ISBN 82 553-0467-3
Mathematics
No 18 - November 1981

REGULARIZATIONS OF PLURISUBHARMONIC FUNCTIONS

John Erik Fornæss
Inst. of Math., University of Oslo

PREPRINT SERIES - Matematisk institutt, Universitetet i Oslo
Regularizations of plurisubharmonic functions.

John Erik Fornæss

1. Introduction. Plurisubharmonic functions are useful tools in the theory of several complex variables. They are easier to construct than holomorphic functions, but properties of plurisubharmonic functions on a space often carry over to properties of holomorphic functions. In this process it is usually at first necessary to approximate a given plurisubharmonic function with one which is more regular. Richberg proved in 1968 the following regularization-result:

Theorem ([3]). Let \(p \) be a continuous strongly plurisubharmonic function on a complex manifold \(M \). Then there exists a sequence \(\{ p_n \}_{n=1}^{\infty} \) of \(\mathcal{C}^\infty \) plurisubharmonic functions on \(M \) such that \(p_n \rightarrow p \).

For domains of holomorphy \(M \) in \(\mathcal{C}^n \), the conclusion of the theorem holds with the only hypothesis that \(p \) is plurisubharmonic. However, there exists also a domain \(\Omega \) in \(\mathcal{C}^2 \) and a discontinuous plurisubharmonic function \(\rho: \Omega \rightarrow \mathbb{R} \) for which there does not exist a sequence \(\{ p_n \} \) of continuous plurisubharmonic functions such that \(p_n \rightarrow \rho \) (see [1]).

In this paper we show that for each positive integer \(k = 0, 1, \ldots \) (or \(k = \infty \)) there exists a complex manifold \(M_k \) with a \(\mathcal{C}^k \) (or \(\mathcal{C}^\infty \)) plurisubharmonic function \(p_k \) and two points \(p_k, q_k \) such that \(p_k(p_k) \neq p_k(q_k) \) while all \(\mathcal{C}^{k+1} \).
(or \(C^\infty \)) plurisubharmonic functions \(\sigma \) on \(M_k \) satisfy the equation \(\sigma(p_k) = \sigma(q_k) \).

2. The Examples.

We will consider three cases, I: \(k = 0 \), II: \(1 \leq k < \infty \) and III: \(k = \infty \).

I: Let \(\{r_n\}_{n=1}^{\infty} \) be a counting of the rational points in the open unit interval \((0,1)\). If we define \(p_n = r_n + \frac{1}{2^n} + \frac{i}{2^n} \) and \(q_n = r_n + \frac{2}{2^n} + \frac{i}{2^n} \), we obtain two sequences clustering at all points in \([0,1] \subset \mathbb{R} \subset \mathbb{C}\). The discs \(\Delta_n = \{z \in \mathbb{C} ; |z-p_n| < \frac{1}{2n+2}\} \) and \(D_n = \{z \in \mathbb{C} ; |z-q_n| < \frac{1}{2n+2}\} \) have pairwise disjoint closures which do not intersect the real axis. Let \(\chi \) be a \(C^\infty \) function with compact support in the unit disc, \(0 \leq \chi \leq 1 \) and \(\chi = 1 \) in a neighborhood of zero.

Lemma 1. There exist concentric discs \(\Delta_n' \subset \Delta_n, D_n' \subset D_n, \Delta_n', D_n' \) have the same radius, \(n = 1,2,\ldots \) and a continuous subharmonic function \(\rho \) on \(\mathbb{C} \) such that \(\rho(z) = z\bar{z} \) for \(z \in \mathbb{R} \) and \(\rho|_{\Delta_n'} = r_n^2 = \rho|_{D_n'} \forall n \).

Proof. We define \(\rho \) by \(\rho(z) = z\bar{z} \) on \(\mathbb{C} - U_{\Delta_n} \cup D_n \).

On \(\Delta_n' \), we let \(\rho(z) = \max\{z\bar{z} + \epsilon_n \chi(z-p_n) \log|z-p_n|, r_n^2\} \) and

similarly on \(D_n \), \(\rho(z) = \max\{z\bar{z} + \epsilon_n \chi(z-q_n) \log|z-q_n|, r_n^2\} \) for \(\epsilon_n > 0 \) small enough.

To define \(M_0 \), let at first \(\Omega \) be the open set in \(\mathbb{C}^2 \) defined by:

\[
\Omega = \{(z,w); |w| < \frac{1}{4} \} \cup \{z \in \cup_{\Delta_n} \cup D_n \text{ and } |w| < 2\}.
\]
The complex manifold M_0 is obtained by making for each n the identification

$$z \in \Delta_n', \frac{1}{2} < |w| < 2 \rightarrow (z + \frac{1}{2^n}, \frac{1}{w}) \in \{z \in D_n' \text{ and } \frac{1}{2} < |w| < 2\}.$$

We define a continuous plurisubharmonic function ρ_0 on M_0 by $\rho_0(z,w) = \rho(z)$. By Lemma 1 this is invariant under the above identifications and hence is well defined. We let $p_0 = (0,0)$ and $q_0 = (1,0)$. Then $\rho_0(p_0) = 0$ and $\rho_0(q_0) = 1$. Assume that there exists a C^1 plurisubharmonic σ such that $\sigma(p_0) \neq \sigma(q_0)$. Writing $z = x + iy$, it follows that $\frac{\partial \sigma}{\partial x}(x_0,0) \neq 0$ for some $x_0 \in (0,1)$. This implies that there exists an n so that $\sigma(p_n) \neq \sigma(q_n)$. However, there exists a compact complex submanifold - a \mathbb{P}^1 - of M_0 containing both p_n and q_n. Hence $\sigma(p_n) = \sigma(q_n)$, a contradiction.

II: Let $\{r_n\}_{n=1}^\infty$ be a counting of the rational points in the open unit interval $(0,1)$. The points $p_n = r_n + \frac{i}{2^n}$ cluster all over $[0,1]$. Each p_n is the limit of a sequence $\{p_{n,m}\}_{m=n}^\infty$, $p_{n,m} = p_n + \frac{1}{2^m}$. Let $\rho(z)$ be the subharmonic function $z\bar{z}$ on $\mathbb{C}(z)$.

We will set up a perturbed version of this situation. To avoid confusion we will use 's. As before let $p_n' = r_n + \frac{i}{2^n}$. Let $\epsilon \in (0,1)$ be given. We define $p_{n,2m} = p_n' + \frac{1}{2^{2m}}$ and $p_{n,2m+1} = p_n' + \frac{1}{2^{2m+1}} + \epsilon(\frac{1}{2^{2m+3}})^{k+1}$ if $2m \geq n$ and $2m+1 \geq n$ respectively.

Let $\chi : \mathbb{C} - [0,1]$ be a C^∞ function, $\chi(z') = 1$ in a neighborhood of 0, χ has support in $\{|z'| < 1\}$. The discs $\Delta_{n,m} = \{z' \in \mathbb{C} ; |z' - p_n' - \frac{1}{2^m}| < \frac{1}{2^{m+2}}\}$ have disjoint closures. We define $\rho'(z')$ by $\rho' = z'\bar{z}'$ on $\mathbb{C} - \cup \Delta_{n,2m+1}$. On $\Delta_{n,m}$ when m
is odd, let
\[\rho'(z') = \left[1 - \chi(\frac{z' - p_n - 1/2^m}{1/2^m + 2}) \right] z' \overline{z}'
+ \chi(\frac{z' - p_n - 1/2^m}{1/2^m + 2}) |z' - \epsilon(\frac{1}{2^m + 2})^{k+1}|^2. \]

Observe that if \(\epsilon \) is small enough then there exists a neighborhood of each \(p_n, 2m+1 \) on which \(\rho'(z') = |z' - \epsilon(\frac{1}{2^m + 2})^{k+1}|^2. \)

Lemma 2. If \(\epsilon \) is small enough, then \(\rho' \) is a \(\mathcal{C}_k \) subharmonic function.

Proof. It suffices to show that \(\rho' \) is \(\mathcal{C}_k \) and that if \(\epsilon \) is small enough then \(\rho'|_{\Delta_{n,2m+1}} \) is subharmonic for all \(n,m \).

On \(\Delta_{n,m} \) when \(m \) is odd -
\[\rho'(z') = z' \overline{z}' + \chi(\frac{z' - p_n - 1/2^m}{1/2^m + 2})(|z' - \epsilon(\frac{1}{2^m + 2})^{k+1}|^2 - z' \overline{z}'). \]

Differentiating the \(\chi \) at most \(k \) times gives an expression like \(\mathcal{O}(\epsilon(2^m + 2)^k) \) while any derivative of the function in \((\) \) is \(\mathcal{O}(\epsilon(\frac{1}{2^m + 2})^{k+1}) \). Hence if \(\alpha \) is any multiindex of order at most \(k \), then \(\mathcal{D}^\alpha \rho' = \mathcal{D}^\alpha z' \overline{z}' + \epsilon \mathcal{O}(\frac{1}{2^m + 2}). \) This proves that \(\rho \) is \(\mathcal{C}_k \). Since also
\[\frac{\partial^2 \rho'}{\partial z' \partial \overline{z}'} = 1 + \mathcal{O}((2^m + 2)^2 \epsilon(\frac{1}{2^m + 2})^{k+1}) \] on \(\Delta_{n,m} \), \(m \) odd, it follows that \(\rho' \) is subharmonic on all \(\Delta_{n,m} \) if \(\epsilon \) is small enough (recall that \(k \geq 1 \)).

In the rest of the construction we fix an \(\epsilon > 0 \) small enough.

We now choose small discs \(\mathcal{K}_{n,m} \) centered at \(p_n, m \) and \(\Delta_{n,m} \).
centered at \(p'_{n,m} \) such that

(i) \(\tilde{\mathcal{X}}_{n,m} \) and \(\tilde{\mathcal{X}}'_{n,m} \) have the same radius,

(ii) the \(\tilde{\mathcal{X}}_{n,m} \)'s (\(\tilde{\mathcal{X}}'_{n,m} \)'s) have pairwise disjoint closures which do not intersect the real axis,

(iii) if \(m \) is even, then \(\rho' = z' \bar{z}' \) on \(\tilde{\mathcal{X}}'_{n,m} \) and

(iv) if \(m \) is odd, then \(\rho' = |z' - \varepsilon \left(\frac{1}{2^{m+2}} \right)^{k+1}|^2 \) on \(\tilde{\mathcal{X}}'_n,m \).

Let \(\Omega^k_1 \subset \mathcal{C}^2(z, \omega) \), \(\Omega^k_2 \subset \mathcal{C}^2(z', \omega') \) be open sets,

\[
\Omega^k_1 = \{ |\omega| < \frac{1}{2} \} \cup \{ z \in \tilde{\mathcal{X}}_{n,m} \text{ and } |\omega| < 2 \},
\]

\[
\Omega^k_2 = \{ |\omega'| < \frac{1}{2} \} \cup \{ z' \in \tilde{\mathcal{X}}'_{n,m} \text{ and } |\omega'| < 2 \}.
\]

We define a complex manifold \(M_k \) by patching \(\Omega^k_1 \) and \(\Omega^k_2 \) where \(\frac{1}{2} < |\omega| < 2 \) and \(\frac{1}{2} < |\omega'| < 2 \): If \(z \in \tilde{\mathcal{X}}_{n,2m}, \frac{1}{2} < |\omega| < 2 \) and \(z' \in \tilde{\mathcal{X}}'_{n,2m}, \frac{1}{2} < |\omega'| < 2 \) use the coordinate transformation

\[
z' = z, \quad \omega' = \frac{1}{\omega}. \]

If \(z \in \tilde{\mathcal{X}}_{n,2m+1}, \frac{1}{2} < |\omega| < 2 \) and \(z' \in \tilde{\mathcal{X}}'_{n,2m+1}, \frac{1}{2} < |\omega'| < 2 \) let \(z' = z + \varepsilon \left(\frac{1}{2^{2m+2}} \right)^{k+1}, \omega' = \frac{1}{\omega} \). Then \(\rho_k \), given by \(\rho_k(z, \omega) = \rho(z) \) on \(\Omega^k_1 \) and \(\rho_k(z', \omega') = \rho'(z') \) on \(\Omega^k_2 \) is a \(\mathcal{C}^k \) plurisubharmonic function. Let \(\mathcal{P}_k = 0 \in \Omega^k_1 \) and \(\mathcal{Q}_k = (1,0) \in \Omega^k_2 \). Then \(\rho_k(\mathcal{P}_k) = 0 \) and \(\rho_k(\mathcal{Q}_k) = 1 \).

Assume that there exists a \(\mathcal{C}^{k+1} \) plurisubharmonic function \(\sigma \) on \(M_k \) such that \(\sigma(\mathcal{P}_k) \neq \sigma(\mathcal{Q}_k) \). Then there exists an \(n \) such that \(\frac{\partial \sigma}{\partial x}(p_{n,0}) \neq 0 \). We compare the Taylor expansions of order \(k+1 \) of \(\sigma \) about \(p_n \) and \(p'_n \) in the \(x \) and \(x' \) direction respectively:
\[\sigma(x + \frac{i}{2^n}, 0) = \sigma(p_n, 0) + \sum_{j=1}^{k+1} A_j (x - r_n)^j + o(|x - r_n|^{k+1}), \]

\[\sigma(x' + \frac{i}{2^n}, 0) = \sigma(p_n', 0) + \sum_{j=1}^{k+1} A_j' (x' - r_n)^j + o(|x' - r_n|^{k+1}) \]

where \(A_1 \neq 0 \).

Now \(\sigma(p_n + \frac{1}{2^{2m+1}}, 0) = \sigma(p_n + \frac{1}{2^{2m+1}}, 0), \) \(m \geq n/2, \)

it follows that \(\sigma(p_n, 0) = \sigma(p_n', 0) \) and \(A_j = A_j', \) \(j = 1, \ldots, k+1. \)

We also have that \(\sigma(p_n + \frac{1}{2^{2m+1}}, 0) = \sigma(p_n' + \frac{1}{2^{2m+1}} + \epsilon(\frac{1}{2^{2m+3}})^{k+1}, 0) \)

\(2m + 1 \geq n. \) Comparing the Taylor expansions we obtain that

\[A_1 \epsilon(\frac{1}{2^{2m+3}})^{k+1} = o((\frac{1}{2^{2m+1}})^{k+1}), \]

which is a contradiction.

III: We use \(r_n, p_n, p_n, m, p_n', p_n', 2m, p, \chi \) and \(\Delta_n, m \) as in II.

However choose \(p_n', 2m+1 = p_n' + \frac{1}{2^{2m+1}} + \epsilon(\frac{1}{2^{2m+3}})^{2m+3} \) whenever \(2m + 1 \geq n. \) We define \(\rho'(z') = z' \bar{z}' \) on \(\mathbb{C} - \Delta_n, 2m+1. \) When \(m \) is odd, define \(\rho' \) on \(\Delta_{n,m} \) by

\[\rho'(z') = \left[1 - \chi(\frac{z' - p_n' - 1/2^m}{1/2^m + 2}) \right] z' \bar{z}' + \chi(\frac{z' - p_n' - 1/2^m}{1/2^m + 2}) |z' - \epsilon(\frac{1}{2^{m+2}})^{2m+3}|^2. \]

Then, if \(\epsilon > 0 \) is small enough, there exist neighborhoods of each \(p_n, 2m+1 \) on which \(\rho'(z') = |z' - \epsilon(\frac{1}{2^{m+2}})^{2m+3}|^2 \) and \(\rho' \) is a \(C^\infty \) subharmonic function on \(\mathbb{C}, \rho'|_R = z' \bar{z}'. \)

It is possible to choose discs \(\tilde{\Delta}_n, m \) and \(\tilde{\Delta}_n', m \) as in II except that (iv) is replaced by (iv)' if \(m \) is odd, then \(\rho' = |z' - \epsilon(\frac{1}{2^{m+2}})^{2m+3}|^2 \) on \(\tilde{\Delta}_n, m. \)
The open sets Ω_1^∞, Ω_2^∞ and the manifold M_∞ is defined as in II except that if $z \in \mathbb{C}_{n,2m+1}$, $\frac{1}{2} < |w| < 2$ and $z' \in \mathbb{C}'_{n,2m+1}$, $\frac{1}{2} < |w'| < 2$, then $z' = z + \varepsilon \left(\frac{1}{2n+3}\right)^{2m+3}$, $w' = \frac{1}{w}$. Furthermore, the \mathcal{C}^∞ plurisubharmonic function ρ_∞ on M_∞ and P_∞, Q_∞ are defined as in II. Again, we have that $\rho_\infty(P_\infty) = 0$ and $\rho_\infty(Q_\infty) = 1$.

If there exists a real analytic plurisubharmonic function σ on M_∞ such that $\sigma(P_\infty) \neq \sigma(Q_\infty)$, then there exist power series expansions in the $x(x')$ direction about some $p_n(p'_n)$,

$$\sigma(x + \frac{i}{2n}, 0) = \sum_{j=0}^{\infty} A_j(x - r_n)^j,$$

$$\sigma(x' + \frac{i}{2n}, 0) = \sum_{j=0}^{\infty} A'_j(x' - r_n)^j$$

with $A_1 \neq 0$.

Since $\sigma(p_n, 2m, 0) = \sigma(p'_n, 2m, 0)$ it follows that $A'_j = A_j$ for all j, and hence that $\sigma(x + \frac{i}{2n}, 0) = \sigma(x' + \frac{i}{2n}, 0)$ whenever $x = x'$. The fact that $A_1 \neq 0$ implies also that $x = x'$ whenever $\sigma(x + \frac{i}{2n}, 0) = \sigma(x' + \frac{i}{2n}, 0)$ and x, x' are close enough to r_n.

This contradicts the fact that $\sigma(p_n, 2m+1, 0) = \sigma(p'_n, 2m+1, 0)$ for all $2m+1 \geq n$.

Remark. All the complex manifolds M_k contain many compact complex subvarieties (\mathbb{P}_1's). Because of removable singularity theorems for plurisubharmonic functions, ([2]) they can all be punctured by removing a suitable family of two dimensional totally real submanifolds. These new M_k's will still have the same properties as above but will contain no positive dimensional compact complex subvarieties.
References

