation to quantify the outlier QST estimates. w2-test was
used to test whether the number of outliers significantly exceeded what may be
expected by chance alone. The common garden rearing of fish ensures
environmental effects do not inflate the among-sub-population variance, which is a
major source of bias in QST estimation17. Other factors, for example, maternal,
epistatic and dominance effects, may bias QST estimation, but usually downwards,
by upwardly biasing additive genetic variance68, thereby making the test of
divergent selection applied here a conservative one. Similarly, mutations might bias
QST estimates downward through increased dominance variance17; however, due to
the low divergence times, mutations are not expected to play a large role in the
evolution of this system.

To test the effect of gene pleiotropy on protein expression responses, we first
studied the mean standardized expression of grouped proteins. A GLMM was
applied using all 408 quantified proteins with loess-normalized and log2-
transformed values (Supplementary Data 5). Standardized protein expression level
was the dependent variable, and the independent variables were as follows: thermal
origin (categorical), temperature treatment (categorical), gene pleiotropy
(continuous) and their interactions (fixed effects). Sub-population and individual
were used as random factors. Sub-population was nested within thermal origin and
individuals were nested within sub-population. Raw gene pleiotropy value
distributions were initially strongly skewed and therefore log2-transformed. To
fulfil the assumptions of GLMM of the dependent variable (reduce kurtosis) and
reduce the complexity of the GLMM, proteins were grouped based on level of
pleiotropy. This was done by ordering the proteins according to their pleiotropy
level (the ordering varied depending on what measure of gene pleiotropy, PPI or
GO-BP, was used each time), with random order within each level of pleiotropy
and subsequently dividing the ordered proteins into groups of ten. GLMM analysis
was repeated for group sizes ranging from 2 to 30 and group size¼ 10 represented
a good compromise between minimizing the kurtosis while retaining the groups as
small as possible to have more data points in the analyses (Supplementary Fig. 11).
Bin size had little effect on the observed P-values and the results were also highly
significant if no binning was used (Supplementary Data 1 and 2). For each group of
proteins, we calculated the average value for log2(pleiotropyþ 1) and the average
standardized protein expression level for each individual and used these data in the
GLMM. In this way we avoid side effects of unequal group sizes, which would arise
if we had simply grouped by the pleiotropy level. For comparison, we also did the
analysis without grouping the proteins. As the analysis of the effect of gene
pleiotropy focused on the extent of expression change, and not the direction
(increase or decrease in expression), we standardized protein expression values by
removing differences in the direction of the expression change between proteins as
follows: we used the experimental group with the largest differential response in the
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PCA as a reference (Valåe at 6 �C, Fig. 3) and whenever the median expression level
of a protein in this reference population (median over three replicate individuals)
was below the overall median expression level (median over 24 individuals), we
flipped the individual expression levels around the overall median expression level
for that protein. By using the median expression level within one reference sub-
population and flipping the sign of expression level for all individuals in the entire
data set when needed, we conserve the independence of the values between the 24
individuals needed for statistical inference, but eliminate between-protein
differences in the direction of the expression change.

In a second approach, we tested the effect of gene pleiotropy on protein
expression responses using the mean standardized expression of the 30% most
variable proteins per group of ten proteins (Supplementary Methods). With this
approach we excluded the contribution of proteins in our data set that are less
likely to be linked to temperature responses, that is, those that had low levels of
expression variation, and therefore we increased the power to detect differences
between thermal origins and temperature treatments. In a third approach, we
tested the effect of gene pleiotropy on protein expression responses by performing
multidimensional scaling analysis (Supplementary Methods). We used this
approach as an alternative to reduce the influence of non-responsive proteins
within each level of gene pleiotropy and increase the power of our analysis. This is
because the scores from the multidimensional scaling analysis are mainly
determined by the subset of proteins that show strong differential protein
expression response. Therefore, this approach focuses more on those proteins.

Estimating gene pleiotropy. Gene pleiotropy was estimated either as the amount
of known PPI or GO terms27. GO terms were retrieved separately for GO-BP, GO-
CC and GO-MF. For each of these measures we performed an independent
analysis. PPI counts and GO annotations were retrieved from human (Homo
sapiens) orthologues of the detected salmonid proteins. Orthologues were identified
by sequence similarity with blastp using the human reference proteome in UniProt
(www.uniprot.org, version 10 June 2013) as the search database and a minimum
E-value of 3.00E� 18 (Supplementary Data 6 and 7). The more comprehensive
annotation for H. sapiens genes often makes them preferred even over zebrafish for
the transfer of annotations to fish species; however, we also conducted an analysis
based on zebrafish data, which is currently among the best annotated fish species.
GO annotations for the human genes were downloaded from the GO website
(www.geneontology.org, version 6 June 2013). PPI were retrieved from the
Ingenuity Pathway Analysis (IPA 2013) platform and included only experimentally
observed direct interactions in the BIND, BIOGRID, Cognia, DIP, INTACT, MINT
and MIPS databases, as well as Ingenuity expert findings as of 17 June 2013.

Annotation bias, particularly in human GO annotations, can occur because the
discovery of new processes or functions is less frequent than the proliferation of
semantically similar GO terms39. For this reason, we also summarized semantically
similar GO terms and re-analysed the data to determine whether redundancy has a
marked effect on our findings. Redundancy was treated with REVIGO using SimRel
as a semantic similarity measure42. We examined three different levels of allowed
similarity, namely large (allowed similarity¼ 0.9), medium (0.7), which is the
default option in REVIGO, and small (0.5). We also ran all our analyses with three
different GO databases (whole UniProt, H. sapiens and D. rerio) to estimate the
information content of each term during the calculation of the semantic distances.
This was done separately for each protein and for GO-BP, GO-MF and GO-CC
(Supplementary Data 6).

Bootstrap test. To test the robustness of our GLMM analyses, we repeated all of
the analyses on each of 2,000 bootstrap re-samples (except for standardized protein
expression levels without grouping that was very computer-intensive for which we
used 100 bootstrap re-samples). Each re-sample was generated by randomly
sampling the 408 proteins from the original data set with replacement. The bootstrap
values were then calculated as the proportions of re-sampled data sets for which the
analyses yielded a significant P-valueo0.05 (Supplementary Data 1 and 2).

PPI proxies for zebrafish. To corroborate the results obtained with experimen-
tally observed PPI in human orthologues, we looked for predictors of PPI in
zebrafish. We used Funcoup 2.0, which applies an optimized Bayesian framework
to reconstruct global networks of protein functional coupling (FC) by integrating
proteomic and genomic data from multiple species47,51. Data files for human and
zebrafish were retrieved from the Funcoup server and each final Bayesian score
(FBS) was converted to a probability of FC (pfc) using pfc¼ 1/(1þ exp(� FBS—
ln(P(FC)))) where P(FC)¼ 0.001 (ref. 47). In all analyses using the Funcoup
database, we considered only interactions with pfc40.9 for the category of interest
to ensure only high-quality interactions were included (Supplementary Methods
and Supplementary Data 7).

The effect of genes with contrasting pleiotropy levels. To assess how proteins
with lower or higher pleiotropy drive the differences in expression profiles between
experimental groups, we conducted a post-hoc analysis as follows: we used the
median value of PPI and GO-BP to separate the proteins into two groups with low
or high PPI and GO-BP counts (PPI: median¼ 51, low PPI group: 120 genes, high
PPI group: 119 genes; GO-BP: median¼ 10.5, low PPI group: 122 genes, high PPI
group: 122 genes). PCA and hierarchical clustering were re-performed on those

sub-sets of proteins with low or high pleiotropy, and the PC1 coordinates were
then used in a GLMM with thermal origin, temperature treatment and their
interaction as independent fixed factors, and sub-populations as random factors
nested within thermal origin (Fig. 5, Supplementary Fig. 5 and Supplementary
Table 6). For this analysis we used the 244 proteins with no missing values.

Upstream regulator analysis. To identify upstream regulators that explain the
observed gene expression changes, we used the IPA platform. IPA examines every
known upstream regulator for each gene in our data set and compares the observed
direction of change in protein expression with that expected based on literature
findings stored in the IPA knowledgebase. Significant activation or inhibition of an
upstream regulator is predicted based on evidence from multiple target genes in the
data set for which the direction of the observed expression change is consistent
with that expected from the literature. To calculate the direction of expression
change for each protein, we used the median values across all six biological
replicates per thermal origin-temperature treatment combination. Z-score value
specifies whether an upstream regulator has significantly more activated predic-
tions than inhibited predictions (Z42) or vice versa (Zo2). The bias metric
estimates whether there are more up- than downregulated genes or vice versa for
an upstream regulator in the data set (there should be enough evidence from both
directions for reliable predictions). Overlap P-value is calculated using Fisher’s
exact test and determines whether there is a statistically significant higher presence
of genes controlled by an upstream regulator in the data set compared with a
reference list of genes. In our case, we used the gene list of the Agilent zebrafish V2
microarray, which represents the genome of the teleost species D. rerio70. To add
specificity to our analyses, we considered only direct and experimentally observed
molecular interactions. We only examined the most reliable predictions, as
recommended by IPA Systems (Po0.001, |Z|42, and bias|o0.25). Details about
the employed algorithms are described elsewhere48.
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