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Introduction.

The aim of this paper is to study extensions within a given
linear subspace A of ﬁg@(X) of functiors defined on a compact
subset of the Choquet boundary BAX , in such a way that the ex-
tended function remains dominated by a given A-superharmonic func-
tion VY . (Precise definitions follow). Our main result is the
possibility of such extensions for all functions in AIF provided
P satisfies the crucial requirement that the restriction to F
of every orthogonal boundary measure shall remain orthogonal
(Théorem 4,5). Taking Vv = 1 in this theorem we obtain that F
has the norm preserving extension property (Corollary 4.6). This
was first stated by Bjerk [5] for a real linear subspace A of
?%R(X) and for a metrizable X . A geometric proof of the latter
result was given by Bai Andersen "3]. 1In fact, he derived it
Tfrom a general property of split faces of compact convex sets,
which he proved by a modification of an inductive construction
devised by Pelczynski for the study of simultaneous extensions
within ?%R(X) [12]. Our treatment of the more general extension
property proceeds along the same lines as Bai Andersen's work,

It depends strongly upon the geometry of the state space of A
and Bai Andersen's construction is applied at an essential point
in the proof. Note however, that this is no mere translation of
real arguments. The presenceof complex orthogonal measures seems
to present a basically new situation. Applying arguments similar
to those indicated above, we obtain a general peak set - and peak
point criterion (Theorem 5.4 and Corollary 5.5) of which the latter
has been proved for real spaces by Bjerk [6]. In section 6
(Theorem 6.1) it is shown how the Bishop -~ Rudin - Carleson Theorem
follows from the general extension theorem mentioned above. In
section 7 we assume that A d1is a sup-norm algebra over X and
study the interrelationship between our conditions on F and a
condition introduced by Gamelin and Glicksberg 97, [10]. Finally
we should like to point out that some related investigations have
been carried out recentlyby Bridm [7]. However, his methods are
rather different, The geometry of the state space is not invoked,
but instead he applies in an essential way a measureable selection
theorem of Rao [14].

We want to thank Bai Andersen for many stimulating discus--
sions of the problems of the present paper. Also we are indebted
to AM, Davie for the oounterexample'at the end of section 7.



1. Preliminaries and notation,

In this note X shall denote a compact Hausdorff space
and A a closed, linear subspace of %%(x) , which separates
the points of X and contains the constant functions.

The state space of A , i.e.

S = {p € A* | p(1) = |lp)l = 1},

is convex and compact in the w*-topology.
Since A separates the points of X , we have a homeomorphic

embedding ¢ of X intc 8 , defined by

2(x)(a) = a(x) , all a € A .

Similary we have an embedding Y of A into the space
AG(S) of a8ll complex valued w¥-continuous affine functions on

S ; namely

Y(a)(p) = p(a) , 8ll p € S .

By taking real parts of the functions V¥(a) we obtain the
linear space of those real valued w¥-continuous affine functions
on S , which can be extended to real valued w*—oontinuous‘
linear functionals on A¥* , and this space %R(S,A*) is dense
in the space %E(S) of all real valued affine w*-continuous
functions on S , [1, Cor.I.1.5].

We shall denote by M(X) , resp. M(S), the Banach space of
81l complex Radon measures on X , resp., § ; by M'(X) resp.
M*(S) the cone of positive (resl) measures, and by M?(X) resy.
M*(S) ~the w¥.compact convex set of probability measures, The
set of extreme points of S will be denoted by 3,5 , and the
Chogquet boundary of X with respect to A 13 defined as the set
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3, X = {x e x | a(x) ¢ 358},

From [1%, p.38) it follows that 3,8 ¢ 8(X) so that &
maps 3,X homeomorphically onto aes .

A measure p € M(S) is said to be a boundary measure on S

if the total variation |u| is a maximal measure in Choquet's
ordering of positive measures [ 1, ch.I, §3], (13, p.24]. A
boundary measure is supported by Szg {1, Prop.1.4.6)., For a
metrizable X (and 8) a measure u € M(S) is a boundary measure
if and only if [p|(S\3_S) = 0 . We shall denote by M(3.8)

the set of boundary measures on S (abuse of language)., Observe
that if p € M(BGS) , then the real and imaginary parts of p

are both boundary measures, The set of baundary measures on %

is defined by

M(3,X) = {u € M(X) | ap = 1(3,8)},

where §&u denotes the transport of the measure u on X to a
‘measurevén lé ;’wFor a metrizable X a measure u oﬁ X. fe— |
longs to M(3,X) if and only if |u[(X\3,X) =0 .

For every p € MT(S) we shall use the symbol f(p) to
denote the barycenter of u , i.e. the unique point in S such

that a(r(u)) = p(a) for all a € Ay(S) . The Choquet-Bishop-

de Leeuw Theorem states that each point in S is the 5arycenter
of a maximal (boundary) probability measure (1, T™.I.4.8].
Accordingly we shall denote by mg(aes) the non-empty set of
naximal (boundary) probability measures on 8 with barycenter
pEB . For x €X we define M;(BAX) to be the set of all

u € MI(X) such that u € Mg(x)(aes) . Bquivalently, M}(?,X)
consists of all W € Mt(an such that

a(x) = fadu all =a € A,



i.e. ju 1represents x with respect to A . Also we denote by

M;(X) the set of probability measures on all of X which re-
presents X in this way. OSimilary we denote by M;(S) the
set of probability measures on S with barycenter p . The

annihilator of A in M(X) is the set

At = fpem(X) | pla) =0 all a € A}

Finally we shall use the symbol (3 (X) to denote the class of

all complex valued bounded Borel functions on X .

2, A dominated extension theoren.

We staft by proving a general dominated extension theoren,
which may be of some independant interest, In this connection

. We give the following:

‘Definition 2.1. (. is the class of all f € (B(X) such that

(2.1) w(f) = 0 all u ¢ At

Clearly A c .

Theorem 2.2. Let P be a closed subset of X for which

QJI_f {aJF | a € A} is closed in ﬁgg(F) 3 let a. € AJF and

let o X » R'y[oo) be a strictly nositive 1,s,c. function such

that Ja (x)] < o(x) for all =x € P ,

Now, if there existse a function &8, € d  such that

(2,2) EOiF = 85 s !éojx)! < op(x) all x € X

then there exists a function in A with the same properties.
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Proof: Without lack of generality we can assume that ¢ 1is a
bounded function with values in R" ; and we assume for contra-

diction that

(2.3) 8y £ GIF = {a]F | a ¢ @l ,
vihere

(2,4) G=fac€h]| lal(x)] <elx)}.

Since ¢ is l.s.c., G is an open subset of A ., Since
AIF is closed in ‘%%(F) , we may apply the Open Mapping Theorem
to the restriction map Rp: A - Alp . Hence G|, is an open
subset of Al, . Purthermore G|, is convex and circled. By
the Hahn-Banach Theorem we can find a measure v € M(X) with

supp v € F such that

(2.5) viag) = 1 2 |v(vy)] all by € Gy

Now we consider i%e(x) equipped with the norm

[ £(x

(2.6) il = sup {

and observe that this norm is topologically equivalent with the
customary, uniform norm., The dual of (i?a(x),n_uw) is seen
to be M(X) equipped with the norm Huﬂ¢ = lleull

It follows from (2.5) that the linear functional & on
(A,H~Hw) defined by

(2.7) : £(a) = v(RFa) all a € A,

is bounded with nornm HEH¢ <1, Now we extend £ with preser-
vation of @ ~norm to a bounded linear functional on (@%ﬁx%ﬂ—ﬂm).

This gives a measure u € M(X) , such that

(2.8) g(a) = u(a) all a €A, gl = ”gupﬁ 1



It follows from (2.2) and (2.8) that

(2.9) Gl = (@) (o 'a) ] < 1

From (2.7) and (2.8) it follows that u - v € A* | and since

-

aq € CL we shall have

(2.10) IIEO dul = ‘&50 dv} = jao dv > 1
X
, F

This contradicts (2,9) and the proof is complete.

3, Applications of the geometry of the state space.

We shall consider compact subsets F of an satisfying

one or the other of the following two requirements:
L L
(A.1) p o€ M(3,X) n A => pl, en

(A.2) p o€ H(3,X) n At => p(F) =0

We assume first (A.1). We also agree to write Sp= co(3(F)),
and we observe that there is & canonical embedding tp of Alg

into AG(SF) , defined by
(3.1) ¥p(ag)(p) = p(a) , all p € Sy

where a £ A ; aIF = a5 . In fact, it follows by the integral
form of the Krein-liilman = Theorem that p can be expressed as
the barycenter of a probability measure on &(F) , and hence that
the particular choice of a is immaterial,

For every a, € Alp we define

(3.2) éo(x) = JFaO Ay s x €X, p, € M;(aAX) .



and

(3.3)  By(p) = jSFYF(aO)dpp . p €S, py € 1H(3,8)

and we note that these definitions are legitimate by virtue of
(A.1). Ve also note that “p(SF) = up(é(F)) for all p € S
and My § M;(aeS) L3, Lem.1],

Clearly EO is an extension of a, %o a function defined
on all of X ; and if we think of & as an imbedding of X
into S , then 30 will in turn be an extension of §O' to a
function defined on all of S , More specificélly, for every

My € M;(BAX) the transported measure &u_ is in M;(x)(aes)

X

and so

B(8(x)) = JSFYF(aO)d(Q“x) = J‘Fyﬁ(ao) ° 8 dy = JF&o Ay >

which entails

(3.4) EO ° & = &

Lemma 3,1, If F satisfies (A.1) and a. € AIPi then &, € (L

Proof: ;et A = llaplly and define a; = Re ¥p(agy) + A,
a, = Im ‘fF&aO) + A . Then a,, a, € Am(SF)+ and for any p €S

‘1+
and u € M1(3,5)

P

io(p) = jSFwF(ao)dup -=L,Fa1 Ay + 1 fSFaz G, - M.tp(SF) -1 xpp(sF)

At this point we shall appeal to the geometric theory of

compact convex sets. It follows from the requirement (A.,1) that

SF is a split face of S , and hence that

N

/\ A A ’
a = a ) + i, s D) - )\ - i A )
O(P) 1 XSF(P) ) ASF(-) XSF(p> XSF(P



where all the functions on the right hand side are u.s.c. and
affine (1, Th,I16.12], (1, Th.II.6.18] (cf. also [ 2, Th.3.5)).
In pafticular 30 is a Borel function, and it follows from (3%.4)
that ﬁo is a Borel function as well. Since the barycentric
calculus applies to real valued u.s.c, affine functions on S
{1, Cor.I1.4], we shall have:

(3.5)  Bo(») = [Boau,, peES, n
1%0 % .

MY (S
p € M,(8)
Let p € AY bve arbitrary and decompose

4

(3.6) Moo= i§1ai“i 3

where oy em’ y  Oo € -RT » O3 ¢ imt s Oy € (—i)m+ and
py € MY(X) for i =1,2,35,4, Let p; €8 be the barycenter

of #u; and let o, € My (3,8) for i =1.,2.3.4.
1

Since beg c $(X) we can transport o, back to X by the
map 'l » and it follows that the measures p; - §"1ci are
(real) orthogonal measures for i = 1,2,3,4 ,

Writing

we obtain r € M(BAX) and p -1 € A* . In fact for every ac€A,

4
Jeatu-n) = [ w@atzu-m) = = o] v(a)alouy-0y) =0

Since p € AY , we shall also have 1 € A* and then

tlp € AY by virtue of (A.1). Hence by (3.3), (3.4), (3.9
. - 4 -
a.du = as @ d}J. = a d(‘I’}J.) = L oa. a d(@]J.) =
4

B (o) = Foa
L oo.anips) = o
4=1 1 0 i i=1 Idg

= 5FaOdT = 0

Yp (ag)doy :'ys

¥nlag)a(sr)
I 7

r



Hence 50 € (1 |, and the proof is complete.

We next turn to the less restrictive requirement (A4.2). It

follows by a slight modification of the proof of [ 1, Th.II.6,12],

that the requirement (A.2) implies that Sy is a parallel . face
A
of S and hence that the function Xg = is affine [15 Th.12].

Por every x € X we define
= o+
(3.7) XF(x) = jF1dux ; 1, € MX(BAX)

and we note that this definition is legitimate by virtue of (4.2).

For x € X and p, € M;(aAX) we shall have:

A -
ks, (800)) = JSF1a<@ux) = | 1y = Fp(x)

which entails

A s

Applying (3.8) and proceeding as in the proof of Lemma 3.1,

we can prove.

TLemma 3.2. If P satisfies (A.2), then iF e 4

4, Extensions dominated by A~ superharmonic functions.

[N

Ve now proceed to the main theorem, but first we give some

definitions.

Definition 4.1, A function ¢: X - Ru{=} is said to be A -

N

superharmonic if it satisfies

(i) ¥  l.s.c,

(i) p(x) > IXE?MX , all x € X and p € M;(X)
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Definition 4.2, Let P Dbe a compact subset of X ., F has

the almost norm preserving extension nronerty, if for each e > O

and &, € A]F there exists a function a € A such that

(4.1) EJ-F = ao y ”a"x_é_,_“&o_“.p_j_ﬁ

If e can be taken to be zero in (4.1), then F has the

norm nreserving extension property.

Ve shall need a criterion for the almost norm preserving
extension property, which is essentially due to Gamelin (d,p.281]
(ef. also Glicksberg (10, p.420] and Curtis 78']). For the sake

of conpleteness we present a short proof,

Lemma 4,3, A closed subset P of X has the almost norm pre-

serving extension property if for cach ¢ &€ A* :

(4.2) -vé?le)ﬂC"F + vl 2 llolyall

Proof: The almost norm preserving extension property is tanta-
maunt o the equality of the uniform norm on AlF and the exten-

gsion nornm:

laghexs, = inf (lally | a €4, alp =2y} .

In this norm Alp is isometrically isomorphic to the
quotient space A/pu vwhere I = {a € A | a=0 on P} ; and
we are to prove that the canonical imbedding p: A/Ft - AlF is
an isometry from the quotient norm to the wniform norm. By dua-
1ity (i.e. by Hahn-Banach) we may as well prove that the trans-
posed map p¥* is an isometxy. Représenting the occuring func-

tionals by measures, we can trarslate this statement into
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(4.3) inf Yg+oll = dinf fu+v]l , all u € M(F)
o €At \;E(A}P)L
To prove that (4.2) implies (4.3), we consider measures
p o€ M(F), o€ At and ag arbitrary ¢ > 0 . Also we can choose

vy € (Al5)* such that

vV € .]F
Then
M=ol = u=olgll + lolyGll 2 - voll = vy =alpl + o]yl
Sl ce 2 et

which completes the proof.

WYe remark for later purposes that for u € M(P):

(4e8) sup (1] agaul ) llagly <1, ag € Aly) = ot ool
F

Proposition 4.4, If P is & comrnact subsct of 3,X satisfyin
el A

(A.1), then F has the almost norm sreserving extension proverty.

Proof: By Lemma 4.% and the above renmark (4.4), it suffices to

prove that for svery o & A+ :
Sup'{'JFaodJl ' ”aO”F =1 25 € A‘F }jﬂle\Fﬂ .
Let o € At , and ay € Alp with “aO”F <1 ., Applying

Lemma 3.1 we obtain

0 =949(3.) = | a.dy + andg
0 jF 0 jX\FO . ’

such -hat



IjFao do| = lIX\FEO do| < llolypll

which completes the proof.

If P is a compact subset of 3,X satisfying(A.1), then
Alp is a closed subspace of ?gC(F) . In fact, Aly is isome-
trically isomorphic to .A/FL .

We are now able to state and prove the main theorem. The
proof of this theorem is essentially based upon Theorem 2.1 and

the technique developped by Bai Andersen [ 3 J.

Theorem 4.5. Let F be a compact subset of 3,X satisfying

(r.7), i.e.

w o€ M(3,X) N A —> ul, € At

Let @, € Alp, =nd let ¢ be a strictly positive A-super-

harmonic function on X such that la.(x)] < y(x) for all x €F,

Epen there exists a function a € A such that

(1) alp=a,,

(ii) fa(x)l < y(x) all x € X .

Proof: Without loss of generality we may assume § to be bounded.
Since P satisfies the requirement (A.1), AIF is closed and
8, € (L.

Thus by Theorem 2.1 we can extend aq to a function qse.A
such that Iaé(x)! < g (x) for all x € X , whenever ¢ is a

bounded 1l.s8,c., function on X such fhat
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|§O(x)| < @(x) for all x € X ,
Applying this to the function 0y = 2y , we can extend a4
to a function a, € A such that [31(x)| < 2y(x) for all x € X,

Now define

oy = 24 A [2%(y 27N a, )] .

The function ¢, i strictly positive on all of X . For

x € F we have p,(x) = 2+(x) , and hence for an arbitrary x € X:

B! = 1 ag duyl < [ laglane < [ raw, < [ 22(r-2Nay Dy

2 -1 2, -1
22([ yauy - 2 MENETERLCORE 'jxa‘ au )

il

2°(y(x) - 27 ay(x)]) .
Hence léo(x)} < g,(x) all xe€X.
By Theorem 2.1 we can choose a, € A  such that

las] < o, 82|y = 20

Assume for induction that extensions Biyeees8, € A  Thave

been ‘constructed such that

=1
.|ap] < 2y A [2P(y -r212 Tle )] = R T

and define

n
g = 20 A 122y~ T 27T]a D],

r=1

The function $nt1 is strictly positive by induction hypo-

thesgis, Por x £ F we shall have

22+ (y(x) - %1z-rsao(x)l>z 2”*1<v(x)-—r%12“rv(x)>= 24(x)
r: =

such that ¢ i¥) = 2¢(x) . Hence for an arbitrary x € X :
n
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-
2 lar])dpx

- . 1 n
a . (x)| = a. d < y tdy . < o+ (¢y- T
|85(x) ] lfF o Byl =) by jx V- z

. n n
< 2“*1(fxwdux-. 212"T3far ap, ) < 22 (4(x) - 212"r|ar(x)l) :
= r=

Hence léo(x)l <e,,1(x) for all x € X,
Again by Theorem 2,1 we can choose 841 € A such that

‘an+1‘ < Qnet s an+1!F =8 -

s . . . o
Continuing in this way we obtain a sequence {an}n_1 c A

such that for n = 1,2,...

(i) ‘ an‘F = ao »
no-r
(ii) ¥(x) - 212 [ar(x)) >0, all x €X,
I'=
(ii1)  llayll < 2 sup y(x) .
xeX
By (iii) the seguence rf;erar is uniformly convergent
x = . .
and a = 212 rar € A . Clearly aly = a; and it follows from
r=1

(ii) that |a(x)| < v(x) for all x € X . This completes the

- proof,

Teking ¢ = 1 in Theorem 4,5 we obtain the following:

Corollary 4.6. Let P be a compact subset of 3, X satisfying

(A.1), d.e.

po€M(3,X) nAat => u|, e 4t

then F has the norm v»reserving extension property.
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Remark, In the proof of Theorem 4.5 we have actually proved

slightly more than was stated. The A-superharmonicity of the

function * was used just once, namely in the verification that
Eéo(x)§ <@, q(x) for m=1,2,.,. and all x €X

A

. However,
if x dis a point of X such that

9

+
w o€ MX(aAX) == uX(F) =0

then by definition éo(x) = 0 , and there is nothing to verify.

Hence, Theorem 4.5 subsists if ¢s X - RY y {3} is allowed

to be a 1l,s.c, function such that

b(x) 2 | wau

for all points x € X for which uX(F) # 0 for some

u, € M;;(aAX)°
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5. A peak set theoren

In this section we shall deal with compact subsets F of
an satisfying the requirement(A.@. For such an P we define

the function Xp as in(B.ﬂ.

Proposition 5.1 If F is a compact subset of 3,X satisfying

(A.2), then the A -convex hull of F is equal to the set of all

x € X such that iF(x) =1,

Proof: By definition, the A -convex hull of F is the set
A
(5.1) JE = xex | lax)]| 2 flallp, 211 a € A}

We first assume that iF(x) =1 i.e, ux(F) = 1 for
He € M;(BAX) . Then we obtain for every a € A ,

la(x)] = |J‘Xa ap, ) < ]Flaldux < lally

such that x ¢ *",

Next assume that QF(x) <1 ., This implies that @(x)'ﬂ Sp .
Hence we can separate &(x) and SF by a w¥-continuous linear
functional on A¥ i,e, there exists a function a € A and en

« €R such that

Re ¥(a)(2(x)) > o > Re ¥(a)(8;) >0,

and hence again

Re a(x) > a« > Re a(T) > 0 .

Now, for sufficiently large 6 cmt , the function a+é6 <A
satisfies

' la(x) + 6| > 6 + a > ja(y) + 8] all y € F .

In fact, it suffices to take
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2 r
a ~ B ’

where

3 =max {Re a(y) | y € Pl <a , y = max {|Im a(y)|]y € P}

Hence

la + 8llp < a(x) + s

i.e. x £ ', which completes the proof.

Lemma 5.2, Let F be a compact subset of 0,X satisfying (A.2),

for which Al is closed in  Bu(F) . TLet y be a strictly

positive A - superharmonic function on X such that 1 = ¢(x)

for all x € P ,

Then there exists a function a € A such that

(5.2) ala =1, la(x)| S u(x) all x € X

Proof: Since X, is an element of . and Alp is assumed to
be closed in ﬁgm(F) , we can use Theorem 2.1 with a4 € A'F R
ao = 1 . Now using the same technique as in the proof of Theorem

4,5 we obtain a function a € A satisfying (5.2).

Lemma 5.3, Let P be a compact subset of aAX satisfying (A.2),

and let G be a compact aubset of N . Then there exists

an A - superharmonic function ¢ on X such that:

(1) y(x) = 1 for all x € B\

—

(ii) o (x)] < for all x € G

(iii) 0 < ¢(x) £ 1 for all x € X ,
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Proof: We write S, = co(8(¢)) and claim that Sp N 8y = g .
To prove this, we assume for contradiction that there exists
A : .
a Dy €5z N SG , and we recall that XSF is u.s.c, and affine
(since Sp is a parallel face) and that Xg. 18 related to QF
F

by formula (3.8). Now we obtain

A A A -
1 = Xg (py) = max xg (p) = max xg (p) = max Xup(p) .
T ) ESG k) p €2(G) Pp

By Proposition 5,1, this contradicts the hypothesis GNF'=4,
and the claim is proved.

Now there exists a number & such that

ax 2 (p) <& <1
ma,
;)ES:XSF b ?

and hence we can define two disjoint convex subsets of A* xR

by the formulas:

A
(5.3) Fo = {(p,a) | p€S, a €R, 0 Za = X (p)]
(5.4) F; = {(pya) | p €8y, 0 €R, 8 £ al
The set FO is compact and the set F1 is closed., Hence

we can use Hahn-Banach separation to obtain a function b € A

such that

A
XSF(P) < Re ‘P(b)(p) 5 all p €8 ,
and

Re ¥(b)(p) <6 <1, all p € 8, .
The function ¢ =Re (b) A 1 is A - superharmonic and

satisfies (i), (ii) and (diii).
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Theorem 5,4, Let X be a metrizable compact Hausdorff space

and let F be a compact subset of aAX which satisfies (A.2)

i.e,

A
b € M(3,X) n A" => u(F) =0,

and for which AIF is closed, Then there exists a function

a8 € A such that

(5.5) alpa =1, lax)|< 1 all x € INF" |

i,e, the A -convex hull of T dis a peak set.

Proof: By metrizability M is a G@‘ set, and we can write
A <0 .
INDT = ug1Kh , where X = is closed,
Now we use Lemma 5,3 to obtain strictly positive A - super-

harmonic functions wn on X such that

b, (x) =1 for all x € ¥, b (x) <1  forall x €K ,
n=192,000
and wn(x) <1 for all x € X . It follows from Lemma 5.2 that
there exist functions a, € A such that an!F = 1 and
la (x)] 2y, (x) for all x € X ,

Now the function
o0

a = ¥ 2784
n:1 n

satisfies (5.5) and the proof is complete,

o

Remark: Actually the conslusion of Theorem 5.4 subsists under
more general assumptions, The metrizability of X was only

invoked to make FA a G6 - set, In particular we shall have

the following:
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Corollary 5.5, Let x € 3,X be a G5 -~ point satisfying (A.2),

i.e.

wo€M(®,X) n At => u({xh=0,

then x 1s a peak point for A .,

Finally we remark that if X is a metrizable compact
Hausdorff space and P is a compact subset of BAX satisfying

the stronger condition (A.1) then the A - convex hull of F 1is

a peak set,

6. Relations to the Bishop-Rudin-Carleson Theorem,

In the present chapter we shall consider a compact subset

F of X satisfying the requirement

(B) peat => plp=o0,

Clearly (B) dis more restrictive than (A.1), and a fortiori

than (A.,2). Note also that (B) dimplies P c 0,X since
+
MX(X) = {eX} for all x € F ,
L
If x £ F and u, € MI(X) , then e - u, € A~ . Now the
requirement (B) implies (eX - uX)[F = 0 , such that uX(F) =0 ,
By the definition (3.2) we shall have éo(x) = 0 . Hence

(6,1) a. = &

0 0 Xp

Transferring to the state space and making use of (3.8),

we observe that the function QS takes the value zero on
B

3(X\NF) . Geometrically, this means that the canonical embedding

¢: X » S maps F into the (compact) split face SFzzﬁg(é(F)) ,

and X\TF into the complementary (G5‘> face Sb (ef. [2,Cor.1.2].
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It follows from (6.1) that iF = Xp ond by Proposition 5.1
we obtain F = ﬁ . Moreover, it follows from Proposition 4.4
that A[F is a closed subspace of %%ﬁﬁﬁ , and it follows from
(B) that (A[p)* = (0) . Hence Ay = %u(F) . Also it follows
from the results of chapter 5 +that if F is a G6 , then it is
a peak set.

In other words: If F satisfies (B) +then it is an inter-

polation set; and if in addition it is a G ,then it is a peak -

interpolation set.

Pinally we note that we may apply Theorem 4.5 in the form
stated in the Remark at the end of §4 , to obtain:

Theorem 6,7, (Bishop-Rudin-Carleson) Tet F be a compact sub-

set of X satisfying (B), i.e.

A
M€ AT => “'F=O3

let £, € Bu(F) , and let §: X ~RB" y [} be a strictly posi-

tive 1.s,c. function such that |[f.(x)| S ¢(x) for all x € F .

Then there exists an a € A such that al, = f, and

la(x)| < w(x) for all x € X ,

Remark: Theorem 6.1 is the most general form of the Bishop-
Rudin~Carleson Theorem. Originally Bishop stated and proved this
theorem for a continuous function ¢ and strict inequality sign
[4] . Appealing to the inductive construction of Pelczynski [12],
Semadeni improved it to the form stated above [16]. (Cf. also

Michael - Pelczynski [11, p. 5691).
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7. The sup-norm algebra case,

In this section we shall assume that A is a sup-norm alge-
bra, and we shall consider two new requirements on a compact sub-

set P of BAX :

(¢,1) e At => pIFEAJ‘

(¢,2) e At —> H'FA e At

Clearly (B) implies (G.1) and (G.2) , and each one of
these implies (A.1). 1In fact, (G.2) implies (A.1) since
“[FA = “IF for every u € M(BAX) (3, Lem.1.].

In [9] and [10] Gamelin and Glicksberg have dealt with the
requirement (G.1), and from their works we shall adopt the

following:

Definition 7.1, Let F be a compact subset of X and let t > 0.

A[F is said to have the properity Et if the following conditions

holds:
Given f € Ay with |fllz <1 and a compact subset G of

X\F , there exists an extension g € A of f such that

lelly < max{1, £}, [|g(x)] <t all X € G .

The extension constant e(A,P) of P associated with A|F

is defined by the formula:

(7.1) e(A,F) = inf{t | A}F has property E.}

If AIF has property Et for no t , then we define
G(A,F) = 0O ,



The connection between the extension constant and the require-

ment (G.1) is expressed in the following:

Theorem 7.2, (Gamelin-Glicksberg). ILet F be a compact subset

of X . Then the following conditions are equivalent:

(i) u € At —=> uIF e At

(ii) e(A,F) = O

(iii) P is an intersection of peak sets for A .

Proof: See [9] and [10] .

Proposition 7.3. Let P Dbe a sup-norm algebra over X and let

F _be a compact subset of ?3,X satisfying the requirement (A.1).

Also let G be a compact subset of y S and let ¢ > 0 ., Then

there exists a function a € A such that

(1) a(x) = 1 for all x € B

(ii) la(x)] < e for all x € G

(111)  flafly = 1
Proof: Choose § as in Lemma 5.3 and let a

OEAIF’ aos'l.

Using Theorem 4.5 we obtain a function b € A such that
b]F =1, |p(x)| 2 ¥(x) for all x € X .,

Clearly b(x) = 1 for all x € ¥ ana [b(x)| <1 for all

x € ¢ . Now choose a natural number n such that Hng < e

and define a = b* . The proof is complete,
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We are now able to clarify the connection between (A,1)

and the extension constant of FA .

Theorem 7.4, Let A Dbe a sup-norm algebra over X and let F

be a compact subset of 3,X , Then e(A,P") = 0 if and only if

F satisfies (A.1) 1i,e.

u € M(3,X) n At => ul, €at

Proof: By virtue of Theorem 7.2 and the fact that uIFA = “IF
for every u € M(BAX) , if follows that e(A,FA) = 0 dimplies
(A.1).

Now assume (A.1) and let ay € AlpA with HaOHFAzzlbOHF <1,
Let G be a compact subset of INF" and let e > 0 . We choose
b € A such that [blly = llaglly and by = 20| g according to
Corollary (4.6), and we choose h € A according to Proposition

(7.3) d.e.

h[FA =1, |h(x)] <e for all x € G

and |hfly = 1 . Then we define a =h.b € A, Now, a is a
norm preserving extension of aq and |a(x)[ < ¢ for all x € G.
Hence A|pn has property E, for all ¢ > 0 , and so we have

proved that e(4,F") = 0 .

Thus we see how the requirements (A.1), (G.1) and (G.2) are
related for sup norm algebras. (A.1) and (G.2) are always equi-
valent for every compact subset F of aAX , and if in addition
F is A - convex, then they are equivalent to (G.1). This is
not always the case even if A is an algebra dnd F satisfies

(A.1), as can be seen from the following example
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Example 7.5. (The "Tomato Can Algebral),

Let X cIR x ¢ be defined as {(t,z)|t € [0,1], |z| < 1} ;

let A be the sup-norm algebra consisting all functions T € %éQQ,

such that f£(0,2z) is analytic for |z| < 1 ; and let

P={(0,2)] lz] =1} . Then P satisfies (4.1) and
P = {(0,2)] lz] <1} .

Proof: We first note that:

0, X = {(%,2) | t¢€130,1], Jz] 21 or t=0, |z] =1}

Hence the Shilov boundary 34 = SXY is all of X , and it
also follows that X is the maximal ideal space MA of A .

If G is a compact subsetof X\{(0,z)] |z] <1} , then G
is a peak interpolation set for A and A]G = ‘%%(G) . Hence
if u € Al then ulg = 0. In other words supp (1)< (0,2 | |z] <11
for all u € A*

Now assume u € M(3,X) n A* . Then uIF = u € A , Hence
F satisfies (A.1) but trivially ¥ = {(0,2)] |z] < 1} ; and

the proof is complete.

This example shows also that (A.1) and (G.1) need not be
equivalent even if we consider A as a sup-norm algebra over the
maximal ideal space or the Shilov boundary.

Pinally we remark that if X dis a compact subset of € and
A = R(X)IBX then the two conditions (A,1) and (G.1) are equi-

valent since F = F' for every compact subset F of BAX .
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