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81,Introduction.,

We consider in this paper the problem of mapping a domain
Qqc:®n onto a domain Q2C:®n by a holomorphic mapping. In [1]

and [2] Fornsss and Stout proved the following result.

Theorem. Let Dn and Bn denote the unit polydisc and ball
in @n, and let Q Dbe as connected, paracompact n-dimensional
complex manifold. Then there exist regular holomorphic mappings

from D~ and B, onto Q, both with finite fibers.

Hence the problem reduces to mapping a given domain Q,
onto the polydisc or the ball. In § 2 we give an example of a
domain Q<B (n>2) which cannot be mapped onto the ball.
This example is a domain with a Hartogs phenomenon. I do not
know any example of a bounded domain of holomorphy which cannot
be mapped onto the ball, The strictly pseudoconvex case, however,
is covered in § 3, where we prove that any bounded domain in O
with C2—boundary can be mapped onto the polydisc. This is an
easy consequence of the main theorem, which gives an explicit
mapping of the ball Bn onto the polydisc which is surjective

on any ball BC:Bn tangent to Bn at a given boundary point.

§2,A counterexample,

According to the classical Schwarz lemma a holomorphic func-

tion f ¢:D—-D satisfies

5 -
q..lf(zgl < [d(z,3D)] 1’

|£'(z)| <
1 -1zl
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where d(z,3D) denotes the boundary distance.
If f:B, "B, is holomorphic, z = (Z4y00052,) €B, and
D; = {wed; (Zﬂ’°°°’Zi«’l’w’ziﬂ’""’zn)eBn}" the Schwarz lemma

applied to the components of f on Di gives
df .
1574 -1 -1
{azi‘ < ra(z,,90,)17" < ra(z,38)]

Hence the complex Jacobian Jf of f, a polynomial of degree n

df .
in 5=l , satisfies |Jf| < C[d(z,3B,)17", and the real Jacobian
1 ‘
2 -2n
Jpf = |J£]|° < of,d<z,aBn)] .

. (The sharper estimate Jpf < C[d(z,aBn)]'(nm) follows from

theorems 2.2.2 and 8.1.2 in [3]).

The counterexample is now found by removing a sequence of
disjoint Sphevrical shells K. = {z€ey ri_f_lzl f_si}, with small
holes punched in them, from the ball. The holes will ensure that
holomorphic mappings extend over the removed sets., If we remove
such sets from the ball with a high enough density near the
boundary, the above estimate on JR:E‘ will give that there is not

enough volume left to map the set onto the ball.

§3,.The main theorem,

Given & bounded domain 0cG@® with C°-boundary, we can find
balls B and By with a common boundary point such that Bp<QcB.
Hence the following theorem implies that there is a holomorphic

mapping from Q onto the polydisc.

Theorem. Let B be a ball in 6% and p € 3B. Then there is a
holomorphic mapping G: B—'Dn which is surjective on any ball

BRCB such that pé€ bBRo
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Proof: We may assume that B = {z; |z| <1}, p =-e, = (1,0,e00,0)
, n
end By = {2=(2),000,2.)! |z1-(’1-R)]2+i§2|zi|2<R2}, a ball of
radius R and center (1-R,0,0,...,0).
We consider first the case

n =1

" We use the notations

H = {z;Re z>0}
-H = {z3;Re z<0]}
S = {z;|Imz| <3}.

The mapping g,l(z) = %l—}-% is a biholomorphic mapping from D

to H. It maps the disc 'BR ontolthe set Hp = {zsRe z =~ j—ﬁ-li}
and circles through -1 and 1 making an angle a at -1  with
the real axis onto rays from O, also making an angle o with
the real axis. Consider now the mapping 8y = haoheoh,], where

h,l(z) = logz, hz(z) = -iz - /2 and hB(Z) = exXp Z .

n h h
H—> 8 2>(-H)—-é-->D

8, is a function mapping H into the amnulus A, = {z: exp(-m)<|z|<1}

h, actually maps S into {z: -m<Rez<O0}.

The set HR

so the image of HR in 8 will contain a tail of any line Im z=a.

contains a tail of any ray from the origin in H,

Hence the image in (-H) will contain a tail (in th'e downward
direction) of any line Rez = g, -m<B<0, which means that its
image in D. will cover any circle |z| = expB. This proves that
the function 85°85 restricted to any BR is surjective on the

annulus A,]., A,l €D can be mapped onto the disc by moving the



hole JD\A,l away from origin by a linear automorphism of D and

then taking the square,

We now consider the case

n =2

Let 2z = (Z1922>° We get

\Z 2 2
Re Sq(z)— \1_22 l = -1-:—1-—Z~|—§ > 0 whenever z€B, .
1 11 - zqh _
. Z,
The function (gq(zq), 77—~ 1is in fact a biholomorphic mapping
/I
from B2 to

We have Re(wq-wg):>0, so we get a mapping G1 from 32 to H2

defined by
Z
61(2) = (81(24)5 84(2) - Gr)9)

Define gé from H to D as 8oy except that we multiply h2
by ./2 . The image of gé will then be A2=={zGEC;exp(gjbh)<lz|<1}a

2

Define G2 from H~- to D2 by

Go(2) = (85(5),85(2)))

2

and G3 from D2 to H- by

GB(Z> = (gq(zq)agq(zg>) °

We then get a mapping G = G2°G3°G2°Gq from B2 to D2° Its
image will be A1><A2o We claim that G restricted to any BR
is surjective on Aq><A2, By composing with surjective mappings

from these annuli onto the disc, we obtain the theorem.
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To prove the claim, we first investigate the image V,‘
of Bp under the mapping G’I’ For fixed =z, the points

(z4, z)€Bp satisfy

2
12512 <B2 = |21 - (1-R)|? = 2R Re(1-2,) - 1241

Hence Z5 2 2R Re(’l-—z,])
< -1 =71(2,)0
1-2 |1~z |2 1
1 1
So V, consists of a disc with centre g,l(z,]) and radius r(z,])

in the second factor. In case R = 1, this disc extends up to

the boundary of H.

Let V2 be the image of BR in A,‘xA2 under the map
G2°G,|, and let w, EA,I, For convenience we consider only points
in the outer part of 4,, Iw,ll = exp(-a) where O<a=<=x. The
situation is symmetric in the inner part. W4 is the image of
all points -o.+i(argw,| +2nm) in -H. These points come from
the points i(g--c.)- (argw,] +2nm) in S, and in H they come
from points on the ray from thé origin making an angle o with
the positive imaginary axis, having modulus aern“ with
8, = exp(-argw,l) . Hence the image of V,, will contain the image

of all the discs at these points in the second factor. Suppose

the points in H come from points Z4 n in D. Hence the discs
’ 9
2R Re(’l—zn)

‘2 - 1 and we draw the following picture

havé radii
11 - Z1 ,n



S L AT, )

The angle Bn defined by this drawing satisfies

r(z ) 2R Re(1-z )
sin B = 1.n 1,n

n aOGZnn - l’l+z,|’nl-\’|-z,lénl

1 — Z’I,n
T+ 2

1,0

The points Zq p lie on a circle as indicated by the figure
?

below and converge to 1 when n increases,

N
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This implies that 1limsin Bn = Rsina. Hence Bn converge to an
angle B and sinB = Rsina , so we have ét least B>+Ra. This
means that any ray from the origin in H between the angles

a+zRa and a-+Ra will eventually cut the discs in infinitely

Iooezn", n>0. The disc where we will find I

many intervals
may depend on the angle. Mapping this picture into -H will give
us infinitely many vertical intervals JO - V/§~2nni for any real
value between -J‘Ea (1+4R) and -J?a (1-4R). Since \/'2' is
irrational the centres of these intervals will be mapped onto a
dense subset of a circle by the exponential, and the intervals

themselves will cover the entire circle., This means that we cover

an annular region
A(r,a) = {wy; exp(~fZa (144R)) < |w,| <exp(~/Za (1-3R)))

We have proved:

(3.1) For any By the image V, of By in D, contains the

R
sef
(g3 lwyl = exp(-a), 0<a 23, wy€A(R,a)}

We now consider the final image of Bp, i.e. the image of V2
under the mapping (}20(}5 : D2"D2., We want to prove it is the
entire A,I ><A2° Let therefore P4 EA,]. The inverse image of P4
under the mapping G5 consists of points on a ray in H. We now

use the angle vy between this ray and the positive real axis,

T 2nm

S0 —%<Y < 5 e These points have modulus boe for some bo,
and they come from points on the circle through -1 and 1 in D,
making an angle vy with the positively oriented real axis at -1

(and hence the angle -y at 1). Denote these points by Wq e
9
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When n increases Wy , Will approach 1 on this circle.
b

Hence for n large enough V2 will contain the set
{W/l ,Il} > A(R,G.n)
where ‘Wﬂ,nl = exp(—an).

The annular region A(R,an) will be mapped onto a region between
two circles in H

N\

—

&

When n increases these circles wjill cut the real axis at points

éonverging to O on the left and to infinity on the right. A
ray in the angle &8 will cut the inner and outer circles in

lengths 1 and L, respectively. (We consider the intersec-

tion points of greatest length). We want to show that 1ri/e2nTr

2nt

and Ln/e both approach limiting values when n increases,

and we therefore make approximations which are asymptotically
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equal to the quantities considered,

We have

berIm = | —

(3.2) -
so e--213;11 _ d.n| =

1 -
abom W’I,n

A circle |w2| = 1-C will be mapped onto a circle intersecting

the real axis at 2-C/C and C/2-C, hence its diameter will be

a(c) = %e%{—%— :-g- when C 1is small.

Since the left intersection with the real axis approaches O
when C 1is small, the length of the intersection with the ray

of angle & will be
1(C,s) = %.cosé R

~

1-a,, so a =’1-lw,|,nl.

e

n

The inner circle of A(R,an) has radius

n

exp(~/Z(1 + #R)ay) ¥ 1- 201 +4R)ay

Hence
(3.3) 1 = . 2¢co8 § ~ 2 oS b

8T B e iR, VB R (- Ly 1)

(3.2) and (3.3) give

n TG T Ml

Since w, n lie on the circle described above, we get
9
bO cos &

2n I ]
\/?(’I +3+R)cos ¥

1i e~
im 1n
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Similarly, we get

b _cos
linL_e 27 - 0 .
N2(1 - 4R)cos v
This means that the interval (ln,Ln) approaches I ove2I1TT

where bo cos b

I = — — (1-%R,1+%R) .
° Nf?(’l-z}Rz)cosy ’

As before, we map this picture into -H, and get infinitely many
vertical intervals J o -F 2nmi. This time we get such intervals
for any real value t Dbetween -J?n and O. How far down we
have to look for the first interval_ Jo will of course depend

on t. By the same argument as before, these intervais will cover
entire circles and this time for all radii in. Ag. This proves

that G BR-'A,] ><A2 is surjective for any R.

The general case,

The proof is a straightforward generalization of the case
n = 2. The function
M+ z

1 Zp Zn
T T To g

N 1
is a biholomorphic map from B, to the set
n :
0= we;Rew,> % |u; |71,
. i
. i=2
We therefore get a map G,‘ from Bn to HY defined by
- / / \ D
’l+z,I ’|+z,I [ 2o \2 ’1+z,I ( Z, 2
G (2) =\1=3 " Tz, T =z, ¢ M-z, - =z
1 1 N7 By 1 T

1T+ 2
In this case, for a fixed W, = -,-]--—7:1 , the image of a ball BR
!
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consists of the points (wWn,...,w ) €H' ' such that

n
L |w.-w.l < r(z,).
jop 1 1

This is a Hartogs polyhedron with centre at (w,l,“.,w,])é @n—’l

and contains a polydisc, the product of discs
D(w i r(z,)) = {weBs |w-w,| < 1 r(z,)}
10 n=T ~ 177 = ’ At Tn=T Tl
We now define Gr2 by
G2(Z> = (82(51),82’2(Z2),o-~, 82,n(zn>)

where B> 4 (1>2) 1is defined as 8o except that we multiply h,
9 . .
by a positive real number a4 such that 85ys00,8, are linearly

independent over Q. This will mean that the angles
{(aye2km a_<2km) € (S’1>n. k>k }
2 10 n Y =0
form a dense subset for any ko. (3.1) immediately generalizes to
(3.4) For any BR the image of BR in D2 contains the set

{'(W’I’WZ’”“’wn); lw,|| = exp(-a), O<a_<_12T~,wi€Ai(R,a) for i>2}
where

Ai(R,G) = {Wi;exp(—ai@(’\ +'§{-II-1°:;ITR)) <lWil feXp(—aia(/l -33773))0

The function G5 is defined as before in each factor. The image
of the product of the annuli A;(R,a) will be a product of regions
between circles. Hence over a point P EA,], coming from points
on a ray of angle vy in H, we get an infinite union of such

products. Each factor will cut a ray of angle 6i asymptotically
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in intervals I; e2nTT with

-

bocos 6i

i 1 1
° 34008Y Wi orln R - gy R
Hence the function G = G2='G5°G2°G,1 will be surjective from BR

to A,;xA;Xx..o x4, where
A, = {z:exp(-aym) <[z} <1},

Mapping each annulus surjectively onto the disc concludes the

proof of the theorem. D

The function given in the theorem certainly has infinite
fibers, and it is not regular, since the function mapping the
annulus onto the disc described in the proof is not regular.

I do not know any elementary regular function mapping the annulus
onto the disc, Fornsss has shown me, however, the following
existence proof of such a mapping: Let Dn(nE:O) be the infinite
sequence of unit discs at the points %n and let

e

E - (UD)U(0,%)

n=o
i.e., we connect these discs by straight lines. Let Un’ n=>0,
be discs contained in the unit discD such that D is covered
by the discs V, (n>1), V, having the same center as U, and
half its radius., If we connect these discs Uh by smooth curves,
we can find a map ¢ mapping E onto this picture, by Jjust
putting Dn on the disc Un and the connecting intervals on the
connecting curves. Lemma II.2 of 1] now implies the existence

of a regular holomorphic map f from a neighbourhood V of E
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o
to the unit disc such that f is surjective on ngqnn, Let Enc:V

be a neighbourhood basis for E, each En simply connected and
define conformal equivalences ¢ :D-E  such that wn(o) = 0,
A subsequence of p, converges uniformly on compact sets to a
limit ¢. Since ¢ is open and E, @ neighbourhood basis, we
must have cp(D)C:DOo Hence for any annular region A in the
disc, the compact set DNA will be mapped into D by P

0

for n 1large enough. Hence ®, maps A onto Uan and fown
n=

is regular and surjective on A,
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