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1. Introduction.

If K 1is a compact subset of the boundary 9D of a domain D
in 6", we call K a peak set for ACO(D) if there exists a
> _function £ on D holomorphic on D such that f|K = 1 and
|f] <1 in DNK. We will be interested in the case when D is
strictly pseudoconvex with..Eﬁn—boundary.

Chaumat and Chollet proved in [2] that‘ K is a local peak set
for A(D) if and only if K is locally contained in integral
manifolds for the complex structure of the boundéry of D, They
also proved 1] that K is a peak set for AOO(D) if X is
globally contained in an integral manifold.

The purpose of this paper is to discuss the following two

questinns (T171):

Question 1: If K is locally contained in &) integral

manifolds, does there always exist an integral manifold containing

all of K?

Question 2: Are local peak sets for ADC(D) always (global) peak
sets for AJG(D)?

Chaumat and Choilet, [31, have shown that the answer to question
1 is no for arbitrary strongly pseudoconvex domains in Gn, n_-4,
In section 3% we show that the answer is yes if n =3 (if n = 2
the answer is trivially yes).

By introducing a suitable concept of dimension of K and using
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techniques from [3] we prove (in section 4) that the answer to

question 2 is yes.’

2. Preliminary remarks.

If D is a strongly pseudoconvex domain with Zf°° boundary

in &% +the Darboux theorem gives the existence of local real
coordinates (xq,op.,xn_q, FqreeesTy 4,t) on ®D such that
- n-"1
— . — 7 —
@D = {§€TaD: w(g) = 0} where w = dt+-i§1xidyi and Tq3D

is the complex tangentspace of aD.

T

DEFINITION 2.1:

A % submanifold of 3D is an integral manifold if
TNP CTG} BDP wPenever “p €N.

It is well known that intégral manifolds are totélly real and

therefore have dimension at most n-1.

LEMMA 2.2 ([2], [6D).

An integral manifold is locally a graph over

{Xi|’°°°’xik’ YJ1v°°-9yjl} where - {iqa"o)ik}n {j""""jl} =g.

LEMMA 2.3 ([1], [61):

If K 1is a compact subset of an integral manifold N, there

exists a neighborhood w of K in €% and a function uJECCO(w)

with the following properties:

1) DGEu}N = 0 for each multi index a,
(2) {p€w: u(p)=0}nD =K ,

(3) Reu(p)> dg(p,N) when p€wND and
(#4) u>0 on NNw,
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In order to construct such u for a K which is locally con-
tained in integral manifolds it is necessary to introduce a con-

cept of dimension.

DEFINITION 2.4,

Let K be a subset of €% and p €K. Then dimpK.—.min{dimM: M
is a Coo-manifold and there exists a neighborhood wp of p

in @ such that wDﬂKCM}o

If KcoD is ldcally contained in integral manifolds we define
dim int pK = min{dinN : N is an integral manifold confaining a

neighborhood of p in K}.

LEMMA 2.5:

If K is locally contained in integral manifolds, then

dimint K = dim K.
P P

Obviously dimpKf_ dimint pK so we only have to show the
reverse inequality. We choose an M of minimal dimension such
that KNw M. Suppose w is chosen so small that KNu, is
contained in an integral manifold N. Since M is minimal,
™ pCTNpo Therefore the orthogonal projection M' of M into N
is a submanifold of N and dimM' <dimM. A submanifold of an

integral manifold is an integral manifold and KﬂwPCM' .

2. Integral manifolds.

In this section we at first find a "stratification" by integral
manifolds whose union contains K. Secondly we apply this to show

that the answer to question 1 (section 1) is yes when n = 3.



THEOREM 2%.1:

If K is a compact subset of D and is locally contained in
integral manifolds, there exist integral manifolds N,',...,Nm

with the following properties:

1) dimNi<dim1\TJ. when 1<
m

2) YN 2K

3) KNN; is open in K

4) Nian is open in N, when i<j.

Proof:
Assume that o = maxDEKdim PK, Observe that the set 8 of
r-dimensional points of K 1is compact. Let U,I,M(.,Uk be inte-

gral manifolds such that:

k
a) A neighborhood of S in K is contained in Q,]Uj.

J
b) Each Uj is a graph as in lemma 2.2,
c¢) Either Uint =7 or Uint contains r-dimensional points

and a neighborhood of them in K.

If 0,Nn0, = &, we let U,"2 = U,UU,. If not, let p be an

r-dimensional point of K in U,NU,. Then Uy = TU,|, which implies

d
that U, is a graph over the same coordinates as U2 ?.n a neigh-
borhood (in U,,) of the r-dimensional points of K in U, NTU,,
Let F,l,F2 parametrize U,',U2 around these points. We may
assume that F,I,F2 have the same domain of definition V.

Choose a C ™ function x : V- [0,1] such that x(pk) = 1
for all sufficiently large k if F, (pk) converges to a point

in U,l\F,‘(V) and x(qk) = 0 for sufficiently large k when
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FE(qk> converges to a point in U,\ FE(V)° Then F = XF4-+(1—x)F2
parametrizes a manifold whose tangent space at the r-dimensional
points of K lies in the complex tangent space of 2D,

There exist neighborhoods ﬁi in Ui of the r-dimensional
oints in U,NF.(V) i = 1,2 such that U,'5:=U,UU,UF(V) is
p - i 1(\) ’ 1,2 1 2 )

a C = manifold containing a neighborhood relative to K of the
r-dimensiond points of X in UqlJUZ,

If w|U v vanishes on Kf\Uq'e, Theorem 7 of [2] gives the

. /‘ 2 9
existence of an r-dimensional integral manifold U1 5 containing .
b

1
U,]’gﬂK:.

We know that wlﬁ =0 i=1,2 so it suffices to show that

i
“ () vanishes on EKNF(¥) But w(F) =xw(F1)-+(1—x)w(F2) on K
and therefore equals zero. Doing the same with Uq > and U3
9

we get U, 5 3 Continuing inductively we obtain an integral

9=
manifold N_ =T containing a neighborhood in X of

r 192,000,k
the r-dimensional points.

Let NéczN;<:Nr be another integral manifold containing all
r-dimensional points of K. Then the set of (r-1)-dimensional
points in K‘\N; is compact. (If this set is empty, consider
instead the (r-2)-dimensional points etc.)

By the same process as above we get an (r-1)-dimensional
integral manifold Nf—ﬂ containing a neighborhood of the (r-1)-
dimensional points of K\\NL in K\~N;. If there are no (r-1)-

. . . . ! . =
dimensional points in Nr\ Nr we shrink Nr and ‘Nr-ﬂ’ so that
their closures are disjoint. Otherwise let

' ' n i ni it . .
NrchchCNrch clcN, Dbe 1ntegra1 manifolds, and M the
orthogonal projection m to N_ of a neighborhood in ﬁruﬂ of

T
the (r-1)-dimensional points of K‘\N; in Nr\ N;.
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We can cover MN (N;’\N'I',) by a finite number of coordinate
neighborhonds given as graphs (as in lemma 2.2). Patching these
inductively as above to (MQN;) U (ﬁr_,l\ . (N;" ))  we obtain en
integral manifold ﬁr-—’P Replacing Nr by a small neighborhood

~
of NI'_ and letting N, , = N\ NI’, we obtain integral manifolds

such that:
i) N, contains all r-dimensional points of K
ii) N._, contains all the (r-1)-dimensional points in LU

iii) Nr—”lnNr is open in Nr-’l

iv) KNN. is open in K, i = r,r-1.

Continuing inductively we choose N;. and N;_,] as earlier.
Then there exists an integral manifold N D containing all
(r-2)-dimensjonal points in K\ (N;Uerq),

By the same process as above we may assume that Nr—EONr—’I
is open in Nr—2 and by repeating it for Nr-2 and Nr we may
assume that Nr__zﬂNI_ is open in Nr-2"

Finally we obtain N’l"’“ ,Nm as required in the theoren.

THE CASE Dc @,

In the rest of this section let D be a strongly pseudoconvex

domain with 7;00 boundary in 65,‘

THEOREM %.2:

If K is a compact set in oD ‘which is locally contained in
integral manifolds, there exists an integral manifold N con-

taining all of K.



Proof:
Let l\T,I and N2 be as in theorem 3.1. We may assume that

c'iiml\Ii = 1 since the O-dimensional points are isolated in K.

There are two cases

(1) When N,NN, contains no one-dimensional points, we can
shrink N, and N2 such that N1 ﬂI\T2 = @ and then we can
let N be N,l U N2

(2) 1If N, NN, contains one-dimensional points we shrink N,
and N2 such that there exist two-dimensional integral

manifolds NB’ ooo ’Nk with the properties:

b) each Ni is a graph over a couple of coordinates when 1i2>3,
c) NiﬂNjﬂNS=¢, 2f_i<,j<s?
a) KﬁI\T:j is open in K and

e) if Nian #Z ¢, then there exists a one to one curve
Yij[a,b]-'N, such that Yij(a,b) = N,lﬂNiﬂNj when
i>2 and j=3 and y(a) €N\ N and Y(b)eNj\ Ny
if 1 # J.

Fix 2<i<j so that Nian # @. If there exists a point
on Yij ﬂNi ﬂNJ. such that both can be parametrized by the same
coordinates in a neighborhood of p, we can patch Ni and l\Ij
as in theorem 2.7 preserving a), c), d) and e). If not, we can
parametrize over pairs of coordinates which have one in common

since there is a curvsz in the intersection. Without loss of

generality we may assume that Ni(NJ.) is parametrized over

(24,%5) (34, 75)) ¢
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Choose an interval (c,d)cc(a,b). Say N,j is given by
(xq,Xg,Yq,yz,T) in the strip over Yij((c,d)). If ayz £0 at
a point on yij((c,d)) we can reparametrize over (xq,xz) in a
neighborhood and then patch Ni,Nj there as before. Otherwise
we twist Nj around vy i3 in the following way: Let p*Eyij(c,d)

an
and choose n, = n2(x,‘,y2)b such that 3y2 # 0 1in a neighborhood
of p, n2lN =0 and n,= O outside a small neighborhood U
1

of p.

We are interested in finding n, and 6 such that
a(T+6) + x,4d(Y1+n,) + (X+n,)dy,
= d64-x1dn14-n2dy2 =0

which is possible if dqu\dn14-dn2/\dy2 = 0, Furthermore we
want 6 and m, to equal zero on N, and outside U.

Bnq Bﬂz

Solving the equation 3" S5 with initial condition
/|

nﬂlN = 0 we obtain a functlon N4 vanishing outside a small
1

. . 38
neighborhood of p. Next we solve the equations 33: = -X, 5%

an
38 / . _
and g;g = -(x, §§E+~n2), Since delNﬂﬂdnqqu = 0 we can
choose 6 such that 9|N £ 0. These equations also imply
1
that © = 0 outside a small neighborhood of p.

4, Global peak functions.

We shall show that the answer to question 2 is yes for a

general n>2.



LEMMA 4.,1:
Let D bYbe a strongly pseudoconvex domain in €% with fz >
boundary. If K<&oD is compact and contained in N,] UN2 where
N, ,N2 are integral manifolds and dimN, <dimN2, N, 0N2 " is open -
in N, and KNN; is open in K, then K is alpeak set for AT (D).

Proof:
Choose NJccNeccN2ceNTccN, such that K\NJCN, and
p =N5 ceN5 ce Ny c= N,y 2 CNy

4 . \ §J
let K2 = Nan 8116 K/‘ = K\Nzu

Choose ?;OO cut--off functions Xo and ¥ with the properties:

SWN%C@\@ wdxos1onﬂgm§,M%51 and

supp X N3,
We can find a function g¢€ égo(NE,]R)' which equals d2(p,N,‘)
near N,] n N2 .

~

From [5] we have the existence of functions xo,)’z and g where :

a) XO‘Nz = XO, X?N?= X and glNg = g,

b) DS

o Qs .
o|N2 =D SX!N2 =D 5g‘N2 = O for each multiindex «.

c) )?O()?) is locally constant in €% near where XoéN (X‘N2) is
2
locally constant.
d) TFirst derivatives of )’ZO,)'Z and g vanish on N, in direc-

tions perpendicular to TN2+ i‘I‘NZ.

Lemma 2.% implies that there exists ug satisfying (1) = (&)

when K

Ki alld N = Ni, i = 1,29
Let U = i(u2+ e§0§>+(1-§)u1. Then EE;JOO (w) where w is

a neighborhood of N,UN, in €% and:
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i) E:u.2 when ;{:’1,;0:0 and E:u,] when ¥ = O,

ii) &% , = 0 for each multiindex a.
'N/|UN2

ii1) Re i(p) 2%4° (p,N3 UN,) + O(Tm X+ Tma)+0(Im(1-X) - Imu,)

if e 1is sufficiently small.

Define 1T(p) = Jn(p) where n(p) is the outer normal to 3D
at p. Intergrate 7T(p) from N, and let ' be the union
over N2 of the integral curves. If U is a small neighborhood
of W, N'nu = & is totally real. When p€N there exists a
unique Py .E I\T2 and integral curve Y for T such that
y:[0,2z]~N, z = z(p), and y(0) = Dy> y(z) = p. The function
z:N-R is o * and vanishes to first order on N

Again we can find a ;w—function 7 where E\ﬁ = z,: first
derivatives of z in directions in TGBD vanish on N, and

DOLSEWE O for each multiindex a. Let ¢ = )&0(2)2 where A>>1

is chosen sufficiently large. Then wu = U+ § has the properties:
a) {p:u(p) =0} =K
b) D*3u] =0 for each a.

c) There exists a C>0 such that Re u(p)ZCd2(p,N§UN,‘).

By the classical techniques described in 1), [2] and [4] we

can now find a function in AOO(D) which peaks at K.

THEOREM 4.2:

If a compact set K<dD is locally contained in integral mani-

folds, then K is a peak set for AOO(D).

Proof: This goes as in Lemma 4.7 inductively, so we will be very

. . 1" 1
brief. Let N’l’”“’Nm be as in theorem 3.1 and NiCCNiCCNi
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such that the families {N;}i‘:,, and {Ni i‘:,], satisfy (1)~ (4)

in the theorem. If K, = Kf\Ni we choose wu; for the pair

Ki’Ni° Modifying the ui's inductively as in Lemma 4.1 we may
assume that Relﬂjzdch’Ni) in a neighborhood of NiﬂNj when-
ever 1i<j., We can patch the ui’s as in lemma 4.1 and finally
we get a function ué€ Ecn(w) (w is a neighborhood of K in &™)

such that:
(1) Reu(p)>0 when p€D\K
(2) u\K=O

(3) 18ul =Cy (Rew)¥ for each k.

References.

1. Chaumat, J.,Chollet, A.M.: Ensembles pics pour AOC-*(D)°
Ann. Inst. Fourier 29 (1979), 171-200.

2. Chaumat, J.,Chollet, A.M.: Caractggization et propriétés des
ensembles localement pics pour A~ (D). .
Duke Math. J. 47 (1980), 763-787,

3. Chaumat, J., Chollet, A.M.: Ensembles pics pour AcogD)
non globalement inclus dans une variété integrale. (Preprint)

4, Hakim, M.,Sibony, N.: Ensembles pics dans des domaines
strictement pseudoconvexes. Duke Math. J. 45 (1978), 601-617.

5. Harvey, F.R., Wells, R.O.: ,Polomorphic approximation and
hyperfunction theory on a &' totally real submanifold of a
complex manifold. Math. Ann. 197 (1972), 287-318.

6. Leow, E.: Toppinterpolasjonsmengder 1 randa til strengt
pseudokonvekse omrader. (Cand.real thesis, Univ. of Oslo,

1979).



