RECURSIVE ENUMERABILITY AND INDEXICALITY IN E-RECURSION

E.R. Griffor and D. Normann
Inst. of Math., University of Oslo
Recursive Enumerability and
Indexicality in E-Recursion

E.R. Griffor and D. Normann
Oslo, 1981

§ 0 Introduction

The question of the limits of recursive enumerability and
indexicality were first formulated by Sacks (see Sacks [1980] or
Sacks-Griffor [1980]). E-recursion or 'set recursion' as a
natural generalization of Kleene recursion in normal objects of
finite type was introduced by Normann [1978] and rediscovered
independently by Moschovakis [1976].

If we consider E-closed ordinals, Sacks [1980 b] showed
that if \(L_\kappa = E(\gamma) \) for some \(\gamma < \kappa \) and \(L_\kappa \) is not \(\Sigma_1 \)-admis-
sible such that:

\[
L_\kappa \models "gc(\kappa) \text{ is regular}" \quad (gc(\kappa))
\]

is the greatest cardinal in the sense of \(L_\kappa \) and exists by the
assumption of inadmissibility), then \(L_\kappa \) is not \(\not\sim \), i.e. there
is no procedure with parameter in \(L_\kappa \) which is defined only on
elements of \(L_\kappa \). Sacks also indicated a proof that if

\[
L_\kappa \models w < \text{cf}(gc(\kappa)) < gc(\kappa),
\]

\(\mathcal{P}(gc(\kappa)) \cap L_\kappa \) is \(\not\sim \).

In this paper we consider arbitrary E-closed \(L_\kappa \). In the
case of inadmissible E-closures such that:

\[
L_\kappa \models w < \text{cf}(gc(\kappa)) < gc(\kappa)
\]

we develope the method of Sacks to not only show that \(L_\kappa \) is \(\not\sim \),
but further that L_κ is indexical and REC. In the case of admissible E-closures (i.e. \textsc{Hyp}(\gamma) for some $\gamma \in \text{OR}$) we have that L_κ is REC = Σ_1. Thus when L_κ is REC is completely answered for E-closed L_κ's which are E-closures.

Finally, if L_κ is E-closed but not the E-closure of one of its elements, we almost completely determine when L_κ is REC for countable L_κ. Remarks follow these results indicating where the corresponding methods can be used in the uncountable case. For details on forcing in E-recursion see Griffor [1982].

§ 1 Some Background.

An effective enumeration of the universe for computation is something one might well expect. As Sacks showed this is not always the case despite the fact that initial segments of L can be 'enumerated' in order of constructibility. Let L_κ be E-closed.

\textbf{Definition 1.1} (i) L_κ is REC, if $\exists a \in L_\kappa \exists e \in \omega$ such that for all $x \in V$

$$x \in L_\kappa \iff [e](a,x)_x^\gamma ;$$

(ii) if $L_\kappa = E(\gamma)$ for some $\gamma < \kappa$, then L_κ is indexical, if $\exists a \in L_\kappa$ such that for all $x \in L_\kappa$ there is an $I_x \subseteq \gamma$ such that

(a) $I_x \neq \emptyset$ and $I_x \leq E x,a$ and

(b) $(\nu \delta \in I_x)[x \leq E \delta,a]$

\textbf{Remark} Initially Sacks defined a set $R \subseteq \mathcal{I}^\omega$ such that $R \leq \mathcal{I}_E$, a for some $a \in \mathcal{I}^\omega$ to be \textit{indexical}, if $\exists I \subseteq \mathcal{I}^\omega$ such that
(i) \(I \neq \emptyset \) and \(I \leq 3E, R \) and
(ii) \((\forall b \in I) [R \leq 3E, b] \), where

the structure in question was the companion to Kleene recursion in \(3E \). It was under the assumption of a recursive well-ordering of \(2^\omega \) which is recursively regular that Sacks produced non-indexical \(R \in 2 - \mathcal{S}(3E) \) in showing that \(2 - \mathcal{S}(3E) \) was not \(\mathcal{R}E \).

In the setting of the ordinals, (i.e. \(E \)-closed \(L_\kappa \) such that \(L_\kappa = E(\gamma) \) for some \(\gamma < \kappa \)), indexicality amounts to every set being recursively equivalent to an ordinal modulo a parameter.

The intuition here is that every set which is computed is computed at a level, namely, its order of computability. In \(L \) this corresponds to the sets order of constructibility. A universe for computation is 'indexical' if, relative to a parameter in that universe, we can pass effectively from a set to its order of computability.

Proposition 1.2. Consider \(L_{3E}(2^\omega) \), then if \(\alpha < 3E \) we have \(\alpha \) is indexical.

Proof using \(2^\omega \) consider

\[I_\alpha = \{ b \in 2^\omega | b \text{ codes a convergent computation of length } \alpha \} \]

then \(I_\alpha \leq 3E, \alpha \): if \(b \in I_\alpha \) we can recognize it using \(b \), otherwise it has length less than \(\alpha \) or is not a code for a computation or has a subcomputation of length \(\alpha \).

Remark. If there is a recursive well-ordering of reals, then if \(\kappa \) is indexical, we can take \(I_{\kappa} \) to be a singleton by choosing the least such.
If $L_\kappa = E(\gamma)$ for some $\gamma < \kappa$ and γ is regular in L_κ, then Sacks concluded that non-indexical sets existed by the following implicit lemma.

Lemma 1.3. If $L_\kappa = E(\gamma)$ for some $\gamma < \kappa$, then

L_κ indexical \Rightarrow L_κ is RE

proof let $a \in L_\kappa$ witness indexicality and for $x \in V$ compute, via a, $I_x \subseteq \gamma$ such that its elements compute x, otherwise diverge.

Remark If $x \in V$ is transitive, then it remains open whether $E(x)$ being RE is equivalent with $E(x)$ being indexical. Proofs that inadmissible $E(\gamma)$'s are RE proceed by showing that $E(\gamma)$ is indexical. An essential difference between the two properties is that indexicality is internal while being RE makes reference to $x \in V/L_\kappa$. Hence, for example, absoluteness considerations apply to the first, but not the second.

We shall be concerned primarily with E-closed initial segments of L. As remarked before, order of computability is the key to indexicality and, in L, reduces to order of constructibility.

Definition 1.4. Let $x \in V$ be transitive and for $\gamma \in E(x)$, let

$O^x(\gamma) = \mu \gamma < OR \cap E(x)[\gamma$ is computed from x and some $b \in x$ via a computation of length $\gamma]$ = 'order of computability' of x.

Remark. With $E(x)$ as above we have that

$$E(x) \text{ is indexical } \iff (\exists y \in E(x))(\forall z \in E(x))[x^y_z > O^x(z)].$$

This follows immediately from the fact that x^y_z is the greatest y,z-reflecting ordinal.

§ 2 E-closures.

We begin our analysis of which E-closed L_κ's are RE with the case of $L_\kappa = E(\alpha')$ not Σ_1-admissible. Then L_κ has a greatest cardinal (unbounded cardinals would yield admissibility) written $\alpha = gc(\kappa)$ and we let $\gamma = \text{cf} L_\kappa(\alpha)$. By Kiousis [1980], $\gamma > \omega$, for otherwise L_κ is admissible. If $\gamma = \alpha$ Sacks' argument showed that L_κ is not RE. If $\gamma < \alpha$ one might expect that being RE had something to do with admissibility and, hence, that L_κ is not RE.

Theorem 2.1. Let $L_\kappa = E(\alpha')$ be inadmissible with $\alpha = gc(\kappa)$ and $\gamma = \text{cf} L_\kappa(\alpha)$, then

$$\gamma < \alpha \Rightarrow L_\kappa \text{ is RE},$$

(i.e. L_κ is RE and V/L_κ is RE) both via parameters in L_κ!

proof Notice that γ is a regular L_κ-cardinal and work in L_κ. Let $A \in L_\kappa$. If $O(A) = \mu < x[A \in L_\gamma]$ then

$$O^x(A) = O(A).$$

Assume that $A \subseteq x$. S. Friedman [1980a] gave an analysis of the α-degrees of subsets of \mathcal{C}_{ω_1} where $\alpha = \mathcal{C}_{\omega_1}$ (α-degrees
in the sense of α-recursion theory on \(L^{\omega_1^{\omega_1}} \). The same analysis is valid in \(L_\kappa \):

Let \(h : \gamma \to \alpha \) witness the cofinality of \(\alpha \) in \(L_\kappa \) and following Friedman define the 'cut-off function' of \(A \):

\[
f_A : \gamma \to \alpha \text{ by }
\]

\[
f_A(\delta) = \beta, \text{ if } A \cap h(\delta) \text{ is the } \beta^{\text{th}} \text{ element of } L.
\]

Inside \(L_\kappa \) we can recursively decide which ordinals \(\delta < \alpha \) are \(L_\kappa \)-cardinals and w.l.o.g. we may assume that \(h(\delta) \) is an \(L_\kappa \)-cardinal for \(\delta < \gamma \), thus

\[
f_A(\delta) < h(\delta)^+ \text{ (the next cardinal in } L_\kappa \).
\]

Lemma 2.2. (S. Friedman) Let \(A, B \in L_\kappa \), \(A \subseteq \alpha \) and \(B \subseteq \alpha \) and assume that

\[
\{ \delta < \gamma \mid f_A(\delta) \leq f_B(\delta) \}
\]

is stationary. Then \(A \triangleleft B, h \) (\(A \) is \(\alpha \)-recursive in \(B, h \)).

Proof (sketch) Let \(g_\delta \) be a \(1 \rightarrow 1 \) map of \(f_B(\delta) + 1 \) onto \(h(\delta) \) and let

\[
t(\delta) = \delta', \text{ if } \delta' \text{ is minimal such that } g_\delta(f_A(\delta)) < h(\delta').
\]

If \(\delta \) is a limit ordinal in \(H \), then \(t(\delta) < \delta \) and by Fodor's theorem (which is valid in \(L_\kappa \)) we have that \(t \) is bounded on a stationary set \(H_1 \subseteq \gamma \). Let \(\delta_1 \) be the bound and then for some \(\delta_2 < \delta_1 \), \(t \) is constant \(\delta_2 \) on some unbounded subset of \(\gamma \).
Then relative to this unbounded set, \(\delta_2, h \) and \(B \) we can compute \(A \) \(\alpha \)-recursively.

Corollary 2.3.

(i) If \(A, h < \alpha B, h \), then \(\{ \delta < \gamma \mid f_A(\delta) < f_B(\delta) \} \) contains a closed unbounded subset of \(\gamma \);

(ii) If \(\alpha \leq O(A) < O(B) \), then \(\{ \delta < \gamma \mid f_A(\delta) < f_B(\delta) \} \) contains a closed unbounded subset of \(\gamma \);

(iii) \(A \) (relative to \(h \)) is a prewellordering on \(L_\kappa \cap \mathcal{P}(\alpha) \).

proof (i) if not then \(\{ \delta < \gamma \mid f_B(\delta) \leq f_A(\delta) \} \) is stationary and so \(B, h \leq \alpha A, h \).

(ii) If not, then \(B, h \leq \alpha A, h \) and so \(O(B) \leq O(A) \).

(iii) \(< \alpha \) (set to \(h \)) is clearly a preorder. If a part of it is not wellfounded we would have a descending sequence (here a Moschovakis witness) in \(L_\kappa \) which would give a countable collection of club sets on \(\gamma \) in \(L_\kappa \) with empty intersection in \(L_\kappa \), contradicting

\[
L_\kappa \models '\text{the club filter or } \gamma \text{ is countably additive}'.
\]

(Note that we have used that \(L_\kappa \) is not \(\Sigma_1 \)-admissible.)

Now the order of \(A \) in \(< \alpha \) (rel. to \(h \)) exceeds \(O(A) \) (literally, give or take \(\alpha \)) and thus \(O(A) \) is computable in \(A \). So

\[
A \in L_\kappa \iff A \in L_{\alpha+\|A\|} < \alpha(h)
\]

Thus \(L_\kappa \cap \mathcal{P}(\alpha) \) is RE and by the previous remark we have in fact shown that \(L_\kappa \cap \mathcal{P}(\alpha) \) is indexical.
Lemma 2.4. Let L_κ be as above. If $\mathcal{P}(\alpha) \cap L_\kappa$ is indexical (on L_κ), then L_κ is indexical.

proof we proceed by transfinite recursion on the rank of $x \in L_\kappa: \rho(x)$. By induction hypothesis we have succeeded in computing $\rho(z)$ from z for all $z \in x$. Compute

$$\sup_{z \in x} \rho(z) = \tau < \kappa,$$

then $z \in x \subseteq L_\tau$. We can now pass effectively from τ to

$$f_\tau: \tau \leftrightarrow \alpha$$

and; using the identification between τ and L_τ, compute $f_\tau'' x \subseteq \alpha$. By assumption $f_\tau'' x$ is indexical and we can therefore compute a set of indices for x. By effective transfinite recursion we have given an algorithm uniformly in α, x and the recursion theorem gives the desired parameter witnessing the indexicality of L_κ.

Thus L_κ is indexical and by a previous lemma L_κ is RE. We will now show that if $A \not\subseteq L_\kappa$, then this too can be verified by a computation. The intuition is that if $A \not\subseteq L_\kappa$ then we use the club filter on γ to compute the order of A in $<_\alpha(h)$ which must be \preceq_κ and hence we can compute x from $A \alpha$. If $L_\kappa \omega_1 = \omega_1^L$ then this line of reasoning will succeed, but ω_1^L may be less than ω_1.

Let $A \subseteq \alpha$ and let B_β be the βth subset of α-recursive in A, h. If one of the $f_\beta = f_{B_\beta}$'s fails to be definable over α, we know that $A \not\subseteq L_\kappa$. In fact we may assume that:

(i) Each f_β can be defined;

(ii) $\beta_1 < A \beta_2$ iff $\{ \delta < \gamma \mid f_{\beta_1}(\delta) < f_{\beta_2}(\delta) \}$
contains a closed unbounded subset of γ is a pre-linear order;

(iii) for each β_1, β_2 the set
\[\{\delta < \gamma \mid f_{\beta_1}(\delta) \leq f_{\beta_2}(\delta)\} \in L_\kappa \]

since $L_\kappa \models (\gamma)$ exists. We can code α' as a relation on α, so instead of $E(\alpha')$ we can consider recursion in a type-2 functional over α. The advantage is that all computations may be described as elements of α (one may as well use a notation system).

The set of computations and the comparison of lengths upon them is defined by a positive inductive definition Γ s.t. $\Gamma^r(\emptyset)$ is stage comparison restricted to computations of length $\leq \tau$.

Definition 2.5. A linear pre-ordering \preceq is a stage comparison if for each $\sigma \in \text{fld}(\preceq)$
\[\preceq \uparrow \{\sigma' \mid \sigma' \preceq \sigma\} = \Gamma(\{\sigma' \mid \sigma' \prec \sigma\}). \]

Lemma 2.6. If \preceq is a stage comparison that is not a pre well-ordering, then the set of true computations form an initial segment of \preceq.

proof Let $\preceq_{\tau} = \Gamma^\tau(\emptyset)$, then by induction $\tau < \kappa$ we show that if σ is in the non-wellfounded part, then \preceq_{τ} is an initial segment of
\[\preceq_{\sigma} = \preceq \uparrow \{\sigma' \mid \sigma' \preceq \sigma\}. \]

The empty relation is an initial segment of every relation. Assume that the claim holds for all $\tau' < \tau$ and let σ, σ' both be in the non-wellfunded part s.t. $\sigma' < \sigma$. For all $\tau' < \tau$ we
have that \(\preceq \tau \) is an initial segment of \(\preceq_{\infty} \), but then
\[
\preceq \tau = \Gamma(\bigcup_{\tau' \subset \tau} \preceq \tau') \subseteq \Gamma(\preceq_{\infty}) \subseteq \preceq_{\infty}.
\]

A \textbf{standard stage comparison} is a well founded stage comparison. Since \(L_{\kappa} \) is not \(\Sigma_1 \)-admissible we have the Moschovakis Phenomenon, i.e. infinite descending paths in \(L_{\kappa} \) for computations coded in \(L_{\kappa} \) which diverge. This means by the previous lemma that we can uniformly prune away non-standard computations, since a witness to divergence lies below its code. In other words we can always compute a \textbf{standard stage comparison} from a stage comparison.

Returning to the set \(A \), let \(C \) be the set of \(B_\beta \)'s that are stage comparisons. If two of them are incomparable, then we know that \(A \not\subseteq L_{\kappa} \). If they are all comparable, let \(\preceq_A \) be the standard part of the union of them. Compute \(\| \preceq_A \| = \kappa' \), then if \(\kappa' = \kappa \) (which can be decided recursively), then \(A \not\subseteq L_{\kappa} \).

If \(\| \preceq_A \| < \kappa \), we can ask:
\[
A \subseteq L_{\alpha'} + \| \preceq_A \| + \omega + 1 ?
\]

If it is, then \(A \subseteq L_{\kappa} \). If not there would be a stage comparison extending \(\preceq \), but nonetheless of lower order of constructibility than \(A \). But then \(\preceq \) would be some \(B_\beta \), a contradiction. Thus we know that \(A \not\subseteq L_{\kappa} \). This handles \(A \subseteq \alpha \), so now consider arbitrary \(x \in V \). Proceeding by induction on the rank of \(x \), if \(\exists z \in x \) such that we have computed \(z \not\subseteq L_{\kappa} \), then \(x \not\subseteq L_{\kappa} \). Thus assume that we have computed \(z \subseteq L_{\kappa} \) for all \(z \in x \) and compute
\[
\sup_{z \in x} O(z) = \kappa'.
\]
If $x' \geq x$ then $x \not\in L_\kappa$; otherwise $x' < x$ and w.l.o.g. $x \subseteq x'$. Effectively pass to $f'_{x'} : x \leftrightarrow x'$ and apply the above for subsets of α.

Now let $E(\gamma)$ be Σ_1-admissible. The following proposition suffices to show that $E(\gamma) = L_\kappa$ is RE.

Proposition 2.7. If $E(\gamma) = L_\kappa$ for some $\gamma < \kappa$ is Σ_1-admissible, then $\exists x \in L_\kappa$ such that,

$$\kappa^x_T = \kappa.$$

Proof. see either Sacks [1980] or Sacks-Griffor [1980].

Corollary 2.8. If L_κ is as in the proposition, then L_κ is RE (= Σ_1).

Proof. the x of the proposition satisfies $\kappa^x_T = \kappa$ and the Sacks characterization of κ_T in this setting yields that $\forall y \in L_\kappa$

$$\kappa^x_T, y \geq \kappa^x_T.$$

Thus $(\exists z \in L_\kappa)(\forall y \in L_\kappa)[\kappa^x_T, y > 0(y)]$ which gives that L_κ is indexical and hence RE.

Remark. The characterization used above for κ^x_T was first proved in the setting of Kleene Recursion in normal functionals of higher type (of which E-recursion is a generalization) by Harrington [1973].

We have completely answered the question of when an E-closure, countable or uncountable, is RE. In the special case of a singular greatest cardinal of uncountable cofinality we have in fact shown that L_κ is REC.

§ 3 Limit E-closed L_κ.

If L_κ is E-closed, countable but not an E-closure we shall determine whether L_κ is RE with the exception of one case. The uncountable case is complicated by our inability to construct a 'bounded generic' (as we did where L_κ was the E-closure of one of its elements) and our inability to construct a full generic over L_κ, if the cardinality of κ is a singular uncountable cardinal of L. We shall indicate after each result the extension to the uncountable case (if there is one).

The one countable case which is an exception is of some interest. In this case L_κ has a greatest cardinal which has uncountable cofinality in L_κ. In addition, we have that for all τ such that $\text{gc}(\kappa) < \tau < \kappa$ we can effectively find the collapse of τ to $\text{gc}(\kappa)$. If κ itself is RE, then we can proceed, using the club filter on $\text{cf}^\kappa(\text{gc}(\kappa))$, to show that L_κ is RE*. We consider it an interesting open question whether κ is RE in this case. One can assume that L_κ is the limit of a sequence of E-closed ordinals of type κ itself, for otherwise there is a failure of Σ_1-bounding which will witness that κ is RE: at level τ ask whether all witnesses to this instance of Σ_1-bounding have appeared.

Now suppose that L_κ is E-closed and $\forall x \in L_\kappa [E(x) \in L_\kappa]$. The first case we consider is when L_κ has a greatest cardinal $\text{gc}(\kappa)$ and

$$L_\kappa \models "\text{gc}(\kappa) \text{ is regular}"$$

*) We show here that the order of constructibility function is computable.
Theorem 3.1. If L_κ is countable, E-closed and $(\forall x \in L_\kappa) [E(x) \in L_\kappa]$ and

$L_\kappa \models \text{"gc}(\kappa) \text{ exists and is regular"}$,

then L_κ is not RE.

Proof: Suppose L_κ is RE and let $a \in L_\kappa, e \in \omega$ be such that $\forall x \in V$

$[e](a,x) \Downarrow \iff x \in L_\kappa$. Let $O(a) = \gamma < \kappa$ and consider the following notion of forcing:

$\mathbb{P} = \{f : \text{gc}(\kappa) \rightarrow \{0,1\} | f < \text{gc}(\kappa)\}$.

Remark: A general remark is in order on what is meant by 'generic' subset of \mathbb{P} over a structure. Unless explicitly stated otherwise we shall write 'bounded generic' for that generic constructed by effective transfinite recursion on the ordinal of the structure over which it is generic. Bounded since only sentences of bounded rank are decided - the reader is directed to Sacks [1980] for details. Two points are worth mentioning:

(i) the ordinal we are building a new subset of must be regular from the point of view of the structure we build the bounded generic with respect to;

(ii) the collection of Gödel numbers for sentences to be decided must be enumerated in an effective way by $\text{gc}(\kappa)$ (or the ordinal we are building a new subset of).

Now let G be \mathbb{P}-generic/L_κ, then

$[e](a,G) \uparrow$ (*).
Case 1 \(gc(\kappa) = \omega \), then let

\[\gamma = O(a) \] and consider \(E(\gamma) \in L_{\kappa} \).

If \(G_0 \subseteq \mathbb{P} \) is \(\mathbb{P} \)-generic/\(E(\gamma) \), then \(G_0 \in L_{\kappa} \) and hence

\[E(\gamma)[G_0] = \{ e \}(a, G_0)^\downarrow \]. By the

forcing lemma \(\exists p \in \mathbb{P} \) such that

\[p \models \{ e \}(a, G)^\downarrow \]. Now if

we take \(G_1 \) \(\mathbb{P} \)-generic/\(L_{\kappa} \) such that \(p \in G_1 \), then

\[\{ e \}(a, G_1)^\downarrow \], which is absurd.

(Note that \(\mathbb{P} \) in this case is just the Cohen poset for adding a new real.).

Case 2 \(gc(\kappa) > \omega \) in which case \(L_{\kappa} \) thinks that \(\mathbb{P} \) is \(\aleph_1 \)-closed.

Taking \(G \) as in (*), then \(L_{\kappa}[G] = \{ e \}(a, G)^\uparrow \) and hence \(\exists p \in \mathbb{P} \)

s.t.

\[p \models \{ e \}(a, G)^\uparrow \]

\(p \) is actually an 'encoding' of an infinite descending path. Let

\[\gamma = \max(0(p), O(a)) \]

(w.l.o.g. \(\gamma > gc(\kappa) \)) and consider \(E(\gamma)E_{L_{\kappa}} \). \(E(\gamma) \) will have

either that it is the \(E \)-closure of \(gc(\kappa) \) or of \(\gamma \) relative to

a parameter. In the second case substitute

\[\mathbb{P}' = \{ f : \gamma \rightarrow \{ 0, 1 \} | f^{E(\gamma)} < \gamma \} \]

and take \(G_1 \) \(\mathbb{P} \) (or \(\mathbb{P}' \))-bounded generic/\(E(\gamma) \) s.t. \(p \in G_1 \).

Absoluteness between \(L_{\kappa} \) and \(E(\gamma) \) is maintained since \(E(\gamma) \)
is an initial segment of L_κ above $gc(\kappa)$. Thus we have that

$$E(\gamma)[G_\gamma] = \{e\}(a,G_\gamma)$$

contradicting the choice of e,a.

Remark If L_κ is uncountable, but $L \models \exists \gamma \exists \kappa$ is regular', then the preceding argument works without change.

We now consider the case where $gc(\kappa)$ is singular. The following general theorem will be useful.

Theorem 3.2 Let $\alpha < \beta$ be ordinals such that $cf(\beta) \leq \alpha$ by some function f recursive in α, β and some $\delta < \alpha$. Then $cf(\beta) \leq \alpha$ by some function recursive in α, β.

proof Let $g: \alpha \rightarrow \beta$ be a list of 'computation tuples' over β such that $(\exists \delta < \alpha)[g(\delta) \downarrow]$. The intuition here is that we attempt to carry out a search for $\delta < \alpha$ in question and we either compute it effectively, and hence the witness to $cf(\beta) \leq \alpha$, or we don't and in so doing (not doing) obtain a witness to $cf(\beta) \leq \alpha$. Background to selection in abstract recursion can be found in Harrington-MacQueen [1976]. For the strategy in dynamic proofs of selection see Kirousis [1978] and later Griffor-Normann [1982].

Let

$$\min(g) = \min\{\|g(\delta)\| \mid \delta < \alpha\}.$$

If $E(\beta) \models cf(\beta) > \alpha$, we know that $\min(g)$ is computable by some recursive function $M(g)$. In general it is sufficient for $M(g)$ to be defined that $\min(g)$ exist. If $M(g) < \min(g)$ this means
that we have

\[E_{M(g)+1}(\alpha) = \text{cf}(\beta) \leq \alpha. \]

Now let \(g(\delta) \) be an index for \(3f \) recursive in \(\delta, \alpha, \beta \) witnessing that \(\text{cf}(\beta) \leq \alpha \). Since \(\min(g) \) exists we have that \(M(g) \downarrow \).

If \(\min(g) = M(g) \) we have computed the level at which the collapsing map is constructed. If \(M(g) < \min(g) \), this is because we know at that ordinal that \(\text{cf}(\beta) \leq \alpha \).

Thus in both cases we can find from \(M(g) \) an \(f \) collapsing the cofinality of \(\beta \) below \(\alpha+1 \).

Corollary 2.3 If \(\gamma > \text{gc}(\kappa) \), let \(f_\gamma \) be the least (in the sense of \(\subseteq \)) collapse of \(\gamma \) to \(\text{gc}(\kappa) \). If for some \(a, \gamma_0 < \kappa \) we have that

\[(\forall \gamma > \gamma_0)(\exists z < \text{gc}(\kappa))[f_\gamma \leq^R a, \gamma_0, \text{gc}(\kappa), \gamma, z],\]

then the function \(\gamma \mapsto f_\gamma \) is uniformly computable in \(\gamma_0, a, \text{gc}(\kappa) \) and a \(\text{gc}(\kappa) \)-enumeration of \(\gamma_0 \).

Proof We proceed by induction on \(\gamma > \gamma_0 \). \(\gamma = \gamma_0 \) is trivial. If \(\gamma > \gamma_0 \), let \(\alpha_\gamma \) be so large that all \(\gamma' < \gamma \) are collapsed to \(\text{gc}(\kappa) \). Let \(\alpha \geq \alpha_\gamma : \)

if \(L_\alpha \models \gamma > \text{gc}(\kappa) \), then

\[L_\alpha \models \gamma = (\text{gc}(\kappa))^+ \]

where \(\tau^+ \) is the successor cardinal of \(\tau \). By the theorem there is an \(\alpha \) recursive in \(\gamma, a, \gamma_0, \text{gc}(\kappa) \) and the collapse of \(\gamma_0 \) such that

\[L_\alpha \models \text{cf}(\gamma) \leq \text{gc}(\kappa). \]

But a successor cardinal is regular, so this singularity will demonstrate that \(\gamma = \text{gc}(\kappa) \) and the collapsing map can be computed.
We can now reap the benefit of this interplay between selection and collapsing maps to handle some of the cases of a singular greatest cardinal.

Remark If \(\kappa \) itself is not \(\text{RE} \), then \(L_\kappa \) is not \(\text{RE} \) since we can effectively determine whether a set is an ordinal.

We shall assume in theorems 3.4 and 3.5 that \(\kappa \) is \(\text{RE} \). As previously remarked we regard the question whether \(\kappa \) is \(\text{RE} \) in this situation as an interesting open question. In addition, we introduce:

\[
(*) \text{ in some parameter in } L_\kappa (\exists \alpha > \text{gc}(\kappa)) (\forall \gamma > \alpha)(\exists \tau < \text{gc}(\kappa))[f_\gamma \leq \text{E}_\gamma],
\]

where

\[
f_\gamma : \gamma \leftrightarrow \text{gc}(\kappa)
\]

\(L_\kappa \) here is a limit of \(\text{E} \)-closures and \((*) \) expresses the fact that \(\text{gc}(\kappa) \) is also the greatest cardinal locally.

Theorem 3.4 Suppose that \(L_\kappa \) is countable, \(\text{E} \)-closed but not an \(\text{E} \)-closure such that \(L_\kappa \) has a greatest cardinal \(\text{gc}(\kappa) \):

\[
L_\kappa \models \omega = \text{cf}(\text{gc}(\kappa)) < \text{gc}(\kappa),
\]

(i) there exists an unbounded \(\omega \)-sequence through \(\text{gc}(\kappa) \) not in \(L_\kappa \), then \(L_\kappa \) is not \(\text{RE} \);

(ii) all \(\omega \)-sequences through \(\text{gc}(\kappa) \) are in \(L_\kappa \), then \n
\[
(*) \Rightarrow L_\kappa \text{ is } \text{RE} \text{ and } \n
\neg(*) \Rightarrow L_\kappa \text{ is not } \text{RE} \text{ (note that the assumption that } \kappa \text{ is } \text{RE} \text{ is only used in the case where we show that } L_\kappa \text{ is } \text{RE}).
\]

Proof (i) we require a lemma of Sacks (see Sacks-Griffor [1980]):
Lemma 3.5 (Sacks) Suppose L_κ is E-closed and not Σ_1-admissible such that

$$L_\kappa \models \omega = \text{cf}(\text{gc}(\kappa)) < \text{gc}(\kappa)$$

then

$$\{x \mid x \subseteq \text{gc}(\kappa) \land x \in L_\kappa\}$$

is RE iff all unbounded ω-sequences through $\text{gc}(\kappa)$ are in L_κ.

Remark Sacks' proof is an application of Judy Green's compactness theorem [1974] and a selection result due to Kirousis and Moschovakis. The same proof gives the result in the situation described in the theorem.

Returning to (i) of the theorem: by Sacks' lemma

$$\{x \mid x \subseteq \text{gc}(\kappa) \land x \in L_\kappa\}$$

is not RE and hence L_κ is not RE (since any procedure for L_κ would give one for $\{x \subseteq \text{gc}(\kappa) \mid x \in L_\kappa\}$).

To prove (ii) (*): by lemma 3.4 (a) $\{x \subseteq \text{gc}(\kappa) \mid x \in L_\kappa\}$ is RE. By (*) and Corollary 3.3 there is a parameter $a \in L_\kappa$ such that the function $\gamma \mapsto f_\gamma$ is uniformly computable in $\gamma_0, a, \text{gc}(\kappa)$ and a $\text{gc}(\kappa)$ enumeration of γ_0. Since κ is RE in order to enumerate L_κ proceed as follows: given $x \in V$ assume inductively that we have defined a procedure for all $z \in x$. If that procedure does not converge on all $z \in x$, then diverge. Otherwise we have computed $0(z)$ for all $z \in x$ and let

$$\gamma = \sup_{z \in x} 0(z).$$

If $\gamma \geq \kappa$ (using κ RE), then diverge. If $\gamma < \kappa$ we verify this by the procedure given for κ. We have a procedure for enumerating $\{x \subseteq \text{gc}(\kappa) \mid x \in L_\kappa\}$ so pass effectively to f_γ and apply it to $A_{\gamma} \subseteq \text{gc}(\kappa) \times \text{gc}(\kappa)$ given by
By the recursion theorem we have evidently given an enumeration of \(L_\kappa \).

Assume \(\gamma(*) \) and, toward a contradiction, assume \(\exists \alpha \in L_\kappa \), \(\exists \beta \in \omega \) such that \(\forall x \in V \)

\[x \in L_\kappa \iff \{e|(a,x)\downarrow \}. \]

We can assume that \(a \in \text{OR} \) and, by \(\gamma(*) \), let \(\gamma > a \) be least such that \(\forall \tau < \text{gc}(\kappa) \)

\[[f_\gamma f_{\text{E}, \gamma, \tau, a}]. \]

Consider \(E(\gamma) \) which is an element of \(L_\kappa \).

Remark A straightforward argument shows that

\[E(\gamma) = \{ y|\kappa_0^\gamma, \gamma < \kappa_\text{P}, \exists \tau < \text{gc}(\kappa) \} \]

which by reflection satisfies \(\Sigma_1 \)-bounding and is, in fact, \(\Sigma_1 \)-admissible. Thus \(E(\gamma) = L_\alpha \) \(\Sigma_1 \)-admissible and \(\alpha^* = \gamma \) (\(\alpha^* \) is the \(\Sigma_1 \)-projectum of \(\alpha \)) and we have

\[f: \alpha \xrightarrow{\gamma-1} \alpha^* \text{, } f \in \Sigma_1(L_\alpha) \text{ such that } \forall \tau < \alpha^* f^{-1} \tau \in L_\alpha \text{ by } \Sigma_1 \text{-bounding}. \]

Note that \(L_\alpha \models '\gamma \text{ is the successor cardinal of } \text{gc}(\kappa)' \).

Thus \(\gamma \) is regular of uncountable cofinality in \(L_\alpha \) and we consider

\[\mathbb{P} = \{ f: \gamma \to [0,1] | f_\alpha < \gamma \} \text{ ordered by inclusion. Then there exists } G_0 \subseteq \mathbb{P} \text{ a } \mathbb{P} \text{-bounded generic}/L_\alpha. \]

Remark Note that the same effective transfinite recursion using the projection \(f \) allows us to build \(G_0 \), the difference being that in the case that \(L_\alpha \) is not \(\Sigma_1 \)-admissible but \(E \)-closed,
all divergence facts are given by bounded formulae.

Now $G_0 \in L_\kappa$ and by the choice of e, a:

\[\{e\}(a, G_0) \downarrow \text{ and by the genericity of } G_0\ L_\alpha[G_0] \text{ is } \Sigma_1\text{-admissible and} \]

\[L_\alpha[G_0] := \{e\}(a, G_0) \downarrow. \text{ By the forcing lemma } \exists p \notin G_0 \text{ such that} \]

\[p \models \{e\}(a,) \downarrow. \]

Using the fact that L_κ is countable let $G \in \mathbb{P}$ be \mathbb{P}-generic/L_κ such that $p \in G$, then

\[L_\kappa[G] \models \{e\}(a, G) \downarrow, \text{ a contradiction} \]

since $G \notin L_\kappa$. Thus L_κ is not RE.

We now proceed to the case where the greatest cardinal in L_κ is singular of uncountable cofinality. The principle (*) will play a similar role.

Remark In the uncountable case the positive results will hold. The proofs that L_κ is not RE can be carried out if

\[\kappa \text{ is regular, since we need to build generics over } L_\kappa. \]

Theorem 3.6 Suppose that L_κ is countable, E-closed but not an E-closure such that L_κ has a greatest cardinal $\text{gc}(\kappa)$:

\[L_\kappa \models w < \text{cf}(\text{gc}(\kappa)) < \text{gc}(\kappa), \text{ then} \]

\[(*) \Rightarrow L_\kappa \text{ is } \sim \text{ and} \]

\[\neg (*) \Rightarrow L_\kappa \text{ is not } \sim \text{ (i.e. } (*) \iff L_\kappa \text{ is } \sim). \]
proof Assume (*), then the argument of Theorem 2.1 shows that \(O(z) \) is computable on \(\{ x \mid x \subseteq gc(a) \wedge x \in L_\kappa \} \) using the club filter on \(\text{cf}(gc(a)) \). Since \(\kappa \) itself is RE, we have that \(\{ x \subseteq gc(a) \mid x \in L_\kappa \} \) is RE (although indexicality makes no sense in this setting). By (*) and Corollary 3.3, we can proceed as in Theorem 3.4 (ii) (*) to show that \(L_\kappa \) is RE.

The proof that \(L_\kappa \) is not RE using \(\gamma(*) \) is also as in Theorem 3.4 (ii).

In the uncountable case the positive results will of course hold. The proofs that \(L_\kappa \) is not RE can be carried out if \(\kappa \in L \) is regular, since we need to build generics over \(L_\kappa \).

We now consider the case where \(L_\kappa \) has no greatest cardinal (and hence is \(\Sigma_1 \)-admissible).

Theorem 3.7 If \(\kappa > \omega \) is a cardinal of \(L \), then \(L_\kappa \) is E-closed, satisfies MP and

\[L_\kappa \text{ is not RE (} \neq \Sigma_1(L_\kappa) \text{).} \]

proof RE \(\neq \Sigma_1 \) since we have MP

(\(\kappa \) cardinal of \(L \) => (\(\forall x \in L_\kappa \)[E(x) \in L_\kappa]) and hence the predicates on \(L_\kappa \):

\[D(e,x) = \{ e \}(x) \] are also \(\Sigma_1(L_\kappa) \).

Now suppose for a contradiction that \(\exists a \in L_\kappa \exists e \in \omega \) such that \(\forall x \in V \)

\[x \in L_\kappa \iff \{ e \}(a,x) \downarrow. \]

It suffices to show that \(\kappa \) itself is not RE since it is effec-
tive to decide whether a set is an ordinal or not. Obviously
\[\{e\}(a,\kappa)^\uparrow, \] thus if we take an elementary substructure of \(E(\kappa) \) containing \(a \cup \{a\} \) of cardinality less than \(\kappa \) and collapse to \(L_\tau \) for some \(\tau < \kappa \), then \(\{e\}(a,\tau)^\uparrow \) a contradiction.

If \(L_\kappa \) is countable and has no greatest cardinal we would expect the same result. This is in fact the case.

Theorem 3.8 Suppose \(L_\kappa \) is countable and is \(E \)-closed with no greatest cardinal. Then \(L_\kappa \) is not \(\text{RE} \).

proof suppose not and let \(a \in L_\kappa \) and \(e \in w \) such that \(\forall x \in V \)
\[x \in L_\kappa \iff \{e\}(a,x)^\downarrow. \]
W.l.o.g. \(a \) is an ordinal so let \(\gamma \geq a \) be least regular cardinal in the sense of \(L_\kappa \). Work over \(E(\gamma) \in L_\kappa \) using
\[\mathcal{F} = \{ f : \gamma \rightarrow \{0,1\} | f \in E(\gamma) < \gamma \}. \]
\(\mathcal{F} \)-generics/\(E(\gamma) \) can be built in \(L_\kappa \) since
\[L_\kappa \models 'E(\gamma) \text{ is regular}' \]
\(\mathcal{F} \)-generics/\(L_\kappa \) can be built using the countability of \(L_\kappa \). Proceed now as before to show that \(\exists w \not\in L_\kappa \) s.t.
\[\{e\}(a,w)^\downarrow, \] a contradiction.

Thus \(L_\kappa \) is not \(\text{RE} \).

As before this argument can be carried out for uncountable \(L_\kappa \)'s as above, if generics over \(L_\kappa \) exist (for example if \(\kappa \) is regular.)
Conclusion: The remaining open questions here have to do with certain uncountable situations as indicated. The methods used here rely on the existence of generic objects over uncountable initial segments of L, L_κ, such that \mathfrak{c}^L is singular. S. Friedman [1980b] has shown that in some cases these generics simply do not exist. We conjecture, however, that the above characterization of which E-closed L_κ's are RE holds as well in the uncountable case.

Note also that, with the exception of Theorem 3.4 (a) (ii) (*) we have shown that $O(x)$ (= order for constructibility of x) is computable in the situations where L_κ was shown to be RE. In addition, the order of constructibility function being computable is absolute. Thus its computability in these situations holds as well for all uncountable L_κ.
Friedman, S.D., Negative Solutions to Post's Problem II*, M.I.T. Preprint, [1980a].

, Uncountable Admissibles I: Forcing, M.I.T. Preprint, [1980b].

Green, J., Σ_1-Compactness for Next Admissible Sets, JSL 39, [1974], pp. 105-116.

and D. Normann, Effective Cofinalities in E-Recursion, University of Oslo Preprint Series, [1982].

and D.B. MacQueen, Selection in Abstract Recursion Theory, JSL 41, [1976], pp. 153-158.

Moschovakis, Y.N., Recursion in the Universe of Sets, mimeographed note, [1976].

