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ON THE STRUCTURE AND TENSOR
PRODUCTS OF JC-ALGEBRAS

Harald Hanche-Olsen

Norm closed (or weakly closed) Jordan algebras of self-adjoint
operators on a Hilbert space were initially studied by Topping,
Effros, and Stermer (157, [4], [12]), [13]. These works are very
"spatial', in fhat the algebras are considered in one given re-
presentation. The introduction of their abstract counterparts,
the JB- and JBW-algebras, has led to an increased interest in
this subject. The author hopes this paper will support the view
that a more "space-free' approach is fruitful, even if only the
"concrete' algebras are under study. In accordance with this
view, a '"JC-algebra" in this paper will mean a normed Jordan
algebra over the reals, which is isometrically isomorphic to a norm
closed Jordan algebra of self-adjoint operators.

Some of the results in this paper are closely related to, or
rewordings of, results in the above-mentioned papers. However,

I feel that the present approach is sufficiently different to be
of interest in itself. In particular, many of the technical
difficulties associated with earlier approaches are avoided.

In § 1 a spin algebra is defined as a global variant of a
spin factor, and épin algebras are shown to have no dense represen-
tation of type higher than 12, The spin algebras complement
the "universally reversible" algebras, introduced in § 2.

(Theorem 2.5).

Lemma 2.1 has been proved in [9], but I believe my approch
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is even more direct. The universally reversible JC-algebras are
shown to be those not having spin factor representations of too
high dimensions. The study of those is reduced to the study of
antiautomorphisms of order two on C*-algebras.

§ 3 contains an example of a simple JC-algebra that has
dense representations of both real, complex, and quaternionic
types. This example is closely related to the fact, proved
independently by Stermer [14] and Giordano 5], that there is,
up to conjugation with an automorphism, only one antiautomorphism
of order two on the hyperfinite IT,-factor.

The universal C*—algebra was first introduced as a technical
tool in l2]. It is further studied in § 4. We get an exact
functor C° from the category of JB-algebras to that of C -
algebras. It is shown how to compute it for universally revers-
ible JC-algebras, and, as an application, we generalize Stermer's
result (117 on the decomposition of a Jordan homomorphism of
C*—algebras as a sum of a homomorphism and an anti-homomorphism.

§ 5 consists of an application of the earlier material to
the problem of defining a tensor product of JC-algebras., A
universal candidate is studied, and it is applied to show that
a more naive approach would fail. The universal tensor product
is computed in a few cases.

I got the idea for the example in § 3 from a lecture in
Marseille by Thierry Giordano on his uniqueness result for anti-
automorphisms of the II,l factor. Bruno Iochum should also be
thanked for his invitation and generous hospitality during my
visit to Marseille. Most of the work for the present paper was

conducted in Toronto during the year 1980/81. My warmest thanks
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go to Man-Duen Choi for inviting me, and for his generous finan-
cial support. It is a pleasure to thank Terry Gardner and his
wife Connie for their warm hospitality during this year. My
thanks also go to Fred Shultz, whom I visited for a week 1in May,
1981. It was through discussions with him that I finally got

the results of § 5 together.

Let us now turn to notation and preliminaries. Let A Dbe

a JB-algebra. A dense representation of A is a homomorphism

of A onto a weakly dense subalgebra of a type I JBW~factor.

The representation is said to be of real, complex, or. gquaternionic

type if the factor is isomorphic to the algebra of self-adjoint
operators on real, complex, or quaternionic Hilbert space.

Up to equivalence, all dense representations arise in the fol-
lowing way: Consider a pure state p of A, Let c(p) Dbe its
central support in A**, AO = c(p)A™", and @, :A~*Ap is the
map a-c(p)a. Then Ap is a type I factor, P, is a dense
representation, and m: maps the normal state space of Ap iso-~
morphically onto the minimal split face Fo generated by p».

See [2; § 2]. A concrete representation of A is a homomorphism

into the Jordan algebra :ﬁ(H)Sa,

If a€A, we define Ta(x) = a°x, Ua(x) = {exa}. Then
U, = 2T§-—Ta2, and U_(x) = axa in fﬁ(H)Sa, Two elements a and b
are said to operator commute if T, and T, commute.

If B is a subset of a C*—algebra, B is the C"-algebra
generated by B. If & is an antiautomorphism of order 2 on
a C*—algebra al, cﬁga is the JC-algebra consisting of all

elements a of ¥/ such that a = a* = §(a),



1. Bpin algebras.

A spin factor is Vn = ﬂiﬂ’ath where Hn is a real Hilbert

space of dimension n>2. Vn is made into a JB-algebra by

defining the product in such a way that 1 is the unit and

Ben = (glm)1 if ¢&,meH , and defining the norm [A1® &l = [A] +]&].
Spin factors are simple JC-algebras, and reflexive as Banach
spaces [16].

A spin algebra is a JC-algebra which has a faithful family

of representations onto spin factores.

Proposition 1.1. A spin algebra has no dense representations

other than onto spin factors and 1R .

This is an immediate consequence of Theorem 1.2 below.
The primitive ideal space PrimA is defined as for ¢*-algebras,
only with dense representations replacing the irreducible ones
[7]. For a dense representation ¢: A-1M, we say ¢ has type Ik
if M is a type I, factor, and let Primn(A) be the set of

kernels of typs I, representations, where k<n.

k
By Theorem 1.2, there is an ideal J of A such that a

dense representation ¢ of A 1is onto IR or a spin factor iff

kero>dd . If A is a spin algebra, J must be O, and the con-

clusion of Proposition 1.1 follows.

Theorem 1.2. If A is a unital JB-algebra and n < OO,

PrimnA is closed in PrimA.

Proof. For any pure state p, consider the dense representa-

tion 0, A—*Ap, Clearly, Ap is of type Iy (k<n) 1iff for

each béEAp, the powers ’l,b,”o,bn are linearly dependent.
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But wz maps the normal state space of Ap isomorphically on-
to Fp, and the pure normal states of Ap separate points.
Therefore, ker Pq € PrlmnA iff for each a€A and PoreeesPpy € BeFD

n

. is singular.
i,Jj=o0 S

the (n+1) by (n+1) matrix ((ai,pj))

Choose p€3_S(A) with ker 9, £Prim A, and pick a €4,
Pore==sPy € aer such that ((ai,pj>) is non-singular. Choose
neighbourhoods (in the relative weak -topology) Vj of Py in
aeK such that whenever O,j €EV., ((ai,oj)) is non-singular.

J
Let W be the intersection of "the sets ({kerg,:o0 EVJ.} for
J = 040000, Then W is a neighbourhood of ker ®, in PrimA
[7; Thm. 4.1].

Assume that o: A-M is a dense representation, and
kerypeWn PrimnAo Then there is cj GVJ. such that ker ¢ =%ker Py -
Since M 1is a spin factor or finite dimensional, ¢ is onto M.
Therefore, @Gj is equivalent to o for j = 0,c..,n. In parti-
cular, o Eacho, Since the matrix ((ai,oj)) is non-singular,
then kercprﬁimnA, a contradiction. ]

2. Reversibility.

Recall from [12] that a JC-algebra A contained in B(H),,

is called reversible if a,,...,a €A =>a,...a +2a ...a,€h. We

n

call A wuniversally reversible if mw(A) is reversible for each

concrete representation m: A"CB(H)Sa,

Lemma 2.1 [9] Of all spin factors, only V2,_y5 and V5

admit reversible representations, and only V2 and V5 are

universally reversible.
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Proof. That V5 is universally reversible is proved in
[2; Lemma 4.1]. The same proof holds for V, as well,

Assume that V_c B(H)Sa is reversible, n>4, Choose an
orthonormal set sq,sg,sa,sq_éﬂif Equivalently, Sj is a symmetry
in Vn’ and 85°84 = O if i # j. Let Sg = 845,838, =
%(81825584—k84858281)0 Then s5<EVn is a symmetry, anticommuting

with So Sqse0es8g is an orthonormal set in H_,

S198515%,5)
and this is impossible if =n = 4., If n>6, choose a new unit
vector Sg in Hn’ orthogonal to SqyeeesSge Then Sg is a
symmetry which both anticommutes and commutes with S5==81828384;
again, this is a contradiction.

V525M2CH)Sa has a reversible representation m in I,(€) .
Then, for some orthonormal basis SqyeeesSg of H5,
ﬂ(Sq)ﬂ(S2>ﬂ(SB>ﬂ(S4) = 11(55)° Define a representation m' by

! . = . i <4 <4 ! - - . @ 1!
m (sl) n(sl) if 1<i<4 and m (85) n(sE) Then n®n (V5)

is not reversible. [j

Theorem 2.2, A JC-algebra is universally reversible iff it

has no spin factor representations other than onto V2 and V5°

Proof. The "only if" part is immediate from Lemma 2.1. The
proof of [2; Thm. 4.61 proves the "if" part, with the minor modi-
fication that in [2; Lemma 4.5] SOK splits into two parts, one

]

a "global V2" and one a "global V5"°

The study of universally reversible algebras can be reduced

to the study of *-antiautomorphisms of C*-algebras:

Proposition 2.3. If A is a universally reversible JC-algebra

I

then there is a C*—algebra /i and a *-antiautomorphism & of /M

of order two such that A is isomorphic to f{a€fl:a=3a*=2%(a)}.
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Proof. If Ac Q(H) choose a transposition on 53 (H)

sa’
corresponding to some orthonormal basis, and identify A with
{a@at :ach}l c B9 B(H). Let (7l be the C -algebra gene-
rated by A, with the *-antiautomorphism & given by $(a®b) =
bt@ato

If 2z € (" then 2z belongs to the closed real linear span of
elements of the form z' = XqeaoX) +1740..5, 5 where Xi,yiéEAo
If z = 2z* = 38(z) then =z = %(z+—z*4—§(z)+—§(z)*) can be approx-
imated Dby linear combinations of elements of the form
&(Z'*'Z'*4-@(Z')-+®(Z')*) = %(Xq,oaxhrkxhoo,Xﬂ) €A. Therefore

z €A, and the non-trivial part of the proof is finished. []

Finally, the study of general JC-algebras can be reduced
to the study of spin algebras, universally reversible algebras,
and certain extensions.

Lemma 2.4, Let I be a closed ideal in a JB-algebra A,

and M a JBW-algebra. Any homomorphism I-~M extends to a

homomorphism A-~M.

Proof. Identify I"* with the weak closure in A** of I.
Then I** =eA™™, for a central projection e in A" [3, Thm. 3.37.
The homomorphism I-M extends to a normal homomorphism I°*-M

[2; p. 270]. Compose with the map a —> ae of A into °*. []

Theorem 2.5. Any JC-algebra A has an ideal I which is

universally reversible and such that A/I is a spin algebra.

Proof. Let I ©be the intersection of all kernels of spin
factor representations. Then A/I is a spin algebra. By

Lemma 2.4 and Theorem 2.2, I is universally reversible. L
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3, A simple JC-algebra.

One might hope that the topology of PrimA will separate,
say, the real reprecsentations from the complex ones. This section
contains an example to effectively crush any such hope: There
exists a simple JC-algebra possessing representations of three
different types.

First, however, we prove some auxiliary results. The symbol

| below signifies positive annihilator in A*, resp. A:

Lemma 5.1. Let A be a JB-algebra and B a closed quadratic

ideal in A, Then Bt - B" 1

Proof. The weak closure B of B in A"™ 1is a quadratic
ideal, and B = BNA., By rs B = {pA*¥*p} for some projec-
tion ped*™™. If beA’, bEgB then {(1-p)b(1-p)} £ 0. If
o €A* does not annihilate this element, then {(1-p)p(1-p)} €B"
but does not annihilate b. Hence bﬁ!B{L, and the proof is

complete. ]

The next two results (for Jordan ideals) are contained in

L4

y but the proofs below are shorter and more direct,

Proposition %.2. If A is a JC-algebra, AC GS(H)Sa,

and B is a closed gquadratic ideal of A, then B = AN[BI1,

Proof. If a€A™ but afB there is a positive linear
functional annihilating B but not a. (Lemma 3.1). Extend
to a positive linear functional on &(H). By the Cauchy-

Schwarz inequality, the extension annihilates [B], so afg[B].

U
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Proposition %.%. Let 7 be a C"‘-alge“braL Ag »..’..-‘If‘sa_g

JC-algebra generating (7 and J an ideal of A. Then [J]

is an ideal of (] .

Proof. We prove AJc[J]l. Indeed, J 1is generated by its
squares, so it is enough to prove ab2€ [J] when a€A, bed,
But ab> = (a°b)b -b(asb) +a- b2 proves that. Now A[J1CSTJ]
follows, and since A generates X, (X[J1<S[J]. Similarly,

(3] ¢t <137, UJ

Theorem 3.4. There exists a simple JC-algebra which admits

both real, complex, and quaternionic dense representations.

Proof. Let (L= ® M,(C), the CAR algebra. Let t5:M,(C) = M,(C)
n="1
be transposition and u,:

N

2\,Y 6,) -y ¢

M2(C) "M2(C) the "quaternionic flip":

N

Now consider the two antiautomorphisms t = t2®t2® coe and
u=uy,®¥t,®t,8.,, on CL. We claim that t,u are conjugate,
i.e., there is an automorphism o of OL such that u = o ta.
Indeed, if ~ denotes conjugacy, we have u2®u2"’t2®t2 on

Mq(C), S0

c
|

= u2® (t2®t2) d (t2®t2) ..,
~ U.2® (u2®ll2) @ (U.2®U_2) @ © 0o
(u2®112)® (u2®112)®

~ (t2®t2)®(t2®t2)®oac = to

It follows that there is an automorphism of (J| carrying

Aga . Below we shall construct a real and a complex

onto C'llsla
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representaticn of Gl-ga’ and a quaternionic representation of (Dllslao

We start with a real representation of GLga, Let p, De
the pure state on MQ(C) given by (a,pg) = a,4. Then

p=0p9p,®... is a pure state on (7. Let (e, ,e5) be the

2 < 2 .
and denote by ®,(C7,e,) = H the Hilbert

n
space direct limit of the sequence Hn = kg,'Cz where Hn is

natural basis of C

identified with the subspace Hn®e,] of H Let J, be co-

n+1°
ordinatewise conjugation in 025 Then J = J2®J2® eeo 18 well

defined on H, 3° - 1, the GNS-representation m of 1 can be
thought of as acting in H (with representing wvector e,l®e,|®.,”)

and
ﬁp(t(a>) = Jﬂp(a)*J (a2 € ),

It follows that the restriction of m  to (Y v, is a dense
representation in the JBW-factor {a€ ©(H) :a=a*=JaJ}, which

can be identified with ®(K) where K is the real Hilbert

sa’
space {E€H:JE=E}.

2

Next, consider the mapping 32: C?‘—'C defined by

i, (M = (D,

and note that Jj = j2®J2®J2® <o 18 a conjugate linear unitary

(an "antiunitary") on H, with j2 = -1. We find, for a€ ¢,

(@) = -y, ()75,

Therefore, the restriction of np to Olela is a dense representa-
tion in the JW-factor {a€ B(H) :a=a* and aj=7ja}. H can be
given a structure of quaternionic Hilbert space in which j is
multiplication with the unit quaternion usually called Jj, so the
above JW-factor consists of all quaternionic linear mappings.

(see also the proof of [2; Thm. 3.1]).
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Finally, choose pure states 9, # T, on M2(C) such that

= o = by = ) &
Oy = Tootse Let 0 =0,%0,%,.., 7_72872 soo o Then 0,7
are inequivalent pure states on (7 , and ws get an antihomomor-

phism 8 of &(H ) onto @(HT) such that

n,rt(a) = Bnc(a) (a€Cl).

Here m, and m. are the GNS-representations in HO,H,r corre-

sponding to 0o and T. Let m = TTO_@TTTe Since T and m.

are inequivalent and irreducible, m(01) is dense in @(HO)':’B 63(HT)°

Define the antiautomorphism & on GS(HO)@(_;@(HT) by &(a®b) =

B—/l(b‘)@s(a)° Then §2 = 1, and the restriction of m to Ciga

is a dense representation in the JW-factor

{ce® () ® i (HT) : 8(c)=c=c*}, which is isomorphic with C;’:\(Hg)o
We have proved that Olga has representations of all three

types. That it is simple is an easy consequence of the proposi-

tions 3.2 and 3%.3. D

4, The universal C*—algebrao

Consider a JB-algebra A. To A we associate a C*—algebra
o (4), which is the unique C*—algebra with the following proper-
ties: There is a homomorphism e A-*C*(A)Sa such that ¢A(A)
generates C*(A) as a C*-algebrao Whenever &£ is a C*-algebra

and T A-*f::s is a homomorphism, m 1ifts tc a *-homomorphism

a
m: C*(A)~ & such that m = ?T°¢A°

¢t —s®)
vaf !
A sa

>

™
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The existence of C*(A) is proved in [2; Thm. 5.1]. A& need
not have a unit (drop all references to the unit in the proof),
but if it does, then y,(1) is a unit of C(A). It may be
that C*(4) = 0, for example if A = M58° In general, the kernel
of {, 1is the exceptional ideal of M.

If A,B are dJB-algebras and ¢: A~B 1is a homomorphism,

we get a *-homomorphism C' () = (¢B°¢)A :C*(A)-*C*(B):

*

In this way, C becomes a functor from the category of JB-

algebras to the category of C*—algebras°

Theorem 4.1. The functor ¢* is exact.

Proof. This means that if J is a closed Jordan ideal in
a JB-algebra A, then the top row in the commutative diagram

below is exact:

0 —> ¢*(5) LD o o* ) -ﬁf_ﬁﬂl—> ¢ (A/T) —> 0
A A

A
Vsl ‘I’Ai ‘”A/J!

O —> J ——> A > A —_—
3 3 /J 0

Exactness at C*(A/J) is trivial, since wA(A) generates A

and C (A/J) 1is generated by wA/J(A/J) = mA/J(Q(A)) = C*(Q)WA(A)o

Next, C*(q)C*(j) = C*(qj) = 0, so half the exactness at
C*(A) follows. Let qnac*(j)(c*(J)). Then ‘;—is generated -

-~
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by ,(J), which is an ideal in y,(A). By Proposition 3.3, 3/ is
an ideal in C*(A). But the composition A-*C*(A)'*C*(A)/qf arni-
hilates J, so it factors through C (A/J).

_A ooty > C*(A)/(jl/
vi

\ i C*(q/))//

¢ (a/3)

A

Then, in this diagram, the circumference commutes, and so does
the triangle on the left, by definition. Since wA(A) generates
C*(A), the triangle on thérright commutes. Therefore, the kernel
of C*(q) is contained in the image 5} of C*(j), and exactness
at C*(A) is proved.

To prove exactness at C*(J), let m: ()~ G @) ve a
faithful representation. Then 5 is a homomorphism of dJ
into 63(H)sa° By Lemma 2.4, this extends to a homomorphism of A
into 6$(H)Sa, Factor the extension through C*(A):

ot 3y LG o o*a)

A
0! !
J > Q@)

s
*
But then the composition C (J)-*C*(A)-*GS(H) must be 1, which

is injective, so C (3j) is injective. U

By 2; Cor. 5.2] C*(A) admits a unique antiautomorphism &
of order 2, which is the identity on ¢(A). If A dis a JC-

algebra then ¢, 1is injective; then we will identify A with y(4).
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Lemma 4.2. A JC-algebra A is universally reversible iff

it is reversible in C (&) or, equivalently, iff A = C*(A)ga,

Proof: The first two conditions are trivially equivalent.

So are the lasttwo, see the proof of Proposition 2.3. [

Lemma 4.%, Let A be a universally reversible JC-algebra.

If 1 is a &-invariant ideal of C (A), then $ is generated
- J

by %OA°

Proof. Let (eu) be a self-adjoint, bounded approximate unit
for ‘3.° Then (%(e“—ké(eu))) is another such, so we may as well
assume that e, = @(eu), Then eH_EAW S0 ;}ﬁ A generates ¥

~

(as an ideal, and hence as a C*—algebra by Proposition 3.3). Ej

We now characterize the universal C*-algebra of a universally

reversible JC-algebra.

Theorem 4.4, Assume A is a universally reversible JC-

algebra, that $ is a C -algebra, and that 6:4-% __ is an

injective homomorphism such that 6(A) generates B . If B

admits an antiautomorphism ¢ such that of = 6, then B8 is a

*-is morphism of C*(A) onto % .

~

Proof. Since 6(A) generates % , 0 is onto. The compo-

sition m@ ¢ is a *-homomorphism of C*(A) to $4 extending 6.

Therefore, by the uniqueness of such extensions, @é ¢ =8, or

~

©8 = 8%. So the kernel of 8 is a &-invariant ideal, whose

~

intersection with A is O. By Lemma 4.3, 8 is injective. [j

If (7 is a C*—algebra, denote by [CYJXJ the commutator

ideal of (%, and by (¥° +the opposite C -algebra. There is a
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*.anti-isomorphism a —> a® of Ol onto OL°.

Corollary 4.5. If Gl is a C*—algebra then C*(Ufsa) can

be identified with

D= (aepvede OL°:abe (a,um0s,

with Ol , identified with {a® a% i ac SIS

Proof. Clearly @ is a norm closed *-subspace of (T & (1°,
If a®b° and c¢®d° are elements of SS then (a@bo)(c®do) =
ac® (db)°, and ac-db = a(c-d) + (ad-da) + d(a-b) € 17,M], so BB
is a C*-algebra°

Let SSO be the C*—subalgebra of R generated by
{(s@a°) :ae( ). If a,p€(] then (ama®)(bab®)- (ba)e(ba)® =
(ab-ba) @0, so {xEOZ:x@OEﬁb} contains all commutators.
Since this set is an ideal of Ol , it contains [{I,00], and so
[G,00]@0 < B . It follows that R c B , s0 2 =8,

In % we have the antiautomorphism a®b°-b@®a°, leaving

{a@ao :a€A} pointwise fixed. Theorem 4.4 completes the proof.

O

Corollary 4.6. (cf. 11]) If OU B are ¢*-algebras,

and (Ol has no one-dimensional representations, then any Jordan

*_homomorphism of Ol into $ is a sum of a *-homomorphism and

a *-—anti-homomorphism.

Proof. In this case [0,00] =Ct , and so c*(ozsa) = Aa o,

If (U has one-dimensional representations, the conclusion
of Corollary 4.6 may be false. Indeed, let
O = {fEC([-’l,’l],M2(C)) : £(0) €C1}, and define ¢ : O~ CT by
ef(x) = f(x) if x>0, of(x) = f(x)t if x<0. Then o is
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not a sum of a *-homomorphism and a *-anti-homomorphism.

We also remark that the conclusion of Corollary 4.6 holds
if Ol is a von Neumann algebra, which may have one-dimensional
representations. For then Ol is a direct sum of an abelian
part, which offers no problems, and a non-abelian paft, which
has no one-dimensional representations. (Not even non-normal
ones!).

We can use Theorem 4.4 to compute the universal C*-algebras
of some particular JC-algebras. For example, C*(Mﬁ(]R)S) =1 (C),
and C*(MnGH)Sa) = M2n(C) if n>3. The analoguous results hold
equally well in infinite dimension, whether we work with all
bounded or only all compact operators.

It should also be noted here that C*(Vn) may be computed
explicitly for 2<n<, and we get C*(Vgn) = M2n(C), C*(V2n+1) =
Mgn(C)GDMgn(C)° See 8; p. 2767]. Note that c” preserves direct
limits. It then follows that the universal C*-algebra of the
infinite dimensional separable spin factor is the infinite tensor

product ®Nb(C), a well-known fact which motivates the name

"CAR-algebra.

5. The universal tensor product of JC-algebras.

What should be expected of a "good" tensor product of two
JC-algebras A and B? Assuming that A and B have units
(we shall keep this assumption throughout), the tensor product C
should contain copies of A and of B such that any element a

of A and any element b of B operator commute.
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We would like to identify C with the closure of A®B in
some norm. But we shall see below that this is rarely possible.

We define the universal tensorproduct of JC-algebras A, B

to be the JC-subalgebra of C*(A) ® C*(B) generated by the sub-
max

space A®B. We denote this JC-algebra A®B. Before proceed-

ing, we need a lemma on operator commutativity.

Lemma 5.1. Let A be a JC-subalgebra of a C*—alp;ebra ai.

Two elements in A operator communte in A iff they commute in a’,

Proof. The "if" part is evident., To prove the converse,
assume a and b operator commute in A. We may assume A
generates (){ in what follows. For any c €A we have
4fr,,o 1(e) = [(a,b],c]. Hence [a,b] commutes with every c €A,
and therefore [a,b] belongs to the center of Ol . For any irre-
ducible representation w of (0, [m(a),m(b)1 must be a scalar
multiple of the identity. It is well known that then [m(a),m(b)]=0,
so [a,b] = 0. U

A®B is characterized by a universal property, and its

universal C*—algebra is identified in the next result.

Proposition 5.2. If A,B, and C are unital JC-algebrasg,

and o: A-C and (: B-C are unital homomorphisms with ®(a)

operator commuting with ((b) for all a €A, b€B, there is a

unique homomorphism x of A§B into C such that x(a®b) =

p(a)-y(b). Moreover, the universal C' -algebra of A®B is

c'(h) ® ¢*(B).
max

Proof. We may assume Cg_fj sa? for a C*-algebra é °
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~

Consider E\p: C*(A)-' 6 and &: C*(A)-'& . By Lemma 5.1, o
and {|\; have commuting ranges, so there exists a *-homomorphism;(
of C'(a) ® ¢"(B) into & such that x(a8b) = g(a) ¢(b). Let x

max . - N
be the restriction of ¥ to A®B., Clearly, x(A®B)cC, and

x(a®b) =p(a)-u(b).

To prove the final statement, let ¥: A@B -'{f q D€ a homo-
morphism, for any C*—algebra E . Tet ola) = x(@®), ¥(b) =x(18b).
Repeat the above discussions to get an extension of ¥ to a
*_homomorphism x on C (&) ® C*(B). Clearly, C (A) ® G (B) is

max max

generated by A®B, and therefore by A®B, Then it must equal
c*(a8B). UJ

The following result, when combined with Theorem 4.4, enables
one to compute A®B in many cases. Indeed, if ¢, 1is the anti-
automorphism of C*(A) leaving A pointwise fixed, §A® &y is
an antiautomorphism of ¢ (4) ® C*(B) 1leaving A®B pointwise
fixed. Therefore, if A®B ?:Xuniversally reversible, it is exact-

ly the self-adjoint fixed points of @A'& ¥5, the tensor product of

the canonical antiautomorphisms associated with A and B.

Proposition 5,.3. A®B is universally reversible unless one

of A,B has a scalar representation and the other has a represen-

tation onto a spin factor Vn, where nz24.

Proof. Assume yx: A®B - Vn is a representation onto V.

Then x(A®1) and x(1®B) are operator commuting subalgebras
of Vn’ whose union generates Vn“ Then one subalgebra must con-
sist of the scalars only, and the other equals Vn° Indeed, if

s €V, is a non-trivial symmetry (i.e. a unit vector of Hn) then



- 19 -

the only elements of Vn operator commuting with s are the linear

combinations of s and 1. Theorem 2.% completes the proof, D

As an application of the above Proposition and the remarks
preceding it, we here show how to compute a few universal tensor
products. For instance, if V _ 1is the infinite dimensional separ-
able svin factor, VOO§Voo is isomorphic to the simple JC-alge-
bra considered in § 3. For C (Vo) 1is just the CAR algebra,

and ¥y is the transposition on the CAR algebra.

(0]
An antiautomorphism o of &(H) of order 2 is induced by
an antiunitary J with 32 = £1. If 32 = +1, o is called
real, while if j2 = -1, a is called quaternionic. Now the

behaviour of tensor product of antiautomorphisms on 8@E) can
be summarized in: real ®real = real, real ® quaternionic = quater-
nionic, quaternionic ® quaternionic = real. As a result, we get

the following table for ®:

B M (R) M (H), ,n>3
M111(]R>s an(]ms an(]H)sa
Mm(]H)sa’ nz> M4mn(]R)sa o

The computation of universal tensor products involving non-
reversible spin factors requires more care: The canonical anti-
automorphisms of their universal C*-algebrés must be analyzed.
Their behavior turns out to be cyclic, depending on n mod 8.
We just state here, without proof, that the universal tensor
product of V5 = M2(]H)8a with itself is a direct sum of four

copies of M’16(]R)s .
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Lemma 5.4, If Ol is a C -algebra with no scalar represen-

(<Zm§xc*(B))sa °

e

tations and B is a JC-algebra then 0Zsa§B

Proof. We have C*(Olsa) = (U@ C° , with the antiautomor-
phism &, (a@°) = (b®a®). Hence G ((Y,,¥B)= A®C*(B) 2 oC’(B),
sa
where the canonical antiautomorphism interchanges the two summands,

Hence the self-adjoint fixed point algebra is isomorphic to

(Oggfﬁ(B))sa° . [j

We conclude with a result showing that a more naive approach

to defining tensor products of JC-algebras is bound to fail.

Theorem 5.5, Assume A is a unital JC-algebra and that

A¢9M2Qg)8a is a JC-algebra with some product satisfying

(1) (a®1)® = a°©1

I

2

(ii) (’I®a)2 1®q

]

(iii) (a®1)(1®0.) = a®q

1®? ~a®1-

Then A is isomorphic to the self-adjoint part of a C*-algebra°

Proof. By Lemma 5.4, A§M2(C)Sa is the self-adjoint part
of a C*-algebrag By Proposition 5.2, A®M2(C)Sa is a quotient
of A@MZ(C)Sa and therefore also the self-adjoint part of a
C*-algebra° (Note that by Propositions 3.2 and %.3, a Jordan
ideal in the self-adjoint part of a C*—algebra is the self-adjoint
part of a two-sided ideal).

By (ii), (diii) and (iv) we get U1®B(a®a) = U1®8Ta®1(1®a> =
Tog1Ugg(18a) = T (1 {Bap}) = a® {gap} .
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If B 1is a one-dimensional projection in M2(C), then Basg
is a scalar, so U,]®B(A®M2(C)sa) = A®g, By (i) and (ii)
a —> a®8 is a Jordan homomorphism, so A = U,|®B(A®M2(C)Sa)°
But cutting down the self-adjoint part of a C*—algebra with a
projection (1®8) we get the self-adjoint part of a C'-algebra,

so the proof is complete. []
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