
Intelligent Traffic-aware
Consolidation of Virtual
Machines in a Data Center
Akaki Jobava

Master’s Thesis Spring 2015

Intelligent Traffic-aware Consolidation of

Virtual Machines in a Data Center

Akaki Jobava

May 18, 2015

ii

This thesis is lovingly dedicated to my mother, Tina, for her

unconditional love and support throughout my life.

iii

iv

Abstract

Cloud computing is growing fast and becoming more and more popular.

The computing resources such as CPU, memory and storage are becoming

cheaper and the servers grow more and more powerful by the time. This

enables clouds to host more virtual machines (VMs) than ever. As a result

many modern data centers experience very high internal traffic inside the

data centers due to the servers belonging to the same tenants communicat-

ing with each other. Since the modern VM deployment tools are not traffic-

aware, the VMs with high mutual traffic often end up running far apart in

the data center network and have to communicate over unnecessarily long

distance. The resulting traffic bottlenecks negatively affect application per-

formance and the network in whole and are posing important challenges

for cloud and data center administrators.

This thesis investigates how this problem can be resolved by consolidat-

ing VMs in clusters in different data center network architectures and de-

ploy the produced clusters on the available server racks in a traffic-aware

way. In order to achieve this the paper breaks the problem down in two

parts. The VMs are consolidated with a VM clustering algorithm, success-

fully reducing the total cost of communication with 34 to 85%, and the re-

sulting clusters are assigned to the server racks with a cluster placement

algorithm, which further reduces the total cost of communication with 89

to 99%. The analysis shows that the optimization is done in a fast and com-

putationally efficient way.

v

vi

Contents

I Introduction 1

1 Introduction 3

1.1 Problem statement . 6

1.2 Thesis outline . 7

2 Background 9

2.1 Cloud computing . 9

2.1.1 Cloud computing service models 11

2.1.2 Cloud platforms . 13

2.2 Virtualization . 15

2.2.1 Types of virtualization 15

2.2.2 Hypervisors . 16

2.3 Data centers . 17

2.3.1 Data center architecture 19

2.3.2 Top of Rack (ToR) and End of Rack (EoR) designs . . 19

2.3.3 Data center network architectures 21

2.3.4 Recently proposed DCN architectures 22

2.3.5 Cost matrix . 25

2.4 Graph partitioning . 25

2.4.1 GPP problem complexity 27

2.4.2 Graph partitioning algorithms 28

2.4.3 Graph partitioning using learning automata 29

2.5 Facility location problem . 30

2.5.1 Quadratic assignment problem 31

2.5.2 Simulated annealing 32

2.6 Related research . 33

2.6.1 Network-aware Virtual Machine Consolidation for

Large Data Centers . 33

vii

2.6.2 A Network-aware Virtual Machine Placement and

Migration Approach in Cloud Computing 34

2.6.3 Improving the Scalability of Data Center Networks

with Traffic-aware Virtual Machine Placement 34

2.6.4 Starling: Minimizing Communication Overhead in

Virtualized Computing Platforms Using Decentral-

ized Affinity-Aware Migration 35

2.6.5 Net-cohort: Detecting and managing vm ensembles

in virtualized data centers 36

2.6.6 Cicada: Introducing Predictive Guarantees for Cloud

Networks . 36

2.6.7 Application-Driven Bandwidth Guarantees in Data-

centers . 37

2.6.8 VMPlanner: Optimizing virtual machine placement

and traffic flow routing to reduce network power

costs in cloud data centers 37

2.6.9 Tools for implementation 38

II The project 41

3 Approach 43

3.1 Objectives . 43

3.2 Experiment design . 44

3.2.1 VM communication data 45

3.2.2 VM traffic matrix . 48

3.2.3 Data center models . 50

3.2.4 Cost matrices . 50

3.3 Proposed VM clustering algorithm 51

3.4 Assigning VM clusters to server racks 53

3.5 Proposed cluster placement algorithm 54

3.6 Experiment set A . 56

3.6.1 Experiment a1: Tree DCN 56

3.6.2 Experiment a2: Fat-tree DCN 58

3.6.3 Experiment a3: VL2 DCN 60

3.6.4 Intracluster traffic experiment: set A 62

3.7 Experiment set B . 62

3.8 Measurement and Evaluation 63

viii

3.8.1 Testbed for the experiments 65

3.8.2 Plotting and analysis 66

4 Results 67

4.1 Implementation of the algorithms 67

4.1.1 VM clustering algorithm 67

4.2 Implementation of the cluster placement algorithm 76

4.3 Developed Python scripts . 79

4.3.1 Script: parse_data.py 79

4.3.2 Script: cluster_vms.py 80

4.3.3 Script: place_clusters.py 81

4.3.4 Script: generate_random_placements.py 83

4.3.5 Script: cluster_and_calculate_tot_cost.py 84

4.3.6 Script: intracluster_comm.py 86

4.3.7 Script: analyze_and_plot.py 86

4.4 Experiment set A . 87

4.4.1 Experiment a1: Tree results 88

4.4.2 Experiment a2: Fat-tree results 90

4.4.3 Experiment a3: VL2 results 93

4.4.4 Intra and intercluster traffic experiment A 95

4.5 Experiment set B . 98

4.5.1 Experiment b1: Tree results 98

4.5.2 Experiment b2: Fat-tree results 100

4.5.3 Experiment b3: VL2 results 102

4.5.4 Intra and intercluster traffic experiment B 104

5 Analysis 107

5.1 VM clustering and cluster placement: set A 107

5.1.1 Experiment a1: Tree analysis 107

5.1.2 Experiment a2: Fat-tree analysis 109

5.1.3 Experiment a3: VL2 analysis 111

5.2 Intracluster and intercluster communication: set A 113

5.2.1 Overall comparison: set A 116

5.2.2 Traffic matrix characteristics: set A 118

5.3 Experiment set B: analysis . 119

ix

III Conclusion 129

6 Discussion and future work 131

6.1 Implementation of the algorithms 131

6.1.1 Challenges during the implementation 132

6.1.2 Obstacles encountered 133

6.1.3 Changes in the initial approach 134

6.1.4 Alternative approaches 134

6.1.5 Thesis contributions 137

6.2 Suggestions for future work 137

6.2.1 Constraints . 138

6.2.2 Minimizing migrations 138

6.2.3 From static to dynamic optimization 138

7 Conclusion 141

IV Appendix 143

8 Appendix 145

8.1 Experiment management scripts 145

8.2 Algorithm implementations 145

8.3 Intracluster experiment . 145

8.4 Analysis and plotting scripts 145

x

List of Figures

2.1 Cloud computing service models 10

2.2 Cloud computing service models: IaaS, PaaS and SaaS.

(Source: MSDN/Microsoft Azure) 13

2.3 Full virtualization (a) and Paravirtualization (b) 17

2.4 The traditional layered data center architecture 20

2.5 Tree (three-tier) topology . 22

2.6 PortLand (Fat-tree) topology 23

2.7 VL2 topology . 24

2.8 BCube topology . 24

2.9 Example of partitioning graph G = (V, E) 26

3.1 Simulated annealing process 56

3.2 The Tree data center network model used in the project . . . 57

3.3 The Fat-tree data center network model used in the project . 59

3.4 The VL2 data center network model used in the project . . . 61

4.1 An example of four sub-partitions containing four VMs each 68

4.2 Reward transitions for the RewardSimilarNodes 70

4.3 Penalty transitions for the PenalizeSimilarNodes 71

4.4 Penalty transitions for the PenalizeDissimilarNodes 71

4.5 Set of clusters after swapping two random clusters 76

4.6 Total cost of communication in Tree with random assign-

ments in set A . 88

4.7 Total cost of communication in Tree after VM clustering in

set A . 89

4.8 Total cost of communication in Tree after cluster placement

in set A . 90

4.9 Total cost of communication in Fat-tree with random assign-

ments in set A . 91

xi

4.10 Total cost of communication in Fat-tree after VM clustering

in set A . 92

4.11 Total cost of communication in Fat-tree after cluster place-

ment in set A . 92

4.12 Total cost of communication in VL2 with random assign-

ments in set A . 94

4.13 Total cost of communication in VL2 after VM clustering in

set A . 94

4.14 Total cost of communication in VL2 after cluster placement

in set A . 95

4.15 Average total intracluster traffic in 16 clusters with randomly

assigned VMs in set A . 97

4.16 Average total intracluster traffic in 16 clusters after GP in set A 97

4.17 Total cost of communication in Tree with random assign-

ments in set B . 99

4.18 Total cost of communication in Tree after VM clustering in

set B . 99

4.19 Total cost of communication in Tree after cluster placement

in set B . 100

4.20 Total cost of communication in Fat-tree with random assign-

ments in set B . 101

4.21 Total cost of communication in Fat-tree after VM clustering

in set B . 101

4.22 Total cost of communication in Fat-tree after cluster place-

ment in set B . 102

4.23 Total cost of communication in Fat-tree with random assign-

ments in set B . 103

4.24 Total cost of communication in Fat-tree after VM clustering

in set B . 103

4.25 Total cost of communication in Fat-tree after cluster place-

ment in set B . 104

4.26 Average total intracluster traffic in 16 clusters with randomly

assigned VMs in set B . 105

4.27 Average total intracluster traffic in 16 clusters after GP in set B 105

5.1 Total cost of communication in Tree in set A 108

5.2 Total cost of communication in Fat-tree in set A 111

xii

5.3 Total cost of communication in VL2 in set A 112

5.4 Intracluster traffic in the 16 clusters before GP in set A 113

5.5 Intracluster traffic in the 16 clusters after GP in set A 114

5.6 Intra and intercluster traffic heatmap before GP in set A . . . 115

5.7 Intra and intercluster traffic heatmap after GP in set A 116

5.8 Total cost of communication in all three experiments in set A 117

5.9 All edge values in set A in the traffic matrix in 25% percentiles118

5.10 Top 100 edge values in set A in the traffic matrix shown with

10% percentiles . 119

5.11 Edge values in the traffic matrix in set B shown with 10%

percentiles . 120

5.12 Intracluster traffic in the 16 clusters before GP in set B 120

5.13 Intracluster traffic in the 16 clusters after GP in set B 121

5.14 Total cost of communication in Tree in set B 122

5.15 Total cost of communication in Fat-tree in set B 123

5.16 Total cost of communication in VL2 in set B 123

5.17 Intra and intercluster traffic heatmap before GP in set B . . . 124

5.18 Intra and intercluster traffic heatmap after GP in set B 125

5.19 Total cost of communication in all three experiments in set B 126

xiii

xiv

List of Tables

5.1 Change in the total cost of communication in Tree in set A . 108

5.2 Change in the total cost of communication in Fat-tree in set A 110

5.3 Change in the total cost of communication in VL2 in set A . 111

5.4 Changes in the total cost of communication in set B 126

xv

xvi

Acknowledgements

I would like to express my sincere grattitude and appreciation to the

following people for their help and support during my studies and my

work on this thesis:

• To my supervisor Anis Yazidi for his dedication, guidance, support

and kindness both during my master studies and the thesis project

that helped me overcome the difficulties during this project and made

this thesis possible.

• To Kyrre Bengnum for his kind advices and guidance during my

studies and while working on this project.

• To all my colleagues and friends who kindly reviewed my thesis in

progress in order to give me useful advices and recommendations.

• To the University of Oslo and the Oslo and Akershus University

College of Applied Sciences for giving me the opportunity to take this

master’s program and to all the lecturers, professors and teachers for

working hard to teach the students and make the education process

interesting and fun.

• To all of my fellow students with whom I share so many good

memories for being supportive, friendly, kind and for teaching me

so much.

• To my family and all my friends both in Georgia and in Norway for

support and motivation in spite of the long distance between us.

• To my little daughter Nea Sofia, who’s not yet able to read this, for

giving me strength and inspiration every day since the day she was

born.

xvii

xviii

Part I

Introduction

1

Chapter 1

Introduction

Cloud computing is a relatively new concept referring to an environment

where physical and virtualized computing resources are distributed and

accessed over the network. Cloud computing is becoming a very central

paradigm in computing. Its robustness, increasing user-friendliness, high

flexibility and scalability combined with cost efficiency [12, 36, 44] make it

increasingly popular amongst enterprises. According to the Intel’s survey

of 200 IT Managers [12] 80% of them are in the process of deploying or have

already adopted private and/or public cloud by moving parts of their IT

environment to it, while the remaining 20% plan to do so in the near future.

One of the main reasons behind cloud computing’s success are the

properties of virtualization technology which is very central in cloud com-

puting as it allows the virtual machines (VMs) to be created, cloned, mi-

grated, restored, etc. in a time-effective manner with little effort from the

system administrator. Live migration allows VMs to be moved from one

physical host to another without the customer noticing it as the service is

never interrupted before, during or after the process. These characteris-

tics of virtualization give cloud computing the robustness and flexibility

enabling dynamic scaling of the infrastructure in a much more rapid and

effective way compared to the traditional systems. As a result cloud com-

puting is becoming one of the major driving forces behind the rapid growth

of the data centers around the world [19].

Due to the exponential growth of the data centers and the growing com-

putational power of the modern computers the data centers are constrained

3

not merely by the computational power, storage or any other computing

resource but increasingly so by the networking limitations [7]. Large data

centers are hosting hundreds and thousands of VMs for different cloud

computing service providers. The VMs are usually consolidated with re-

source usage in mind with various tools, such as VMWare Capacity plan-

ner [63], Microsoft Assessment and Planning (MAP) Toolkit for Hyper-

V [48] or IBM Workload Deployer [30] that help plan and carry out VM

consolidation with regards to CPU, memory and disk usage. However,

these tools don’t take in account network usage or VM intercommunication

which often results in VMs that communicate extensively with each other

being placed far away from one another and having to communicate over

long distances unnecessarily overloading the higher levels of the network

which contains the most expensive enterprise grade equipment. Facebook

experiences roughly 1000 times higher traffic usage inside its data center

compared to the incoming and outgoing traffic from and to its users [42].

Bandwidth becomes a bottleneck resource in the higher layers of the net-

work decreasing communication performance[61] for applications and in-

creasing workload for network elements on the aggregation and core layers

which in turn often results in higher power consumption of a data center

[19], more greenhouse emissions and increased business costs.

These problems pose a significant challenge not only for the environ-

ment and in terms of high power usage business costs but also for the

network-dependent application performance and the scalability and the

growth of data centers. The 2009 study by Benson et al.[5] has shown that

the link utilization in the lower layers of data centers for most of the time

is very low. Thus, it is reasonable to assume that the link utilization can be

optimized by traffic-aware VM deployment eliminating traffic bottlenecks

and ensuring high communication performance between applications.

The aim of this thesis is to investigate an important aspect of the re-

source provisioning which has not received enough attention yet, namely

traffic-aware virtual machine placement. In most cases the applications

communicating extensively with each other in the cloud environment will

belong to the same tenant. It would be beneficial for the whole network

if the VMs hosting applications with high mutual traffic were deployed

in closer proximity to each other. Such placement is assumed to relieve

4

the network elements in the upper layers of the networking infrastructure

where the most expensive equipment is usually operated and fully utilize

the links at the lower levels of the network. This project aims to investi-

gate how the VMs with high mutual communication can be consolidated in

clusters in order to reduce the total cost of communication. One approach

to this problem could be to attempt all possible combinations of VM place-

ments and choose the most optimal configuration. However, since data

centers usually host hundreds and thousands of VMs in order to find the

best possible placement for the VM number greater than 20 it would require

to test astronomical number of different permutations and the task would

be computationally infeasible. Therefore this project aims to break down

the problem in two main parts. First the VM clusters should be detected

with a graph partitioning algorithm which will consolidate VMs with high

mutual traffic in clusters. The resulting clusters should thereafter be as-

signed to the physical hosts in the server racks in the data center. As the

number of the groups will usually be significantly less than the number of

VMs it will become computationally feasible to find the best possible way

to assign these clusters to the server racks in the data center. An algorithm

for quadratic assignment problem should be able to handle this task.

Since several new data center network architectures have been pro-

posed in recent years the thesis will test the VM consolidation and cluster

assignment on a number of different architectures in order to see what the

effect of the data center network topology is on the traffic-aware VM con-

solidation through graph partitioning and on which of the topologies the

algorithms yield the best results.

5

1.1 Problem statement

The goals of this paper are to investigate how a graph partitioning

algorithm can be used in order to optimize VM placement in an intelligent

traffic-aware way and also to investigate how a quadratic assignment

algorithm can be implemented in order to further optimize the VM

placement on the available server racks so that the VMs with high mutual

traffic are placed in closer proximity to each other effectively decreasing the

total cost of communication in any data center.

The paper addresses the following questions:

1. How can graph partitioning be used in order to consolidate VMs in VM

clusters in a traffic-aware way?

2. How can the resulting VM clusters be placed on the available server racks in

order to minimize the total communication cost in any data center network

architecture?

Algorithm refers to a step-by-step set of operations designed to solve

specific problems in computer science.

The term Optimization in the problem statement refers to the concept

often used in the computer sciences describing the process of improving a

process or a system making it more efficient.

Graph partitioning refers to the technique of dividing a graph, which

is a representation of data, into sub-partitions where the communication

between the nodes inside the sub-partitions is maximized while the com-

munication between the sub-partitions is minimized.

The concept of traffic-aware virtual machine placement refers to consid-

ering traffic characteristics when making decisions on where to place the

virtual machines.

6

1.2 Thesis outline

This thesis is organized in the following way:

Chapter 1 (Introduction) provides a short overview of the current

growth of the cloud computing in data centers, what challenges this is pos-

ing for internal bandwidth usage and application performance and how

the thesis is aiming to address these challenges.

Chapter 2 (Background) describes the technologies and concepts rele-

vant in this project.

Chapter 3 (Approach) gives a thorough description of the planned steps

needed to address the problem statement, describes the experiment design,

project methodology and results evaluation strategy.

Chapter 4 (Results) describes the implemented algorithms, the experi-

ment process and the results obtained through the experiments along with

basic statistical data and the visualized output.

Chapter 5 (Analysis) goes through the results obtained through the ex-

periments as described in the results section and analyses them, compares

them to each other and explains the observed results and behavior of the

algorithms.

Chapter 6 (Discussion and Future work) critically reflects on the course

of the project, the obtained results and the analysis, discusses the approach

and the alternative methods, considers the bigger picture and suggests sev-

eral improvements and future work.

Chapter 7 (Conclusion) presents the summary of the thesis by explain-

ing how the problem statement was addressed and what the actual out-

come of the research was.

Chapter 8 (Appendix) provides the algorithm, the experiment manage-

ment and the plotting and analysis scripts developed during the project.

7

8

Chapter 2

Background

2.1 Cloud computing

Cloud computing generally refers to delivering computing services over

the network or the internet. Cloud consists of number of interconnected

computers providing platforms or applications to the users. Virtualiza-

tion technology is one of the most important technologies powering cloud

computing by allowing computing resources to be shared across the cloud

completely transparent to the user. As demonstrated in the introduction

chapter cloud computing is gaining popularity extensively and is spread-

ing rapidly all over the world with more and more IT professionals either

in process or planning to implement private or public clouds in the near

future [12], a strategy which is expected to cut considerable amount of IT

expenses [36].

Some of the key features that make cloud computing an attractive

choice are:

Flexible pricing This pricing model is often called pay-per-use or pay-as-

you-go and means that customers get to pay only for what resources

they have used.

Service on demand The resources are provided according to the needs of

the customer.

High availability Cloud computing systems consist of numerous redun-

dant components hidden from customer. These components make

9

applications, networking, storage and other services and resources

redundant and highly available.

Scalability One of the main strengths of cloud systems is their scalabil-

ity. Virtualization technologies further make scaling up or down easy

and transparent to the system users.

As previously mentioned, there are four main cloud deployment

models:

• Private cloud

• Public cloud

• Community cloud

• Hybrid cloud

Figure 2.1: Cloud computing service models

Private cloud is usually a cloud environment which consists of the

hardware and software owned by the company that uses it, hosted

either on the premises of the organization or externally. The private

cloud is normally managed, maintained, supported and utilized

either by the owner or by a third party.

10

Public cloud is usually a commercial cloud environment hosted off the

company premises and providing free or pay-per-usage based ser-

vices over network that’s available for public use. Some of the

best known examples of public clouds are Amazon Elastic Compute

Cloud (EC2), Microsoft Azure, IBM’s Blue Cloud, Google AppEngine.

Community cloud is a cloud environment which is shared by two or more

organizations and hosted either internally or by a third party. Hybrid

cloud is a combination of two or more clouds (private, community or

public) that remain unique parts but are interconnected enabling data

and application portability.[16]

The main distinguishing characteristic of cloud service is that the ser-

vices are often sold per use, per minute or hour. Usually the cloud provider

is responsible for maintenance of the underlying software and hardware

whereas the customer simply connects to the service over the internet to-

tally oblivious of the multiple network layers and complex machinery be-

hind the cloud.

Recent years have seen both the increase in the new cloud services pro-

viding various services as well as businesses moving their infrastructures

or parts of it to the cloud in some cases presumably saving up to 37% of

infrastructure expenditures over the next five years and at the same time

eliminating up to 21% of support calls for their systems [36]. KPMG’s

2014 Cloud Computing Survey conducted a study where 500 interviews of

global business executives from over a dozen industries showed that 75%

of the enterprises are experiencing improved business performance after

adopting cloud-based applications and strategies [40]. The American in-

formation technology research company Gartner Group predicts that cloud

computing will be the bulk of new IT expenditures by 2016 [58]. Public

cloud is expected to increase from the estimated $58 billion to $191 billion

by 2020 [20].

2.1.1 Cloud computing service models

There are three main cloud computing service models offering different

types of services to their users.

11

• Infrastructure-as-a-Service (IaaS)

• Platform-as-a-Service (PaaS)

• Software-as-a-Service (SaaS)

IaaS

Infrastructure-as-a-Service model enables the companies to outsource their

computing equipment and other resources such as servers, networking

devices, storage devices, etc. usually offers virtual machines and network

components such as load balancers, switches, firewalls, etc. to customers

who wish to outsource their equipment or infrastructure. The cloud

provider hosts physical machines and is responsible for maintenance,

monitoring and support of their equipment. Customer usually subscribes

to appropriate quality of service of their choice and pays according to

the agreed service level. IaaS is normally easily scaled up or down

depending on the customer’s requirements. Customer gets to manage

applications, data, platform and operating system. The customer manages

all the components except the virtualization layer, hardware and the

infrastructure behind it.

Several examples of IaaS providers are Amazon AWS, Windows Azure,

Google Compute Engine and Rackspace Open Cloud.

PaaS

In Platform-asa-Service resources such as operating systems, storage,

network, programming language execution environments, databases, etc.

are provided over the network. This service is for example useful for

developers who work on the same project from different parts of the

world. The hardware behind the PaaS scales automatically to match the

demands of the application used by the customers. PaaS allows the users

to control the data and the applications, but not the underlying layers such

as operating system, hardware, etc.

Some notable PaaS providers are Google App Engine, Engine Yard,

Amazon AWS and AppFog.

12

SaaS

In Software-as-a-Service model application software such as for example

webmail or virtualized desktop is provided over the network by the

software or service provider. Cloud providers maintain the underlying

infrastructure and hardware and is responsible for the quality of service.

Scaling the underlying infrastructure is completely transparent to the cloud

clients. The customer has minimal control of the service and no access to

the underlying components.

A few examples of SaaS are Salesforce, Cisco WebEx and Gmail.

Figure 2.2: Cloud computing service models: IaaS, PaaS and SaaS. (Source:
MSDN/Microsoft Azure)

2.1.2 Cloud platforms

Some of the leading cloud platforms have emerged since the evolution of

the virtualization and cloud computing started in 1960’s. Most of the major

cloud computing platforms are commercial, however there are open-source

alternatives as well.

13

VMWare

VMWare1 is one of the leading virtualization platforms and was founded

in 1998. In 1999 VMware introduced VMware Virtual Platform and the

year after VMware GSX Server 1.0 for Linux and Windows. VMWare

claims to be the first to create a commercially successful x86 virtualization.

VMWare’s ESX and ESXi servers are bare-metal hypervisors that run di-

rectly on hardware and don’t require operating system layer to function.

VMWare is free to to some degree, however the advanced features require

purchase of costly licenses.

Microsoft Hyper-V

Microsoft started experimenting with virtualization back in 2003 when it

acquired Connectix VPC and Virtual Server [43]. In 2004 Microsoft released

Microsoft Virtual Server 2005 and then Microsoft Virtual Server 2005 R2 the

following year. Microsoft Hyper-V2 was first shipped with some versions

of Windows Server 2008. Finally Microsoft introduced its Hyper-V server

2008 in October 2008. Hyper-V is a native hypervisor which creates VMs

on x86-64 architecture systems. A stand-alone Hyper-V Server offers

OpenStack

OpenStack3 is a open-source and free cloud computing software platform

which is mainly used as an infrastructure-as-a-service deployment. The

development of OpenStack started in 2010 jointly by RackSpace Hosting

and NASA and is currently managed by a non-profit organization Open-

Stack. Numerous organizations have joined the project including Cisco,

Dell, AT&T, Hewlett-Packard, IBM, Intel, Linux, VMWare, etc. Multiple

research and academic institutions, non-profit and commercial companies

have adopted OpenStack.

OpenStack has modular architecture consisting on different compo-

nents with their own codenames. Some of the main components in Open-

Stack are:

1http://www.vmware.com/
2https://technet.microsoft.com/en-us/windowsserver/dd448604.aspx
3http://www.openstack.org/

14

• Compute (Nova)

• Object Storage (Swift)

• Block Storage (Cinder)

• Networking (Neutron)

• Dashboard (Horizon)

• Identity Service (Keystone)

• Image Service (Glance)

• Database (Trove)

2.2 Virtualization

The term virtualization means creating a virtual version of something,

whether it’s hardware platform, operating system, network resources, stor-

age device or server virtualization. Virtualization is the technology that

allows multiple virtual machines ("guests") to share the resources of the

same ("host") physical hardware. The technology was developed by Inter-

national Business Machines Corporation (IBM) in the mid 1960’s [62] in or-

der to consolidate several systems into one mainframe and spare the main-

frame resources. Virtualization makes it possible to set up complex com-

puter networks consisting of multiple guest virtual machines that run all

sorts of different operating systems and utilize virtualized networking and

security devices, switches, routers and firewalls. The technology that gives

the cloud computing systems high-scalability, reduces costs and saves com-

puting resources, is the main driving force behind the success of cloud com-

puting.

2.2.1 Types of virtualization

There are three main types of virtualization.

Partial virtualization

Partial virtualization refers to when some parts of the hardware are

simulated. It provides a partial or a sectional simulation of the hardware in

15

the physical host and especially address space. As a result the operating

system can’t run in the virtual machine in the same way as in the

full virtualization. Some of the running software needs modification

in order to run. Partial virtualization was a very important milestone

ultimately leading to development of full virtualization. The term partial

virtualization can also be used to describe an operating system which

provides address spaces for individual users or processes regardless of

whether they can be considered virtual machine systems or not.

Para-virtualization

In para-virtualization the hardware is not necessarily simulated. Instead

the guest programs run in their separate, isolated environments. The

hypervisor is called Type 2 hypervisor in paravirtualization and the guest

operating systems are modified in order to function as they are aware of

the fact that they are being virtualized. Sometimes a dedicated VM called

dom0 needs to be running in order to accommodate the management tools

and device drivers. This technique is used in products such as UML and

Xen.

Full virtualization

Full virtualization is a type of virtualization when the hypervisor runs

directly on the hardware. This type of hypervisor is also called a bare-

metal or Type 1 hypervisor. The guest operating systems run on top of

the Type 1 hypervisor in full virtualization. The guest OS is unaware of

the virtualization and requires no modifications in order to function. The

hypervisor’s job is to emulate device hardware at the lowest level [31].

Some examples of full virtualization are VMWare, KVM, Xen, VirtualBox,

Hyper-V.

2.2.2 Hypervisors

The physical machine, so called "host" that runs virtual machines is called

hypervisor. There are several popular hypervisors:

• Microsoft’s Hyper-V

• VMware ESX/ESXi

16

• KVM

• Xen

There are two main types of hypervisors: type 1 and type 2 hypervisors.

Type 1 hypervisors, also called bare-metal hypervisors, run straight on

the hardware without an operating system in the middle (VMware ESXi,

Hyper-v, Xen), while type 2 hypervisors (Oracle VirtualBox, VMware

Virtual Workstation) run on top of the pre-installed operating system such

as Windows or Linux.

Figure 2.3: Full virtualization (a) and Paravirtualization (b)

2.3 Data centers

Data center, also called server farm or computer room, is a facility where

majority of an organization’s servers, computer systems and IT equipment

are located, managed and operated. It is where the organization stores and

disseminates its data from.

According to Gartner’s IT Glossary page:

"The data center is the department in an enterprise that houses and

maintains back-end information technology (IT) systems and data

stores—its mainframes, servers and databases. In the days of large,

centralized IT operations, this department and all the systems resided

in one physical place, hence the name data center."4

4http://www.gartner.com/it-glossary/data-center/

17

Data centers have evolved extensively since the so called dot-com

bubble5 of the 1990s’ [3] when companies saw the need for being present

on the internet and started to look for efficient ways to deploy their IT

systems in a way that gave them fast internet connectivity and non-stop IT

operations. By 2007 the average data center consumed as much energy as

a small town [3, 22] with over five million new servers deployed each year.

In 2010 it was estimated [38] that 2% of all electricity in the United States

of America and about 1.3% of the electricity worldwide was consumed by

data centers.

Data centers typically consist of four main components[8]:

White space: Usually refers to the usable raised floor environment. For the

data centers that don’t use the raised floor environment the term can

still be used to refer to the usable area.

Support infrastructure: Refers to the space and equipment which is

needed in order to support the data center operations. This includes

power supply, uninterruptible power source (UPS), cooling systems,

air distribution systems, etc. Support infrastructure can occupy much

larger space compared to the white space.

IT equipment: Refers to all the IT equipment needed to operate the data

center. This includes server racks, servers, network elements, storage

systems, cabling, etc.

Operations: Refers to the staff that is responsible for managing, monitor-

ing, maintaining and when required repairing and upgrading the

data center. Both IT systems and the underlying physical infrastruc-

ture.

The rapid rise in popularity and the consequential expansion of cloud

computing is fueling the growth of the data centers both in numbers and in

size around the world. As of 2010 the data centers are estimated to consume

about 2% of all electricity in the United States of America and about 1.3% of

the electricity worldwide [38]. By 2007 it was estimated that the emissions

from data centers accounted for about 14% of all the emissions caused by

the ICT systems generally, including telecommunications devices and in-

frastructure and PCs and peripherals [25], and it’s presumed that data cen-

5http://www.techopedia.com/definition/26175/dot-com-boom

18

ters will be responsible for 18% of emissions of all the ICT systems by 2020.

2.3.1 Data center architecture

Data center network is traditionally based on the layered [14] [56] or a three-

tier approach. Three-tier network architecture consists of three layers of

switches and routers (see Fig.2.4). The layered approach is designed to

enhance scalability, high performance and flexibility and improve mainte-

nance of data center networks.

Access layer: This is where the servers are physically connected to the

network by connecting to the layer 2 switches called access or edge

switches.

Aggregation layer: This layer provides functions such as service module

integration, Layer 2 domain definitions, spanning tree and default

gateway redundancy.

Core layer: Handles all the incoming and outgoing traffic that comes in

and leaves the data center. This layer provides connectivity to vari-

ous aggregation modules and it handles the layer 3 networking with

access and border routers.

2.3.2 Top of Rack (ToR) and End of Rack (EoR) designs

Typical data centers consist of rows of server racks. A server rack, some-

times referred to as server cabinet, is usually a metal frame designed to hold

various IT equipment such as servers, blade chassis, switches, routers, net-

work patch panels, and provide power, connectivity and cooling to these

components. Each rack typically contains ethernet switches and patch pan-

els on the top, however, the switch doesn’t actually have to be physically

on top of the rack. These switches are referred to as Top of Rack (ToR)

switches and provide non-blocking bandwidth for the directly connected

nodes [50]. The advantages of ToR design are less cabling, flexible "per

rack" architecture and fiber infrastructure. Main disadvantages are more

19

Internet

Load Balancer Load balancer

...

...

Layer 3
Core layer

Internet

Layer 2

Access Routers

L2 Switch L2 Switch

L2 Switch L2 Switch L2 Switch L2 Switch

Border Routers

Server Racks ...

Access and aggregation
layers

Figure 2.4: The traditional layered data center architecture

switches involved in the design and more server-to-server traffic in the ag-

gregation layer.

An alternative design is called end of row (EoR) design where the hosts

in the server racks are connected to a dedicated rack which is called End of

Row (EoR) rack. The switches in this scenario are called End of Row (EoR)

switches. The EoR switches don’t actually need to be situated in the end of

each row. This approach requires fewer access switches and there are fewer

ports involved on the aggregation layer. On the other side expensive and

bulky copper cabling is required. More patching and cable management

20

and less flexibility are other cons of this approach.[27]

2.3.3 Data center network architectures

Due to the exponential growth of the cloud in data centers and the

evolution of the computers the computing power is no longer the

constraining factor in the data centers. The servers are becoming

increasingly powerful and as the cloud computing grows and with it the

number of VMs explodes the data centers are faced with the inherent

problems in the traditional data center network (DCN) architecture.

The bandwidth bottlenecks, oversubscription in the higher layers and

the underutilization in the lower layers of the data center network are

becoming real issues [7]. Several new approaches to data center network

topology have been proposed in recent years.

Tree topology

As previously mentioned the current data centers usually follow the

traditional three-tier (or three-layer) network architectures. At the lowest

level, which is called access tier hosts connect to one or multiple access

switches. Each of the access switches is connected to one or multiple

aggregate switches at the aggregation layer. The aggregation switches in

turn connect to multiple core switches at the core layer. This design creates

a tree-like (see Fig.2.5) topology where packets are forwarded according

to a layer 2 logical topology [47]. The higher level network elements are

usually enterprise-level devices and often highly oversubscribed.

21

...

...

1 2 3 4 5 6 7 8 13 14 15 16

Figure 2.5: Tree (three-tier) topology

2.3.4 Recently proposed DCN architectures

Several new data center network architectures have been proposed as

alternatives to the legacy DCN architecture.

PortLand (Fat-tree)

PortLand data center network architecture is an attempt to solve the cross-

section bandwidth challenges of the tree-topology and makes use of the

Fat-tree network topologies. The network elements in PortLand DCN fol-

low hierarchical organization similar to the tree-topology and form a Clos

topology. Fat tree is organized in pods (see Fig.2.6). Pod refers to a group

of access and aggregation switches forming a complete Clos (or a bipartite)

graph. In Fat tree each pod is connected to all of the core switches.

22

...

...

1 2 3 4 5 6 7 8 13 14 15 16

Figure 2.6: PortLand (Fat-tree) topology

Number of available ports on each switch decides the number of pods.

If k is the number of available ports on each switch there will be k number

of pods, k
2 number of access switches and k

2 number of aggregation switches

in each pod. Each pod is connected to the k2

4 core switches on the higher

level and with k2

4 server on the bottom layer. Totally, there are 5k2

4 switches

connecting k3

4 servers to each other.

VL2

VL2 network architecture (see Fig.2.7) resembles the traditional three-tier

tree architecture. It is also a three-layer architecture, however the core and

the aggregation layers compose a Clos6 topology [24].

In VL2 the data packets originating from the access switches are

forwarded to the aggregation and the core layers with the use of valiant

load balancing. The traffic is first forwarded to a randomly elected core

switch and then forwarded back to the access layer to its actual destination

switch. The idea behind this method is to provide smoother load balancing

on all available links when the traffic is unpredictable.

6http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks–what-
s-old-is-new-again.html

23

...

...

1 2 3 4 5 6 7 8 13 14 15 16

Figure 2.7: VL2 topology

BCube

BCube (see Fig.2.8) is a multi-level server-centric DCN architecture. Server-

centric refers to an architecture where servers become part of the network-

ing infrastructure and participate in packet forwarding for other servers.

...

1 2 3 4 5 6 7 8 13 14 15 16

Figure 2.8: BCube topology

24

2.3.5 Cost matrix

A cost matrix (or a distance matrix) is a two dimensional array which con-

tains information about the communication cost (or the distance) between

the pairs of nodes in a set of nodes. The matrix usually has a NxN dimen-

sion where N is the number of the nodes in the set of nodes. Each row in

the matrix corresponds to a single node denoted by i and each column also

represents a single node and is denoted by j.

Cij =


c1,1 c1,2 · · · c1,j

c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · ci,j

 (2.1)

In the sample matrix displayed above each element of the matrix repre-

sents cost of communication or a distance from the node i to node j.

Cost matrix should not be confused with adjacency matrix. The main

difference is that the adjacency matrix merely shows which nodes are con-

nected to each other ignoring the communication costs between them. Cost

matrix can be either asymmetric or symmetric. In some cases first symmet-

ric matrix is constructed when connection costs between nodes are different

depending on the "direction". After obtaining an asymmetric cost matrix a

symmetric cost matrix can easily be calculated by computing average costs

between the nodes.

2.4 Graph partitioning

Graph partitioning (GP) refers to division of data into sub-partitions

(see Fig.2.9) so that the communication between the sub-partitions is

minimized while inter-partition communication is maximized [17]. If data

is represented as a graph G = (V, E), where V are vertices and E are edges,

graph partition is dividing the graph G into smaller partitions with specific

characteristics according to given constraints.

Uniform graph partitioning refers to graph partitioning where sub-

partitions are about the same size and where connections between the par-

25

titions is minimized.

Original graph G = (V, E)

V1 V2 V3 V4

V5 V6 V7 V8

V9 V10 V11 V12

V13 V14 V15 V16

V1 V2 V3 V4

V5 V6 V7 V8

V9 V10 V11 V12

V13 V14 V15 V16

After uniform graph partitioning

Figure 2.9: Example of partitioning graph G = (V, E)

The figure 2.9 illustrates how the original graph G = (V, E) is parti-

tioned into four uniform sub-partitions. The inter-partition communication

(communication between the nodes inside partition) is maximized while

the communication between the partitions is minimized.

Computer scientists frequently use graphs as data abstractions when

constructing problem models [9]. Even if the ultimate problem is some-

thing else graph partitioning can still be used as a sub-problem for com-

plexity reduction or parallelization.

If we assume graph G = (V, E) to be any graph with an even number

of vertices, V. The graph partitioning problem (GPP) involves partitioning

V into two node sets (or groups) V1 and V2 (where |V| = |V1| + |V2|
and V1 ∩ V2 = ∅) such that the sum of the edge-cost having endpoints

in different sets is minimized. If Cij is the symmetric cost of the edge

connecting nodes i and j, the graph partitioning problem is the following

nonlinear optimization problem:

Minimize ∑
i∈V

∑
j∈V

cij · xi · (1− xj) (2.2)

26

Subject to ∑
i∈V

xi = N (2.3)

where xi ∈ {0, 1} f or all i ∈ V; and xi = 1 =⇒ i

is in set V1; xi = 0 =⇒ i is in set V2

The graph partitioning problem can be rewritten in an unconstrained

form:

Minimize ∑
i∈V

∑
j∈V

cij · xi · (1− xj) + Π (2.4)

Where Π is a penalty measure associated with 2.3. The 2.4 formulation

was utilized by Johnson et al. [33] in 1989.

Due to the fact that there is no exact algorithm to find the solution to

the GPP the most optimal way is to use an exhaustive search of the whole

solution space. However, the solution space can be too large depending on

the number of vertices. In case of |V| = 100 the solution space has more

than 1029 solutions. Thus, it not be computationally feasible to find the

exact solution and instead it might be reasonable to go for near-optimal

solution.

2.4.1 GPP problem complexity

Usually graph partitioning problem (GPP) belongs to NP-hard problems

and is resolved by employing heuristic, approximation or optimization al-

gorithms. However, uniform GPP (also called balanced graph partitioning

problem) is known to be NP-complete to approximate.

In computational complexity theory [54, 64] NP refers to nondeterminis-

tic polynomial time and is the most fundamental complexity class. Problems

are assigned to NP class when they are solvable in polynomial time by a

nondeterministic Turing machine [60]. An algorithm is said to be solvable

27

in polynomial time if the number of steps required to complete the algo-

rithm for a given input is O(nk) for some non-negative integer k, where n

is the complexity of the input7. Polynomial algorithms are considered to

be fast and efficient. Some examples of mathematical operations that can

be completed in polynomial time are addition, subtraction, multiplication,

division, square roots, powers and logarithms.

A problem is known to be NP-hard if the algorithm for solving it can be

translated into an algorithm for solving any NP-problem. If a problem is

both verifiable in nondeterministic polynomial time (an NP-problem) and

is also an NP-hard problem is known to be an NP-complete problem.

2.4.2 Graph partitioning algorithms

Over the years of research various approaches have been proposed by dif-

ferent researchers in order to come up with the best possible solution for

the GPP with the use of different algorithms.

Kerninghan-Lin Algorithm [35].

The Kerninghan-Lin (KL) graph partitioning algorithm was developed

in 1969 and has been considered as one of the best heuristic algorithms for

years. The strength of the KL algorithm is the ability to quickly find "good"

solutions. The KL algorithm is based on the idea that some nodes are more

strongly connected than others and need to be moved between potential

solution sets. This approach uses the observation that the connected ver-

tices with weighty edge costs tend to form clusters. The researchers con-

cluded that swapping groups of vertices between the temporary solution

sets was more probable to yield better results compared to swapping indi-

vidual pairs of nodes. The disadvantage of the KL algorithm is the fact that

the results are not consistently of high quality [59].

The Extended Local Search Algorithm

The extended local search algorithm (XLS) was developed in 1991 by

Rolland et al. [59]. The XLS is related to a local search scheme. The Al-

gorithm LS works on a current partitioning and modifies it by moving a

pair of nodes between the sub-partitions. The algorithm obtain a solution

7http://mathworld.wolfram.com/PolynomialTime.html

28

by swapping pairs of nodes between two sub-partitions with an additional

constraint, that each node should note be moved more than once. The LS

searches the neighborhood of the current partition in attempt to locate a

local optimum. Given any possible solution a better solution can be found

by swapping a single pair of nodes. Due to the large solution space size re-

peated invocation of Algorithm LS may not succeed in finding the optimal

solution, however the Algorithm LS works well for dense graphs when in-

voked repeatedly due to the multiple "almost optimal" solutions.

2.4.3 Graph partitioning using learning automata

Oommen introduced a learning automata-based graph partitioning algo-

rithm in 1996 in the paper "Graph Partitioning Using Learning Automata"

[51]. The work proposes a novel approach to solving GPP by using learning

automata and viewing the problem not as a searching or a parameter-based

training, but as an object partitioning problem.

Learning automata

Research of learning automata goes back to the work of Tsetlin in 1960s in

Soviet Union, however the learning automaton term was first used by Naren-

dra and Thathachar in a survey paper of 1974 [49].

Learning automaton is a decision-making device, an algorithm that

adaptively chooses from a set of different actions on a random environ-

ment. The automata approach to learning represents the determination of

the optimal action from the set of finite available actions [45, 46]. After

learning automata applies an action to the random environment feedback

is generated by the environment which is used by learning automata in

order to learn the optimal action. Learning automata can be useful in re-

solving optimization problems or for statistical decision-making.

Learning automata can be useful when addressing graph partitioning

problems (GPP) when the graph is being divided into sub-graphs accord-

ing to the "similarities" and "dissimilarities" of the graph nodes [51]. The

environment is constantly being changed and the automata makes deci-

sions according to the pre-programmed decision set based on the altered

29

graphs.

Object partitioning based on learning automata

As previously mentioned Oommen’s approach views the GPP not as

a searching or parameter-based training, but rather as an object partition-

ing problem. The algorithm checks random pairs of nodes and compares

them to each other in order to determine which of them are "similar" or

"dissimilar". The similarity of nodes is determined by how strongly inter-

connected they are and how small their corresponding edge is. This infor-

mation is used to decide whether or not the pairs of nodes belong in the

same sub-partition. The migrations are done in the pairwise mode and this

is achieved by using previous subpratition patterns in order to intelligently

partition the entire graph. The work is the first one to not only group the

nodes but also quantify the "closeness of fit" of how well the nodes belong

to the assigned sub-partitions. This is achieved by intelligently pushing the

vertices further and further "deep" into their corresponding sub-partitions

or by doing the opposite, depending on to what degree they belong in the

current sub-partition. This approach also helps nominating the "best" node

for each sub-partition which is referred to as the nucleus of the respective

sub-partition.

Algorithm performance

The algorithm is invoked repeatedly and at each invocation the

nodes in the randomly chosen pair are either penalized or rewarded

depending on whether or not they’re "similar" or "dissimilar" and whether

or not they belong to the same sub-partition. Oommen’s algorithm is

space-inexpensive (doesn’t use temporary sub-partitions, but rather sorts

the nodes in place) and fast in finding good solutions which can be

further improved. The automata based graph partitioning algorithm [51]

outperforms previously suggested Kerninghan-Lin’s and Rolland et al.

algorithms [35, 59]

2.5 Facility location problem

Facility location problem (FLP) refers to a problem of placing facilities and

allocating customers to the facilities in a way that minimizes of total service

30

cost [6].

The study of location theory goes back to 1909 and it started out when

Alfred Weber studied how to position a single warehouse in a way that

would minimize distance between it and several customers [53].

In a virtualization-based data center facility location problem is relevant

when making decisions about placing tenants or VMs on various racks

as it is often of high importance that the VMs are placed in such way

that minimizes the cost of communication between them and ultimately

decreases oversubscription in the upper layers of the network.

2.5.1 Quadratic assignment problem

The quadratic assignment problem (QAP), which was first proposed by

Koopmans and Beckman in 1955[39], is a well-known NP-hard combina-

torial optimization problem from the facility location problems category in

mathematics. Facility location problem is the most common application

area for QAP. However QAP is also applied to problems in statistical anal-

ysis, chemistry, parallel and distributed computing, archeology, chemistry,

scheduling, etc [32, 57].

Given N facilities f1, f2 ... fN and N locations l1, l2... lN

Let TNxN = (ti, tj) be a positive real matrix, where ti,j is the flow

between facilities fi and f j.

Let CNxN = (Ci,j be a positive real matrix, where ci,j is the distance

between locations li and lj.

Let p : {1, 2, ..., N} → {1, 2, ..., N} be an assignment of the N facilities to

the N locations.

Cost of the assignment is defined as follows:

c(p) = ∑
i=1

∑
j=1

ai,j · bp(i)p(j) (2.5)

The quadratic assignment problem: Find a permutation vector p which

minimizes the cost of assignment.

31

Minimize c(p) : subject to p ∈ ΠN

QAP is known to be computationally one of the most difficult prob-

lems in NP-hard class [39] and there is a general consensus that finding the

optimality of QAP problems with size > 20 is practically impossible [47].

Various heuristic methods have been developed to solve the QAP.

2.5.2 Simulated annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic for the

global optimization problem presented by Kirkpatrick et al.[37] in 1983 and

Cerny [13] in 1985. SA belongs to the general iterative algorithms in the ap-

proximation algorithms class [65]. SA algorithms don’t guarantee finding

an optimal solution. They don’t know when such solution is reached and

need to be stopped with some mechanism at some determined point.

SA is often implemented when the search space is discrete or when it is

acceptable to find a good enough solution in a certain fixed amount of time

instead of finding the best possible solution. The name of the metaheuristic

is inspired by annealing in metallurgy [18]. A technique involving heat-

ing metals in order to alter their physical or chemical properties and then

cooling them in a controlled way. In SA probability of accepting worse

solutions slowly decreases as the SA explores the solution space. This re-

sembles the controlled and gradual decrease of the temperature during an-

nealing in metallurgy, hence the name.

The simulated annealing process involves following steps:

1. Randomly alter the state

2. Assess the energy of the new state

3. Compare the energy of the current state to the previous state and

decide whether or not to move to the new state.

4. Repeat until the acceptable solution is found

32

In order to avoid being trapped in the local minima one of the following

conditions must be met for the altered state to be accepted:

• The alteration caused decrease of the energy

• The alteration caused increase of the energy, but within the bounds of

the energy (which gradually decreases)

2.6 Related research

Due to the exponential growth of the cloud computing a more efficient

resource provisioning in data centers has become an increasingly critical

issue and has been attracting attention from researchers. There has been

proposals for a more efficient and scalable data center network architec-

tures such as VL2 [24] and PortLand [50]. However, some researchers have

suggested a different, traffic-oriented VM consolidation approach to the

problem.

2.6.1 Network-aware Virtual Machine Consolidation for Large
Data Centers

Kakadia, Kopri and Varma address the internal bandwidth optimization

problem in a data center by identifying the virtual machine groups based

on the network traffic in the Network-aware Virtual Machine Consolida-

tion for Large Data Centers paper [34]. The paper proposes a greedy con-

solidation algorithm to ensure small number of migrations and fast place-

ment decisions. The work proposes algorithms to form VMClusters, to se-

lect VMs for migration and to place them using the cost tree. The exper-

iment is evaluated in an extended NetworkCloudSim [21] with software

defined network (SDN) functionality support and Floodlight8 as the SDN

controller. Performance improvement in runtime of jobs were measured

and it was concluded that I/O intensive jobs had been benefited the most.

However, the short jobs also showed significant improvements. In terms

of traffic localization the results compared to other approaches showed sig-

nificant improvements. The ToR traffic showed∼60% increase while∼70%

8http://www.projectfloodlight.org/floodlight/

33

reduction was measured in core traffic.

2.6.2 A Network-aware Virtual Machine Placement and Migra-
tion Approach in Cloud Computing

Piao and Yan [55] use a hypothetical scenario where a customer requests a

data storage space and VMs from a cloud service provider in order to host

the applications and process data. In this scenario the resources are arbi-

trarily provisioned without taking in account traffic usage and as a result

the data has to travel unnecessarily long distance. The paper proposes VM

placement and migration approach to be deployed in the host broker which

is responsible for resource allocation. The VM placement algorithm makes

sure that the new VMs are placed intelligently so that the communication

occurs over the shortest possible path while the VM migration algorithm is

triggered when the communication between existing resources suffers due

to some latency issues on the network. The latter algorithm is triggered

when the predefined service level agreement (SLA) based on the execution

time of the application is breached. The VM migration algorithm relocates

the affected VM(s) intelligently to the physical host with better network sta-

tus. The experiment was conducted on the CloudSim 2.0 [11] data center

simulation environment and the results showed improved task completion

time.

2.6.3 Improving the Scalability of Data Center Networks with
Traffic-aware Virtual Machine Placement

Meng, Pappas and Zhang [47] address the network scalability problem by

formulating the VM placement as an optimization problem and propose a

two-tier approximation algorithm to solve it for very large problems. The

paper takes in account recently proposed data center network architectures.

The real-life production data center traffic traces are used in the experi-

ment and significant improvements are shown compared to existing meth-

ods that don’t take in account traffic patterns and data center architectures.

The paper specifies the network-aware VM placement problem (TVMPP)

and attempts to optimize it by minimizing average traffic latency which is

caused by the network infrastructure assuming that each network element

34

causes equal delay of communication between the VMs. Cluster-and-Cut

algorithm, which leverages the unique features of the traffic patterns and

network topologies is used to optimize the problem. The algorithm has

two major components: 1) SlotClustering and VMMinKcut. The results of

Cluster-and-Cut and two benchmark algorithms LOPI [1] and SA [10] are

compared with each other in an experiment where 1024 slots and VMs are

used. It is concluded that the function value given by the Cluster-and-Cut

algorithm is ∼10% smaller compared the two benchmarks.

2.6.4 Starling: Minimizing Communication Overhead in Virtu-
alized Computing Platforms Using Decentralized Affinity-
Aware Migration

Sonnek et al. [61] introduce a decentralized affinity-aware migration tech-

nique for allocating virtual machines on the available physical resources.

The technique monitors the network affinity between the pairs of the vir-

tual machines and uses a distributed bartering algorithm together with

VM migration in order to dynamically move VMs in a way that ensures

that the communication overhead is minimized. This is achieved by plac-

ing the VMs with high mutual traffic as close to each other as possible,

whether putting them in the same server rack, cluster or local network.

The main contributions of the paper are: Affinity-based VM placement and

migration, implicit inference of dynamic job dependencies and decentral-

ized control. The affinity-aware migration algorithm runs on each node

and consists of the traffic monitoring and fingerprinting, affinity inference

and bartering and migration components. The experiment is conducted

on a 7-node Xen-based cluster. The Intel MPI benchmark suite9 and Cube

MHD Jet (Cube)10 were used for simulation and benchmarking. The re-

sults showed 42% improvement in the runtime of the application over a

no-migration technique and up to 85% reduction in network communica-

tion overhead.

9https://software.intel.com/en-us/articles/intel-mpi-benchmarks
10http://www.astro.umn.edu/groups/compastro/?q=node/1

35

2.6.5 Net-cohort: Detecting and managing vm ensembles in
virtualized data centers

Liting Hu et al. [29] presents ’Net-Cohort’, a lightweight system which con-

tinuously monitors a system to identify potential virtual machine ensem-

bles, evaluates the degree of communication (or as the paper calls it ’chatti-

ness’) among the VMs in the potential ensembles and enables optimized

VM placement to reduce the stress on bi-section bandwidth of the data

center network. Net-Cohort uses commonly available VM-level statistics

in order to create VM subsets (or ensembles) using correlation values and

a hierarchical clustering algorithm. In the second step a statistical packet

sniffer is used in order to identify VMs as members of a misplaced ensem-

ble using the statistical algorithm proposed by Golab and De Haan in [23]

and to finally make new VM placement decisions. The experiment was con-

ducted on 15 Xen-based hosts and 225 VMs. Net-Cohort showed the ability

to detect VM ensembles at low cost with about 90% accuracy. The exper-

iment results showed that the new VM placement improved application

throughput with 385% for a RUBiS instance, while application throughput

for a Hadoop instance improved with 56.4%. The quality of service (QoS)

for a SIPp instance showed 12.76 times improvement.

2.6.6 Cicada: Introducing Predictive Guarantees for Cloud Net-
works

LaCurts et al. [41] introduce predictive guarantees, a new abstraction for

bandwidth guarantees in cloud networks, which is achieved by analyzing

traffic traces gathered over six months from an HP Cloud Services data

center and developing a prediction algorithm which is used by the cloud

provider in order to suggest appropriate bandwidth guarantees to the ten-

ants. Cicada’s prediction algorithm adapts Herbster and Warmuth’s "track-

ing the best expert" idea [28]. In order to predict traffic the paper uses all

previously observed traffic matrices. This method doesn’t require exten-

sive amount of data in order to make predictions. For VM placement a

two-stage "virtual oversubscribed cluster" (VOC) algorithm introduced in

Ballani et al. [2] is used. The algorithm is designed to place clusters on

the smallest subtree. Cicada’s greedy algorithm tries to place the VM pairs

with most intercommunication on the highest-bandwidth paths, typically

36

on the same rack, in the same subtree. Cicada’s performance is compared

to VOC algorithm’s results on a simulated physical infrastructure with 71

racks with 16 servers each. Results show that Cicada’s placement algorithm

leaves more inter-rack bandwidth available.

2.6.7 Application-Driven Bandwidth Guarantees in Datacenters

Lee et al. [42] introduces CloudMirror, a solution that provides bandwidth

guarantees to cloud applications by deriving a network abstraction based

on application communication structure, called Tenant Application Graph

or TAG. CloudMirror provides a new workload placement algorithm that

meets bandwidth requirements by TAGs while taking in account high

availability considerations. TAG model is introduced as a graph, where

each vertex represents an application component or a tier, set of VMs per-

forming the same function. A tenant can simply map each tier onto a TAG

vertex. For example web, business logic and database tiers. Users can ei-

ther specify a matching TAG model and tune the bandwidth guarantees

by themselves or cloud orchestration systems like OpenStack Heat or AWS

CloudFormation could be extended to generate TAG models. The simu-

lation environment is written in Python and both CloudMirror placement

algorithm (CM) efficiency and accepting more tenant requests compared

to other models is evaluated in it. The results showed that CloudMirror

outperforms the performance of the existing solutions. CloudMirror was

able to handle 40% more bandwidth demand compared to the Oktopus [2]

system and also improved high availability from 20% to 70%.

2.6.8 VMPlanner: Optimizing virtual machine placement and
traffic flow routing to reduce network power costs in cloud
data centers

The main focus in Fang et al. [19] is to consolidate VMs in a way that al-

lows a number of network elements to become redundant and be removed

or put in a power-saving state. The paper proposes VMPlanner, a novel

approach for network power reduction in cloud-based data centers. VM-

Planner tries to manage not only VM placement but traffic flow routing as

well by implementing three approximation algorithms: traffic-aware VM

37

grouping algorithm, distance-aware VM-group to server-rack mapping al-

gorithm and power-aware inter-VM traffic flow routing algorithm. The

VMPlanner system for data centers consists of three modules: analyzer, op-

timizer and controller and can be implemented as a NOX application [26] to

run atop a network of OpenFlow switches. The performance of VMPlanner

is evaluated on a simulator developed in C++ using simulation parameters

and traffic conditions from real cases from a private data center test-bed

[15]. The experiment was conducted with 2000 VMs. The results were very

preliminary but at the same time succeeded in demonstrating the potential

of reducing power usage by consolidating VMs in a traffic-aware way and

intelligently routing the traffic.

2.6.9 Tools for implementation

Several tools essential to the implementation of this project will be used

during the research.

Python scripts

Python 11 is powerful and widely used high-level programming language.

The idea of Python was conceived in 1989 by Guido van Rossum at CWI in

the Netherlands and the version 1.0 was released in January 1994.

Python supports object-oriented, imperative and functional program-

ming paradigms and provides a comprehensive built-in library as well as

numerous useful add-on libraries for different purposes. Python is known

for its user friendly and easily readable code and the ability to resolve com-

plex problems using very few lines.

Pseudocode

Pseudocode is an informal description of an operating unit, a computer

program or an algorithm in a high-level fashion. Pseudocode doesn’t use a

specific programming language syntax, instead it is written in a way which

is easier understandable for a reader regardless the technical background

and programming skills or absence of it. Pseudocode usually uses the

11https://www.python.org/

38

structure of a typical programming language, however it is not intended

to be read by a machine, but rather by humans.

Below is an example of how pseudocode can be written:

Algorithm 1: An example pseudocode
Result: The result of the algorithm

preprocessing;

while While condition do

instructions;

if condition then

instruction 1;

instruction 2;

else

instruction 3;

end

end

39

40

Part II

The project

41

Chapter 3

Approach

The approach chapter describes what actions will be taken and what

methods will be used in order to address the problem statement defined

earlier. Experiment design, tools and methods used in the experiment and

methods for evaluation of the experiment results will also be described in

this chapter.

3.1 Objectives

As described in the problem statement (see section 1.1) the main objectives

of this project are to investigate how graph partitioning can be used in

order to consolidate VMs in an intelligent traffic-aware way and how a

quadratic assignment algorithm can be implemented in order to assign the

partitions to the available racks in the datacenter to further optimize the

internal bandwidth usage.

In order to achieve the above objectives several steps must be taken:

1. Experiment design should be planned in order to prepare testbeds

for the experiments.

(a) Data center models should be designed.

(b) Corresponding cost matrices should be calculated.

2. Virtual machine communication data should be collected, parsed

and stored for the use in the experiment.

43

3. VM clustering algorithm should be designed and implemented in

order to consolidate VMs with highest mutual traffic.

4. Quadratic assignment algorithm should be designed and applied to

the VM clusters obtained in the previous step in order to place them

on the available server racks in the data center model in the most

optimal way.

5. Experiments should be conducted in order to measure the effect

of the implemented VM clustering and quadratic assignment algo-

rithms.

6. Evaluation of the impact of the VM consolidation through clustering

and quadratic assignment on the internal bandwidth usage should

be conducted with the use of the results obtained during the

experiments.

3.2 Experiment design

In order to address the problem statement an effective experiment design

should be planned and implemented. It’s essential that the models used

in the experiment, the assumptions taken and the methods utilized ensure

that the experiments mimic the real world scenarios as closely as possible.

Naturally, the resources available for the research might in some cases im-

pose various limits to the experiments. It’s important to be aware of these

limitations and what it means for the results of the experiments. Three dif-

ferent data center models will be simulated in this thesis instead of testing

on live data centers. This approach has its advantages as well as the disad-

vantages which will be discussed later in the thesis.

Three identical experiments will be conducted on three DCN models

with the help of scripts written in Python. During the three experiments

baseline costs of communication will be computed based on the randomly

scattered VMs. The proposed graph partitioning and quadratic placement

algorithms will alter the locations of the VMs with the purpose of opti-

mizing the communication between them and the resulting costs of com-

munication will be calculated and stored for later comparison and analysis.

44

A fixed number of IP addresses will be randomly picked from the traffic

information in order to simulate VM traffic for the experiments. The chosen

IP addresses will be assumed to represent VMs. The VMs will be divided

into fixed number of clusters of equal size. These clusters will be optimized

during the experiment by migrating VMs in and out of them altering the

cluster populations, however the number of VMs in each cluster will re-

main constant before and after each experiment. It will be assumed that

each VM has identical specifications with regards to CPU, memory, disk,

etc. It will be assumed that the link capacity is the same for all the links in

the whole data center for all the models used in the experiments.

The first set of the three experiments will be conducted based on the

fixed number of VMs randomly chosen from the obtained traffic trace. The

second set of the three experiments will be conducted with exactly the same

conditions with one difference: this time the fixed number of VMs to be

optimized will be chosen manually in order to test the effectiveness of the

proposed algorithms on a different set of VMs with different traffic pat-

terns.

3.2.1 VM communication data

The communication data used in this project is obtained via third party

source which made the data available for the public use. Three actual

data center traffic traces are published on the Computer Sciences User

Pages of the University of Wisconsin-Madison1 by the assistant professor

Theophilus Benson of the Duke University. The data sets are dated from

2009 and represent three different university data centers studied in 2010

paper titled Network Traffic Characteristics of Data Centers in the Wild [4].

UNI1 data center traces are chosen for the data center traffic simulation

in this work. The traffic traces are originally stored in the binary packet

capture (PCAP) files. Roughly one hour of traffic data is stored in 20 PACP

files. The start timestamp of the data used in this project is 2009-12-17

17:26:04 and the end timestamp is 2009-12-17 18:31:19.

1http://pages.cs.wisc.edu/ tbenson/IMC10_Data.html

45

The important assumption is that the chosen traces, even though they

represent a short period of time, reflect the traffic behavior of an average

data center over longer periods of time and can be generalized for other

data centers as well.

For the use in the experiments in the project the binary PCAP files will

be converted to a human-readable format with the tcpdump tool as shown

in the example below:

tcpdump -ttttnnr univ1_pt1.pcap
2009-12-17 17:26:04.398500 IP 41.177.117.184.1618 >

41.177.3.224.51332: Flags [P.], seq 354231048:354231386,

ack 3814681859, win 65535, length 338

2009-12-17 17:26:04.398601 IP 90.218.72.95.10749 >

244.3.160.239.80: Flags [P.], seq 1479609190:1479610159,

ack 3766710729, win 17520, length 969

2009-12-17 17:26:04.398810 IP 244.3.160.239.80 >

90.218.72.95.10749: Flags [.], ack 969, win 24820,

length 0

2009-12-17 17:26:04.398879 IP 41.177.3.224.51332 >

41.177.117.184.1618: Flags [P.], seq 1:611, ack 338,

win 65535, length 610

The results will be stored in output text files in plain text format for

later access. The Python script will parse the text files and using regular ex-

pressions line by line search for the IP addresses and the amount of traffic

exchanged between them. The matched results will be sorted in a comma-

separated format in a table with three columns: source_ip, destination_ip,

bytes_transmitted. This list of communicating pairs will include both trans-

missions from IP address A to IP address B and vice versa. The output data

will be stored in the traffic_rates_list.txt file which will be accessed

later on in the experiment.

Example of the contents of the traffic_rates_list.txt file:

Example of contents of traffic_rates.txt file
41.177.67.75,244.3.41.84,15

46

41.177.26.15,68.159.161.47,1307818

244.3.160.248,41.177.26.141,37350

41.177.26.46,111.98.75.211,405272

194.66.108.214,244.3.41.84,1262

41.177.247.145,244.3.160.239,21877

244.3.160.239,215.224.91.90,8260038

168.22.108.153,244.3.210.197,702

The IP addresses will be extracted from traffic_rates_list.txt file

and stored separately in the all_ips.txt file by a python script in order

to be used later to populate a traffic matrix and also to be able to be easily

referenced later. Each IP address will automatically be assigned a unique

and a constant ID at this stage. The list index will determine the ID. The

first IP address 41.177.67.75 for example will get an ID = 0, 244.3.41.84 will

get an ID = 1, etc.

Example of contents of all_ips.txt file
41.177.67.75

244.3.41.84

41.177.26.15

68.159.161.47

244.3.160.248

41.177.26.141

41.177.26.46

111.98.75.211

For this work two sets of 1600 IP addresses will be chosen. The first

set of 1600 VMs will be chosen on a random basis while the other set of

1600 VMs will be chosen in a more controlled way. Both sets will be used

to conduct the identical experiments. Each IP address is assumed to cor-

respond to a single virtual machine. This will allow the 16 clusters to be

created with 100 VMs in each cluster. Each cluster then will be assigned to

a single server rack so that the total cost of communication for the whole

data center model can be calculated.

It is also assumed for this experiment that each VM has identical con-

figuration in terms of the number of CPUs, memory and disk capacity and

other specifications. Each data center model will contain 16 server racks

47

and it is assumed that each server rack is able to host 100 VMs.

3.2.2 VM traffic matrix

Communication rates between all the virtual machines should be made

easily available as frequent calculations will be done throughout the ex-

periments when detecting VM clusters, determining the amount of traffic

flow between them or searching for the best possible placement. It would

be preferable to conduct experiments on a data collected over a long period

of time from real, modern data center with full overview of the hardware

and software. However in this project a third party data will be used. One

of the best ways to store and access this kind of information is to use a two

dimensional matrix.

A matrix will be constructed with the use of the built-in array function-

ality of Python and the library pickle will be used in order to store and ac-

cess the VM traffic matrix in a binary format later during the experiments.

When the list of communicating VM pairs and corresponding traffic

rates is built and each VM has been assigned a unique identifier VM traf-

fic matrix with 1600 rows and 1600 columns will be created and populated

with the values corresponding to the traffic rates. The matrix should be

symmetric and contain 2560000 elements or edges. The matrix values diag-

onally where matrix row is equal to matrix column will be equal to 0. First

an asymmetric VM traffic matrix A is created by iterating through all the

IP addresses and updating the corresponding matrix elements (by row and

column) with the edge values. An example of an asymmetric matrix (see

Fig.3.1) is displayed below:

48

Aij =



0 1324980.0 31102812.0 · · · 0

62291730.0 0 0 · · · 0

639871.0 0 0 · · · 0
...

...
...

. . .
...

252940.0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0


(3.1)

As mentioned before each row and column ID corresponds to a unique

VM documented with an IP address in the all_ips.txt file. Thus the value

1324980.0 in the asymmetric traffic matrix A (see Fig. 3.1) corresponds to

the edge between V0 and V1 (V0 refers to the VM with ID 0; V1 refers to the

VM with ID 1) where V0 is the transmitter and V1 is the receiver and A01 is

the edge between them in the asymmetric VM traffic matrix A. Similarly

62291730.0 is the edge between V1 and V0 where V1 is the transmitter and

V0 is the receiving end and A10 is the edge between them in the asymmetric

VM traffic matrix A.

After obtaining the asymmetric VM traffic matrix a new symmetric VM

traffic matrix D will be built based on the asymmetric one. The script will

iterate through the rows and the columns of the matrix and whenever an

element Ai j has a value greater than 0 the value of Aji will be added to Ai j

and the sum will be divided by 2. Both Di j and Dji will be updated with

the new value. Thus a new symmetric VM traffic matrix D will be created.

An example of such a matrix (see Fig. 3.2) is displayed below:

Dij =



0 31808355.0 31742683.0 · · · 0

31808355.0 0 0 · · · 0

31742683.0 0 0 · · · 0
...

...
...

. . .
...

252940.0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0


(3.2)

49

In the symmetric VM traffic matrix D above (see Fig. 3.2) the value

31808355.0 for the edge between V0 and V1 (where V0 refers to the VM with

ID 0 and V1 refers to the VM with ID 1) is derived from the asymmetric VM

traffic matrix A by adding the edge between V0 and V1 to the edge between

V1 and V0 and dividing the sum by 2. Hence D01 = D10 = 31808355.0 =
A01+A10

2 . Therefore in the symmetric VM traffic matrix edge between VM0

and VM1 is equal to the edge between V1 and V0 and can be denoted as

edge D01 or D10.

3.2.3 Data center models

Since no live data center is available for this research data center models

will be implemented. The purpose of a data center model is to simulate a

network architecture used by the virtual machines in order to communi-

cate with each other and to provide the basis for the calculation of cost of

communication. Simulating the network elements and the links the traffic

from one VM has to travel to reach its destination VM is necessary in or-

der to compute the communication cost between VMs in any given virtual

machine pair and to ultimately calculate the total cost of communication

between all the existing communicating VM pairs in the data center for the

given period of time.

There are several different data center network architectures (DCN) in

use in the world today as discussed in the background section [14, 24, 47,

50]. In this project three of the data center network architectures will be

simulated in order to test the impact of the proposed algorithms.

The three DCN architectures chosen for this project are: the legacy

Tree data center network architecture, the Fat-tree and the VL2 data center

network architecture.

3.2.4 Cost matrices

One of the main methods for simulating a data center network will be cal-

culation of the associated cost matrix. Each row and the column with the

corresponding index will be associated with a single server rack in the data

center. The matrix with 16 rows and 16 columns will contain 256 elements

50

where each element will correspond to the cost associated with the com-

munication between two server racks.

The cost of communication between two nodes can be determined by

the link speed between the nodes or by the number of network elements

(switches or routers) the packets have to travel through (also referred to

as number of hops) on their way to the destination. In this thesis number

of hops will be used to determine the communication cost. For example

if a data packet from server rack number 1 (R1) has to travel through one

switch before it reaches the destination rack number 2 (R2) the cost of com-

munication between R1 and R2 will be 1 and the corresponding edge will

be found in the cost matrix in row 1 and column 1.

The cost matrix will be calculated by picking every server rack one

by one and comparing its communication cost with the rest of the server

racks one by one while evaluating how many hops a data packet has to go

through on its way from one rack to another. In this way all the possible

permutations will be taken in account and the result of the calculation will

be a two dimensional symmetric matrix.

3.3 Proposed VM clustering algorithm

The proposed VM clustering algorithm will be based on Oommen’s Graph

Partitioning Using Learning Automata (GPLA) [51] algorithm with several

minor adjustments and tweaks. GPLA attempts to solve the Graph Par-

titioning Problem (GPP) [9, 17, 33] by using stochastic learning automata

(LA) which is designed to learn the optimal action offered by a random en-

vironment. Learning is achieved by interacting with the environment as it

constantly changes and by processing the response of the environment to

the actions taken. Since this thesis is dealing with a GPP where all the sub-

partitions are of equal size the problem is referred to as equi-partitionig

problem (EPP). The best solution to EPP is Object Migrating Automaton

(OMA) proposed by Oommen and Ma [52]. This technique will be adapted

for the GPP and used in the proposed VM clustering algorithm.

The algorithm adapted for this project will read the set of 1600 nodes

51

or vertices distributed over 16 sub-partitions, also referred to as groups

or arms, and output the final solution of the graph partitioning problem.

This will be achieved by adopting the object migration automata (OMA)

used in Oommen’s algorithm. The randomly picked pairs of vertices will

be checked by the algorithm in order to find out whether or not they’re

significantly connected and then they will be either rewarded or penalized

depending on what conditions they satisfy.

In order to determine whether the nodes are significantly connected

two important thresholds, similarity threshold and dissimilarity threshold will

be calculated by the following formulae:

SimilarityThreshold = (1 + ρ) ∗MeanEdge (3.3)

SimilarityThreshold = (1− ρ) ∗MeanEdge (3.4)

ρ will be set to the fixed value of 0.25 and the MeanEdge value will be

calculated by computing the average edge value based on all the nonzero

elements (or edges between the nodes) of the symmetric VM traffic matrix

D.

When two random vertices Vi and Vj are picked and their correspond-

ing edge Dij is higher than the SimilarityThreshold the two nodes will be re-

garded as similar. If the nodes are found to be in the distinct sub-partitions

they will be penalized since this state is unfavorable. If the nodes are found

in the same sub-partitioned they will be rewarded since this scenario is

favorable. The penalize action will move the nodes closer to the Mini-

mumCertainty state towards the outer boundary of the sub-partition while

the reward action will push the nodes deeper into their sub-partitions to-

wards the MaximumCertainty state. When the nodes reach the outer bound-

aries of their sub-partitions they might be expelled from their current sub-

partitions and moved to a better one. This process will be repeated until

the maximum number of iterations is reached.

52

3.4 Assigning VM clusters to server racks

Assigning 16 VM clusters obtained after VM clustering procedure to 16

available server racks is the next optimization problem in this thesis. As

some of the VMs in the clusters are expected to communicate with other

VMs in other clusters the intercluster traffic is expected to play a significant

role in the total cost of communication. The intercluster traffic is expected

to decrease after the VM clustering algorithm partitions the clusters consol-

idating highly talkative VMs in the same clusters. However, it is assumed

that the optimal assignment of the clusters to the server racks will further

decrease the total cost of communication. Assigning VM clusters with high

mutual traffic to server racks close to each other will be beneficial for the

data center traffic optimization as less traffic will flow over the costly links.

VM cluster communication matrix

In order to be able to quickly access the connection rates between the pre-

viously established 16 clusters an associated symmetric VM cluster traffic

matrix S (see Fig. 3.5) will be constructed consisting of 16 rows and 16

columns. The 256 elements of the VM cluster traffic matrix S will represent

the 256 edges between the partitioned VM clusters. In order to calculate

the edges between two VM clusters traffic rates between every element of

cluster 1 and every element of cluster 2 will be found in the associated

symmetric VM traffic matrix D and the sum of the values will determine

the edge between the two clusters.

Sij =



0 11107855.5 23063975.0 · · · 10806454.0

11107855.5 0 224874.0 · · · 945003.0

23063975.0 224874.0 0 · · · 1933362.0
...

...
...

. . .
...

31876358.0 1800978.0 389940.5 · · · 2827934.0

28356699.5 10705004.5 11557148.0 · · · 5128501.0

27724267.0 38285.0 780987.0 · · · 245885.0

10806454.0 945003.0 1933362.0 · · · 0


(3.5)

53

3.5 Proposed cluster placement algorithm

Since the main objective is to assign the VM clusters to the server racks in

a way which decreases the total cost of communication a cluster placement

algorithm will be designed to handle this task. The assignment problem

will be treated as a Quadratic Assignment Problem (QAP) [32, 39, 47, 57]

which is known to be one of the most difficult combinatorial optimization

problems in the NP-hard class. The assignment of the 16 clusters to the

available 16 server racks that gives the lowest total communication cost

will be considered the best assignment. In order to find such an assign-

ment an algorithm will be implemented by the use of the Python scripting

language. The task of the cluster placement algorithm will be to conduct a

search of the best assignment in the possible solution space. Since the so-

lution space for 16 groups is an astronomical number of 16! the exhaustive

search approach in order to find the best solution is not computationally

feasible. Instead the most optimal solution has to be found in a specific

pool of solutions. In order to find such an optimal solution to QAP in this

project simulated annealing (SA) [13, 37] technique will be used. Simulated

annealing makes sure that the algorithm doesn’t get trapped in a local min-

imum and that it’ll be given a chance to explore wider range of possible

solutions by visiting even the inferior solutions with certain constantly de-

creasing probability [18].

Setting initial cluster placement

The cluster placement algorithm will read the set of nodes previously par-

titioned by the VM clustering algorithm and the VM cluster traffic matrix

S in order to check all the possible cluster pairs and sort them by the corre-

sponding edge values Sij in the descending order after which the total cost

of communication will be calculated using the VM cluster traffic matrix S

and the communication cost matrix C. The result of this step will be set as

the initial and the current best state of the VM clusters. The initial place-

ment will be an already improved placement compared to the randomly

aligned VM clusters and this is expected to help the cluster placement al-

gorithm to find an even more optimal solution.

The total cost of communication will be calculated by summing all the

54

edges multiplied by their corresponding communication costs using the

following formula:

∑
i,j=··· ,n

Dij · Cπ(i)π(j) (3.6)

Where Dij denotes a traffic rate between nodes Vi and Vj and Cπ(i)π(j)

denotes the cost of communication between the server racks the nodes Vi

and Vj are assigned to.

Simulated annealing process

When the initial placement is established and the initial total cost of com-

munication is calculated the algorithm will start executing the N number of

iterations by starting at a predefined value T (temperature) and decreasing

the temperature gradually. During each iteration two distinct clusters will

be chosen and they will swap with places.

After each swap the total cost of communication will be calculated and

the new state will be stored temporarily. If the new state yields total cost of

communication which is superior to the previous (or the initial) total cost

of communication the algorithm will set is as the current best state. If the

new state is inferior to the previous state the algorithm will move to it with

a certain probability P. This probability will be calculated with the follow-

ing formula:

P = e−
∆
T (3.7)

Where ∆ = TotalCostnew− TotalCostold, the difference between the total

communication cost yielded by the new state and the total communication

cost of the old state, and T is the temperature.

This process (see Fig.3.1) will ensure that the algorithm won’t get stuck

in the local minimum and falsely assume that the optimal result has been

obtained. In the beginning the probability P will have a higher value

55

meaning that the algorithm will accept inferior results more frequently.

However as the temperature T decreases over time the P value will

gradually decrease and the algorithm will be less and less likely to accept

inferior results. The simulated annealing technique will give the cluster

placement algorithm possibility to explore wider range of the possible

solutions space. In the end the most optimal solution will be chosen.

Figure 3.1: Simulated annealing process

3.6 Experiment set A

In this experiment set three experiments will be conducted on each of

the simulated data center networking architecture. A separate experiment

will be conducted in order to observe changes in the intracluster and the

intercluster traffic caused by the VM clustering algorithm with the use of

graph partitioning. In the experiment set A the set of 1600 VMs chosen

randomly from the collected traffic trace will be used. It is expected

that this set of 1600 VMs will contain several VMs who have rather high

mutual traffic while most of the VMs communicate with each other at a

significantly lower rate.

3.6.1 Experiment a1: Tree DCN

First the tests will be run on the most widely used legacy three-tier Tree

DCN model. The Tree DCN model (see Fig.3.2) will contain 16 server

racks. Each server rack is assumed to be able to accommodate 100 VMs.

The server racks will form four groups, where each group will consist of

four server racks connected to a single access layer (or layer 1) switch. The

56

four access switches will be connected to the layer 2 - the aggregation layer

switches. The aggregation layer will consist of four switches. However

only two of the four switches will be presumed active, while the other two

will be in standby mode. Finally there will be one active and one standby

switch on the core layer at the top level of the data center network.

Some of the important results obtained through the experiment will be

abbreviated. The average total cost of communication with the randomly

placed VMs for the Tree DCN will be noted as TRandTreeA, the average total

communication cost after the optimization with the VM clustering algo-

rithm for the Tree DCN will be shortened as TGpTreeA and the average total

communication cost after executing the cluster placement algorithm will be

noted as TQapTreeA. "A" in these notations refers the experiment set A.

...

1 2 3 4 5 6 7 8 13 14 15 169 10 11 12

Figure 3.2: The Tree data center network model used in the project

The simulated model of a three-tier data center networking architecture

(see Fig. 3.2) allows for the cost matrix to be constructed for later use in the

calculations of the cost of communication between the VMs placed in the

specific server racks.

57

Cost matrix for the Tree DCN

The following communication cost matrix (see Fig. 3.8) will be used for the

Tree DCN in this project:

Cij =



0 1 1 1 3 3 3 3 5 5 5 5 5 5 5 5

1 0 1 1 3 3 3 3 5 5 5 5 5 5 5 5

1 1 0 1 3 3 3 3 5 5 5 5 5 5 5 5

1 1 1 0 3 3 3 3 5 5 5 5 5 5 5 5

3 3 3 3 0 1 1 1 5 5 5 5 5 5 5 5

3 3 3 3 1 0 1 1 5 5 5 5 5 5 5 5

3 3 3 3 1 1 0 1 5 5 5 5 5 5 5 5

3 3 3 3 1 1 1 0 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 0 1 1 1 3 3 3 3

5 5 5 5 5 5 5 5 1 0 1 1 3 3 3 3

5 5 5 5 5 5 5 5 1 1 0 1 3 3 3 3

5 5 5 5 5 5 5 5 1 1 1 0 3 3 3 3

5 5 5 5 5 5 5 5 3 3 3 3 0 1 1 1

5 5 5 5 5 5 5 5 3 3 3 3 1 0 1 1

5 5 5 5 5 5 5 5 3 3 3 3 1 1 0 1

5 5 5 5 5 5 5 5 3 3 3 3 1 1 1 0



(3.8)

Each row and each column in the cost matrix corresponds to a single

server rack. For example row 1 (the first row of the matrix) and column

1 (the first column of the matrix) correspond to the rack number 1 (see

Fig.3.2), whereas row 16 (the last row of the matrix) and the column 16

(the last column of the matrix) correspond to the rack number 16. Thus

the communication cost for the traffic between server rack number 1 and

10 can be found in the row number 1 and the column number 10 of the

communication cost matrix and equals to 5.

3.6.2 Experiment a2: Fat-tree DCN

The next experiment will be conducted on a relatively recently proposed

data center network architecture PortLand [50] which is based on a so

called Fat-tree network topology. In the Fat-tree DCN model (see Fig.3.3)

four pods will be formed out of 16 switches. Each pod will contain 4

switches and will be connected to all the available 4 core switches. The

58

traffic between 1600 VMs will be simulated in the Fat-tree model. The 1600

VMs will be divided in 16 sub-partitions of equal sizes containing 100 VMs

each. Each sub-partition will be assigned to one of the 16 server racks.

The average total cost of communication with the randomly placed

VMs for the Fat-tree DCN will be noted as TRandFtreeA, the average total

communication cost after the optimization with the VM clustering algo-

rithm for the Fat-tree DCN will be shortened as TGpFtreeA and the average

total communication cost after executing the cluster placement algorithm

will be noted as TQapFtreeA where "A" in the abbreviation refers to the exper-

iment set A.

1 2 3 4 5 6 7 8 13 14 15 169 10 11 12

Figure 3.3: The Fat-tree data center network model used in the project

Cost matrix for the Fat-tree DCN

The cost of communication between the neighbor pairs of racks R1 and

R2 will be 1. However the cost across the neighboring pairs, for example

between R2 and R3, in the same pod will be 3, whereas the cost of com-

munication across the pods will be 5. A cost matrix C will be calculated

for the experiment with Fat-tree DCN based on the number of the network

elements (switches) the traffic has to travel through in order to reach its

destination from one server rack to another. The cost matrix which will be

used for the experiment is displayed in fig.3.9 below:

59

Cij =



0 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5

1 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5

3 3 0 1 5 5 5 5 5 5 5 5 5 5 5 5

3 3 1 0 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 0 1 3 3 5 5 5 5 5 5 5 5

5 5 5 5 1 0 3 3 5 5 5 5 5 5 5 5

5 5 5 5 3 3 0 1 5 5 5 5 5 5 5 5

5 5 5 5 3 3 1 0 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 0 1 3 3 5 5 5 5

5 5 5 5 5 5 5 5 1 0 3 3 5 5 5 5

5 5 5 5 5 5 5 5 3 3 0 1 5 5 5 5

5 5 5 5 5 5 5 5 3 3 1 0 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 0 1 3 3

5 5 5 5 5 5 5 5 5 5 5 5 1 0 3 3

5 5 5 5 5 5 5 5 5 5 5 5 3 3 0 1

5 5 5 5 5 5 5 5 5 5 5 5 3 3 1 0



(3.9)

3.6.3 Experiment a3: VL2 DCN

The third and the last experiment will be run on the simulated VL2 [24]

data center network architecture. VL2 is a newly proposed DCN and it

shares many similarities with the traditional Tree DCN. However, the main

difference between VL2 (see Fig.3.4) and tree with regards to the cost of

communication is that the traffic in VL2 is forwarded all the way to the

core layer before it’s routed back to the access layer to its destination. This

difference will increase the cost of communication between the neighbor-

ing access layer switches and respectively between the groups of the server

racks associated with the given access switches.

The VL2 model will consist of 12 switches and 16 server racks. The

racks will form four groups each consisting of 4 racks. Each group will be

connected to a single access layer switch. 1600 VMs will be accommodated

by the VL2 model. The VMs will be divided into 16 groups of 100 VMs

each. Each server rack will be assumed to be able to host 100 VMs.

60

1 2 3 4 5 6 7 8 13 14 15 169 10 11 12

Figure 3.4: The VL2 data center network model used in the project

The average total cost of communication with the randomly placed

VMs for the VL2 DCN will be noted as TRandVl2A, the average total commu-

nication cost after the optimization with the VM clustering algorithm for

the VL2 DCN will be shortened as TGpVl2A and the average total communi-

cation cost after executing the cluster placement algorithm will be noted as

TQapVl2A. The "A" in the abbreviations refers to the experiment set A.

Cost matrix for the VL2 DCN

The resulting cost matrix for VL2 (see Fig.3.10) will be similar to the cost

matrix for the Tree reflecting the similarities and the differences between

the two network topologies. The matrix clearly describes the relatively

higher cost compared to the previous data center models associated with

the communication across the rack groups belonging to the different access

61

layer switches.

Cij =



0 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5

1 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5

1 1 0 1 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 0 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 0 1 1 1 5 5 5 5 5 5 5 5

5 5 5 5 1 0 1 1 5 5 5 5 5 5 5 5

5 5 5 5 1 1 0 1 5 5 5 5 5 5 5 5

5 5 5 5 1 1 1 0 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 0 1 1 1 5 5 5 5

5 5 5 5 5 5 5 5 1 0 1 1 5 5 5 5

5 5 5 5 5 5 5 5 1 1 0 1 5 5 5 5

5 5 5 5 5 5 5 5 1 1 1 0 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 0 1 1 1

5 5 5 5 5 5 5 5 5 5 5 5 1 0 1 1

5 5 5 5 5 5 5 5 5 5 5 5 1 1 0 1

5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 0



(3.10)

3.6.4 Intracluster traffic experiment: set A

The purpose of this experiment will be to observe the effects of the graph

partitioning algorithm on the intracluster and intercluster communications.

In order to achieve this goal the available 1600 nodes will be placed in

random states in the 16 clusters. After this step the intracluster and

intercluster traffic rates will be calculated. This will be done multiple times

in order to collect reliable data. When the baseline values are calculated

the graph partitioning algorithm will optimize the VM placement and

the intracluster and intercluster traffic rates will be calculated once again.

The optimization will take place multiple times in order to obtain reliable

average values. The results will be stored to be plotted and analyzed later.

3.7 Experiment set B

The experiment set B will consist of the following experiments:

1. Experiment b1: Tree DCN

62

2. Experiment b2: Fat-tree DCN

3. Experiment b3: VL2 DCN

The experiment set B will repeat the experiments described in the pre-

vious sections under Experiment set A. The difference will be the set of 1600

VMs. For the experiment set B different VMs will be chosen in order to bet-

ter observe the effects of the graph partitioning and quadratic assignment

algorithms. After the three experiments an intercluster traffic experiment

for the set B will be conducted.

The purpose of repeating these three experiments and the intracluster

experiment is to observe how the optimization algorithms developed in

this project behave with a different set of VMs with a different traffic pat-

tern. The new set used in the experiment set B will be deliberately chosen

to be IP addresses who talk to each other with a relatively more even traf-

fic rates compared to the VM set used in the experiment set A. This will

be achieved by sorting the traffic_rates_list.txt file by the traffic rates

in the descending order and then removing the communicating pairs with

significantly high traffic rates. This will smoothe the graph of the distribu-

tion of the edges between the VMs participating in the experiments.

Three experiments experiment b1 on Tree, experiment b2 on Fat-tree

and the experiment b3 on VL2 data center networking architectures will

be conducted with the exact same parameters as in the experiment set A.

After this the intracluster trafic experiment will be conducted also with the

same parameters as in the experiment set A. The total cost of communica-

tion notations will be similar to the ones used in the experiment set A. The

only difference will be the letter "B" in the end. For example total cost of

communication with randomly assigned VMs in the Tree experiment for

the experiment set B (experiment b1) will be denoted as TRandTreeB.

3.8 Measurement and Evaluation

In order to be able to assess how the problem statement has been addressed

it is important to reliably evaluate the performance of the proposed VM

clustering and cluster placement algorithms and their impact on the total

63

cost of the communication in the data center models. Since the experiments

in this thesis are conducted on virtual models of data center networking

architectures there is no possibility of connecting to physical devices and

directly measuring real-time bandwidth usage on real links prior and after

the optimization. Instead other methods of measurement and evaluation

will be implemented. It’s expected that the total cost of communication for

the whole data center will decrease after both VM clustering and cluster

placement algorithms are implemented. It is also expected that the average

intracluster (the traffic between the member VMs inside a group) traffic will

increase after VM clustering algorithm as the VMs with high mutual traffic

are grouped in the same clusters. While the intercluster traffic decreases as

the result of the optimization.

In order to compare initial and optimized states of the system first a

baseline will be established by randomly assigning VMs to the clusters and

then computing and storing both intracluster and intercluster traffic data

and the total cost of communication for the whole system. There is how-

ever a probability of obtaining extreme results by chance since the highly

communicating VM pairs can by chance end up in the same clusters hence

yielding relatively low total cost of communication already in the baseline

placement. In this case the clustering and assignment algorithms might

not seem to have significant enough effect. In order to avoid this scenario

and obtain a baseline which can be considered as a reliable average un-

optimized system multiple (N = 35) randomly distributed VM states will

be generated. Since at least 30 test samples is usually required in order to

obtain reliable statistics and due to the time constraints of the project the

test sample size will be set to 35. The average values for the total cost of

communication will be calculated and stored. Average intracluster and in-

tercluster traffic will also be computed and stored for later analysis. This

approach is expected to reduce the chance of random error distorting the

results. In order to reduce the variation in the mean values and obtain as

reliable data as possible the tests will be repeated 35 times and the obtained

35 results will be used in order to calculate statistical values.

In order to establish a baseline total cost of communication 35 randomly

distributed VM placements will be generated. The VM clustering and clus-

ter placement algorithms will be run 35 times for each random system. This

64

is especially important since both algorithms rely on randomly picking the

nodes for object migration and swapping. Therefore there is a chance of

producing slightly different results due to partly relying on chance. It is

expected that the algorithms will converge to the same results most of the

time. Multiple tests will prove whether or not this will be the fact. The

results of the experiments will be stored in comma-separated text files with

timestamps and experiment names so that they’re later easily accessed and

used for analysis and plotting. The output of the console window of Python

showing the status and the progress of the experiments will also be stored.

The algorithms will optimize the randomly generated systems and each

time calculate the new total cost of communication and the difference be-

tween the unoptimized and the optimized system together with other in-

dicators such as the time used on graph partitioning process, the number

of times reward or penalty procedures had to be invoked, time used on the

simulated annealing process, the number of times the process chose an in-

ferior state, etc.

One of the indicators of the graph partitioning algorithm’s performance

will be the intracluster communication before and after graph partitioning.

The traffic between each element inside a cluster will be summed up for

each cluster in order to determine the intracluster traffic values. Another

indicator to measure the performance of the VM clustering and cluster

placement algorithms will be the time needed for them to converge and

the stability in variation of the results.

3.8.1 Testbed for the experiments

Since the experiments will be conducted on simulated data center network

topologies with the help of the static traffic traces obtained through the

third party and the tests don’t require special equipment, real networking

infrastructure, significant computing power, extensive memory or storage

the tests will be conducted on a single desktop workstation.

The workstation will be running 64-bits Microsoft Windows 8.1 Enter-

prise. It will be equipped with a 64-bits Intel Xeon 3.20GHz processor with

4 cores and 16GB of physical memory. Win32 version of Python 2.7.9 will

be used for all the experiments. The scripts running the tests during all the

experiments will be launched from the Python’s Integrated DeveLopment

65

Environment (IDLE) graphical user interface (GUI).

3.8.2 Plotting and analysis

In order to visualize the results of the experiments the data will be plotted

as graphs. The graphs will be used for later analysis of the results. The

matplotlib library of Python will be used as the plotting tool. Python’s

numpy library will provide the means for the descriptive statistical analysis.

Average values, standard deviations, maximums, minimums and medians

will be calculated and used in the analysis phase.

66

Chapter 4

Results

This section will describe the experiments conducted as well as the

outcome of the tests and the obtained results.

4.1 Implementation of the algorithms

During the project a VM clustering and a cluster placement algorithms

were designed and implemented in order to solve the graph partitioning

and the quadratic assignment problems described in the approach chapter.

This section will describe how the algorithms were developed using

Python scripting language and how they solved the GPP and the QAP.

4.1.1 VM clustering algorithm

After parsing the traffic traces data the list of totally 5488 IP addresses

(VMs) and the dictionary of the communicating pairs of IPs and the

respective traffic rates were obtained and stored in all_ips.txt and

traffic_rates_list.txt files. After this 1600 IPs were chosen randomly

and the associated traffic matrix was built. The VM clustering algorithm

was implemented by the help of Python scripts as discussed in the

approach chapter (see 3.5). In order to simulate VM groups Python’s built

in list functionality was used.

The 1600 nodes were divided into 16 sub-partitions. Each sub-partition

was assigned a memory depth property (M) which described how many dif-

ferent states or positions a vertex in the group could have. One position

could be occupied either by one vertex or shared by multiple vertices.

67

Figure 4.1: An example of four sub-partitions containing four VMs each

The example (see Fig.4.1) illustrates four sub-partitions or groups with

memory depth of 4. Each group contains four VMs. The cell numbers refer

to the VM states. The first four VMs belong to the Group 4 and all the four

VMs in the sub-partition are in the state 4, which is the external boundary

state of the Group 4. The external boundary is also called MinimumCer-

tainty state. The innermost state in a group was called MaximumCertainty

state. The cells are numbered from 0 to 15 and the cell numbers correspond

to the VM IDs that can be translated to IP addresses by referring to the

all_ips.txt reference.

In Python the above example was implemented as follows:

Example set of 16 vertices to be partitioned in 4 sub-partitions
1 groups = [4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16]

Each element of a Python list groups has an index depending on the

placement of the element in the list and is constant in that regard. Each ele-

ment has also a value, which will be changing throughout the graph parti-

tioning process as the vertices are moved from one position to another and

migrate between the sub-partitions. Hence the element value in this project

referred to the position inside a specific sub-partition and was a subject to

change whereas the index of the list element referred to the ID of a specific

VM and was constant.

Object migration automata

In order to move a node from one sub-partition to another the value of

the list element with the index corresponding to the ID of the VM was

changed. For example in order to move a VM with the ID = 3 from its cur-

rent sub-partition 4 to a new sub-partition 12 the following changes were

68

done in Python:

Example of moving vertices between sub-partitions
1 groups = [4, 4, 4, 12, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16]

Note that in the example below it’s clear that the sub-partition 4 now

contains only 3 vertices (ID: 0, 1, 2) while sub-partition 12 consists of 5

(ID: 3, 8, 9, 10, 11) nodes. One way to even out the size of the vertices is to

choose one vertex from the sub-partition 12 and move it to sub-partition 4.

This is done in the example below:

Example of moving vertices between sub-partitions
1 groups = [4, 4, 4, 12, 8, 8, 8, 8, 4, 12, 12, 12, 16, 16, 16, 16]

Thus the VMs with IDs 3 and 8 have swapped places.

Reward and penalty mechanisms

After calculating the similarity and the dissimilarity thresholds the algo-

rithm placed all the randomly chosen 1600 vertices in the MinimumCer-

tainty states of their corresponding groups by assigning random VMs to

the random groups. This state was assumed to correspond to a typical data

center containing 1600 VMs who were scattered across the 16 physical hosts

across the 16 server racks without taking in account the traffic between the

VMs.

The algorithm then calculated the number of maximum iterations by

counting the number of edges between the 1600 VMs and multiplying

the result by 20. During each iteration two random and distinct nodes

were picked from the total number of the nodes and the corresponding

traffic rate was pulled from the traffic matrix. If the value was over the

similarity threshold the vertices were be regarded as similar. If the traffic

rate is lower than dissimilarity threshold the vertices were considered as

dissimilar. The next step of the algorithm was to check whether the two

chosen vertices were currently situated in the same or in distinct sub-

partitions. After this check one of the four following procedures were

invoked:

69

RewardSimilarNodes

This procedure was invoked when the two chosen vertices are found to be

similar and they were currently in the same sub-partition. The procedure

rewarded both vertices by decreasing their current state by 1, effectively

moving both 1 position towards the state of MaximumCertainty. This

process was called a reward procedure because as the result of repetitive

rewarding of a vertex it would be moved deeper in its sub-partition and

would have higher probability of staying in that sub-partition.

Figure 4.2: Reward transitions for the RewardSimilarNodes

PenalizeSimilarNodes

The PenalizeSimilarNodes procedure was invoked when the two vertices

were found to be similar but they resided in two distinct sub-partitions.

In this case both vertices were penalized by moving both of them one

position towards the external boundaries of their groups, closer to the

MinimumCertainty state. However, if one of the vertices already was in

the external boundary state it would be migrated over to the group of

the second vertex and in order to compensate for a missing vertex a

node closest to the external boundary (MinimumCertainty) of its new group

would be moved to the old group of the first vertex where it would be

placed in the external boundary position. If both vertices were already in

the external boundary state then one of them was moved to the group of the

other one and a vertex closest to the MinimumCertainty was migrated back

to the sub-partition missing one vertex and placed in the MinimumCertainty

state.

PenalizeDissimilarNodes

If the two vertices were found to be dissimilar and they were also in

the same sub-partition the PenalizeDissimilarSame procedure was invoked

70

Figure 4.3: Penalty transitions for the PenalizeSimilarNodes

which would move the two vertices with one position towards the

MinimumCertainty state.

Figure 4.4: Penalty transitions for the PenalizeDissimilarNodes

If both vertices were found in the state of MinimumCertainty no action

was taken. If one of the vertices was already in the MinimumCertainty

state it was moved to the group containing a vertex with which it had the

highest edge in the innermost state of its own group. This resulted in an

excess of vertices in the new sub-partition and scarcity in the old one. One

candidate was chosen in the new sub-partition in order to move it to the

old one. The vertex closest to the state of MinimumCertainty was moved.

Changes in Oommen’s approach

Two changes were done to the original approach of Oommen in order to

tweak the algorithm adapted for this project and make it more suitable for

the data used in this project.

The RewardDissimilarNodes was originally used in Oommen’s algorithm

[51] when the two chosen vertices were found to be dissimilar and they

were at the same time found to be in two distinct sub-partitions. In this sce-

nario both vertices were moved towards their most internal (MaximumCer-

tainty) states. However in this project this procedure was removed. When

dissimilar vertices were found in distinct sub-partitions they remained in

their current states and no action was taken. The reason behind this deci-

71

sion was that there were expected to be too many dissimilar nodes which

would cause overwhelming majority of the iterations to pick the dissimi-

lar pairs and push the nodes towards the MaximumCertainty most of the

times. This would significantly lower the chances for the few vertices with

strong connections who happened to be in distinct sub-partitions to be able

to get out of their sub-partitions and group together.

The formula for calculating the number of iterations was changed from

multiplying the number of edges by 100 to multiplying the number of

edges by 20.

VM clustering algorithm pseudocode

The designed and implemented VM clustering algorithm is described by

the following pseudocode:

• V = V1, V2, ..., V{KN}: The set of vertices to be partitioned

• (α1, α2, ..., αK): Set of actions a node can fall into (K sub-partitions)

• Φ1, Φ2, ..., ΦKM: Set of memory states or memory depth (M)

• E: Edges between the nodes with the associated traffic matrix D

• β = {0, 1}: Input set, where 0 is reward and 1 is penalty

• Q: Transition function, which explains how the vertices should be

moved between states

• G: Function, which partitions the set of states for the sub-partitions

Procedure RewardSimilarNodes(i,j)
Data: Node indices i and j, where ωi and ωj are the state indices of

similar nodes in the same sub-partition.

if ωi mod M 6= 1 then /* i is not in the most internal state

*/
ωi = ωi − 1

if ωj mod M 6= 1 then /* j is not in the most internal state

*/
ωj = ωj − 1

72

Procedure PenalizeSimilarNodes(i,j)
Data: Node indices i and j, where ωi and ωj are the state indices of

similar nodes in the different sub-partitions.
if (((wi mod M) 6= 0)and((wi mod M) 6= 0))) then

ωi = ωi + 1 /* both are in internal states */
ωj = ωj + 1
else

if ωi mod M 6= 0 then /* vi is in internal state */
ωi = ωi + 1 /* update state of vi */
temp = ωj /* store the state of vj */
ωj = (ωidivM) ·M /* move vj to vi’s sub-partition */
t := index of a node in vi’s sub-partition with vt 6= vi and vt
closest to the boundary state of ωi
ωt = temp /* move vt to the old state of vj */
else

if ωj mod M 6= 0 then /* vj has to be moved */
ωj = ωj + 1 /* update state of vj */
temp = ωi /* store the state of vi */
ωi = (ωjdivM) ·M /* move vi to vj’s sub-partition
*/
t := index of a node in vj’s sub-partition with vt 6= vj and
vt closest to the boundary state of ωj

ωt = temp /* move vt to the old state of vi */

73

Algorithm 2: ClusterVMs
Input: The set V = {v1, v2, ..., vKN} to be partitioned into K

sub-partitions.

D is adjacency traffic matrix and V1, V2 ... VK are current

feasible sub-partitions.

ρ is a parameter used to determine the similarity or

dissimilarity of the vertices. M=100 for the experiments in this

project.

The algorithm is run for certain fixed numbers of iterations.

Output: The final partitions {V1, V2, ..., VK}
Preprocess:

Compute Mean_Edge.

Randomly partition V into {V1, V2, ..., VK}
Assign all nodes to the boundary state of the actions

Data: Set of nodes to be partitioned: V = {v1, v2, ..., vKN}
Result: The final solution to the GPP

Method:

for Iteration :=1 to Max_Iterations do

for a random edge Eij do

if Cij > (1 + ρ) ·Mean_Edge then

if vi and vj are in same sub-partition then
RewardSimilarNodes(i,j)

else
PenalizeSimilarNodes(i,j)

else

if Cij < (1− ρ) ·Mean_Edge then

if vi and vj are in same sub-partition then
PenalizeDissimilarNodes(i,j)

else
Pass

74

Procedure PenalizeDissimilarNodes(i,j)
Data: Node indices i and j where ωi and ωj are the state indices of

dissimilar nodes in the same sub-partition
if (((wi mod M) 6= 0)and((wi mod M) 6= 0))) then

ωi = ωi + 1 /* both are in internal states */
ωj = ωj + 1

else
if ωi mod M 6= 0 then /* vj is in internal state */

ωi = ωi + 1 /* update state of vi */
TempState1 = EvaluateCost of current partitioning /* store
the state of vj */
Prev_Cost = EvaluateCost of current partitioning
for all remaining K− 1 partitions do

ωp = state of node closest to boundary in this current
sub-partition
TempState2 = ωp
ωj = (ωpdivM + 1) ·M/* move vj to new
sub-partition */
ωp = TempState1 /* move vp to vj’s old state */
New_Cost = EvaluateCost of current partitioning
if New_Cost > Prev_Cost then

ωp = TempState2 /* change is not superior */
ωj = TempState1 /* undo it */

else /* this change is superior */
Prev_Cost = New_Cost /* retain it */

else /* vj is in internal state */
ωj = ωj + 1 /* update state of vj */
TempState1 = ωi /* store state of vi */
Prev_Cost = EvaluateCost of current partitioning
for all remaining K− 1 partitions do

ωp = state of node closest to boundary in this current
sub-partition, αZ
TempState2 = ωp
ωi = (ωpdivM + 1) ·M /* move vi to new
sub-partition */
ωp = TempState1 /* move vp to old state of vi */
New_Cost = EvaluateCost of current partitioning
if New_Cost > Prev_Cost then

ωp = TempState2 /* change is not superior */
ωi = TempState1 /* undo it */

else /* this change is superior */
Prev_Cost = New_Cost /* retain it */

/* move vt to the old state of vi */

75

4.2 Implementation of the cluster placement algo-

rithm

After partitioning the initial set of nodes in a way which placed the nodes

with the high mutual traffic in the same sub-partitions a cluster placement

algorithm was developed using simulated annealing (SA) as described in

the section 3.5 in the approach chapter in order to assign the produced 16

sub-partitions to the available 16 server racks in the most optimal way.

The algorithm was implemented as two main parts:

1. Initiate the most optimal start position

2. Swap random clusters to find a better position

In order to quickly obtain the traffic between any given clusters the clus-

ter matrix S was generated by creating a static cluster reference list and

then creating a matrix with 16 rows and 16 columns where each row and

column corresponded to a cluster in the cluster reference. The edge values

between the clusters was calculated by summing the traffic rates between

every single member VM of the two clusters. The first part of the algorithm

was implemented by reading the list of partitioned nodes produced by the

VM clustering algorithm, generating all the possible pair combinations and

creating the list of the pairs with the corresponding edge values taken from

the cluster matrix S. After this the pairs were sorted by the traffic in the de-

scending order. This created an initial state which already resulted in lower

total cost of communication compared to the randomly placed cluster set.

The initial cluster placement at this stage was regarded as the best state.

The second part of the algorithm attempted to further optimize the clus-

ter placement by randomly choosing two clusters and swapping them as

displayed below:

Figure 4.5: Set of clusters after swapping two random clusters

76

In Python this was achieved by picking two random indices of the list

representing the set of clusters and then swapping them. The index of the

list corresponded to a server rack number. The element of the list with

the index 0 corresponded to the rack number 1 while the element with the

index 15 corresponded to the rack 16. The values of the list elements corre-

sponded to the cluster name as defined in the cluster reference:

Example of choosing two random elements from the list
1 groups = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,

2 1200, 1300, 1400, 1500, 1600]

In the examples above list elements with index 3 and 8 are randomly

picked. The first list shows that the rack 4 (list[3] = Rack4) has the cluster

400 assigned while the rack 9 (list[8] = Rack9) has the cluster 900 assigned.

Example of swapping two random clusters
1 groups = [100, 200, 300, 900, 500, 600, 700, 800, 400, 1000, 1100,

2 1200, 1300, 1400, 1500, 1600]

In the example displayed above the list elements are swapped. The list

now contains 900 as the list[3] element meaning that the server rack num-

ber 4 now has cluster 900 assigned, while list[8]=400 meaning that the rack

9 has the cluster 400 assigned.

The execution of the algorithm was controlled by establishing the ini-

tial temperature T with a certain value which was gradually decreased after

each iteration. The T value was also used at each iteration to calculate the

probability P value with the formula (see 3.7) described in the approach

section.

After each time two random clusters were swapped the total cost

of communication was computed and if the new value was lower than

the previous total cost of communication the algorithm chose the new

placement as the best state. If the new total cost of communication was

however higher than the previously set best state the algorithm conducted

a check to compare the current probability P value with a random value

between 0 and 1. If the P value was greater than the random value the

algorithm chose the current state as the best state in order to explore broader

77

range of the available solution space and avoid assuming a local minimum

to be the global minimum (see Fig. 3.1) as explained in the approach

chapter.

Cluster placement algorithm pseudocode

The implemented cluster placement algorithm is described in detail in the

pseudocode below:

Algorithm 3: Place_Clusters
Input: Set of N partitioned VM clusters G = {g1, ...gKN} to be

assigned to K server racks.

Output: Final solution to QAP.

Preprocess:

Compute the cluster communication matrix S.

Find the highest mutual traffic cluster pairs and sort the set of

clusters accordingly. Store the initial state as BestState

Calculate the corresponding total cost of communication,

TotalCostBestState

for Temperature := T to 0 do
Decrease T

for random distinct clusters Gi and Gj do
TempState = SwapPositions

Calculate TotalCostTempState

if TotalCostTempState < TotalCostBestState then

BestState = TempState /* go to the new state */

BestTotalCost = TotalCostBestState

else
Retain BestState

if TotalCostTempState > TotalCostBestState then

P = e−
∆
T /* Calculate probability P */

if P < RandomValue then

BestState = TempState /* go to the new state */

BestTotalCost = TotalCostBestState

else
retain BestState

78

4.3 Developed Python scripts

Several Python scripts were developed in order to implement the VM

clustering and cluster placement algorithms and to handle the tasks needed

to conduct the experiments involving these algorithms in the way which

is described in the approach section. The scripts were also implemented

to collect the experiment results and organize them in output files in

the cleanest possible way to make the plotting and analysis process as

uncomplicated as possible.

4.3.1 Script: parse_data.py

Parse_data.py script was developed in order to automatically parse the

obtained traffic traces, find and extract the relevant data, set up the IP ad-

dress reference and the dictionary of communicating pairs and the number

of transmitted bytes, to construct the asymmetric traffic matrix and then to

create and populate the symmetric traffic matrix D heavily used during the

experiments.

Console output of the parse_data.py script
2015-05-02 19:22:03 : started reading input

2015-05-02 19:22:03 : parsing: ../univ1_pt1.txt

2015-05-02 19:22:10 : finished parsing: ../univ1_pt1.txt

2015-05-02 19:22:11 : parsing: ../univ1_pt2.txt

2015-05-02 19:22:18 : finished parsing: ../univ1_pt2.txt

...

...

...

2015-05-02 19:24:21 : finished parsing: ../univ1_pt18.txt

2015-05-02 19:24:21 : parsing: ../univ1_pt19.txt

2015-05-02 19:24:30 : finished parsing: ../univ1_pt19.txt

2015-05-02 19:24:30 : parsing: ../univ1_pt20.txt

2015-05-02 19:24:39 : finished parsing: ../univ1_pt20.txt

2015-05-02 19:24:40 : saved file: traffic_rates_list.txt

--

Number of unique IPs: 5488

Number of communicating pairs: 12567

2015-05-02 19:24:40 : finished getting input

79

--

2015-05-02 19:24:40 : saved file: all_ips.txt

2015-05-02 19:24:40 : populating the asymmetric matrix.

Matrix dimensions: 1600 by 1600

2015-05-03 08:07:41 : wiping 1600_asym_matrix.pkl ...

2015-05-03 08:07:41 : writing data to 1600_asym_matrix.pkl

done.

2015-05-03 08:07:48

2015-05-03 08:07:48 : populating the symmetric matrix.

Matrix dimensions: 1600 by 1600

2015-05-03 08:07:49 : finished populating the symmetric matrix...

2015-05-03 08:07:49 : wiping 1600_sym_matrix.pkl ...

2015-05-03 08:07:49 : saving symmetric matrix...

done.

2015-05-03 08:07:57

The parse_data.py script read 2.57GB of data in 20 text files in

roughly 3 minutes and generated several output files: all_ips.txt,

traffic_rates_list.txt, 1600_asym_matrix.pkl and 1600_sym_matrix.pkl.

The script took approximately 12 hours to go through the 2560000 elements

of the matrix, search for each edge in the traffic_rates_list.txt list re-

ferring to the all_ips.txt reference.

4.3.2 Script: cluster_vms.py

The cluster_vms.py script was developed in order to solve the graph par-

titioning problem (GPP) by implementing the VM clustering algorithm

described in the previous sections. The script generated a set of 16 sub-

partitions and randomly assigned the available 1600 VMs to the different

sub-partitions so that each contained exactly 100 VMs. The script then read

1600_sym_matrix.pkl file in order to scan the traffic matrix and to calcu-

late the mean edge value. The mean edge value was used to compute the

similarity (see Fig. 3.3) and dissimilarity (see Fig. 3.4) thresholds as de-

scribed in the section 3.3. The cluster_vms script additionally calculated

the number of iterations (number of times it would pick a random pair for

80

partitioning) by counting the number of edges and calculating it by 20. Af-

ter this the script proceeded to pick two random nodes, compared their

corresponding edge Dij (by looking it up in the symmetric traffic matrix D)

to the similarity and dissimilarity thresholds and either invoked a reward

or penalize procedure or took no action depending on whether the nodes

appeared to be in distinct or the same sub-partitions.

Console output of the cluster_vms.py script
threshold similar 1020756.33985

threshold dissimilar 612453.803907

starting the graph partitioning algorithm with 82920 iterations

2015-05-07 13:46:43

0 iterations done. 0.0% finished (2015-05-07 13:46:43)

16584 iterations done. 20.0% finished (2015-05-07 13:46:45)

33168 iterations done. 40.0% finished (2015-05-07 13:46:45)

49752 iterations done. 60.0% finished (2015-05-07 13:46:46)

66336 iterations done. 80.0% finished (2015-05-07 13:46:46)

The cluster_vms.py script returned a set of values: the set of the graph

partitioned nodes, number of times the RewardSimilarNodes, PenalizeS-

imilarNodes and PenalizeDissimilarNodes procedure had been invoked,

time used for partitioning (seconds), number of the edges over the similar-

ity threshold and number of the edges under the dissimilarity threshold.

4.3.3 Script: place_clusters.py

The place_clusters.py script was developed in order to implement the

cluster placement algorithm described in the previous sections. It read the

set of graph partitioned nodes produced by the cluster_vms.py script and

to solve the quadratic assignment problem (QAP) as discussed in the sec-

tion 3.5. After reading the set of partitioned nodes the script first ranked the

pairs of clusters by intercommunication rates and sorted them in descend-

ing order in order to generate a new sequence of the nodes with lower total

cost of communication. After this step the script proceeded to use the sim-

ulated annealing technique on the set by swapping two random clusters.

81

After each swap the script checked the state of the system. If the new state

was superior to the previous state the script would adopt it as the current

best state. However, if the new state was inferior to the previous state the

script would calculate the probability value and would move to the inferior

state with that probability. The probability was calculated by constantly de-

creasing the initially set T (temperature) value and using it in the formula

(see 3.7) described in section 3.5.

Console output of the place_clusters.py script
starting VM clustering algorithm with T= 500000 :

2015-05-07 13:46:48

initial total cost is: 1502038700.0

T=500000: 100.0% hot

chosen inferior placement as P = 0.301634720373 >

0.0061017362148 random

chosen inferior placement as P = 0.779886007112 >

0.242585755024 random

chosen inferior placement as P = 0.480433392584 >

0.0263669433088 random

chosen inferior placement as P = 0.240029743912 >

0.161003559517 random

...

T=400000: 80.0% hot

chosen inferior placement as P = 0.0773042938568 >

0.0592923019254 random

chosen inferior placement as P = 0.150254013297 >

0.0899942025324 random

chosen inferior placement as P = 0.158967675765 >

0.0415338339246 random

...

T=300000: 60.0% hot

chosen inferior placement as P = 0.777697575015 >

0.250850162891 random

chosen inferior placement as P = 0.391799794669 >

0.32120927418 random

...

T=200000: 40.0% hot

chosen inferior placement as P = 0.27493613225 >

0.242596981898 random

82

T=100000: 20.0% hot

best total cost is: 1493339638.0

finished VM clustering algorithm: 2015-05-07 13:49:51

The algorithm finished working when the temperature became 0 after

gradually "cooling down".

4.3.4 Script: generate_random_placements.py

This script was developed with the sole purpose to create the necessary

number of randomly assigned set of nodes. The script used the Python’s

random library to achieve this and output 35 or 40 different .pkl files with

the use of pickle library.

Console output of the generate_random_placements.py script
created directory

2015-05-03 16:52:46 : writing data to random_placements/

1_random_placement_vms.pkl

2015-05-03 16:52:46 : writing data to random_placements/

2_random_placement_vms.pkl

2015-05-03 16:52:46 : writing data to random_placements/

3_random_placement_vms.pkl

2015-05-03 16:52:46 : writing data to random_placements/

4_random_placement_vms.pkl

...

2015-05-03 16:52:47 : writing data to random_placements/

37_random_placement_vms.pkl

2015-05-03 16:52:47 : writing data to random_placements/

38_random_placement_vms.pkl

2015-05-03 16:52:47 : writing data to random_placements/

39_random_placement_vms.pkl

2015-05-03 16:52:47 : writing data to random_placements/

40_random_placement_vms.pkl

These files were later used by the other scripts in order to establish

a baseline from the average values generated by unoptimized, randomly

dispersed sets of VMs.

83

4.3.5 Script: cluster_and_calculate_tot_cost.py

The cluster_vms.py and the place_clusters.py scripts were managed in

the larger cluster_and_place_vms.py script which was developed in order

to automate the experiments by generating 35 randomly placed VM sets

and for each placement run graph partitioning and consecutively quadratic

assignment algorithms, measure the total cost before and after optimiza-

tion, calculate the impact and organize and store the output data. The

cluster_and_place_vms.py was developed to only require the set of the

input files containing the randomly generated VM sets. The rest of the pro-

cesses were managed by the script and didn’t require human assistance.

The script was run with the same input files for all three experiments.

The only difference was the parameter which specified the cost matrix

the script was supposed to use in order to calculate the total cost of

communication after each optimization. The script would either use the

tree_cost_matrix, the fattree_cost_matrix or the vl2_cost_matrix depending on

the experiment data center model.

The output of the script was a comma-separated plain text file, one

for each DCN model. The file was named according to the DCN model.

For example the output file for the Tree data center model experiment was

tree_dcn_total_cost.txt while the output file name for the Fat-tree ex-

periment was fattree_dcn_total_cost.txt and the output file for the

VL2 DCN model experiment was called vl2_dcn_total_cost.txt. The

contents of the output files looked as follows:

Example contents of the tree_dcn_total_cost.txt file
2015-05-04 22:13:54,1_random_placement_vms.pkl,12235176726.0,

1921962355.0,-84.291503114,4,82920,360,3628,5492,1628,2239,

1270398209.0,-89.6168380936,37,1,100000

2015-05-04 22:14:37,1_random_placement_vms.pkl,12235176726.0,

1861169022.0,-84.7883764683,4,82920,360,3628,5392,1807,

1981,1291657024.0,-89.4430864962,38,5,100000

2015-05-04 22:15:20,1_random_placement_vms.pkl,12235176726.0,

1575026771.0,-87.1270615352,3,82920,360,3628,5807,1419,

2276,1227001125.0,-89.9715292024,37,2,100000

84

2015-05-04 22:16:02,1_random_placement_vms.pkl,12235176726.0,

1480767988.0,-87.8974532108,3,82920,360,3628,5817,1457,

1637,1209675742.0,-90.113132249,36,0,100000

Each row in the output file produced by the cluster_and_place_vms.py

script and demonstrated above contained following 16 values:

1. Timestamp

2. Random set file name

3. Total cost of communication of the random set

4. Total cost of communication after graph partitioning

5. Percent change in total cost of communication after graph partition-

ing

6. Seconds used on clustering the set of random VMs

7. Number of iterations used by the clustering algorithm

8. Number of the edges over the similarity threshold

9. Number of the edges under the dissimilarity threshold

10. Number of RewardSimilarNodes invoked

11. Number of PenalizeSimilarNodes invoked

12. Number of PenalizeDissimilarNodes invoked

13. Total cost of communication after cluster placement

14. Percent change of the total cost of communication after quadratic

assignment compared to the randomly placed nodes

15. Seconds used by the cluster placement algorithm

16. Number of times the simulated annealing mechanism chose inferior

state

17. The initial temperature used for simulated annealing.

85

4.3.6 Script: intracluster_comm.py

The intracluster_communications.py script was developed to han-

dle the execution of the intracluster and intercluster experiments

and write the results in a comma-separated format in the output

intracluster_comm_35.txt file.

Example contents of the intracluster_comm_35.txt file
2015-05-08 23:06:51,1_random_placement_vms.pkl,2189549.4375,

91044283.5625,4058.12870005,100,0,100,11380010.0,13814912.6917,

1967614.80833,-85.7573127515

2015-05-08 23:06:51,1_random_placement_vms.pkl,2189549.4375,

91044283.5625,4058.12870005,200,2552.0,200,20682398.5,

13814912.6917,1967614.80833,-85.7573127515

2015-05-08 23:06:51,1_random_placement_vms.pkl,2189549.4375,

91044283.5625,4058.12870005,300,6931704.0,300,318643080.5,

13814912.6917,1967614.80833,-85.7573127515

2015-05-08 23:06:51,1_random_placement_vms.pkl,2189549.4375,

91044283.5625,4058.12870005,400,1236674.5,400,40330603.0,

13814912.6917,1967614.80833,-85.7573127515

4.3.7 Script: analyze_and_plot.py

The analyze_and_plot.py script was developed in order to read the out-

put files generated by the cluster_and_place_vms.py script and plot the

results with the matplotlib library.

Example console output of the analyze_and_plot.py script
Tree experiment. Number of experiments: 35

average tot cost before optimization (N = 35): 11744193654.7

stdev: 1422547350.22

min: 8309073280.0

max: 13930703965.0

median: 12126586036.0

average tot c after graph partitioning: 1742925049.17

N = 35

stdev: 51529292.9456

86

min: 1638339362.17

max: 1885657993.69

median: 1741854170.29

average tot c after QAP: 1268149583.85

N = 35

stdev: 15796579.674

min: 1231258618.91

max: 1302712967.63

median: 1268084325.77

improvement of tot c after GP: -85.1592616707 %

improvement of tot c after QAP: -89.2019016278 %

average number of reward_similar_nodes: 5614.82122449

stdev: 31.3908384569

average number of penalize_similar_nodes: 1584.49632653

stdev: 30.0001291237

average number of penalize_dissimilar_nodes: 2208.02040816

stdev: 140.558790965

...

The script generated graphs in .pdf file format and stored them in the

working directory.

Two sets of experiments were conducted with two different set of 1600

VMs picked from the obtained traffic traces.

4.4 Experiment set A

Three instances of the cluster_and_place_vms.py were run in parallel

mode in order to simultaneously conduct the Tree, Fat-tree and VL2 ex-

periments.

87

4.4.1 Experiment a1: Tree results

The experiment a1 was conducted on the Tree data center network archi-

tecture. The cluster_and_place_vms.py was run by specifying the cost

matrix for the Tree DCN. The script read the 35 .pkl files containing the

35 randomly placed VM sets and started running the VM clustering and

cluster placement algorithms 35 times for each of the 35 .pkl files. Thus

the optimization algorithms were run totally 1225 times for the Tree ex-

periment. The number of iterations for the VM clustering algorithm was

calculated to be 82920 each time. The similarity threshold was calculated

to be 1020756.33985 and the dissimilarity threshold was 612453.803907. The

initial temperature sent to the cluster placement algorithm for the simu-

lated annealing process was T = 100000. Each test took roughly 3 minutes.

The whole experiment with 1225 tests took approximately 19 hours start-

ing 09.05.2015 at 17:44:30 and finishing 10.05.2015 at 08:28:26.

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost random assignment

Total cost of randomly placed VMs communication in "Tree" DCN

Figure 4.6: Total cost of communication in Tree with random assignments
in set A

88

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after GP

Total cost of graph partitioned VMs communication in "Tree" DCN

Figure 4.7: Total cost of communication in Tree after VM clustering in set A

The average total cost of communication of the randomly distributed

VMs in a Tree data center (TRandTreeA) was measured to be 11744193654.7

bytes (see Fig. 4.6) or 10.9376 GB for the sample size of 35 with the stan-

dard deviation of 1422547350.22 bytes or 1.3249 GB.

The average total cost of communication after the VM clustering algo-

rithm (TGpTreeA) was measured 1751027376.48 bytes or 1.6308 GB (see Fig.

4.7) with standard deviation 62550001.98 bytes (59.6523 MB). The results

after cluster assignment showed further decrease in the total cost of com-

munication. The average total cost of communication after cluster assign-

ment (TQapTreeA) algorithm (see Fig. 4.8) was 49621895.5551 bytes (47.3231

MB) with standard deviation 3293752.44 bytes (3.1412 MB).

89

0 5 10 15 20 25 30 35
Tests conducted

10

20

30

40

50

60

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "Tree" DCN after quadratic assignment

Figure 4.8: Total cost of communication in Tree after cluster placement in
set A

4.4.2 Experiment a2: Fat-tree results

The experiment 2 was conducted on the Fat-tree data center network ar-

chitecture. The cluster_and_place_vms.py script was launched in parallel

mode with the experiment 1 by specifying the cost matrix for the Fat-tree

DCN. The script read the same 35 .pkl files containing the 35 randomly

placed VM sets and started running the VM clustering and cluster place-

ment algorithms 35 times for each of the 35 .pkl files. Similar to the script

instance running the experiment 1. The optimization algorithms were run

totally 1225 times for the Fat-tree experiment with the same threshold and

maximum iteration values. The number of iterations for the VM clustering

algorithm was set to be 82920 each time. The similarity threshold was calcu-

lated to be 1020756.33 and the dissimilarity threshold was 612453.80 identi-

cally to the experiment 1.

90

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

16000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost random assignment

Total cost of randomly placed VMs communication in "Fat-tree" DCN

Figure 4.9: Total cost of communication in Fat-tree with random assign-
ments in set A

The initial temperature sent to the cluster placement algorithm for the

simulated annealing process was T = 100000. Each test took roughly 3

minutes during this experiment as well. The whole experiment with 1225

tests took roughly 16 hours starting 09.05.2015 at 17:44:24 and finishing

10.05.2015 at 10:22:57.

The average total cost of communication (see Fig.4.9) for the ran-

domly placed VMs in the Fat-tree data center (TRandFtreeA) was measured

14406082632.7 bytes (13.4167 GB) with standard deviation 1158102049.49

bytes (1.0786 GB).

The results showed that the average total cost of communication mea-

sured for the 35 scenarios after optimizing the VM placements (see Fig.4.10)

with the use of VM clustering algorithm (TGpFtreeA) was calculated to be

2140643564.18 bytes (1.9936 GB) with standard deviation 74675979.95 bytes

(71.2166 MB). The average total cost of communication after further op-

timizing the clusters’ placement (see Fig.4.11) with the cluster placement

algorithm (TQapFtreeA) was calculated to be 68162675.71 bytes (65.005 MB)

with standard deviation 3101849.88 bytes (2.9582 MB).

91

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

2500
T
ra

ff
ic

 r
a
te

s
(M

B
/h

)
Total cost after GP

Total cost of graph partitioned VMs communication in "Fat-tree" DCN

Figure 4.10: Total cost of communication in Fat-tree after VM clustering in
set A

0 5 10 15 20 25 30 35
Tests conducted

10

20

30

40

50

60

70

80

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "Fat-tree" DCN after quadratic assignment

Figure 4.11: Total cost of communication in Fat-tree after cluster placement
in set A

92

4.4.3 Experiment a3: VL2 results

The experiment 3 was conducted on the VL2 data center network architec-

ture. The third parallel instance of the cluster_and_place_vms.py script

was launched by specifying the cost matrix for the VL2 DCN. The script

read the same 35 .pkl files containing the 35 randomly placed VM sets and

started executing the VM clustering and cluster placement algorithms 35

times for each of the 35 .pkl files identically to the script instances run-

ning the experiment 1 and experiment 2. The optimization algorithms were

run totally 1225 times for the VL2 experiment with the same threshold and

maximum iteration values as in the previous two experiments. The num-

ber of iterations for the VM clustering algorithm was set to be 82920 each

time in this experiment as well. The similarity threshold was calculated to

be 1020756.33 and the dissimilarity threshold was 612453.80 identically to the

experiment 1 and experiment 2. The initial temperature sent to the cluster

placement algorithm for the simulated annealing process was T = 100000.

Each test took roughly 3 minutes during this experiment as well. The whole

experiment with 1225 tests took roughly 16 hours starting 09.05.2015 at

17:44:35 and finishing 10.05.2015 at 10:05:29.

According to the results the average total cost of communication for

the VL2 DCN (TRandVl2A) with randomly placed VMs (see Fig.4.12) was

13586759288.7 bytes (12.6537 GB) with standard deviation 1414884915.62

bytes (1.3177 GB). After the VM clustering (see Fig.4.13) the results showed

the total cost of communication (TGpVl2A) 2010382164.52 bytes (1.8723 GB)

with standard deviation 53688282.77 bytes (51.2011 MB) whereas after the

cluster placement (see Fig.4.14) the average total cost of communication

(TQapVl2A) was measured 59993636.63 bytes 57.2144 MB) with standard

deviation 3292518.29 bytes (3.14 MB).

93

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

16000
T
ra

ff
ic

 r
a
te

s
(M

B
/h

)
Total cost random assignment

Total cost of randomly placed VMs communication in "VL2" DCN

Figure 4.12: Total cost of communication in VL2 with random assignments
in set A

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after GP

Total cost of graph partitioned VMs communication in "VL2" DCN

Figure 4.13: Total cost of communication in VL2 after VM clustering in set
A

94

0 5 10 15 20 25 30 35
Tests conducted

10

20

30

40

50

60

70

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "VL2" DCN after quadratic assignment

Figure 4.14: Total cost of communication in VL2 after cluster placement in
set A

4.4.4 Intra and intercluster traffic experiment A

In order to closer observe the effect of the graph partitioning through the

VM clustering algorithm a separate experiment was conducted with the

same 35 randomly generated VM placement sets used in the previous 3 ex-

periments. In the intra and intercluster traffic experiment 35 tests were

executed for each of the 35 random assignment .pkl files. During each

test the set of randomly assigned nodes were graph partitioned and sev-

eral important values were calculated and stored such as: timestamp, file

name, average aggregate intracluster communication, average aggregate

intracluster communication after graph partitioning, intracluster commu-

nication of each of the 16 clusters both before and after each optimization

with the VM clustering algorithm, the average aggregate intercluster com-

munication with randomly assigned VMs, the average aggregate interclus-

ter communication after VM clustering and the percent change.

The intercluster communications were calculated by generating every

possible cluster pair combination and adding their corresponding edges

found in the associated cluster matrix. The mean value of the collected

95

communication rates was used.

Console output example intracluster communications experiment
working with: ./random_placements/35_random_placement_vms.pkl

threshold similar 1020756.33985

threshold dissimilar 612453.803907

starting the graph partitioning algorithm with 414600 iterations

2015-05-09 01:39:33

0 iterations done. 0.0% finished (2015-05-09 01:39:33)

82920 iterations done. 20.0% finished (2015-05-09 01:39:36)

165840 iterations done. 40.0% finished (2015-05-09 01:39:36)

248760 iterations done. 60.0% finished (2015-05-09 01:39:37)

331680 iterations done. 80.0% finished (2015-05-09 01:39:37)

2015-05-09 01:39:37

-------- Summary intracluster communications --------

Total average unoptimized intracluster communications: 1752782.75

Total average optimized intracluster communications: 91992765.375

percent change intracluster comm: 5148.38377004 %

-------- Summary intercluster communications --------

Total unoptimized intercluster communications: 13873148.25

Total optimized intercluster communications: 1841150.56667

percent change: -86.7286751825 %

The average cluster communication matrices with both randomly dis-

tributed VMs and then graph partitioned VMs were calculated and stored

in order to observe the intra and intercluster communications for the VM

clustering analysis.

The results showed that the average intracluster traffic for the 16 clus-

ters with randomly assigned VMs (see Fig.4.15) was 6178109.44 bytes

(5.8919 MB) with standard deviation 5712565.77 bytes (5.4479 MB).

96

0 2 4 6 8 10 12 14 16
Clusters

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic before GP

Average intracluster communications per cluster with random assignments

Figure 4.15: Average total intracluster traffic in 16 clusters with randomly
assigned VMs in set A

0 2 4 6 8 10 12 14 16
Clusters

0

20000

40000

60000

80000

100000

120000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic after GP

Average intracluster communications per cluster after graph partitioning

Figure 4.16: Average total intracluster traffic in 16 clusters after GP in set A

After the VM clustering algorithm optimized the clusters the average

97

intracluster communication for the clusters (see Fig.4.16) was shown to be

90774221.85 bytes (86.569 MB) with standard deviation 2642162.77 bytes

(2.5198 MB)

4.5 Experiment set B

The three experiments described in the previous section and the intraclus-

ter traffic experiment were repeated once again with a new set of 1600 VMs

chosen more carefully in order to test on a different type of traffic.

4.5.1 Experiment b1: Tree results

The experiment b1 on Tree DCN was conducted on the same 35 .pkl files

used in the experiment set A. The number of maximum iterations for

the VM clustering algorithm during this experiment was calculated to be

87040. The similarity threshold was 133695.24 and the dissimilarity threshold

was calculated to 80217.14. In this way 1316 edges ended up over the simi-

larity threshold while 1966 edges were below the dissimilarity threshold.

According to the results the average total cost of communication with

randomly assigned VMs TRandTreeB was 1601453698.57 bytes (1.4915 GB)

with standard deviation 18116631.36 bytes (0.0169 GB). After the VM

clustering algorithm the average total cost of communication TGpTreeB

was measured 1061026520.0 bytes (0.9882 GB) with standard deviation

12608363.74 bytes (12.0243 MB). After the cluster placement algorithm the

total cost of communication TQapTreeB was 24244865.90 bytes (23.1217 MB)

with standard deviation 373481.77 bytes (0.3562 MB).

98

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost random assignment

Total cost of randomly placed VMs communication in "Tree" DCN

Figure 4.17: Total cost of communication in Tree with random assignments
in set B

0 5 10 15 20 25 30 35
Tests conducted

0

200

400

600

800

1000

1200

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after GP

Total cost of graph partitioned VMs communication in "Tree" DCN

Figure 4.18: Total cost of communication in Tree after VM clustering in set
B

99

0 5 10 15 20 25 30 35
Tests conducted

5

10

15

20

25
T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "Tree" DCN after quadratic assignment

Figure 4.19: Total cost of communication in Tree after cluster placement in
set B

4.5.2 Experiment b2: Fat-tree results

The same 35 .pkl files were used to conduct the experiment b2 on Fat-tree

DCN. The same mean edge value was used in order to calculate the simi-

larity and the dissimilarity thresholds in this experiment as in the previous

b1 experiment.

According to the results the average total cost of communication with

randomly assigned VMs TRandFtreeB was 1950752236.0 bytes (1.8168 GB)

with standard deviation 17762337.15 bytes (0.0165 GB). After the VM

clustering algorithm the average total cost of communication TGpFtreeB

was measured 1288877475.49 bytes (1.2004 GB) with standard deviation

12621967.57 bytes (12.0372 MB). After the cluster placement algorithm the

total cost of communication TQapFtreeB was 30825934.92 bytes (29.3979 MB)

with standard deviation 361225.03 bytes (0.3445 MB).

100

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost random assignment

Total cost of randomly placed VMs communication in "Fat-tree" DCN

Figure 4.20: Total cost of communication in Fat-tree with random assign-
ments in set B

0 5 10 15 20 25 30 35
Tests conducted

0

200

400

600

800

1000

1200

1400

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after GP

Total cost of graph partitioned VMs communication in "Fat-tree" DCN

Figure 4.21: Total cost of communication in Fat-tree after VM clustering in
set B

101

0 5 10 15 20 25 30 35
Tests conducted

5

10

15

20

25

30

35

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "Fat-tree" DCN after quadratic assignment

Figure 4.22: Total cost of communication in Fat-tree after cluster placement
in set B

4.5.3 Experiment b3: VL2 results

Once again the same 35 .pkl files used in b1 and b2 were used to conduct

the experiment b3 on VL2 DCN. The same mean edge value was used in

order to calculate the similarity and the dissimilarity thresholds in this ex-

periment as in the previous b1 and b2 experiments.

The results showed that the average total cost of communication with

randomly assigned VMs TRandVl2B was 1835909748.69 bytes (1.7098 GB)

with standard deviation 22100449.20 bytes (0.0206 GB). After the VM

clustering algorithm the average total cost of communication TGpVl2B

was measured 1211796514.7 bytes (1.1286 GB) with standard deviation

10158873.22 bytes (9.6883 MB). After the cluster placement algorithm the

total cost of communication TQapVl2B was 28061769.69 bytes (26.7618 MB)

with standard deviation 410242.89 bytes (0.3912 MB).

102

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost random assignment

Total cost of randomly placed VMs communication in "VL2" DCN

Figure 4.23: Total cost of communication in Fat-tree with random assign-
ments in set B

0 5 10 15 20 25 30 35
Tests conducted

0

200

400

600

800

1000

1200

1400

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after GP

Total cost of graph partitioned VMs communication in "VL2" DCN

Figure 4.24: Total cost of communication in Fat-tree after VM clustering in
set B

103

0 5 10 15 20 25 30 35
Tests conducted

5

10

15

20

25

30
T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Total cost after QA

Total cost of VMs communication in "VL2" DCN after quadratic assignment

Figure 4.25: Total cost of communication in Fat-tree after cluster placement
in set B

4.5.4 Intra and intercluster traffic experiment B

The 35 randomly generated VM placement sets used in the previous

3 experiments were used in order to observe the effect of the VM

clustering algorithm on intracluster and intercluster traffic. In the intra

and intercluster traffic experiment 35 tests were executed for each of the

35 random assignment .pkl files. Once again during each test the set of

randomly assigned nodes were graph partitioned and the results were

stored in the output files.

104

0 2 4 6 8 10 12 14 16
Clusters

0

200

400

600

800

1000

1200

1400

1600

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic before GP

Average intracluster communications per cluster with random assignments

Figure 4.26: Average total intracluster traffic in 16 clusters with randomly
assigned VMs in set B

.

0 2 4 6 8 10 12 14 16
Clusters

0

1000

2000

3000

4000

5000

6000

7000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic after GP

Average intracluster communications per cluster after graph partitioning

Figure 4.27: Average total intracluster traffic in 16 clusters after GP in set B

105

106

Chapter 5

Analysis

In this chapter the results of the implementation of VM clustering and clus-

ter placement algorithms and the experiments on the three data center net-

work architectures will be analyzed thoroughly by going through the plots

and the statistical data obtained during the experiment.

5.1 VM clustering and cluster placement: set A

The results showed that the traffic-aware consolidation of the VMs had sig-

nificant impact on the total cost of communication. The data also shows

that the cluster placement algorithm further decreases the total cost of com-

munication. This section goes through and analyzes the results of each of

the three experiments by using the statistical data and the data visualiza-

tion provided by the analysis tools developed in Python.

5.1.1 Experiment a1: Tree analysis

When looking at the baseline total cost of communication the first notice-

able thing is the high variance (std is 12.11% of the mean) in the distribution

of mean total costs (see Fig.5.1 and 4.6). This is can be explained by the fact

that the cost matrix for the Tree DCN (see Fig.3.8) can cause higher vari-

ation in the cost of communication as the result of moving clusters with

significantly high traffic slightly away or closer to their pairs with whom

they exchange significantly high traffic. The cost matrices for Fat-tree and

VL2 (see Fig.3.9 and 3.10) are more uniform in comparison.

107

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Random assignment
After GP
After QA

Comparison of average total communication cost values in 'Tree'

Figure 5.1: Total cost of communication in Tree in set A

The impact of the VM clustering algorithm using Oommen’s graph

partitioning technique is obvious when observing the plotted graphs. VM

consolidation decreases the total cost of communication with 85.09% (from

11744193654.7 to 1751027376.48 bytes) and stabilizes the variance as well

(see Fig.5.1 and 4.7). At this point the clusters are not assigned to the

racks in the most optimal way yet. After the cluster assignment with

simulated annealing the total cost of communication drops further to

49621895.55 bytes which is 97.17% decrease compared to the total cost of

the consolidated (clustered) VMs and 99.58% overall decrease compared to

the total cost of communication of the randomly distributed VMs.

mean st.dev ∆Prev.mean ∆Overall

TRandTreeA 11744193654.7 1422547350.22 — —
TGpTreeA 1751027376.48 62550001.98 -85.09% -85.09%
TQapTreeA 49621895.55 3293752.44 -97.17% -99.58%

Table 5.1: Change in the total cost of communication in Tree in set A

108

During the 82920 iterations the VM clustering algorithm invoked the

RewardSimilarNodes procedure on average 5622 times, while the PenalizeS-

imilarNodes was invoked 1576 times on average and the average number of

the times PenalizeDissmiilarNodes was invoked was 2213. The graph parti-

tioning process took on average 3.4 seconds to complete.

This means that for most of the time algorithm picked nodes that were

not significantly connected. This occured in 9411 out of total 82920 itera-

tions. Thus, the graph partitioning algorithm was "idle" 88.65% of the total

iterations when the picked edges were regarded neither similar nor dissim-

ilar.

The data also shows that the cluster placement algorithm used the infe-

rior configurations 149.4 times on average (standard deviation 16.8) out of

100000 iterations. It took the simulated annealing process on average 37.7

seconds to complete the 100000 iterations which is significantly longer time

compared to what the VM clustering algorithm used. This can be explained

by the fact that the VM clustering algorithm for most of the time (88.65%)

didn’t have to conduct any time consuming operations whereas the cluster

placement algorithm had calculation jobs to execute for each of the 100000

iterations.

5.1.2 Experiment a2: Fat-tree analysis

The results of the Fat-tree experiment reveal (see Fig.5.2 and 4.10) that the

baseline total cost of communication in this DCN model was more stable

compared to the baseline total cost of communication for the Tree in terms

of the variance. The standard deviation of the 35 tests is on average 8.04%

of the mean. This can be explained by the cost matrix for the Fat-tree (see

Fig.3.9) which is relatively uniform compared to the cost matrix of Tree

which might be a good explanation for why there is less variation in total

cost as there is no difference caused in the cost of communication between

two VMs if one of the VMs is moved from one rack to another, when the

pair is already communicating to each other from the server rack groups be-

longing to distinct access layer switches. There’s greater change in cost of

communication for VM pairs migrated from one rack to another in cases of

109

the VMs communicating to each other within the same access layer switch

rack group (see Fig.3.9)

The total cost of communication measured with the randomly dis-

tributed VMs decreased significantly after the set of nodes was graph parti-

tioned by the VM clustering algorithm. The average total cost was reduced

with 85.14% from 14406082632.7 to 2140643564.18 bytes.

The VM clustering algorithm executed 82920 iterations and invoked Re-

wardSimilarNodes procedure on average 5619 times. The PenalizeSimilarN-

odes procedure was invoked 1582 times on average while the PenalizeDis-

similarNodes was invoked on average 2189 times. The average time used

no the graph partitioning was 3.33 seconds. The VM clustering algorithm

behaved in the same way as during the Tree analysis as expected. In this

experiment too it was idle most of the time as the majority of the randomly

picked VM pairs weren’t considered either similar or dissimilar. The al-

gorithm was busy 11.32% of the time rewarding and penalizing the nodes.

40.16% of the picked VMs were penalized while the remaining 59.84% were

rewarded.

The cluster placement algorithm was executed after the VM consoli-

dation which further decreased the average total cost of communication

with -96.82% from 2140643564.18 to 68162675.71 bytes. Totaly the average

total cost was decrease with 99.52% from the initial 14406082632.7 to the

68162675.71 bytes after the cluster placement.

mean st.dev ∆Prev.mean ∆Overall

TRandFtreeA 14406082632.7 1158102049.49 — —
TGpFtreeA 2140643564.18 74675979.95 -85.14% -85.14%
TQapFtreeA 68162675.71 3101849.88 -96.82% -99.52%

Table 5.2: Change in the total cost of communication in Fat-tree in set A

The cluster placement algorithm accepted on average 1733.76 worse

configurations during the simulated annealing process which took 38.85

110

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

16000

T
ra

ff
ic

 r
a
te

s
(K

B
/h

)

Random assignment
After GP
After QA

Comparison of average total communication cost values in 'Fat-tree'

Figure 5.2: Total cost of communication in Fat-tree in set A

seconds to complete on average.

5.1.3 Experiment a3: VL2 analysis

The observed average total communication cost for the randomly dis-

tributed VMs in the VL2 was 13586759288.7 with standard deviation

1414884915.62. Variance was higher compared to Fat-tree but lower com-

pared to Tree as it is the 10.41% of the mean. This result can be explained

again by comparing the cost matrices of the three data center architecture

models displayed in the approach section.

mean st.dev ∆Prev.mean ∆Overall

TRandVl2A 13586759288.7 1414884915.62 — —
TGpVl2A 2010382164.52 53688282.77 -85.20% -85.20%
TQapVl2A 59993636.63 3292518.29 -97.02% -99.56%

Table 5.3: Change in the total cost of communication in VL2 in set A

111

0 5 10 15 20 25 30 35
Tests conducted

0

2000

4000

6000

8000

10000

12000

14000

16000
T
ra

ff
ic

 r
a
te

s
(M

B
/h

)
Random assignment
After GP
After QA

Comparison of average total communication cost values in 'VL2'

Figure 5.3: Total cost of communication in VL2 in set A

The average total cost of communication decreased with 85.20% after

VM clustering from 13586759288.7 to 2010382164.52 bytes. During the VM

clustering the graph partitioning process invoked RewardSimilarNodes on

average 5619 times. The PenalizeSimilarNodes procedure was invoked 1581

times and the PenalizeDissimilarNodes procedure was invoked 2204 times

on average. The graph partitioning process took average of 3.34 seconds to

complete.

The cluster placement algorithm further decreased the total cost of

communication with 97.02% compared to the total cost of communication

achieved after the graph partitioning. The new total cost went down to

average of 59993636.63 bytes which, compared to the initial total cost of

communication was a 99.56% decrease. The simulated annealing took on

average 39.6 seconds while 1409 times out of 100000 the algorithm chose

an inferior state.

112

5.2 Intracluster and intercluster communication: set A

It is clear that the traffic-aware consolidation of the VMs had significant

impact on the total cost of communication which was greatly decreased

through both VM clustering and quadratic assignment. In order to under-

stand what caused this significant improvement it’s important to observe

the changes in the traffic between the VMs inside the clusters (intracluster

traffic) and also the change in traffic exchanged between (intercluster traf-

fic) the clusters.

The data collected during the intracluster and intercluster experiments

shows clearly how the intracluster traffic was increased as a result of the

graph partitioning process conducted by the VM clustering algorithm. The

figure 5.4 illustrates the average intracluster communications inside the 16

clusters before the VM consolidation when the clusters were populated by

randomly distributed VMs for the 35 randomly generated VM sets.

0 2 4 6 8 10 12 14 16
Clusters

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic before GP

Average intracluster communications per cluster with random assignments

Figure 5.4: Intracluster traffic in the 16 clusters before GP in set A

The figure 5.5 illustrates how the intracluster traffic looked in the same

113

16 clusters shown in the figure 5.4 after the VMs were consolidated with

the VM clustering algorithm using the graph partitioning technique.

0 2 4 6 8 10 12 14 16
Clusters

0

20000

40000

60000

80000

100000

120000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic after GP

Average intracluster communications per cluster after graph partitioning

Figure 5.5: Intracluster traffic in the 16 clusters after GP in set A

With the randomly assigned VMs the aggregate average intracluster

communication was 6178109.44 bytes (std: 5712565.77) which was in-

creased with 1369.28% up to 90774221.85 bytes after the graph partitioning.

Already at this stage even without intelligent assignment of the clusters to

the available server racks the data center traffic is significantly optimized

compared to the state prior to consolidating the virtual machines with the

VM clustering algorithm. This effect is observed consistently through all

the 35 tests conducted for the 35 randomly generated VM sets (1225 times

totally) which indicates the stable and reliable performance of the VM clus-

tering algorithm.

While the intracluster traffic increased the traffic between the clusters

decreased at the same time. The average initial aggregate intercluster traffic

was measured 13283104.69 bytes and the traffic between the clusters was

not optimized as shown in the figure 5.7, where it’s evident that clusters

are communicating with each other in a more or less chaotic way with vari-

114

able traffic rates. The average aggregate intercluster traffic decreases with

84.92% to 2003623.03 bytes after the VM clustering as the result of consoli-

dating highly communicative VMs in the same clusters.

This is illustrated by the figure 5.6. The cells diagonally represent

the traffic inside the clusters (intracluster communication) while all the

other cells refer to the traffic between (intercluster communication) the 16

clusters. The colors correspond to the values each cells represent. The light

blue colors represent low values while the values get greater as the cell

color gets darker and darker shade of blue.

The figure 5.6 shows for example that the cell in row 1 and column 13

is considerably darker blue compared to the neighboring cell in row 1 and

column 13. This cell represents the traffic between clusters 1 and 13. The

figure reveals that on average 4 clusters had especially high mutual traffic

compared to the rest of the clusters. The diagonal of the figure 5.6 reveals

that none of the clusters has high internal traffic judging by the light blue

color of the diagonal cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.6: Intra and intercluster traffic heatmap before GP in set A

115

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.7: Intra and intercluster traffic heatmap after GP in set A

The figure 5.7 shows significantly different picture after VM clustering.

The diagonal cells representing the intracluster traffic are dark blue signi-

fying the high values whereas the rest of the cells are of much lighter color.

The non-diagonal graph is smooth and uniform signifying the decrease in

intercluster communication over the whole matrix.

5.2.1 Overall comparison: set A

As shown in the previous sections due to the VM clustering algorithm con-

solidating VMs with high mutual traffic in the same clusters the intraclus-

ter communication increased with 1369.28% while the intercluster traffic

decreased with 84.92% at the same time. These changes caused the de-

crease of the total cost of communication with with with 97.17% in Tree,

with 96.82% in Fat-tree and with 97.02% in VL2. The smart assignment

of the clusters to the server racks with the use of the simulated annealing

implemented in the cluster placement algorithm further decreased the to-

tal cost of communication with 99.58% in Tree, 99.52% in Fat-tree and with

99.56% in VL2 data center network architecture models. The figure 5.8 illus-

trates the total cost of communication with randomly assigned VMs, after

116

VM clustering and after cluster placement in all three data center network

architecture models experimented on in this project.

Tree

Fat-tr
ee

VL2

Data center architectures

0

2000

4000

6000

8000

10000

12000

14000

16000

T
o
ta

l
co

st
 o

f
co

m
m

u
n
ic

a
ti

o
n
 (

M
B

/h
) 11744

14406
13586

1751
2140 2010

49 68 59

Total cost unoptimized

Total cost after GP

Total cost after SA

Total cost of communication (MB/h) in three data center architectures

Figure 5.8: Total cost of communication in all three experiments in set A

During all the three experiments the effect of the VM clustering and

the cluster placement was shown to be rather effective in consolidating

the strongly connected nodes in the same clusters and ultimately greatly

decreasing the total cost of communication in the data center models. The

optimization results were stable and consistent in all the tests conducted.

117

5.2.2 Traffic matrix characteristics: set A

Deeper analysis of the traffic matrix used to conduct all three experiments

shows that not only are the 2555854 out of 2560000 (99.84% of the total) val-

ues equal to zero in the matrix but the remaining 4146 are rather unevenly

distributed.

The figure 5.9 shows the distribution of the 4146 nonzero elements (or

the edges between the communicating VMs) of the traffic matrix. The

graph is extremely skewed meaning that there are very few high values

while most of the edges are considerably lower. Thus the mean edge is far

apart from the median value and therefore merely 8.68% (360 edges) of the

total number of the edges end up over the similarity threshold calculated

by using the mean edge value while the majority (87.51%) of the edges,

which is 3628 values, end up below the dissimilarity threshold.

0.0 25.0 50.0 75.0 100.0
0

50000

100000

150000

200000

250000

Figure 5.9: All edge values in set A in the traffic matrix in 25% percentiles

118

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
0

200

400

600

800

1000

1200

1400

Figure 5.10: Top 100 edge values in set A in the traffic matrix shown with
10% percentiles

5.3 Experiment set B: analysis

As discussed in the approach section a different set of 1600 VMs was used

in order to conduct experiment B otherwise with the same parameters. The

purpose of this was to intentionally experiment on the set of VMs with a

"smoother" communication patterns. The figures 5.9 and 5.10 show that the

mere 10% of the edges constituted for most of the traffic in the set while the

remaining 90% of the edges were significantly lower values. This means

that there are very few VMs who communicate immensely with one an-

other while the rest of the VMs have moderate mutual communication.

The set B was intentionally picked to exclude the VMs with extremely

high intercommunication compared to the rest of the nodes. The purpose

of this method was to test how the developed algorithms would perform

in a different environment.

119

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
0

50

100

150

200

250

300

350

Figure 5.11: Edge values in the traffic matrix in set B shown with 10%
percentiles

0 2 4 6 8 10 12 14 16
Clusters

0

200

400

600

800

1000

1200

1400

1600

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic before GP

Average intracluster communications per cluster with random assignments

Figure 5.12: Intracluster traffic in the 16 clusters before GP in set B

120

0 2 4 6 8 10 12 14 16
Clusters

0

1000

2000

3000

4000

5000

6000

7000

V
a
lu

e
s

(K
B

/h
)

Intracluster traffic after GP

Average intracluster communications per cluster after graph partitioning

Figure 5.13: Intracluster traffic in the 16 clusters after GP in set B

The figure 5.11 shows the distribution of the edges in the symmetric

traffic matrix for the experiment set B. It is evident that the there was a

more even distribution of edges in this experiment.

Due to the fact that the communication between the communicating

VM pairs is much more evenly distributed compared to the experiment set

A the increase in the intracluster traffic and the decrease in the intercluster

traffic is less compared to the experiment set A. The results showed that the

intracluster traffic increased with 502.18% (from 914155.61 to 5504944.75

bytes) while the intercluster traffic decreased with 33.67% (from 1817584.94

to 1205479.72 bytes).

As a result the decrease in total cost of communication after VM cluster-

ing was also moderate compared to the results seen in the experiment set

A. Total cost of communication for the Tree experiment (b1) after VM clus-

tering decreased with 33.74%. After cluster placement algorithm the total

cost of communication decreased with 98.48%. The VM clustering algo-

rith decreased the total cost of communication with 33.92% in the Fat-tree

experiment (b2) and with 33.99% in the VL2 experiment (b3). The cluster

121

placement algorithm improved the results with 98.41% in the Fat-tree (b2)

and with 98.47% in the VL2 (b3) experiments.

Average number of RewardSimilarNodes invoked increased to 13306.48

in the Tree experiment (b1). Average number of PenalizeSimilarNodes was

13013.23 while the average number of PenalizeDissimilarNodes was 868.82.

During the Fat-tree experiment (b1) the number of RewardSimilarNodes was

13330.65 while the average number of PenalizeSimilarNodes was 12994.87

and the PenalizeDissimilarNodes was 873.34. The average number of the Re-

wardSimilarNodes increased during the VL2 experiments (b3) as well and

was 13296.16 while the average number of PenalizeSimilarNodes invoked

was 13022.85. The average number of PenalizeSimilarNodes invoked was

875.69.

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Random assignment
After GP
After QA

Comparison of average total communication cost values in 'Tree'

Figure 5.14: Total cost of communication in Tree in set B

122

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(K

B
/h

)

Random assignment
After GP
After QA

Comparison of average total communication cost values in 'Fat-tree'

Figure 5.15: Total cost of communication in Fat-tree in set B

0 5 10 15 20 25 30 35
Tests conducted

0

500

1000

1500

2000

T
ra

ff
ic

 r
a
te

s
(M

B
/h

)

Random assignment
After GP
After QA

Comparison of average total communication cost values in 'VL2'

Figure 5.16: Total cost of communication in VL2 in set B

The figures 5.14, 5.15 and 5.16 show the average total cost of communi-

123

cation in the Tree, Fat-tree and VL2 experiments with set B with randomly

assigned VMs, after graph partitioning with the VM clustering algorithm

and after the cluster placement algorithm. The figures demonstrate the pos-

itive effect of graph partitioning and further improvement in total cost of

communication after quadratic assignment with the use of the developed

cluster placement algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.17: Intra and intercluster traffic heatmap before GP in set B

The heatmap plots of the intra and intercluster communications demon-

strate how the traffic patterns look before and after graph partitioning with

the VM clustering algorithm in the experiment set B. The figure 5.17 shows

that the traffic rates between the clusters is on average higher compared to

the experiment set A, while the intracluster communication (the diagonal

cells) is considerably less. The figure 5.18 shows how the VM clustering

algorithm optimizes the traffic. The diagonal cells show increase in intra-

cluster traffic while the intercluster traffic is reduced.

124

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.18: Intra and intercluster traffic heatmap after GP in set B

The figure 5.19 illustrates how the total cost of communication was

gradually decreased first with the use of the VM clustering algorithm and

after that with the use of the cluster placement algorithm. It is obvious that

the VM clustering with graph partitioning had considerable effect on the

total cost of communication. However, due to the nature of the data set

used in the experiment set B the improvement was less compared to the

improvement achieved in the experiment set A.

The table 5.4 shows how the VM clustering and the cluster placement

algorithms reduced the total cost of communication in Tree (b1), Fat-tree

(b2) and VL2 (b3) experiments for the experiment set B.

125

mean st.dev ∆Prev.mean ∆Overall

TRandTreeB 1601453698.57 18116631.36 — —
TGpTreeB 1061026520.0 12608363.74 -33.75% -33.75%
TQapTreeB 24244865.90 373481.77 -97.71% -98.49%
TRandFtreeB 1950752236.0 17762337.15 — —
TGpFtreeB 1288877475.49 12621967.57 -33.93% -33.93%
TQapFtreeB 30825934.92 361225.03 -97.61% -98.42%
TRandVl2B 1835909748.69 22100449.20 — —
TGpVl2B 1211796514.7 10158873.22 -33.99% -33.99%
TQapVl2B 28061769.69 410242.89 -97.68% -98.47%

Table 5.4: Changes in the total cost of communication in set B

Tree

Fat-tr
ee

VL2

Data center architectures

0

500

1000

1500

2000

T
o
ta

l
co

st
 o

f
co

m
m

u
n
ic

a
ti

o
n
 (

M
B

/h
)

1601

1950

1835

1061

1288
1211

24 30 28

Total cost unoptimized

Total cost after GP

Total cost after SA

Total cost of communication (MB/h) in three data center architectures

Figure 5.19: Total cost of communication in all three experiments in set B

The figure 5.19 shows the overall comparison of the average total cost of

communication with the randomly assigned VMs in the three data center

126

network architectures experimented on, the average total cost of commu-

nication after the VM clustering with the graph partitioning technique and

lastly the average total cost of communication after the clusters were as-

signed to the server racks in a traffic-aware way with the cluster placement

algorithm which used the simulated annealing technique.

127

128

Part III

Conclusion

129

Chapter 6

Discussion and future work

This chapter reflects on the results obtained through the project, the devel-

opment and the course of the project, the feasible alternative approaches

and suggests improvements for the future work.

6.1 Implementation of the algorithms

The goal of this paper was to investigate how a graph partitioning algo-

rithm proposed by Oommen [51] could be implemented in order to be used

to consolidate VMs in a traffic-aware way and how the resulting VM clus-

ters could be assigned to the available server racks in a way which would

minimize the total cost of communication in the developed data center

model. These questions have been answered by studying Oommen’s al-

gorithm and implementing it in Python on a hypothetical data center using

traffic traces as communication data. Simulated annealing-based quadratic

assignment algorithm has been implemented in order to place the resulting

clusters on the server racks. The effect of the traffic aware consolidation and

the cluster assignment have been measured and analyzed with the help of

supporting scripts.

The results clearly showed the expected improvement by significantly

decreasing the total cost of communication in all the conducted experi-

ments with the stable and the expected rates. The validity of the results

were confirmed by closely observing the effect of the traffic-aware consol-

idation through analyzing other observable effects of such consolidation,

131

namely the intracluster and intercluster traffic pattern changes. The obser-

vations confirmed the expected increase in the intracluster traffic and the

simultaneous decrease in the intercluster traffic. The research showed that

the effects of optimization were greater in the environment with few VMs

communicating extensively with each other while the rest of the VMs had

significantly less mutual traffic. The optimization effect was relatively less

in the environment where most of the VMs communicated with each other

at roughly the same rates. However this result was not achieved easily as

several challenges had to be faced in order to get the developed system

working properly according to the plan.

6.1.1 Challenges during the implementation

One of the most challenging problems during the project was developing

and debugging the considerable amount of code needed for the implemen-

tation of the algorithms, for managing the experiments, collecting the re-

sulting data and analyzing and plotting the results. By the end of the thesis

over 1500 lines of code was developed. Even though the pseudocode was

available from the start through Oommen’s paper [51] the actual imple-

mentation proved to be more challenging than previously assumed. The

main reason for this turned out to be a number of low level operations that

had to be implemented in the code in order for the algorithm to function.

Numerous different scenarios had to be taken in account when developing

the graph partitioning algorithm. The learning automata had do respond

to the dynamic changes in VM clusters by invoking different procedures

and these procedures had to be precise, fast and effective. Another chal-

lenge was the difficulty associated with referring to list element values and

the list indices in the whole set of nodes as well as in the separate sub-

partitions during development of the code. There were many small details

that had to be remembered in order to write the code and it was easy to

make a mistake during the process.

Several small changes were made to the original algorithm during the

implementation. One of the biggest changes was the deactivation of the

RewardDissimilarNodes procedure. The reason behind this decision was the

nature of the input data the experiments (especially the experiment set A)

132

was conducted on. The number of edges over the similarity threshold was

significantly lower compared to the number of edges under the dissimilar-

ity threshold. This fact caused most of the VMs to be rewarded and pushed

inwards in their clusters and as a result very few VMs managed to actually

migrate from one cluster to another. After deactivation of the RewardDis-

similarNodes the number of migrations increased and the results were more

favorable as expected.

6.1.2 Obstacles encountered

The code measuring the total cost of communication was developed at the

later stage of the project and revealed some unexpected results. It was sus-

pected that the reason for this was a bug somewhere in the several hun-

dred lines of code amongst the low level operations. At this stage the

project was halted and couldn’t continue without the cause of the highly

unexpected results could be discovered and dealt with. After scrutinizing

the code thoroughly an error was discovered and corrected. During the

debugging process more discoveries were made which helped further im-

prove the functionality of the algorithm. Several adjustments had to be

done to the algorithm in order to get it to work optimally. Due to this

obstacle the conducting of the experiments was delayed for several days,

however better understanding of the algorithms involved, the data used in

the project and the whole process of graph partitioning and object migra-

tion was achieved through the trial.

It was also discovered that the initial communication cost measured af-

ter randomly distributing the 1600 VMs in the data center network model

could vary significantly due to chance. In order to avoid distorted and un-

reliable results the 35x35 experiment scheme was designed and later used

to conduct the three experiments. It was assumed that conducting over 30

experiments on the multiple baseline node sets would increase the validity

and the reliability of the results.

133

6.1.3 Changes in the initial approach

As the task of developing both the algorithms needed for the experiments

and the code needed to manage the complex experiments proved to be

more challenging than initially assumed the initial plans for the project

had to be adjusted in order to better handle the amount of work within

the strict deadline boundaries. The initial approach included further ex-

panding the project by developing several additional features to the VM

clustering algorithm making it more robust and implementing additional

custom constraints handling. As it became clear that development of these

mentioned additional features in addition to the core features of the algo-

rithms could imperil the overall quality of the project these exciting plans

had to be reluctantly altered and postponed for the future research. As

a result of changing the initial plans it became possible to re-allocate the

available resources in order to expand the experiments and test on three

different data center models instead of only one. It also became possible

to conduct two different sets of the experiments with the three data center

models. Each set of three experiments was conducted with a different set

of 1600 VMs and this approach allowed for two different data center traffic

environments to be simulated which in turn helped to better test the effects

of the developed algorithms.

6.1.4 Alternative approaches

In retrospect several alternative approaches can be considered in order to

address the problem statement questions. First of all the traffic traces used

for the simulation of the VM traffic in a data center could be diversified and

the quality of the data can be further improved. In the ideal scenario com-

prehensive information about data traffic patterns for the virtual machines

collected over longer periods of time (days and perhaps weeks) from dif-

ferent real life data centers could be used as the traffic data for adapting the

clustering and placement algorithms. This would provide a more reliable

overview of the real traffic between the VMs in the real world. Since data

collection of this type and scope might be difficult an alternative approach

could also simply be data traces collected from one data center over longer

period of time, such as 24 hours or more.

134

Another alternative method of experimenting would be to keep the traf-

fic traces used in this project but make sure to choose a different random

sets of 1600 VMs and run experiments to test if the results obtained show

the similar effect of the traffic-aware consolidation most of the time which

would provide stronger proof for the VM clustering algorithm’s positive

impact on different traffic types.

As demonstrated in the analysis section the randomly chosen 1600 VMs

had edges forming a rather skewed graph, where 89% of the edges were be-

low the average (3712 edges below and 434 edges over the mean edge of

816605) which could have significant impact on the outcome of the opti-

mization with the developed algorithms. An alternative could be to pick

the 1600 VMs in a more controlled way as to form a more evenly distributed

graph and experiment on the new set to see if the outcome of the VM con-

solidation is the same in this case.

"Top-down" vs "bottom-up" clustering

In this thesis the VM set was partitioned by randomly distributing the all

the available 1600 VMs over the 16 clusters and then by optimizing them

by migrating the VMs between the clusters in a sort of "bottom-up" clus-

tering. A different approach could have been tested. Namely dividing the

total number of VMs in two clusters (1600
2) and optimizing these two clus-

ters with the graph partitioning technique. Then dividing each of these

two clusters into two and optimizing the resulting 4 clusters by migrating

the VMs between the clusters and repeating these steps until 16 clusters

were produced and graph partitioned. This approach can be seen as a "top-

down" clustering.

Potential improvements for VM clustering

The VM clustering algorithm proved to be rather fast and effective tool for

traffic-aware VM consolidation through repeated experiments throughout

this research. However further improvements might be possible through

fine-tuning and more testing by focusing on the object migration processes

through step-by-step analysis of the actual movements of the nodes along

135

the available states in the group and the eventual migrations across the

groups. This would help gain deeper understanding of the behavior of the

object migration mechanisms in the VM clustering algorithm and could

potentially help further optimize it. It could be useful to test the VM

clustering algorithm’s capabilities with variable-sized sub-partitions.

Further improvements for cluster placement

The cluster placement algorithm turned out to be more resource-

consuming than originally expected due to the constant calculations

needed for each iteration no matter the picked pair of clusters. The sim-

ulated annealing further increased the amount of workload needed to find

the optimal solution to the quadratic assignment problem. The algorithm

can potentially be improved through more detailed analysis, testing and

fine-tuning.

The function chosen for the gradual decrease of the initially set tem-

perature could be substituted with other functions in order to change the

temperature decrease pattern and test to learn how the algorithm responds.

An alternative to the implemented design would be to skip the initial clus-

ter ranking step prior to the simulated annealing. This would potentially

increase the probability of the algorithm choosing more inferior states in

the early stages of the simulated annealing causing the algorithm to spend

more time on searching the optimal solution.

Due to the high number of the teste needed in order to collect

statistically reliable data the initial temperature was lowered in order

to speed up the algorithm. This might have caused the algorithm to

underperform. Experiments with higher temperature would be useful

in order to learn more about the capabilities of the cluster placement

algorithm.

Optimization of traffic matrices

As mentioned in the thesis the generation of the traffic matrices heavily

used during the project was the most time consuming part. However, when

once generated the matrices were stored and later easily read and used

in different experiments. Different approaches could have been used in

136

order to store the VM traffic rates data and dynamically and continuously

update them. For example a database could have been used to serve this

purpose. The initial population of the database can take significantly long

time, however it can be easier maintained and incrementally updated as

the traffic picture changes in the data center.

6.1.5 Thesis contributions

The project demonstrates the high potential of the traffic-aware VM consol-

idation with the use of the adapted version of John Oommen’s algorithm

while the simulated annealing-powered placement algorithm further im-

proves the results. The graph partitioning algorithm impresses with the

speed with which it converges to an impressively optimal solution given

the relatively high number of the nodes it’s given to partition.

Even though some questions still remain and more testing should be

done in order to test the algorithm with different data traces and different

numbers of VMs and VM groups or server racks it is still possible to

conclude that this technique has a high potential and further research

could benefit the cloud computing industry. The findings of this thesis

show that complex problem of consolidating VMs with high mutual traffic

and placing them optimally in any of the three given topologies can

be achieved in a relatively short time. Given the explosive growth of

cloud computing and virtualization inside the data centers the traffic

optimization is becoming a growingly important issue and this research

could hopefully be a small step in finding robust and resource-effective

solutions.

6.2 Suggestions for future work

There is always potential for improvement and this work certainly isn’t

an exception. Several features and functions can be developed to further

improve and expand the capabilities of the VM clustering and cluster

placement algorithms.

137

6.2.1 Constraints

Future work could focus more on expanding the VM clustering algorithm

by developing custom constraints handling in case of cloud tenants whose

VMs can’t freely be moved from one server rack to another due to various

reasons. For example in some cases VMs who communicate immensely

with one another are the VMs who shouldn’t be hosted on same physical

servers due to strict redundancy or security requirements. The algorithm

could be further developed to take such constraints in account.

In the simulated data center architecture models in this project it was

assumed that the link capacity was same for all the links. This is usually

not the case in the real world. The VM clustering and cluster placement

system could be further enhanced by considering various link capacities in

the data center network topologies.

6.2.2 Minimizing migrations

One important future improvement would be to improve the VM cluster-

ing algorithm by developing smart functionality which ensures that the

minimal number of migrations is needed for the final optimization. This

feature is rather important as migrating large numbers of VMs is quite re-

source consuming and could be difficult to plan and execute in a large and

complex cloud environment.

6.2.3 From static to dynamic optimization

The algorithms developed in this work are of "offline" nature due to the

fact that the static traces are read once and the decision to move multi-

ple VMs at once is taken through the VM consolidation process. Future

research can further develop the clustering and placement algorithms by

streamlining them and adapting them to a live environment. The dynamic

version of the improved system would constantly monitor the changes in

the data center traffic and generate suggestions for VM migrations after

reliably detecting VM clusters. The future work could also focus on in-

cremental change where the VMs with most impact on the overall traffic

picture are singled out and taken care of proactively. It could be useful to

138

further develop the intelligent traffic-aware VM consolidation system by

building a graphical user interface (GUI) with informative dashboards giv-

ing a clearer overview of the bigger picture and providing ease of use for

the users of different technical expertise.

139

140

Chapter 7

Conclusion

The aim of this project was to investigate how a graph partitioning algo-

rithm could be used in order to consolidate VMs in a traffic-aware way and

to explore how a quadratic assignment algorithm would help assign the

produced VM clusters to the server racks in order to reduce the total cost

of communication in any data center.

The problem statement was addressed by developing a VM clustering

algorithm based on Oommen’s Learning Automata based Graph Partition-

ing Algorithm (GPLA) and a cluster placement algorithm using simulated

annealing technique. The two algorithms were used to partition 1600 VMs

into 16 clusters and assign the clusters to 16 server racks. Experiments were

conducted on three different data center networking architecture models

simulated for the project using publicly available traffic traces from a live

data center. The two algorithms were tested extensively with two different

data sets in order to strengthen the reliability of the results.

The analysis of the results of over 2500 tests conducted in this project

revealed that the VM clustering algorithm decreased the total cost of com-

munication from 34% to 85% depending on the original input data charac-

teristics. The cluster placement algorithm further decreased the total cost

of communication with the total improvement of 98% to 99%. The analysis

showed that the VM clustering algorithm was fast, resource-effective and

rather effective at consolidating the VMs with high mutual traffic in clus-

ters while the cluster placement algorithm managed to find a significantly

improved placement for the resulting clusters in all the data center network

141

topologies tested in this thesis.

Further testing with more diverse data traces and several improve-

ments have been suggested for the future work, such as support for the

custom constraints for VM locations, minimization of the needed VM mi-

grations and transformation of the system into a more dynamic solution.

142

Part IV

Appendix

143

Chapter 8

Appendix

All the scripts developed and used in this thesis have been uploaded to an

online repository where they can be accessed via the hyperlinks presented

in this section.

8.1 Experiment management scripts

Three different scripts were used to manage the course of the different ex-

periments.

Scripts cluster_and_place_vms.py, intracluster_comm.py and

cost_matrix.py: (http://bit.ly/1EQsflA)

8.2 Algorithm implementations

Script cluster_vms.py: (http://bit.ly/1B5OVOa)

Script place_clusters.py: (http://bit.ly/1FmasY5)

8.3 Intracluster experiment

Script calc_intracluster_comm.py: (http://bit.ly/1JRnkFq)

8.4 Analysis and plotting scripts

Scripts analyze_and_plot.py, plot_intracluster_and_heatmap.py,

145

http://bit.ly/1EQsflA
http://bit.ly/1B5OVOa
http://bit.ly/1FmasY5
http://bit.ly/1JRnkFq

plot_overall_groupbar.py: (http://bit.ly/1bYotj1)

146

http://bit.ly/1bYotj1

Bibliography

[1] Gordon C Armour and Elwood S Buffa. “A heuristic algorithm and

simulation approach to relative location of facilities.” In: Management

Science 9.2 (1963), pp. 294–309.

[2] Hitesh Ballani et al. “Towards predictable datacenter networks.” In:

ACM SIGCOMM Computer Communication Review. Vol. 41. 4. ACM.

2011, pp. 242–253.

[3] Angela Bartels. “Data Center Evolution: 1960 to 2000.” In: Rackspace

2011 (Aug. 2011). URL: http://www.rackspace.com/blog/datacenter-

evolution-1960-to-2000/.

[4] Theophilus Benson, Aditya Akella, and David A Maltz. “Network

traffic characteristics of data centers in the wild.” In: Proceedings of the

10th ACM SIGCOMM conference on Internet measurement. ACM. 2010,

pp. 267–280.

[5] Theophilus Benson et al. “Understanding data center traffic charac-

teristics.” In: ACM SIGCOMM Computer Communication Review 40.1

(2010), pp. 92–99.

[6] Milena Bieniek. “A note on the facility location problem with

stochastic demands.” In: Omega (2015).

[7] Kashif Bilal et al. “A taxonomy and survey on Green Data Center

Networks.” In: Future Generation Computer Systems 36 (2014), pp. 189–

208.

[8] Michael Bullock. “Data Center Definition and Solutions.” In: CIO

2009 (Aug. 2009). URL: http://www.cio.com/article/2425545/data-

center/data-center-definition-and-solutions.html.

[9] Aydin Buluç et al. “Recent advances in graph partitioning.” In:

Preprint (2013).

147

http://www.rackspace.com/blog/datacenter-evolution-1960-to-2000/
http://www.rackspace.com/blog/datacenter-evolution-1960-to-2000/
http://www.cio.com/article/2425545/data-center/data-center-definition-and-solutions.html
http://www.cio.com/article/2425545/data-center/data-center-definition-and-solutions.html

[10] Rainer E Burkard and Franz Rendl. “A thermodynamically moti-

vated simulation procedure for combinatorial optimization prob-

lems.” In: European Journal of Operational Research 17.2 (1984), pp. 169–

174.

[11] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. “Model-

ing and simulation of scalable Cloud computing environments and

the CloudSim toolkit: Challenges and opportunities.” In: High Per-

formance Computing & Simulation, 2009. HPCS’09. International Confer-

ence on. IEEE. 2009, pp. 1–11.

[12] Intel IT Center. Cloud Computing Research for IT Strategic Planning.

http://www.intel .com/content/www/us/en/cloud- computing/next-

generation-cloud-networking-storage-peer-research-report.html?wapkw=

peer+research. [Online; accessed 15-February-2015]. 2012.

[13] Vladimír Černỳ. “Thermodynamical approach to the traveling sales-

man problem: An efficient simulation algorithm.” In: Journal of opti-

mization theory and applications 45.1 (1985), pp. 41–51.

[14] Cisco. Data Center Architecture Overview. http://www.cisco.com/c/en/

us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_

1.html.

[15] Intel Corporation. A Cloud Test Bed for China Railway Enterprise Data

Center. http://www.intel .com/content/dam/doc/case- study/cloud-

computing- xeon- test- bed- china- railway- study.pdf. [Online; accessed

18-March-2015]. 2009.

[16] Tharam Dillon, Chen Wu, and Elizabeth Chang. “Cloud computing:

issues and challenges.” In: Advanced Information Networking and

Applications (AINA), 2010 24th IEEE International Conference on. Ieee.

2010, pp. 27–33.

[17] Chris HQ Ding et al. “A min-max cut algorithm for graph partition-

ing and data clustering.” In: Data Mining, 2001. ICDM 2001, Proceed-

ings IEEE International Conference on. IEEE. 2001, pp. 107–114.

[18] RW Eglese. “Simulated annealing: a tool for operational research.”

In: European journal of operational research 46.3 (1990), pp. 271–281.

[19] Weiwei Fang et al. “VMPlanner: Optimizing virtual machine place-

ment and traffic flow routing to reduce network power costs in cloud

data centers.” In: Computer Networks 57.1 (2013), pp. 179–196.

148

http://www.intel.com/content/www/us/en/cloud-computing/next-generation-cloud-networking-storage-peer-research-report.html?wapkw=peer+research
http://www.intel.com/content/www/us/en/cloud-computing/next-generation-cloud-networking-storage-peer-research-report.html?wapkw=peer+research
http://www.intel.com/content/www/us/en/cloud-computing/next-generation-cloud-networking-storage-peer-research-report.html?wapkw=peer+research
 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
 http://www.intel.com/content/dam/doc/case-study/cloud-computing-xeon-test-bed-china-railway-study.pdf
 http://www.intel.com/content/dam/doc/case-study/cloud-computing-xeon-test-bed-china-railway-study.pdf

[20] Forrester. The Public Cloud Market Is Now In Hypergrowth: Sizing The

Public Cloud Market, 2014 To 2020. https://www.forrester.com/The+

Public + Cloud +Market + Is + Now+ In +Hypergrowth / fulltext/ - /E -

RES113365. [Online; accessed 15-February-2015]. 2014.

[21] Saurabh Kumar Garg and Rajkumar Buyya. “Networkcloudsim:

Modelling parallel applications in cloud simulations.” In: Utility and

Cloud Computing (UCC), 2011 Fourth IEEE International Conference on.

IEEE. 2011, pp. 105–113.

[22] James Glanz. “Power, pollution and the internet.” In: The New York

Times 2012 (Sept. 2012). URL: http : / /www .nytimes . com/2012/09/

23/technology/data- centers - waste - vast - amounts - of - energy- belying-

industry-image.html.

[23] Lukasz Golab et al. “Identifying frequent items in sliding windows

over on-line packet streams.” In: Proceedings of the 3rd ACM SIG-

COMM conference on Internet measurement. ACM. 2003, pp. 173–178.

[24] Albert Greenberg et al. “VL2: a scalable and flexible data center net-

work.” In: ACM SIGCOMM computer communication review. Vol. 39. 4.

ACM. 2009, pp. 51–62.

[25] Greenpeace.org. Make IT Green: Cloud Computing and its Contribution

to Climate Change. http://www.greenpeace.org/usa/Global/usa/report/

2010/3/make - it - green - cloud - computing . pdf. [Online; accessed 28-

January-2015]. 2010.

[26] Natasha Gude et al. “NOX: towards an operating system for

networks.” In: ACM SIGCOMM Computer Communication Review 38.3

(2008), pp. 105–110.

[27] Brad Hedlund. Top of Rack vs End of Row Data Center Designs. http:

//bradhedlund.com/2009/04/05/top- of - rack- vs- end- of - row- data-

center-designs/. [Online; accessed 22-February-2015]. 2009.

[28] Mark Herbster and Manfred K Warmuth. “Tracking the best expert.”

In: Machine Learning 32.2 (1998), pp. 151–178.

[29] Liting Hu et al. “Net-cohort: Detecting and managing vm ensembles

in virtualized data centers.” In: Proceedings of the 9th international

conference on Autonomic computing. ACM. 2012, pp. 3–12.

149

 https://www.forrester.com/The+Public+Cloud+Market+Is+Now+In+Hypergrowth/fulltext/-/E-RES113365
 https://www.forrester.com/The+Public+Cloud+Market+Is+Now+In+Hypergrowth/fulltext/-/E-RES113365
 https://www.forrester.com/The+Public+Cloud+Market+Is+Now+In+Hypergrowth/fulltext/-/E-RES113365
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
 http://www.greenpeace.org/usa/Global/usa/report/2010/3/make-it-green-cloud-computing.pdf
 http://www.greenpeace.org/usa/Global/usa/report/2010/3/make-it-green-cloud-computing.pdf
 http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
 http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
 http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/

[30] IBM. IBM Workload Deployer. http : / /www - 03 . ibm . com/ software /

products / en/workload - deployer. [Online; accessed 29-January-2015].

2015.

[31] IBM. Virtio: An I/O virtualization framework for Linux. http://www.ibm.

com/developerworks/library/l- virtio/. [Online; accessed 21-February-

2015]. 2010.

[32] Tabitha James, Cesar Rego, and Fred Glover. “A cooperative parallel

tabu search algorithm for the quadratic assignment problem.” In:

European Journal of Operational Research 195.3 (2009), pp. 810–826.

[33] David S Johnson et al. “Optimization by simulated annealing: An

experimental evaluation; part I, graph partitioning.” In: Operations

research 37.6 (1989), pp. 865–892.

[34] Dharmesh Kakadia, Nandish Kopri, and Vasudeva Varma. “Network-

aware virtual machine consolidation for large data centers.” In: Pro-

ceedings of the Third International Workshop on Network-Aware Data

Management. ACM. 2013, p. 6.

[35] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure

for partitioning graphs.” In: Bell system technical journal 49.2 (1970),

pp. 291–307.

[36] Ali Khajeh-Hosseini, David Greenwood, and Ian Sommerville.

“Cloud migration: A case study of migrating an enterprise it system

to iaas.” In: Cloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on. IEEE. 2010, pp. 450–457.

[37] S Kirkpatrick, CD Gelatt Jr, and MP Vecchi. “Optimization by

simulated annealing.” In: Neurocomputing: foundations of research. MIT

Press. 1988, pp. 551–567.

[38] Jonathan Koomey. “Growth in data center electricity use 2005 to

2010.” In: A report by Analytical Press, completed at the request of The

New York Times (2011).

[39] Tjalling C Koopmans and Martin Beckmann. “Assignment problems

and the location of economic activities.” In: Econometrica: journal of

the Econometric Society (1957), pp. 53–76.

[40] KPMG. 2014 Cloud Survey Report: Elevating Business in the Cloud. http:

//www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/2014.

[Online; accessed 15-February-2015]. 2014.

150

 http://www-03.ibm.com/software/products/en/workload-deployer
 http://www-03.ibm.com/software/products/en/workload-deployer
 http://www.ibm.com/developerworks/library/l-virtio/
 http://www.ibm.com/developerworks/library/l-virtio/
 http://www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/2014
 http://www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/2014

[41] Katrina LaCurts et al. “Cicada: Introducing predictive guarantees for

cloud networks.” In: Proceedings of the USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud). 2014.

[42] Jeongkeun Lee et al. “Application-driven bandwidth guarantees in

datacenters.” In: Proceedings of the 2014 ACM conference on SIGCOMM.

ACM. 2014, pp. 467–478.

[43] David Marshall, Wade A Reynolds, and Dave McCrory. Advanced

server virtualization: VMware and Microsoft platforms in the virtual data

center. CRC Press, 2006.

[44] Sean Marston et al. “Cloud computing—The business perspective.”

In: Decision Support Systems 51.1 (2011), pp. 176–189.

[45] Shahrzad Motamedi Mehr et al. “A new recommendation algorithm

using distributed learning automata and graph partitioning.” In:

Hybrid Intelligent Systems (HIS), 2011 11th International Conference on.

IEEE. 2011, pp. 351–357.

[46] Shahrzad Motamedi Mehr et al. “Determining web pages similarity

using distributed learning automata and graph partitioning.” In:

Artificial Intelligence and Signal Processing (AISP), 2011 International

Symposium on. IEEE. 2011, pp. 129–134.

[47] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. “Improving the

scalability of data center networks with traffic-aware virtual machine

placement.” In: INFOCOM, 2010 Proceedings IEEE. IEEE. 2010, pp. 1–

9.

[48] Microsoft. Microsoft Assessment and Planning (MAP) Toolkit for Hyper-

V. https://technet.microsoft.com/en-us/solutionaccelerators/dd537570.

aspx. [Online; accessed 29-January-2015]. 2015.

[49] Kumpati S Narendra and MLAA Thathachar. “Learning automata-

a survey.” In: Systems, Man and Cybernetics, IEEE Transactions on 4

(1974), pp. 323–334.

[50] Radhika Niranjan Mysore et al. “Portland: a scalable fault-tolerant

layer 2 data center network fabric.” In: ACM SIGCOMM Computer

Communication Review. Vol. 39. 4. ACM. 2009, pp. 39–50.

[51] B. John Oommen, De St Croix, et al. “Graph partitioning using

learning automata.” In: Computers, IEEE Transactions on 45.2 (1996),

pp. 195–208.

151

 https://technet.microsoft.com/en-us/solutionaccelerators/dd537570.aspx
 https://technet.microsoft.com/en-us/solutionaccelerators/dd537570.aspx

[52] B. John Oommen and Daniel C. Y. Ma. “Deterministic learning au-

tomata solutions to the equipartitioning problem.” In: IEEE Transac-

tions on Computers 37.1 (1988), pp. 2–13.

[53] Susan Hesse Owen and Mark S Daskin. “Strategic facility location:

A review.” In: European Journal of Operational Research 111.3 (1998),

pp. 423–447.

[54] Christos H Papadimitriou. Computational complexity. John Wiley and

Sons Ltd., 2003.

[55] Jing Tai Piao and Jun Yan. “A network-aware virtual machine

placement and migration approach in cloud computing.” In: Grid

and Cooperative Computing (GCC), 2010 9th International Conference on.

IEEE. 2010, pp. 87–92.

[56] Cisco Press. “Cisco Data Center Infrastructure 2.5 Design Guide.” In:

(2007).

[57] AS Ramkumar, SG Ponnambalam, and N Jawahar. “A new iterated

fast local search heuristic for solving QAP formulation in facility

layout design.” In: Robotics and Computer-Integrated Manufacturing

25.3 (2009), pp. 620–629.

[58] Press Release. “Gartner Predicts Infrastructure Services Will Accel-

erate Cloud Computing Growth.” In: Forbes 2013 (Oct. 2013). URL:

http://www.gartner.com/newsroom/id/2613015.

[59] Erik Rolland and Hasan Pirkul. Heuristic solution procedures for the

graph partitioning problem. College of Business, Ohio State University,

1991.

[60] Satu Elisa Schaeffer. “Graph clustering.” In: Computer Science Review

1.1 (2007), pp. 27–64.

[61] Jason Sonnek et al. “Starling: Minimizing communication overhead

in virtualized computing platforms using decentralized affinity-

aware migration.” In: Parallel Processing (ICPP), 2010 39th Interna-

tional Conference on. IEEE. 2010, pp. 228–237.

[62] Tsuyoshi Tanaka, Toshiaki Tarui, and Ken Naono. “Investigating suit-

ability for server virtualization using business application bench-

marks.” In: Proceedings of the 3rd international workshop on Virtualiza-

tion technologies in distributed computing. ACM. 2009, pp. 43–50.

152

http://www.gartner.com/newsroom/id/2613015

[63] VMWare. Capacity Planner. http : / / www . vmware . com / products /

capacity-planner/. [Online; accessed 29-January-2015]. 2015.

[64] Eric W. from MathWorld Weisstein. NP-Problem. http ://mathworld .

wolfram . com/NP - Problem . html. [Online; accessed 12-March-2015].

2010.

[65] Habib Youssef, Sadiq M Sait, and Hakim Adiche. “Evolutionary

algorithms, simulated annealing and tabu search: a comparative

study.” In: Engineering Applications of Artificial Intelligence 14.2 (2001),

pp. 167–181.

153

 http://www.vmware.com/products/capacity-planner/
 http://www.vmware.com/products/capacity-planner/
http://mathworld.wolfram.com/NP-Problem.html
http://mathworld.wolfram.com/NP-Problem.html

	I Introduction
	Introduction
	Problem statement
	Thesis outline

	Background
	Cloud computing
	Cloud computing service models
	Cloud platforms

	Virtualization
	Types of virtualization
	Hypervisors

	Data centers
	Data center architecture
	Top of Rack (ToR) and End of Rack (EoR) designs
	Data center network architectures
	Recently proposed DCN architectures
	Cost matrix

	Graph partitioning
	GPP problem complexity
	Graph partitioning algorithms
	Graph partitioning using learning automata

	Facility location problem
	Quadratic assignment problem
	Simulated annealing

	Related research
	Network-aware Virtual Machine Consolidation for Large Data Centers
	A Network-aware Virtual Machine Placement and Migration Approach in Cloud Computing
	Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement
	Starling: Minimizing Communication Overhead in Virtualized Computing Platforms Using Decentralized Affinity-Aware Migration
	Net-cohort: Detecting and managing vm ensembles in virtualized data centers
	Cicada: Introducing Predictive Guarantees for Cloud Networks
	Application-Driven Bandwidth Guarantees in Datacenters
	VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers
	Tools for implementation

	II The project
	Approach
	Objectives
	Experiment design
	VM communication data
	VM traffic matrix
	Data center models
	Cost matrices

	Proposed VM clustering algorithm
	Assigning VM clusters to server racks
	Proposed cluster placement algorithm
	Experiment set A
	Experiment a1: Tree DCN
	Experiment a2: Fat-tree DCN
	Experiment a3: VL2 DCN
	Intracluster traffic experiment: set A

	Experiment set B
	Measurement and Evaluation
	Testbed for the experiments
	Plotting and analysis

	Results
	Implementation of the algorithms
	VM clustering algorithm

	Implementation of the cluster placement algorithm
	Developed Python scripts
	Script: parse_data.py
	Script: cluster_vms.py
	Script: place_clusters.py
	Script: generate_random_placements.py
	Script: cluster_and_calculate_tot_cost.py
	Script: intracluster_comm.py
	Script: analyze_and_plot.py

	Experiment set A
	Experiment a1: Tree results
	Experiment a2: Fat-tree results
	Experiment a3: VL2 results
	Intra and intercluster traffic experiment A

	Experiment set B
	Experiment b1: Tree results
	Experiment b2: Fat-tree results
	Experiment b3: VL2 results
	Intra and intercluster traffic experiment B

	Analysis
	VM clustering and cluster placement: set A
	Experiment a1: Tree analysis
	Experiment a2: Fat-tree analysis
	Experiment a3: VL2 analysis

	Intracluster and intercluster communication: set A
	Overall comparison: set A
	Traffic matrix characteristics: set A

	Experiment set B: analysis

	III Conclusion
	Discussion and future work
	Implementation of the algorithms
	Challenges during the implementation
	Obstacles encountered
	Changes in the initial approach
	Alternative approaches
	Thesis contributions

	Suggestions for future work
	Constraints
	Minimizing migrations
	From static to dynamic optimization

	Conclusion

	IV Appendix
	Appendix
	Experiment management scripts
	Algorithm implementations
	Intracluster experiment
	Analysis and plotting scripts

