ISBN 82 553-0464-9
Mathematics
No 16-October
A PEAK SET OF HAUSDORFF DIMENSION $2 n-1$
FOR THE ALGEBRA A(D) IN THE BOUNDARY OF A DOMAIN D WITH C^{∞}-BOUNDARY IN C^{n} 。

Berit Stensønes Henriksen
Inst. of Math., University of Oslo

PRERPINT SERIES - Matematisk institutt, Universitetet i Oslo

A peak set of Hausdorff dimension $2 n-1$ for the algebra $A(D)$ in the boundary of a domain δ_{∞} with C^{∞}－boundary in \mathbb{C}^{n} ．

Berit Stensønes Henriksen

In this

paper \mathscr{D} is a domain in \mathbb{C}^{n} and $A(5)$ the algebra of functions which are holomorphic in \mathscr{D} and continuous on 豖。A compact set $F \in \partial \mathscr{D}$ is a peak set for $A(X)$ if there exists a function $g \in A(D)$ with the properties：$\left.g\right|_{F}=1$ and $|g(p)|<1$ whenever $p \in D \backslash F$ 。

We are interested in finding a holomorphic function f in \mathcal{D} continuous in $\bar{D} \backslash F$ such that $\operatorname{Ref}(p) \rightarrow \infty$ when $p \rightarrow p_{0} \in F_{\text {。 }}$ Adding a large constant to f such that $\operatorname{Ref}>0$ in $\overline{0}$ and letting $\varphi=\frac{1}{\hat{S}}$ we get a peak－function for F by defining $g=\frac{1-\varphi}{1+\varphi}$ ．

The following theorem is the main result of this paper：

THEOREM：
When \mathscr{D} is a domain with C^{∞}－boundary in \mathbb{C}^{n} there exists a peak set for $A(\mathscr{L})$ of Hausdorff dimension $2 n-1$ 。

DEFINITION：

\mathscr{H}^{k} is the Hausdorff measure with respect to the induced Euclidean metric on $\partial \infty$ ．A set $B \subset \partial{ }^{2}$ has Hausdorff dimension k if $\operatorname{lic}^{k-\epsilon}(B)=\infty$ and $\mathfrak{c}^{k+\delta}(B)=0$ whenever $\epsilon, \delta>0$ 。

We shall show this theorem when \mathcal{D} is strictly pseudoconvex． Generally lemma 2 in［5］gives the existence of a point $p \in \partial \infty$ and a strictly convex set $C \supset \mathscr{D}$ such that $\partial C \cap \partial \mathscr{D}$ contains a neighbourhood of p in $\partial \mathscr{H}_{\text {。 }}$ Since the construction of F is
local the result for strictly pseudoconvex domains gives the general result．

First we find peak－sets $F^{m} \subset \partial \mathscr{D}$ where $\operatorname{dim} F^{m} \geq 2 n-1-\frac{n}{m}$ for each integer $m \geq 4$ ．Then we let $F=\bigcup_{m=4}^{\infty} F^{m}$ and then compactify 7 ．

When \mathscr{L} is strictily pseudoconvex Darboux＇theorem［1］gives the existence of real local coordinates $\varphi=\left(x^{1}, \ldots, x^{n-1}, y^{1}, \ldots, y^{n-1}, z\right)$ on $\partial \psi^{2}$ such that the vector－fields $\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n-1}$ and $\left\{\frac{\partial}{\partial y^{i}}+x^{i} \frac{\partial}{\partial z}\right\}_{i=1}^{n-1}$ $=\left\{\eta_{i}\right\}_{i=1}^{n-1}$ generate $T_{\mathbb{C}} \partial D$ 。 Let J be the complex structure tensor。

Furthermore each submanifiold $N \subset \partial \mathscr{L}$ where $\mathbb{N N}_{p} \subset \mathbb{T}_{\mathbb{C}} \partial \mathscr{D}{ }_{p}$ when $p \in \mathbb{N}$ has the property： $\mathbb{N N}_{\mathrm{p}} \cap J \mathbb{N N}_{\mathrm{p}}=\{0\}$ for each $p \in \mathbb{N}$ ． This implies that η_{i} is a linear combination of $\left\{J \frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n-1}$ and $\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n-1}$ ．If (φ, U) is such a chart on $\partial \partial$ it is possible to find a neighbourhood w of U in \mathbb{C}^{n} and a $v \in C^{\infty}(w, \mathbb{R})$ where：
（0．1）：
1）$\omega \cap \partial D=U$
2）$w \cap \mathscr{D}=\{p: v(\mathrm{p})<0\}$
3）（ x, y, z, v ）are coordinates on w
4）$\left.\frac{\partial}{\partial v}\right|_{\partial \bar{L}}=\left.J \frac{\partial}{\partial z}\right|_{\partial \mathcal{D}}$
This is possible because $\frac{\partial}{\partial z} \notin T_{\mathbb{C}} \partial \mathscr{D}$ and therefore $J \frac{\partial}{\partial z} \notin T \partial O$ ， so if we choose z carefully $J \frac{\partial}{\partial z}$ is an outward pointing vector．

Let $M=\left\{p \in w: v(p)=0\right.$ and $\left.y^{i}(p)=a^{i}, \quad i=1, \ldots, n-1\right\}$ where the $a^{i_{1}} s$ are constants and

Q a compact subset of $N=M \cap\{p: z(p)=b\}$ 。

If m is an integer, $m \geq 4, \varepsilon>0$, we can find a function $\psi \in C^{\infty}\left(\mathbb{R}^{\mathrm{n}-1}\right), \psi: \mathbb{R}^{\mathrm{n}-1} \rightarrow \mathbb{R}$ with the properties:
(0,2): ψ vanishes to infinite order on $x(Q)$
(0, z): $\left|\frac{\partial}{\partial \xi^{i}} \psi(\xi)\right| \leq \varepsilon^{1 / 2}$ for each $\xi \in \mathbb{R}^{n-1}$
(0.4): $\psi(\xi) \geq \varepsilon^{1-1 / m}$ whenever $\quad d(5, x(Q)) \geq \epsilon^{1 / 10}$

Define $\tilde{u} \in C^{\infty}(u)$ by

$$
\tilde{u}(p)=\psi(x(p))+i(z(p)-b)+\frac{1}{2}(z(p)-b)^{2}+\frac{1}{2} \sum_{i=1}^{n-1}\left(y^{i}(p)-a^{i}\right)^{2}
$$

Then $\tilde{u} \mid Q=0$ 。

Using the same method as Wermer in 17.4 [7] we find a neighbourhood ω_{0} of $M, \omega_{0} \subset \omega$, and a function $u \in C^{\infty}\left(\omega_{0}\right)$ where: $(0.5):\left.u\right|_{M}=\left.\tilde{u}\right|_{M}$
(0.6): $\left.D^{\alpha} \frac{\partial u}{\partial u}\right|_{M}=0$ for each nultiindex a_{0} (0.7): If we let $\left(a^{1}, \ldots, a^{n-1}, b\right)$ vary over a compact set in \mathbb{R}^{n}, we can find a constant $c>0$ independent of $\varepsilon,\left(a^{1}, \ldots, a^{n-1}, b\right)$ and Q) such that:

$$
\operatorname{Re} u(p) \geq c d^{2}(p, \mathbb{N})+\psi(x(p))
$$

in $\omega_{0} \cap$ [2].
(0.6) implies that
$(0.8):\left.Z($ Fe $u)\right|_{M}=\left.Y(I n u)\right|_{M}$ when X and Y are vectorfields where $J X=Y$ When Taylorexpanding u around N and using the fact that $\frac{\partial}{\partial v}\left|\partial \mathscr{D}=J \frac{\partial}{\partial z}\right|_{\partial D}$ and $\frac{\partial}{\partial y^{i}}=\eta_{i}=x^{i} \frac{\partial}{\partial z}$ we get:

$$
\text { (0.9) } \begin{aligned}
u(p) & =\psi(x(q))+i\left[(z(p)-b)-\sum_{i=1}^{n-1} x(q)\left(y^{i}(p)-a^{i}\right)\right] \\
& +\sum_{i=1}^{n-1} \eta_{i}(u)(q)\left(y^{i}(p)-a^{i}\right)-v(p)+O\left(d^{2}(p, N)\right)
\end{aligned}
$$

where $q \in \mathbb{N}$ and $x(q)=x(p)$ ．

DEFINITION：
$B(Q, \delta)=\left\{p \in \mathscr{X}:\left|y^{i}(p)-a^{i}\right| \leq \delta^{\frac{1}{2}}, \quad i=1, \ldots, n-1,|v(p)| \leq \delta\right.$
and $\left.\left|z(p)-b-\sum_{i=1}^{n-1} x^{i}(p)\left(y^{i}(p)-a^{i}\right)\right| \leq \delta\right\} \cap\{q \in \mathscr{D}: d(x(q), x(Q)) \leq \delta\}$ 。

IEFTMA 1：

There exists a constant K ，independent of（ $a^{1}, \ldots, a^{n-1}, b$ ）， such that $|u(p)| \leq K \delta$ whenever $p \in B(Q, \delta)$ 。

Proof：

This follows immediately from the fact that $\psi \circ x \in C^{\infty}$（N）va－ nishes on Q and η_{i} is spanned by $\left\{J \frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n-1}$ and $\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n-1}$ ．

If：we let $\widetilde{q}=\left\{p \in \mathbb{N}: \alpha(x(p), x(Q)) \leq \varepsilon^{1 / 10}, \alpha=1 . \frac{(n-1) / 2+3}{2 n m}\right.$ and assume that $c<1$ we get：

IEMVA 2：

$|u(p)| \geq \frac{C}{2} \epsilon^{\alpha}$ whenever $p \in \infty \backslash B\left(\widetilde{\infty}, \frac{2 \varepsilon^{\alpha}}{C}\right) \cap \omega_{0}{ }^{\circ}$

Proof：

Point（0．9）together with（0．3），（0．4），（0．7）and（0．8）implies Iemma 2.

Let $\beta \in C_{0}^{\infty}\left(\omega_{0}, \mathbb{R}\right)$ be equal to one in a neighbourhood of Q ， $\beta \geq 0$ 。

If $H_{\varepsilon}= \begin{cases}\frac{\partial}{\partial\left(\frac{B}{1-(1 / n m)}\right)} & \text { in } \omega_{0} \backslash Q \\ 0 & \text { elsewhere }\end{cases}$
$H_{\epsilon}=\frac{\overline{\partial u}}{\left(u+\varepsilon^{1-(1 / n m)}\right)^{2}}$ in a neighbourhood of Q which implies
that $H_{\epsilon} \in C_{(0,1)}^{\infty}(\underset{\infty}{\infty})$ and $\bar{\partial} H_{\varepsilon}=0$ 。 $\left\|H_{\varepsilon}\right\|_{\infty} \leq\left\|H_{0}\right\|_{\infty}$ so by［4］ there exists a constant inciependent of ε and a $g_{\varepsilon} \in C^{\infty}(\bar{a})$ such that $\overline{\partial g}_{\epsilon}=\mathrm{E}_{\epsilon}$ and $\left\|g_{\epsilon}\right\|_{\infty} \leq \mathrm{B}_{\mathrm{E}}$ ．Add a constant to g_{e} such that $\operatorname{Re} g_{\varepsilon}<-1$ and let

$$
s_{\varepsilon}=\frac{\beta^{1}}{u+\varepsilon^{1 m}(1 / \mathrm{rm})}-g_{\varepsilon}
$$

Then $\bar{\partial} s_{\epsilon}=0$ in $\overline{\mathcal{V}}$ and $\operatorname{Re} s_{\epsilon} \geq 1$ which implies that $\frac{1}{s_{\varepsilon}} \in A(\#) \cap C^{\infty}(\bar{W}) 。$
（2．1）$\frac{1}{s_{\epsilon}(p)}=\left\{\begin{array}{l}\frac{n(\rho)+\epsilon^{1-(1 / n m)}}{\beta(p)-g_{\epsilon}(p)\left(u(p)+\epsilon^{1-(1 / n m)}\right)} \\ \frac{1}{g_{\epsilon}(p)} \text { when } p \in \Psi \backslash \omega_{0} \text { 。 } \quad \text { when } \quad \omega_{0} \cap D\end{array}\right.$
（2．1 ）implies：（2．2）$\left|\frac{1}{S_{\epsilon(\rho)}}\right| \geq \frac{\varepsilon^{\alpha}}{4}$ when $p \in \bar{D} \backslash B\left(\widetilde{Q}, \frac{2 \epsilon^{\alpha}}{C}\right.$ ）。
（2．3）：Let $f_{\epsilon}=\left(\frac{1}{s_{\epsilon}}\right)^{2 n m} \cdot \frac{1}{\epsilon^{2 n i n-3}}$ ，then $f_{\epsilon} \in A(\mathcal{D}) \cap C^{\infty}(\bar{\infty})$ ．

IEMMA 3：
（3．1） $\operatorname{Re} f_{\varepsilon}(p) \geq \frac{\varepsilon}{2^{4 n m}}$ when $p \in B(Q, \varepsilon)$
（3．2）$\left|f_{\epsilon}(p)\right| \leq 2^{4 n m} \in$ when $p \in B(Q, \varepsilon)$
（3．3）$\left|f_{\epsilon}(p)\right| \geq \epsilon^{-(n-1) / 2}$ when $p \in \operatorname{ciz} \backslash\left(\tilde{Q}, \frac{2 \epsilon^{\alpha}}{C}\right)$
（3．4）$\left|f_{\epsilon}(p)\right| \geq C_{0} \epsilon$ where $C_{o}>0$ is a constant independent of ϵ_{0} Proof：

This is a consequence of Lemma 1，Lemma 2 and（2．2）

Choose a sequence of positive real numbers $\left\{\epsilon_{j}\right\}_{j=0}^{\infty}$ con－ verging to zero and $\lim _{j \rightarrow \infty} \epsilon_{j-1} \epsilon_{j}^{-\delta}=\infty$ for each $\delta>0$ 。

Define：

$$
b(j, m)=\left[\frac{j}{j-1}\left(\frac{\varepsilon_{j-1}}{\epsilon_{j}}\right)^{\frac{1}{2}(1-(1 / m))}\right]
$$

when $j>1$ ；if $j=1$ put 2 into the equations instead of $\frac{j}{j-1}$ ． Finally we let $c(j, m)=(b(j, \text { in }))^{2}$ 。

Let $I_{o}^{m}=\{0\} \subset \mathbb{R}$ and $I_{j}^{m}=\underset{f \in \Gamma_{j-1}^{m}}{u} r_{j}^{m}(t)$
where：$r_{j}^{m}(t)=\left\{t+k_{1} \cdot \frac{\varepsilon_{j}-1}{b(j, m)}, \quad k_{1} \quad\right.$ is an integer $\left.0 \leq k_{1} \leq b(j, m)-1\right\} \subset \mathbb{R}$ and $S_{j}^{m} \subset \mathbb{R}$ ：
$S_{o}^{m}=\{0\}, S_{j}^{m}=\left\{k_{2} \frac{\varepsilon_{j-1}}{3 c(j, m)}, k_{2}\right.$ is an integer， $\left.0 \leq k_{2} \leq 6 \frac{\varepsilon_{0} e(j, m)}{\epsilon_{j-1}}\right\}$
Let $Q_{0}=\varphi^{-1}\left(\left[0, \varepsilon_{0}^{\frac{1}{2}}\right]^{n-1} \times\{(0, \ldots, 0)\} \times\{0\}\right)$ ．
Let $\mathbb{R}_{j}^{m}=\left\{\Gamma_{j}^{m}\right\}^{n-1} \times \mathbb{S}_{j}^{m} \in \mathbb{R}^{n} \quad, \quad$ i．$\quad\left(a^{1}, \ldots, a^{n-1}, b\right)=(a, b) \in \widetilde{R}_{j}^{m}$
we let

$$
Q_{0}(a, b), \quad j=\varphi^{-1}\left(\left[0, \varepsilon_{0}^{\frac{1}{2}}\right]^{n-1} \times\{(a, b)\} \cap G_{j-1}\right.
$$

where
$G_{j}=\underset{(a, b) \in \hat{R}_{j}^{m}}{V}(a, b), j \cap\left\{p \in \partial \mathcal{L}: \frac{2}{3} \varepsilon_{j}>z(p)-b-\sum_{i=1}^{n-1} x^{i}(p)\left(y^{j}(p)-a^{i}\right)>\frac{1}{3} \varepsilon_{j}\right\}$
and
$V_{(a, b), j}=\left\{p \in \partial j_{0}: \varphi^{-1}(x(p), a, b) \in Q_{(a, b), j, \quad \epsilon_{j}{ }^{\frac{1}{2}} \geq y^{i}(p)-a^{i} \geq 0}\right.$ and $\left.\varepsilon_{j} \geq z(p)-b-\sum_{i=1}^{n-1} x^{i}(p)\left(y^{i}(p)-a^{i}\right) \geq 0\right\}$ 。

Finally we let $R_{j}^{m}=\left\{(a, b) \in \hat{R}_{j}^{m}\right.$ where $\left.Q(a, b), j \neq \varnothing\right\}$ 。

Define the desired set $F^{m}=\bigcap_{j=0}^{\infty} F^{m}$ where $F_{j}^{m}=\underset{(a, b) \in R_{j}^{m}}{V_{j}}(a, b), j^{\circ}$

IITMTA $4:$

F^{m} is a peak set for the algebra $A(\mathscr{D})$ 。

Proof：

For each $Q(a, b), j$ there exists a function $f(a, b), j$ as in（2．3）．

$$
\text { We define } f(p)=\sum_{j=0}^{\infty}(a, b) \in R_{j}^{m} \frac{\varepsilon_{j}}{f^{\prime}(a, b), j}(p) \text { and have to show }
$$

that：1）f is holomorphic in D and continuous in $\bar{D} \backslash F^{m}$ 2） $\operatorname{Ref}(p) \rightarrow \infty$ when $p \rightarrow p_{0} \in F^{m}$ 。
（1）：When K is a compact subset of $\overline{(} \backslash F^{m}$ there exists an integer J_{K} such that $p \notin B\left(\widetilde{Q}(a, b), j, \frac{2 \epsilon_{j}^{\alpha}}{C}\right)$ for each $(a, b) \in R_{j}^{m}$ when $j \geq J_{K}$ ，and since：

$$
\text { Since }|f(p)| \leq \sum_{j=0}^{\infty}(a, b)^{\infty} \sum_{j}^{m} \frac{\epsilon_{j}}{T f(a, b), j(p) T}
$$

lemina 3 implies that

$$
|f(p)| \leq \sum_{j=0}^{J_{K-1}}(a, b)^{\sum} \in R_{j}^{m} \frac{1}{C_{0}}+\sum_{j=J_{K}}^{\infty} \sum_{(a, b) \in R_{j}^{m}}^{\epsilon_{j}}{ }^{1+(n-1) / 2}<x
$$

The uniform convergence of the series on each compact subset of $\mathcal{S}^{\boldsymbol{W}} \backslash \mathrm{F}^{\mathrm{m}}$ gives（1）。
(2):

We observe that $B\left(\tilde{Q}_{\left(a_{1}, b_{1}\right), j}, \frac{2 \epsilon_{j}^{\alpha}}{C}\right) \cap B\left(\tilde{Q}_{\left(a_{2}, b_{2}\right)}, j, \frac{2 \epsilon_{j}^{\alpha}}{C}=\varnothing\right.$ each time $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$ and $B\left(\widetilde{Q}_{(a, b), j}, \frac{2 \epsilon_{j}^{\alpha}}{C}\right) \subset B\left(Q_{\left(a_{0}, b_{0}\right), j-1}, \epsilon_{j-1}\right)$ whenever $(a, b) \in R_{j}^{m}$ and $\left.Q_{(a, b), j} \subset V_{\left(a_{0}, b\right.}\right), j-1^{\circ}$

If p is near m^{m} but $p \notin F^{\text {mi }}$ there exists an integer $J_{p} \rightarrow \infty$ when $p \rightarrow p_{0} \in F^{m}$ and $\left(a_{j}, b_{j}\right) \in R_{j}^{m}, j \leq J_{p}$, such that $\left.p \in B\left(Q_{\left(a_{j}, b\right.}\right), j, \epsilon_{j}\right)$ but $p \notin B\left(Q(a, b), j,{ }_{j}\right)$ for any $(a, b) \in R_{j}^{m}$ when $j>J_{p}$ This implies that $\left.p \notin B(\widetilde{Q}, a, h) ; j \cdot \frac{2 \epsilon^{\alpha}}{C}\right)$ if $(a, b) \neq\left(a_{j}, b_{j}\right)$ when $j \leq J_{p}$ and for each $(a, b) \in R_{j}^{m}$ when $j \geq J_{p}+2$ 。

If $j=J_{p}+1 \quad p \in B\left(\widetilde{Q}\left(a_{0}, b_{o}\right), j, \frac{2 \varepsilon^{\alpha}}{C}\right)$ for at most one choice of $\quad\left(a_{0}, b_{o}\right) \in R_{j}^{m}$ 。

$$
\begin{aligned}
& \text { Since } \operatorname{Ref}(p)=\sum_{j=0}^{\infty} \sum_{R_{j}^{m}} \frac{\epsilon_{j} \operatorname{Ref}(a, b), j(p)}{|f(a, b), j(p)|^{2}} \text { lemma } 3 \text { implies that } \\
& \operatorname{Ref}(p) \geq \sum_{j=0}^{J_{p}} \frac{\varepsilon_{j}\left(\varepsilon_{j} / 2^{4 n m}\right)}{2^{8 n m} \varepsilon_{j}^{2}}-\sum_{j=0}^{J_{p}}(a, b) \neq\left(a_{j}, b_{j}\right)^{\varepsilon_{j}^{1+(n-1) / 2}} \\
& { }^{-}(a, b) \in \sum_{J_{p}+1}^{m} \varepsilon_{j}^{1+(n-1) / 2}-\frac{1}{C_{0}} \cdots \sum_{j=J}^{\infty} \sum_{p+2} R_{j}^{m} \varepsilon_{j}^{1+(n-1) / 2} \\
& (a, b) \neq\left(a_{0}, b_{0}\right) \\
& \geq \frac{J_{p}}{2^{12 n m}}-\frac{1}{C_{0}}-\sum_{j=0}^{\infty} \sum_{R_{j}^{m}} \varepsilon_{j}^{1+(n-1) / 2 .}
\end{aligned}
$$

C_{0} is a constant，$\sum_{j=0}^{\infty} \sum_{R_{j}^{m}} \varepsilon_{j}^{1+(n-1) / 2}<\infty \quad$ and $J_{p} \rightarrow \infty$ whenever
$p \rightarrow p_{0} \in F^{m}$ so $\operatorname{Ref}(p) \rightarrow \infty$ whenever $p \rightarrow p_{0} \in F^{m}$ 。

LEMMA 5：

The Hausdorff dimension of F^{m} is $\geq 2 n-1-\frac{n}{m}$ 。

Proof：

This follows from Lemma 3 in［6］：

Let $E \subset \mathbb{R}$ be the intersection of a decreasing sequence of sets $\left\{E_{j}\right\}_{o}^{\infty}$ with E_{o} of length 1 and E_{j} the union of a finite set of intervals of length δ_{j} ，where $\left\{\delta_{j}\right\}_{0}^{\infty}$ is a sequence of positive numbers monotonously converging to zero．Assume that for $j>1$ the following conditions hold：

1）The distance between any two of the segments in E_{j} is not smaller than

$$
\rho_{j}=C \delta_{j-1}\left(\frac{\delta_{j}}{\delta_{j-1}}\right)^{\alpha}, \quad C>0
$$

2）In each segment in E_{j-1} there is not contained less than $\left(\delta_{j-1} / \delta_{j}\right)^{x}$ of the segments in E_{j} ．

Then $\mathfrak{g}^{\alpha}(E)>0$ 。

And the following theorem which is a consequence of 2.10 .4 and 2.10 .7 in［3］

THEORFM：
Let $E \subset \mathbb{R}^{m} \times \mathbb{R}^{n}, E$ compact，$E_{x}=\{y:(x, y) \in E\}$ and $\pi(E)$ be the projection into \mathbb{R}^{m} 。

If $\operatorname{dim} E_{x} \geq \beta$ whenever $x \in \pi(E)$ and $\operatorname{dim} \pi(E)>\gamma$ then $\operatorname{dim} E \geq \beta+\gamma 。$

Choose $\left\{\varepsilon^{m}\right\}_{m+4}^{\infty}$ as a decreasing sequence of positive real numbers converging to zero．And let $\left\{a_{m}\right\}_{m=4}^{\infty}$ be a sequence in \mathbb{R} converging to a point a such that $a_{m+1}-a_{m}>\left(\epsilon^{m}\right)^{\frac{1}{2}}$ 。

FCI each m let ϵ^{m} be the above ϵ_{0} and replace $F^{\text {ra }}$ by $F^{m}+p_{m}$ where the n＇th coordinate of $\varphi\left(p_{m}\right)$ is a_{m} and the rest is zero．

Finally we let $F=\left(\bigcup_{m=4}^{\infty} F^{m}\right) \cup p$ where $p=\lim _{m \rightarrow \infty} p_{m}$ ．Then F is compact．

PROPOSITITON：

F is a peak－set for the algebra $A(\mathbb{D})$ and the Hausdorff dimension of F is $2 n-1$ 。

Proof：
Since every point $p \in \partial \mathscr{D}$ is a peak point for $A(\mathscr{D})$ when D is strictly pseudoconvex with C^{∞}－boundary F is a countable union of peak sets and F is compact．Bishop＇s theorem implies that F is a peak－set。

Jf $\delta>0$ there exists an in such that $\frac{n}{m}<\delta$ and $k^{2 n-1-8}(F) \geq x^{2 n-1-\delta}\left(F^{m}\right)=0$ so $\operatorname{dim} F=2 n-1$.

References：

1．Arnold，V。I：＂Ordinary differential equations＂，MIT 1973.

2．Chaumat，J。 et Chollet， $\mathrm{A}_{\circ}-\mathrm{M}_{\circ}$ ：＂Ensembles pics pour A^{∞}（D）＂。 F replications，Université de Paris－－Sud，Orsay。

3．Federer，H．：＂Geometric measure theory＂。 Springer－Verlag 1969。

4．Folland，G。B．and Kohn，J．J．：＂The Neumann problem for the Cauchy－Riemann complex＂．Annals of mathematics studies， Princeton university press，1972。

5．Fornæss，J．E．：＂Embedding strictly pseudoconvex domains in convex domains＂。

American Journal of Mathematics，Vol。 98，No 1，1976．

6．Tumanov，A．E．＂A peak set for the disc algebra of metric dimension 2.5 in the three－dimensional unit sphere＂。 Math。 USSR，Izvestija Vol。 11 （1977），No 2。

7．Wermer，さ。：＂Banach algebras and several complex variables＂。 Markam Publishing Company 1971。

