ISBN 82 553-0467-3 Mathematics No 18 - November

1981

REGULARIZATIONS OF PLURISUBHARMONIC FUNCTIONS

John Erik Fornæss Inst. of Math., University of Oslo

Regularizations of plurisubharmonic functions.

John Erik Fornæss

1. <u>Introduction</u>. Plurisubharmonic functions are useful tools in the theory of several complex variables. They are easier to construct than holomorphic functions, but properties of plurisubharmonic functions on a space often carry over to properties of holomorphic functions. In this process it is usually at first necessary to approximate a given plurisubharmonic function with one which is more regular. Richberg proved in 1968 the following regularization-result:

Theorem ([3]). Let ρ be a continuous strongly plurisub-harmonic function on a complex manifold M. Then there exists a sequence $\{\rho_n\}_{n=1}^{\infty}$ of \mathbb{C}^{∞} plurisubharmonic functions on M such that $\rho_n \setminus \rho$.

For domains of holomorphy M in \mathbb{C}^n , the conclusion of the theorem holds with the only hypothesis that ρ is plurisubharmonic. However, there exists also a domain Ω in \mathbb{C}^2 and a discontinuous plurisubharmonic function $\rho: \Omega \to \mathbb{R}$ for which there does not exist a sequence $\{\rho_n\}$ of continuous plurisubharmonic functions such that $\rho_n \searrow \rho$ (see [1]).

In this paper we show that for each positive integer $k=0,1,\ldots$ (or $k=\infty$) there exists a complex manifold M_k with a ℓ^k (or ℓ^∞) plurisubharmonic function ρ_k and two points ρ_k,q_k such that $\rho_k(\rho_k)\neq\rho_k(q_k)$ while all ℓ^{k+1}

(or \mathcal{E}^{ω}) plurisubharmonic functions σ on M_k satisfy the equation $\sigma(p_k) = \sigma(q_k)$.

2. The Examples.

We will consider three cases, I: k = 0, II: $1 \le k \le \infty$ and III: $k = \infty$.

I: Let $\{r_n\}_{n=1}^{\infty}$ be a counting of the rational points in the open unit interval (0,1). If we define $p_n = r_n + \frac{1}{2^n} + \frac{i}{2^n}$ and $q_n = r_n + \frac{2}{2^n} + \frac{i}{2^n}$ we obtain two sequences clustering at all points in $[0,1] \subset \mathbb{R} \subset \mathbb{C}$. The discs $\Delta_n = \{z \in \mathbb{C}; |z-p_n| < \frac{1}{2^{n+2}}\}$ and $D_n = \{z \in \mathbb{C}; |z-q_n| < \frac{1}{2^{n+2}}\}$ have pairwise disjoint closures which do not intersect the real axis. Let χ be a \mathbb{Z}^{∞} function with compact support in the unit disc, $0 \le \chi \le 1$ and $\chi = 1$ in a neighborhood of zero.

Lemma 1. There exist concentric discs $\Delta_n' \subset \Delta_n$, $D_n' \subset D_n$, Δ_n', D_n' have the same radius, $n = 1, 2, \ldots$ and a continuous subharmonic function ρ on C such that $\rho(z) = z\overline{z}$ for $z \in \mathbb{R}$ and $\rho \mid_{\Delta_n'} \equiv r_n^2 \equiv \rho \mid_{D_n'} \forall n$.

Proof. We define ρ by $\rho(z) = z\overline{z}$ on $\mathbb{C} - U\Delta_n \cup D_n$. On Δ_n , we let $\rho(z) = \max\{z\overline{z} + \varepsilon_n\chi(\frac{z-p_n}{2^{n+2}})\log|z-p_n|, r_n^2\}$ and similarly on $D_n, \rho(z) = \max\{z\overline{z} + \varepsilon_n\chi(\frac{z-q_n}{2^{n+2}})\log|z-q_n|, r_n^2\}$ for $\varepsilon_n > 0$ small enough.

To define M_0 , let at first Ω be the open set in \mathbb{C}^2 defined by:

$$\Omega = \{(z, \omega); |\omega| < \frac{1}{2}\} \cup \{z \in \bigcup \Delta_n' \cup D_n' \text{ and } |\omega| < 2\}.$$

The complex manifold M_{O} is obtained by making for each n the identification

$$z \in \Delta_n', \frac{1}{2} < |w| < 2 \implies (z + \frac{1}{2^n}, \frac{1}{w}) \in \{z \in D_n' \text{ and } \frac{1}{2} < |w| < 2\}.$$

We define a continuous plurisubharmonic function ρ_0 on M_0 by $\rho_0(z,w)=\rho(z)$. By Lemma 1 this is invariant under the above identifications and hence is well defined. We let $p_0=(0,0)$ and $q_0=(1,0)$. Then $\rho_0(p_0)=0$ and $\rho_0(q_0)=1$. Assume that there exists a ϵ^1 plurisubharmonic σ such that $\sigma(p_0)\neq\sigma(q_0)$. Writing z=x+iy, it follows that $\frac{\partial\sigma}{\partial x}(x_0,0)\neq0$ for some $x_0\in(0,1)$. This implies that there exists an n so that $\sigma(p_n)\neq\sigma(q_n)$. However, there exists a compact complex submanifold -a \mathbb{P}^1-of M_0 containing both p_n and q_n . Hence $\sigma(p_n)=\sigma(q_n)$, a contradiction.

II: Let $\{\mathbf{r}_n\}_{n=1}^{\infty}$ be a counting of the rational points in the open unit interval (0,1). The points $\mathbf{p}_n = \mathbf{r}_n + \frac{\mathbf{i}}{2^n}$ cluster all over [0,1]. Each \mathbf{p}_n is the limit of a sequence $\{\mathbf{p}_{n,m}\}_{m=n}^{\infty}$, $\mathbf{p}_{n,m} = \mathbf{p}_n + \frac{1}{2^m}$. Let $\mathbf{p}(\mathbf{z})$ be the subharmonic function $\mathbf{z}\mathbf{\bar{z}}$ on $\mathbf{C}(\mathbf{z})$. We will set up a perturbed version of this situation. To avoid

confusion we will use 's. As before let $p_n' = r_n + \frac{i}{2^n}$. Let $\varepsilon \in (0,1)$ be given. We define $p_{n,2m}' = p_n' + \frac{1}{2^{2m}}$ and $p_{n,2m+1}' = p_n' + \frac{1}{2^{2m+1}} + \varepsilon (\frac{1}{2^{2m+3}})^{k+1}$ if $2m \ge n$ and $2m+1 \ge n$ respectively.

Let $\chi: \mathbb{C} \to [0,1]$ be a $\not\subset^\infty$ function, $\chi(z') = 1$ in a neighborhood of 0, χ has support in $\{|z'| < 1\}$. The discs $\Delta_{n,m} = \{z' \in \mathbb{C}; |z' - p_n' - \frac{1}{2^m}| < \frac{1}{2^{m+2}} \text{ have disjoint closures.}$ We define $\rho'(z')$ by $\rho' = z'\bar{z}'$ on $\mathbb{C} - U\Delta_{n,2m+1}$. On $\Delta_{n,m}$ when m

is odd, let

$$\rho'(z') = \left[1 - \chi(\frac{z' - p_n' - 1/2^m}{1/2^{m+2}})\right] z' \overline{z}' + \chi(\frac{z' - p_n' - 1/2^m}{1/2^{m+2}}) |z' - \varepsilon(\frac{1}{2^{m+2}})^{k+1}|^2.$$

Observe that if ε is small enough then there exists a neighborhood of each $p'_{n,2m+1}$ on which $\rho'(z') = |z' - \varepsilon(\frac{1}{2^{2m+3}})^{k+1}|^2$.

Lemma 2. If ε is small enough, then ρ' is a \mathcal{E}^k subharmonic function.

<u>Proof.</u> It suffices to show that ρ' is \mathcal{E}^{k} and that if ϵ is small enough then $\rho'|_{\Delta_{n},2_{m}+1}$ is subharmonic for all n,m.

On $\Delta_{n,m}$ - when m is odd - ,

$$\rho'(z') = z'\bar{z}' + \chi(\frac{z'-p_n'-1/2^m}{1/2^{m+2}})(|z'-\varepsilon(\frac{1}{2^{m+2}})^{k+1}|^2 - z'\bar{z}').$$

Differentiating the χ at most k times gives an expression like $\mathcal{O}((2^{m+2})^k)$ while any derivative of the function in () is $\mathcal{O}(\varepsilon(\frac{1}{2^{m+2}})^{k+1})$. Hence if α is any multiindex of order at most k, then $D^{\alpha}\rho' = D^{\alpha}z'\bar{z}' + \varepsilon \mathcal{O}(\frac{1}{2^{m+2}})$. This proves that ρ is \mathcal{E}^k . Since also

$$\frac{\partial^2 \rho'}{\partial z' \partial \overline{z}'} = 1 + \mathcal{O}((2^{m+2})^2 \cdot \varepsilon(\frac{1}{2^{m+2}})^{k+1}) \quad \text{on} \quad \Delta_{n,m}, \quad m \quad \text{odd},$$

it follows that $\,\rho^{\,\prime}\,$ is subharmonic on all $\,\Delta_{n\,,m}\,$ if $\,\varepsilon\,$ is small enough (recall that $\,k\geq 1)\,.$

In the rest of the construction we fix an $\varepsilon>0$ small enough. We now choose small discs $\alpha_{n,m}$ centered at $p_{n,m}$ and $\widetilde{\Delta}'_{n,m}$

centered at p'n,m such that

- (i) $\chi_{n,m}$ and $\chi'_{n,m}$ have the same radius,
- (ii) the $\mathfrak{T}_{n,m}$'s $(\mathfrak{T}_{n,m}'$ s) have pairwise disjoint closures which do not intersect the real axis,
- (iii) if m is even, then $\rho' = z'\overline{z}'$ on $\chi'_{n,m}$ and

(iv) if m is odd, then
$$\rho' = |z' - \varepsilon(\frac{1}{2^{m+2}})^{k+1}|^2$$
 on $\widetilde{\Delta}'_{n,m}$.

Let $\Omega_1^k \subset \mathbb{C}^2(z, \mathbf{w}), \Omega_2^k \subset \mathbb{C}^2(z', \mathbf{w}')$ be open sets,

$$\Omega_1^k = \{ |\mathbf{w}| < \frac{1}{2} \} \cup \{ z \in U_{n,m} \text{ and } |\mathbf{w}| < 2 \}$$

$$\Omega_2^k = \{|\mathbf{w}'| < \frac{1}{2}\} \cup \{z' \in U\widetilde{\Delta}'_{n,m} \text{ and } |\mathbf{w}'| < 2\}.$$

We define a complex manifold M_k by patching Ω_1^k and Ω_2^k where $\frac{1}{2} < |\omega| < 2$ and $\frac{1}{2} < |\omega'| < 2$: If $z \in \mathfrak{A}_{n,2m}$, $\frac{1}{2} < |\omega| < 2$ and $z' \in \widetilde{\Lambda}'_{n,2m}$, $\frac{1}{2} < |\omega'| < 2$ use the coordinate transformation z' = z, $\omega' = \frac{1}{\omega}$. If $z \in \widetilde{\Lambda}_{n,2m+1}$, $\frac{1}{2} < |\omega| < 2$ and $z' \in \widetilde{\Lambda}'_{n,2m+1}$, $\frac{1}{2} < |\omega'| < 2$ let $z' = z + \varepsilon (\frac{1}{2^{2m+3}})^{k+1}$, $\omega' = \frac{1}{\omega}$. Then ρ_k , given by $\rho_k(z,\omega) = \rho(z)$ on Ω_1^k and $\rho_k(z',\omega') = \rho'(z')$ on Ω_2^k is a \mathfrak{S}^k plurisubharmonic function. Let $P_k = 0 \in \Omega_1^k$ and $Q_k = (1,0) \in \Omega_1^k$. Then $\rho_k(P_k) = 0$ and $\rho_k(Q_k) = 1$.

Assume that there exists a $\tilde{\mathcal{C}}^{k+1}$ plurisubharmonic function σ on M_k such that $\sigma(P_k) \neq \sigma(Q_k)$. Then there exists an n such that $\frac{\partial \sigma}{\partial x}(p_n,0) \neq 0$. We compare the Taylor expansions of order k+1 of σ about p_n and p'_n in the x and x' direction respectively:

$$\sigma(\mathbf{x} + \frac{\mathbf{i}}{2^{n}}, 0) = \sigma(\mathbf{p}_{n}, 0) + \sum_{j=1}^{k+1} \mathbf{A}_{j}(\mathbf{x} - \mathbf{r}_{n})^{j} + o(|\mathbf{x} - \mathbf{r}_{n}|^{k+1}),$$

$$\sigma(\mathbf{x}' + \frac{\mathbf{i}}{2^{n}}, 0) = \sigma(\mathbf{p}'_{n}, 0) + \sum_{j=1}^{k+1} \mathbf{A}_{j}'(\mathbf{x}' - \mathbf{r}_{n})^{j} + o(|\mathbf{x}' - \mathbf{r}_{n}|^{k+1})$$

where $A_1 \neq 0$.

Now
$$\sigma(p_n + \frac{1}{2^{2m}}, 0) = \sigma(p_n' + \frac{1}{2^{2m}}, 0), m \ge n/2,$$
 it follows that $\sigma(p_n, 0) = \sigma(p_n', 0)$ and $A_j' = A_j, j = 1, \dots, k+1.$ We also have that $\sigma(p_n + \frac{1}{2^{2m+1}}, 0) = \sigma(p_n' + \frac{1}{2^{2m+1}} + \varepsilon(\frac{1}{2^{2m+3}})^{k+1}, 0)$ $2m+1 \ge n$. Comparing the Taylor expansions we obtain that $A_1 \varepsilon(\frac{1}{2^{2m+3}})^{k+1} = o((\frac{1}{2^{2m+1}})^{k+1}),$ which is a contradiction.

$$\rho'(z') = \left[1 - \chi(\frac{z' - p_n' - 1/2^m}{1/2^{m+2}})\right] z' \overline{z}' + \chi(\frac{z' - p_n' - 1/2^m}{1/2^{m+2}}) |z' - \varepsilon(\frac{1}{2^{m+2}})^{2m+3}|^2.$$

Then, if $\varepsilon > 0$ is small enough, there exist neighborhoods of each $p'_{n,2m+1}$ on which $p'(z') = |z' - \varepsilon(\frac{1}{2^{m+2}})^{2m+3}|^2$ and ρ' is a ε^{∞} subharmonic function on \mathbb{C} , $\rho'|_{\mathbb{R}} = z'\bar{z}'$.

It is possible to choose discs $\widetilde{\Delta}_{n,m}$ and $\widetilde{\Delta}'_{n,m}$ as in II except that (iv) is replaced by (iv)' if m is odd, then $\rho' = |z' - \varepsilon(\frac{1}{2^{m+2}})^{2m+3}|^2 \quad \text{on} \quad \widetilde{\Delta}'_{n,m} \, .$

The open sets Ω_1^{∞} , Ω_2^{∞} and the manifold M_{∞} is defined as in II except that if $z \in X_{n,2m+1}$, $\frac{1}{2} < |w| < 2$ and $z' \in X'_{n,2m+1}$, $\frac{1}{2} < |w'| < 2$, then $z' = z + \varepsilon (\frac{1}{2^{2m+3}})^{2m+3}$, $w' = \frac{1}{w}$. Furthermore, the \mathcal{L}^{∞} plurisubharmonic function ρ_{∞} on M_{∞} and P_{∞}, Q_{∞} are defined as in II. Again, we have that $\rho_{\infty}(P_{\infty}) = 0$ and $\rho_{\infty}(Q_{\infty}) = 1$.

If there exists a real analytic plurisubharmonic function σ on M_{∞} such that $\sigma(P_{\infty}) \neq \sigma(Q_{\infty})$, then there exist power series expansions in the $\mathbf{x}(\mathbf{x}')$ direction about some $p_n(p_n')$,

$$\sigma(\mathbf{x} + \frac{\mathbf{i}}{2^{\mathbf{n}}}, 0) = \sum_{j=0}^{\infty} (\mathbf{x} - \mathbf{r}_{n})^{j},$$

$$\sigma(\mathbf{x}' + \frac{\mathbf{i}}{2^{\mathbf{n}}}, 0) = \sum_{j=0}^{\infty} (\mathbf{x}' - \mathbf{r}_{n})^{j}$$

with $A_1 \neq 0$.

Since $\sigma(p_{n,2m},0)=\sigma(p'_{n,2m},0)$ it follows that $A'_j=A_j$ for all j, and hence that $\sigma(x+\frac{1}{2^n},0)=\sigma(x'+\frac{i}{2^n},0)$ whenever x=x'. The fact that $A_1\neq 0$ implies also that x=x' whenever $\sigma(x+\frac{i}{2^n},0)=\sigma(x'+\frac{i}{2^n},0) \text{ and } x,x' \text{ are close enough to } r_n.$ This contradicts the fact that $\sigma(p_{n,2m+1},0)=\sigma(p'_{n,2m+1},0)$ for all $2m+1\geq n$.

Remark. All the complex manifolds M_k contain many compact complex subvarieties (\mathbb{P}_1 's). Because of removable singularity theorems for plurisubharmonic functions, ([2]) they can all be punctured by removing a suitable family of two dimensional totally real submanifolds. These new M_k 's will still have the same properties as above but will contain no positive dimensional compact complex subvarieties.

References

- [1] Bedford, E.: The operator $(dd^c)^n$ on complex spaces (Preprint).
- [2] Cegrell, U.: Sur les ensembles singuliers impropres des fonctions plurisousharmoniques. C.R. Acad. Sc. Paris Serie A 281 (1975), 905-908.
- [3] Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175 (1968), 251-286.