ISBN 82 553-0468-1 Mathematics No 19 November 16,

1981

CHARACTERIZATION OF GLOBAL PEAK SETS FOR $A^{\infty}(D)$.

John Erik Fornæss and Berit Stensønes Henriksen Inst. of Math., University of Oslo CHARACTERIZATION OF GLOBAL PEAK SETS FOR $A^{\infty}(D)$. John Erik Fornæss and Berit Stensønes Henriksen.

1. Introduction.

If K is a compact subset of the boundary ∂D of a domain D in \mathbb{C}^n , we call K a peak set for $A^{\infty}(D)$ if there exists a function f on \overline{D} holomorphic on D such that $f|K \equiv 1$ and |f| < 1 in $\overline{D} \setminus K$. We will be interested in the case when D is strictly pseudoconvex with \mathcal{L}^{∞} -boundary.

Chaumat and Chollet proved in [2] that K is a local peak set for $A^{\infty}(D)$ if and only if K is locally contained in integral manifolds for the complex structure of the boundary of D. They also proved [1] that K is a peak set for $A^{\infty}(D)$ if K is globally contained in an integral manifold.

The purpose of this paper is to discuss the following two questions ([1]):

Question 1: If K is locally contained in (\mathcal{E}^{∞}) integral manifolds, does there always exist an integral manifold containing all of K?

Question 2: Are local peak sets for $A^{\infty}(D)$ always (global) peak sets for $A^{\infty}(D)$?

Chaumat and Chollet, [3], have shown that the answer to question 1 is no for arbitrary strongly pseudoconvex domains in \mathbb{C}^n , $n \ge 4$. In section 3 we show that the answer is yes if n = 3 (if n = 2 the answer is trivially yes).

By introducing a suitable concept of dimension of K and using

techniques from [3] we prove (in section 4) that the answer to question 2 is yes.

2. Preliminary remarks.

If D is a strongly pseudoconvex domain with \mathcal{L}^{∞} boundary in \mathbb{C}^n the Darboux theorem gives the existence of local real coordinates $(x_1,\ldots,x_{n-1},\ y_1,\ldots,y_{n-1},t)$ on ∂D such that $T_{\mathbb{C}}\partial D=\{\xi\in T\partial D: \omega(\xi)=0\}$ where $\omega=\mathrm{dt}+\sum\limits_{i=1}^{L}x_i\mathrm{d}y_i$ and $T_{\mathbb{C}}\partial D$ is the complex tangentspace of ∂D .

DEFINITION 2.1:

A \mathbb{C}^{∞} submanifold of ∂D is an integral manifold if $TN_p \subset T_{\overline{Q}} \partial D_p$ whenever $p \in N$.

It is well known that integral manifolds are totally real and therefore have dimension at most n-1.

LEMMA 2.2 ([2], [6]).

An integral manifold is locally a graph over $\{x_{i_1},\dots,x_{i_k},\ y_{j_1},\dots,y_{j_l}\} \quad \text{where} \quad \{i_1,\dots,i_k\} \cap \{j_1,\dots,j_l\} = \emptyset.$

LEMMA 2.3 ([1], [6]):

If K is a compact subset of an integral manifold N, there exists a neighborhood w of K in \mathbb{C}^n and a function $u \in \mathbb{C}^{\infty}(w)$ with the following properties:

- (1) $D^{\alpha} \delta u|_{N} = 0$ for each multi index α ,
- (2) $\{p \in \omega : u(p) = 0\} \cap D = K$,
- (3) Re $u(p) \ge d^2(p,N)$ when $p \in w \cap D$ and
- (4) $u \ge 0$ on $N \cap \omega$.

In order to construct such u for a K which is locally contained in integral manifolds it is necessary to introduce a concept of dimension.

DEFINITION 2.4.

Let K be a subset of \mathbb{C}^n and $p \in K$. Then $\dim_p K = \min \{\dim M : M \text{ is a } C^\infty\text{-manifold} \text{ and there exists a neighborhood } \omega_p \text{ of } p$ in \mathbb{C}^n such that $\omega_p \cap K \subset M \}$.

If $K \subset \partial D$ is locally contained in integral manifolds we define dim int $K = \min\{\dim N : N \text{ is an integral manifold containing a neighborhood of p in } K\}.$

LEMMA 2.5:

If K is locally contained in integral manifolds, then $\label{eq:dim_pK} \text{dim} \, \text{int} \, _p K \, = \, \text{dim} \, _p K \, .$

Proof:

Obviously $\dim_p K \leq \dim_p K$ so we only have to show the reverse inequality. We choose an M of minimal dimension such that $K \cap \omega_p \subset M$. Suppose ω_p is chosen so small that $K \cap \omega_p$ is contained in an integral manifold N. Since M is minimal, $TM_p \subset TN_p$. Therefore the orthogonal projection M' of M into M is a submanifold of M and $\dim_p M' \leq \dim_p M$. A submanifold of an integral manifold and $K \cap \omega_p \subset M'$.

3. Integral manifolds.

In this section we at first find a "stratification" by integral manifolds whose union contains K. Secondly we apply this to show that the answer to question 1 (section 1) is yes when n = 3.

THEOREM 3.1:

If K is a compact subset of ∂D and is locally contained in integral manifolds, there exist integral manifolds N_1, \dots, N_m with the following properties:

- 1) $\dim N_i \leq \dim N_j$ when $i \leq j$
- $2) \quad \mathbf{i} = 1 \quad \mathbf{N}_{\mathbf{i}} \supset \mathbf{K}$
- 3) $K \cap N_i$ is open in K
- 4) $N_i \cap N_j$ is open in N_i when i < j.

Proof:

Assume that $r = \max_{p \in K} \dim_p K$. Observe that the set S of r-dimensional points of K is compact. Let U_1, \dots, U_k be integral manifolds such that:

- a) A neighborhood of S in K is contained in $j \buildrel U_j$.
- b) Each U, is a graph as in lemma 2.2.
- c) Either $\bar{U}_i \cap \bar{U}_j = \emptyset$ or $U_i \cap U_j$ contains r-dimensional points and a neighborhood of them in K.

If $\overline{U}_1 \cap \overline{U}_2 = \emptyset$, we let $U_{1,2} = U_1 \cup U_2$. If not, let p be an r-dimensional point of K in $U_1 \cap U_2$. Then $TU_{2|p} = TU_{1|p}$ which implies that U_1 is a graph over the same coordinates as U_2 in a neighborhood (in U_1) of the r-dimensional points of K in $U_1 \cap U_2$. Let F_1, F_2 parametrize U_1, U_2 around these points. We may assume that F_1, F_2 have the same domain of definition V.

Choose a C^{∞} function $\chi: V \to [0,1]$ such that $\chi(p_k)=1$ for all sufficiently large k if $F_1(p_k)$ converges to a point in $U_1 \setminus F_1(V)$ and $\chi(q_k)=0$ for sufficiently large k when

 $F_2(q_k)$ converges to a point in $U_2 \setminus F_2(V)$. Then $F = \chi F_1 + (1-\chi)F_2$ parametrizes a manifold whose tangent space at the r-dimensional points of K lies in the complex tangent space of ∂D .

There exist neighborhoods \widetilde{U}_i in U_i of the r-dimensional points in $U_i \setminus F_i(V)$ i = 1,2 such that $U_1,_2 := \widetilde{U}_1 \cup \widetilde{U}_2 \cup F(V)$ is a C^{∞} manifold containing a neighborhood relative to K of the r-dimensional points of K in $U_1 \cup U_2$.

If $w_{|U_1,2}$ vanishes on $K \cap U_1,2$, Theorem 7 of [2] gives the existence of an r-dimensional integral manifold $U_{1,2}$ containing $U_{1,2} \cap K$.

We know that $\omega|_{\widetilde{U}_{\mathbf{i}}} \equiv 0$ i = 1,2 so it suffices to show that $\omega|_{F(V)}$ vanishes on $K \cap F(V)$. But $\omega(F) = \chi \omega(F_1) + (1-\chi)\omega(F_2)$ on K and therefore equals zero. Doing the same with $U_{1,2}$ and U_3 we get $U_{1,2,3}$. Continuing inductively we obtain an integral manifold $N_r = U_{1,2,\ldots,k}$ containing a neighborhood in K of the r-dimensional points.

Let $N'_{\mathbf{r}} \subset N'_{\mathbf{r}} \subset N_{\mathbf{r}}$ be another integral manifold containing all r-dimensional points of K. Then the set of (r-1)-dimensional points in $K \setminus N'_{\mathbf{r}}$ is compact. (If this set is empty, consider instead the (r-2)-dimensional points etc.)

By the same process as above we get an (r-1)-dimensional integral manifold \widetilde{N}_{r-1} containing a neighborhood of the (r-1)-dimensional points of $K \setminus N'_r$ in $K \setminus N'_r$. If there are no (r-1)-dimensional points in $N_r \setminus N'_r$ we shrink N_r and \widetilde{N}_{r-1} , so that their closures are disjoint. Otherwise let $N'_r \subset \overline{N}'_r \subset N''_r \subset \overline{N}'' \subset \overline{N}'' \subset N_r$ be integral manifolds, and M the orthogonal projection π to N_r of a neighborhood in \widetilde{N}_{r-1} of the (r-1)-dimensional points of $K \setminus N'_r$ in $N_r \setminus N'_r$.

We can cover $M \cap (\overline{N_r'' \setminus N_r''})$ by a finite number of coordinate neighborhoods given as graphs (as in lemma 2.2). Patching these inductively as above to $(M \cap N_r'') \cup (\widetilde{N_{r-1}} \setminus \pi^{-1}(\overline{N_r''}))$ we obtain an integral manifold $\overline{N_{r-1}}$. Replacing N_r by a small neighborhood of $\overline{N_r'}$ and letting $N_{r-1} = \overline{N_{r-1}} \setminus \overline{N_r'}$ we obtain integral manifolds such that:

- i) N_r contains all r-dimensional points of K
- ii) N_{r-1} contains all the (r-1)-dimensional points in $K \setminus N_r$
- iii) $N_{r-1} \cap N_r$ is open in N_{r-1}
- iv) $K \cap N_i$ is open in K, i = r, r-1.

Continuing inductively we choose $N_{\mathbf{r}}'$ and $N_{\mathbf{r}-1}'$ as earlier. Then there exists an integral manifold $N_{\mathbf{r}-2}$ containing all $(\mathbf{r}-2)$ -dimensjonal points in $K \setminus (N_{\mathbf{r}}' \cup N_{\mathbf{r}-1}')$.

By the same process as above we may assume that $N_{r-2} \cap N_{r-1}$ is open in N_{r-2} and by repeating it for N_{r-2} and N_r we may assume that $N_{r-2} \cap N_r$ is open in N_{r-2} .

Finally we obtain N_1, \dots, N_m as required in the theorem.

THE CASE $D \subset \mathfrak{C}^3$.

In the rest of this section let D be a strongly pseudoconvex domain with \mathcal{L}^{∞} boundary in \mathfrak{C}^3 .

THEOREM 3.2:

If K is a compact set in 3D which is locally contained in integral manifolds, there exists an integral manifold N con-taining all of K.

Proof:

Let N_1 and N_2 be as in theorem 3.1. We may assume that $\dim N_i = i$ since the O-dimensional points are isolated in K.

There are two cases

- (1) When $N_1 \cap N_2$ contains no one-dimensional points, we can shrink N_1 and N_2 such that $\overline{N}_1 \cap \overline{N}_2 = \emptyset$ and then we can let N be $N_1 \cup N_2$
- (2) If $N_1 \cap N_2$ contains one-dimensional points we shrink N_1 and N_2 such that there exist two-dimensional integral manifolds N_3, \ldots, N_k with the properties:
- a) $N_1 \subset \bigcup_{i=3}^k N_i$,
- b) each N_i is a graph over a couple of coordinates when $i \ge 3$,
- c) $\mathbb{N}_{i} \cap \mathbb{N}_{j} \cap \mathbb{N}_{s} = \emptyset$, $2 \le i \le j \le s$,
- đ) K \cap N $_{
 m j}$ is open in K and
- e) if $\mathbb{N}_{i} \cap \mathbb{N}_{j} \neq \emptyset$, then there exists a one to one curve $Y_{ij}[a,b] \rightarrow \mathbb{N}$, such that $Y_{ij}(a,b) = \mathbb{N}_{1} \cap \mathbb{N}_{i} \cap \mathbb{N}_{j}$ when $i \geq 2$ and $j \geq 3$ and $Y(a) \in \mathbb{N}_{i} \setminus \mathbb{N}_{j}$ and $Y(b) \in \mathbb{N}_{j} \setminus \mathbb{N}_{i}$ if $i \neq j$.

Fix $2 \le i \le j$ so that $N_i \cap N_j \ne \emptyset$. If there exists a point on $\gamma_{ij} \cap N_i \cap N_j$ such that both can be parametrized by the same coordinates in a neighborhood of p, we can patch N_i and N_j as in theorem 2.1 preserving a), c), d) and e). If not, we can parametrize over pairs of coordinates which have one in common since there is a curve in the intersection. Without loss of generality we may assume that $N_i(N_j)$ is parametrized over $(x_1,x_2)((x_1,y_2))$.

Choose an interval $(c,d) \subset (a,b)$. Say N_j is given by (x_1, X_2, Y_1, y_2, T) in the strip over $\gamma_{ij}((c,d))$. If $\frac{\partial X_2}{\partial y_2} \neq 0$ at a point on $\gamma_{ij}((c,d))$ we can reparametrize over (x_1, x_2) in a neighborhood and then patch N_i, N_j there as before. Otherwise we twist N_j around γ_{ij} in the following way: Let $p \in \gamma_{ij}(c,d)$ and choose $\eta_2 = \eta_2(x_1, y_2)$ such that $\frac{\partial \eta_2}{\partial y_2} \neq 0$ in a neighborhood of p, $\eta_{2|N_1} = 0$ and $\eta_2 = 0$ outside a small neighborhood V of p.

We are interested in finding η , and θ such that

$$d(T+\theta) + x_1 d(Y_1 + \eta_1) + (X_2 + \eta_2) dy_2$$

$$= d\theta + x_1 d\eta_1 + \eta_2 dy_2 = 0$$

which is possible if $dx_1 \wedge d\eta_1 + d\eta_2 \wedge dy_2 = 0$. Furthermore we want θ and η , to equal zero on N_1 and outside U.

Solving the equation $\frac{\partial \eta_1}{\partial y_2} = \frac{\partial \eta_2}{\partial x_1}$ with initial condition $\eta_1 |_{N_1} = 0$ we obtain a function η_1 vanishing outside a small neighborhood of p. Next we solve the equations $\frac{\partial \theta}{\partial \eta_1} = -x_1 \frac{\partial \eta_1}{\partial x_1}$ and $\frac{\partial \theta}{\partial y^2} = -(x_1 \frac{\partial \eta_1}{\partial y_2} + \eta_2)$. Since $d\theta|_{N_1} ||d\eta_1|_{N_1} = 0$ we can choose θ such that $\theta|_{N_1} = 0$. These equations also imply that $\theta = 0$ outside a small neighborhood of p.

4. Global peak functions.

We shall show that the answer to question 2 is yes for a general $n \ge 2$.

LEMMA 4.1:

Let D be a strongly pseudoconvex domain in \mathbb{C}^n with \mathbb{E}^{∞} boundary. If $K \subset \partial D$ is compact and contained in $N_1 \cup N_2$ where N_1, N_2 are integral manifolds and $\dim N_1 < \dim N_2, N_1 \cap N_2$ is open in N_1 and $K \cap N_1$ is open in K, then K is a peak set for $A^{\infty}(D)$.

Proof:

Choose $N_2^1 \subset N_2^2 \subset N_2^3 \subset N_2^4 \subset N_2$ such that $K \setminus N_2^1 \subset N_1$ and let $K_2 = \overline{N}_2^4 \cap K$ and $K_1 = K \setminus N_2^1$.

Choose ζ^{∞} cut-off functions χ_0 and χ with the properties: $\sup \chi_0 \subset \mathbb{N}_2^4 \setminus \mathbb{N}_2^1 \text{ and } \chi_0 \equiv 1 \text{ on } \mathbb{N}_2^3 \setminus \mathbb{N}_2^2, \quad \chi_1 \mathbb{N}_2^2 \equiv 1 \text{ and }$ $\sup \chi \subset \mathbb{N}_2^3.$

We can find a function $g \in \mathcal{L}^{\infty}(N_2, \mathbb{R})$ which equals $d^2(p, N_1)$ near $N_1 \cap N_2$.

From [5] we have the existence of functions $\tilde{\chi}_0, \tilde{\chi}$ and \tilde{g} where:

a)
$$\widetilde{\chi}_0|_{N_2} = \chi_0$$
, $\widetilde{\chi}|_{N_2} = \chi$ and $\widetilde{g}|_{N_2} = g$.

- b) $D^{\alpha} \delta \widetilde{\chi}_{0} |_{N_{2}} = D^{\alpha} \delta \widetilde{\chi} |_{N_{2}} = D^{\alpha} \delta \widetilde{g} |_{N_{2}} = 0$ for each multiindex α .
- c) $\widetilde{\chi}_o(\widetilde{\chi})$ is locally constant in \mathfrak{C}^n near where $\chi_o|_{N_2}(\chi|_{N_2})$ is locally constant.
- d) First derivatives of $\tilde{\chi}_0, \tilde{\chi}$ and \tilde{g} vanish on N_2 in directions perpendicular to $TN_2 + iTN_2$.

Lemma 2.3 implies that there exists u_i satisfying (1) \rightarrow (4) when $K = K_i$ and $N = N_i$, i = 1,2.

Let $\widetilde{u} = \widetilde{\chi}(u_2 + \varepsilon \widetilde{\chi}_0 \widetilde{g}) + (1 - \widetilde{\chi})u_1$. Then $\widetilde{u} \in \mathcal{F}^{\infty}(w)$ where w is a neighborhood of $N_2 \cup N_1$ in \mathfrak{C}^n and:

- i) $\widetilde{u} = u_2$ when $\widetilde{\chi} = 1$, $\widetilde{\chi}_0 = 0$ and $\widetilde{u} = u_1$ when $\widetilde{\chi} = 0$.
- ii) $D^{\alpha} \delta \widetilde{u}|_{N_1 \cup N_2} \equiv 0$ for each multiindex α .
- iii) Re $\tilde{u}(p) \ge \frac{\epsilon}{2} d^2(p, N_2^2 U N_1) + O(Im \tilde{x} \cdot Imu) + O(Im(1-\tilde{\chi}) \cdot Im u_1)$ if ϵ is sufficiently small.

Define $\tau(p) = Jn(p)$ where n(p) is the outer normal to ∂D at p. Intergrate $\tau(p)$ from N_2 and let \widetilde{N}' be the union over N_2 of the integral curves. If U is a small neighborhood of N_2 , $\widetilde{N}' \cap U = \widetilde{N}$ is totally real. When $p \in \widetilde{N}$ there exists a unique $p_0 \in N_2$ and integral curve γ for τ such that $\gamma: [0,z] \to \widetilde{N}$, z=z(p), and $\gamma(0)=p_0$, $\gamma(z)=p$. The function $z:\widetilde{N} \to \mathbb{R}$ is $\widetilde{\mathcal{L}}^\infty$ and vanishes to first order on N_2 .

Again we can find a \mathcal{T}^{∞} -function \widetilde{z} where $\widetilde{z}|_{\widetilde{N}} = z$, first derivatives of \widetilde{z} in directions in $T_{\mathfrak{C}} \partial D$ vanish on N_2 and $D^{\alpha} \delta \widetilde{z}|_{\widetilde{N}} \equiv 0$ for each multiindex α . Let $\psi = \lambda \widetilde{\chi}_{0}(\widetilde{z})^{2}$ where $\lambda \gg 1$ is chosen sufficiently large. Then $u = \widetilde{u} + \psi$ has the properties:

- a) $\{p: u(p) = 0\} = K$
- b) $\mathbb{D}^{\alpha} \overline{\partial} u |_{\mathbb{N}_{2} \cup \mathbb{N}_{1}} = 0$ for each α .
- c) There exists a C > 0 such that $Re u(p) \ge Cd^2(p, N_2^2 \cup N_1)$.

By the classical techniques described in [1], [2] and [4] we can now find a function in $A^{\infty}(D)$ which peaks at K.

THEOREM 4.2:

If a compact set $K \subseteq \partial D$ is locally contained in integral manifolds, then K is a peak set for $A^{\infty}(D)$.

<u>Proof:</u> This goes as in Lemma 4.1 inductively, so we will be very brief. Let N_1, \ldots, N_m be as in theorem 3.1 and $N_i' \subset N_i' \subset N_i$

such that the families $\{N_i^{"}\}_{i=1}^m$ and $\{N_i^{'}\}_{i=1}^m$, satisfy $(1) \rightarrow (4)$ in the theorem. If $K_i = K \cap N_i^{'}$ we choose u_i for the pair K_i, N_i . Modifying the u_i 's inductively as in Lemma 4.1 we may assume that $\text{Re}\,u_j \gtrsim d^2(p,N_i)$ in a neighborhood of $N_i \cap N_j$ whenever i < j. We can patch the u_i 's as in lemma 4.1 and finally we get a function $u \in \mathcal{F}^\infty(w)$ (w is a neighborhood of K in \mathcal{C}^n) such that:

- (1) Re u(p) > 0 when $p \in \overline{D} \setminus K$
- (2) $u|_{K} = 0$
- (3) $|\delta u| \leq c_k (\text{Re } u)^k \text{ for each } k.$

References.

- 1. Chaumat, J., Chollet, A.M.: Ensembles pics pour $A^{\infty}(D)$. Ann. Inst. Fourier 29 (1979), 171-200.
- 2. Chaumat, J., Chollet, A.M.: Caracterization et propriétés des ensembles localement pics pour A (D). Duke Math. J. 47 (1980), 763-787.
- 3. Chaumat, J., Chollet, A.M.: Ensembles pics pour $A^{\infty}(D)$ non globalement inclus dans une variété integrale. (Preprint)
- 4. Hakim, M., Sibony, N.: Ensembles pics dans des domaines strictement pseudoconvexes. Duke Math. J. 45 (1978), 601-617.
- 5. Harvey, F.R., Wells, R.O.: Holomorphic approximation and hyperfunction theory on a totally real submanifold of a complex manifold. Math. Ann. 197 (1972), 287-318.
- 6. Løw, E.: Toppinterpolasjonsmengder i randa til strengt pseudokonvekse områder. (Cand.real thesis, Univ. of Oslo, 1979).