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A Note on Sufficient and Non-sufficient Jets 

Hans Brodersen 

Introduction 

Let E(k) denote the set of germs ck n 
of mappings f: (R ,0) + 

p 
Given jet z E r that f E E [ r+s], s ) 0, is (R ,0). a J (n,p)' we say 

a realization of z if jrf(O) = z. z is C0 -sufficient in 

E[r+s] if all realizations are co equivalent. That is, if f 

and g are realizations of z in E [ r+s], then there exists a germ 

of a homeomorphism n (Rn 1 0) such that f = goh. In [ 1 1 ] h:(R ,0) + 

Thorn conjectures that if z is not sufficient, then z admits an 

infinite number of realizations which are not topologically equi

valent. When p = 1, and we consider c 0 -sufficiency in E[r] and 

E [r+l J, this is proved in [ 3]. On the other hand, Thorn's conjec

ture becomes false when we consider sufficiency in E[r+s]' s > 1. 

In [6 ], there is given an example of a z E J 6 (2,1) for which all 

realizations in fall into two distinct c 0 equivalent 

classes. 

In the case p = 1, c0 -sufficiency in E[r] (resp. E(r+l]) 

is equivalent with v-sufficiency in Elr] (resp. Elr+lj).(See 

[ 1 ]. ) Recall that a jet r 
z E J (n,p) is v-sufficient in 

E ( r+s] if the set germs f-l (0), g-1 (0) are homeomorphic for a.ny 

Cr+s 1 . . 
two rea 1zat1ons f and g. Hence when p = 1, Thorn's con-

jecture is proved by showing that if z E Jr (n, 1) is not v-suffi-

cient in (resp. E[r+l ])' then it admits an infinite number of 

realizations having non homeomorphic zero-sets~ 

In the case p > 1, a jet z E Jr(n,p} can be v-sufficient 

and still not c 0-sufficient. Hence the proof of Thorn's conjecture 
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of liOn-sufficiency in or does not carry automat-

ically over from p = 1 to p > 1. In Sl of this paper we will 

(_J i vc c1 pt·oof of this conjecture also for p > 1. Here we follow an 

idea inspired by Wilson (16], to usc Whitney Extension Theorem to 

construct certain realizations of a non-sufficient jet. Compare this 

with the proof in case p = 1 <l3]), which is of more analytic nature. 

In l9}, it is proven that certain characterizations of v-suffi-

ciency is equivalent with some regularity conditions for stratifi

cations. This gives a geometric explaination of the example in (o]. 

In §2 we will define analogue conditions, which will be relevant for 

c 0-sufficiency when p > 1, and prove corresponding results. 

§1. Non sufficiency in E[ r p Elr+l] when p > 1. 

Let us first recall some results about sufficiency of jets which are 

proved in [2]. Let z E Jr(n,p), and consider z as a polynomial 

mapping z = (z 1 , ••• ,zp): {Rn,O) + (RP,o) of degree r. Let 

d(Grad z.(x), Y R Grad z.(x)) denote the distance from Grad z.(x) 
1 '" J 1 t:J:j 

to the linear subspace in Rn spanned by the 

Put d(Grad z 1 (x) , ••• rGrad z 1 (x)) =min d(Grad 

Then the following theorem is proved in [ 2 J. 

Grad z.(x)' s,j * L 
J 

z . ( x) , L R Grad z . ( x) ) • 
1 . *. J 

l J 

Theor~m (Bochnak, Kucharz [?l>~ 

critical point at 0. 

Let r 
zt; J (n,J2) ge a jet wi.~ 

A The following conditions ar~ eguavalent. 

i ) 

ii) 3C,e: > 0 such that 

d(G d ( ) G d ( )) > Cl1 tir-l for lxfl ra z 1 x f.~., ra zp x .. x _ < £. 

iii) vf E E(r] with jrf(O) = z, 0 lian isolated critical 

point o~ _l. 
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B The following conditions are equivalent. 

i) z is sufficient in 

ii) 3 C,6, e > 0 such that 

r-6 d{Grad z1 (x), ••• ,Grad zp(x)) > Clxl for uxa <e. 

Note that in [2] part A of the theorem above is announced for jets 

with j 1z(O) = 0~ The proof, however, is valid for all z which have 

critical point at 0. 

Now let us announce the main result of this section: 

Theorem 1 Assume 
r 

z E J (n,p) is not C0-sufficient in E(r) (rese. 

.... T .... h.-e .... n--..;;t..;;.;h-..e.-r_e__,;;e.-x..;;;i~~~t;.;;;s;.._;;a;;._,;;:s;..;;e;..;;qa.;:u;.;e;.:;.n;;.;;c;;.;e;__...,J{~c,...;;.f. k } with f k € E [ r ] ( res P.· 

fk E E[k+l j), and jrfk(O) = z, such that fk and 

equivalent \'Jhen k * j ~ 

fj are not 

r 
Remark. When n < p, any jet z € J (n,p) is not sufficient. If 

1 n) p, and z E J (n,p), is not sufficient, then z is not surjec-

tive. In both these cases, it follows that im z has measure zero in 

RP, and it is possible to construct a sequence {fk} of mappings 

realizing z, with im fk * im f . , 
J 

when k * j. This will show that 

Theorem 1 is true also in these cases. We will, however, omit the 

proof of this, and stick to the case n ) p, and r > 1 ' . 
Let us first prove Theorem 1 in the case E[r]• We will start 

by proving a lemma, which is a Cr version of Wilson's Lemma 3.3 in 

[ 16 ] • First identity r 
J (n,p} with a Euclidean space in an obvious 

way. 

~--.b!.i~i * 0, be <!... seguens:e in Rn converging to 0, 

and let {(y ._c. ·ll be a sequence in Rp x Jr ( n,p) such that y 1.::_ 
----------~-1. l 

Lemma 1 

r r-i o t •~x u ) , z . = o ( H x . n ) • 
~~------w~-~1- 1 

such that j~h(O) = o,_~nd 

r Then there exists a C =map 

(h(x.}!J.rh(x.)} = (y .. z.) 
l ~- . l. • -1--l . 

holds for a 
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The proof of this lemma is almost a copy of the proof of Lemma 

3.3 in [16]. Since this is not yet published, we will give the 

details. 

Proof of Lemma 1. By passing to a subsequence if necessary, we may 

assume that for i,j, j > i we have: lx.u <2Ux.-x.u, ux.u < Bx.R. 
l l ) J l 

Let K = {o} u u{x.}. 
. l 
l 

Then {<yi,zi)} defines a Taylorfield on 

{x. l, which we extend to K by adding the zero series. at 0. Call 
l 

this field F = (Fk) lkl~r· We will prove that F is a Cr Whitney-

field. Then the lemma follows from Whitney's Extension Theorem. 

(Here and throughout the article we will use the notation, and 

results in [12] concerning Whitney fields.) 

Let k = (k,, ••• ,k ) , !ki < r, denote any multi index. 
• n 

We have 

to prove that 

Note 

uxu ( 

(RrF)k(V) Fk {y) = X • 

that since Y· = l 

211x-yu if x,y 

r 
= o( nx-y u ) 

DkoTr F( y) 
r- k - = o( u x-y u 

X 
when x,y € K. 

r r-1 and 0{ u Xi H ) I zi ::: o( Uxiti ) 

E K, we have that 

and 
k r-1 

F (X} = o( Ux-yU ) if lk I > 0. 

If follows that 

When 1 kl > 0 we have that 

r o(nx-yu • 

k k Fk+ .t 'X} .1 r-1 
(RxF) = F (y} - 1 -··~ 1 ' (y-x) = o( Hx-yn ) • 

i.t! (r- !kl l. 

This shows that F is a Whitney field, hence the lemma follows. 

Now let us assume that. z € Jr{n,p} is not sufficient. It 

follows that there exists a sequence {xi} 
' r.-1 d(Grad z 1 (xi}, ••• ~"Grad zp(x 1}) = otDxiU ) .. 

tending to 0, such that 

Let l c J 1 (n,p) be 
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tho set of s inyular jets. It is easy to see that 

. 1 \' . f d(GraJ z 1 (x.), ••• ,Gt·ad z (x.)} < d(J z(x 1.),L) (the d1stance rom 
1 p i 

J1 z(xi) to I:). Consider the set (nf)-1 ():), where 

1tf : J 2 (n,p) -+ J 1 (n,p) is the canonical projection. In the set 

(nf)- 1 <):), the Doardmanstratum }:(n-p+lvO) is of codimension 0, but 

all other Doat·dmanstrata have greater ccdimension. This follows from 

the formula of the codimension of the Boardmanstratum given in [10]. 

It follows that L ( n-p+ 1 ' 0 ) is open and dense in ( 1t~ ) ·-l L. Let 

11~ Jr(n,p) -+ J 2 (n,p) be the canonical projection. It follows 

from above that the set w = (n~)-l(l(n-p+l,O)) is open and dense in 

r -1 ~· ( 1tl ) ( L. ) 8 The jets in ( .... r2 )··l {\(n-p+l ,0) a-.. e .. L. • folds, which hav.e a 

normal form given in [5] p.. 88. From this follo\'!S that they are not 

c 0 equivalent with submersions • 

Now, since 
. 1 ,. r-l 

d(J z(xi),L.) = c(Hxift ), it follows that we can 

find a sequenct 

jrz(x.)+z. E w. 
l l 

{zi} in Jr(n,p) such that zi = o(Hxiur-l), and 

Dy Sard's Theorem, find a sequence {yl} in Rp 

such that y~ = o(Ux.Rr), and 
J. 1 

y~+z(x.) is a regular value for z. By 
l 1 

Lemma l, we can find a cr n p mapping h 1 : (R ,0) + (R ,0) such that 

jrh1 (0) = O, and 

of {xi}, which we 

f 1 (x.) = y~+z(x.), 

(h 1 (x 1 ),jrh(x 1 )} = (yl,z1 ) holds on a subsequence 

l 1 1 

still denote by ix 1}. Put 

is a fold around X. I 
1 

and 

f 1 = z+h 1 • 

l y.+z(x.) 
1 l 

Since 

is a 

regular value for z, it follo\vs that z and f 1 are not c0 

equivalent. To end the proof assume we have constructed realizations 

f, , .•• ,f~ of z which are not c 0 equivalent. By repeating the 
1 r. 

. {yk. +l} . p h th arguments above, f1nd a sequence 1 1n R sue . at 

k+l r k+1 
yi = o{nx 1 K ) 1 and z{xi) + yi is a regular value for f 1 , •• 

•• ,fk. Then find a cr mapping fk+l such that jrfk+l(O} = z, and 

( f ( ) . r f ( ) ) , ( ) k+ 1 . r { ) , b f k+l xi ,J k+l x 1 = \Z xi +yi ,J z x 1 +z 1 ,, on a su sequence o 

{x 1 }. It follows that fk+l is not c 0 right equivalent with any 

fi, i " k. In this way we can construct the sequence { fk}, and 

prove Theorem 1 in the case E(r]~ 
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To prove Theorem 1 in the case E[r+l]' it is enough to 

construct a realization f of z in Elr+l]' such that 0 is not 

an isolated critical point. F'rom the theorem of Bochnak, Kucharz 

follow •:: that J.r+lf(o) · t ff' · ~ · E d f m bov _ 1 s no s u 1 c 1 en '- 1 n [ r + 1 J , an r o a e 

follows that we can construct an infinite number of not equivalent 

Cr+l realizations of jr+lf(o), which also are Cr+l realizations 

of z. To find such a f we need a lemma: 

Lemma 2. Let {xi}, xi * O, be a sequence of points in R0 £2n

verging to 0. Let a : {xi} ~ R be a function for each j, l<j(n, 

such that 

f: Rn ~ R 

aj(x 1 > = O(Uxiur). Then there exists a Cr+l function 

r of such that j f(o} = 0, ~ a-<x .) = a. (x.} holds for a 
xj 1: J l. 

{X. } • 
1. 

Proof. Let 
1 n x. = (x. , ••• ,x. ). 

l l 1 
By passing to a subsequence if 

X~ 
necessary, we can assume that { U X\} 

l 

j=l, ••• ,n are 

convergent sequences. 

. \ j 
a · l X· 1 x. 

Put lim .::.J 1 lim l and {a:l,.,.,an)' a. = , v. = 
HxiD' 

a = 
J i~.., U X. H r J i~.., 

l 

v = (v 1 , ••• ,v 0 ). Since v * 0 assume that v 1 * 0. 

Since {X • } 
1 

is convergent to 0, it is not hard to see that it is 

possible to choose a subsequence of 

holds: 

For each n E N we can find 

in the subsequence, and q > i ) Nn, 

U X. U ll 1 
nx • *) 1 g 

< - I < Ux .-x q" n Ux.-x I 
l 1 q 

1 --n 

{X. } 
l 

such that the following 

such that if X. , 
1 

we have: 

, 

and either the j 1 th component of the subsequence are identically 
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zero or 

x? 

11 1 
xj 

1 **) 1 < q < - ... -
x~-xJ n I 

x?-xJ n 
I 

1 q 1 q 

Let us still denote this subsequence by {xi}; Put K = {O}u Ui{xi}. 

We will define a Taylorfield on K and show that it is a Whitney-

field. 

To define the Taylorfield F = (Fk) 1 kl ~r+l on K, consider 

first the multiindexes 

Put 

and 

kl = 
• • .. 
kJ = 
• • • 
kn = 

(r+l,O, ••• ,O) 
• • • 

(r,O, •• ,i, .. ,O} 

(r, 0 

• • • 
, ••• ,0,..1) 

P rr!a.v. 
I J l 

j =2 ( v 1 ) r+ I 

( 1 at 

j r !a. 
Fk (0) = ----1 -- , when r 

( v 1 ) 
j = 2, ••• ,.n, 

For all other multiindexes put Fk{O} = 0. 

Define 

p (X) 

and 

j'th place) 

• 

At last, if k = (j) = {0,.~.,1 , ••• .,0} (1 at j'th place), put 

and put 

othenlise. 

k 
F (X.) 

l. 
= j (X ) a .. 

l 

Pk { ) r+ 1- I k I 
= v axil 
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To prove that F is a Whitneyfield we have to show that 

D Ur+l-lkl + 0 , 
x-y 

when x,y E K and H x-yu + 0. This will follow from calculating 

some limits. These calculations will mostly be based on the 

inequalities *) and **) above. 

Assume first that we consider points x,y E K with X= x., 
l. 

y = x and q > i. 
q 

We have that 

Because 
Hx u 

q 
II X. -·x II 

1 q 

k ( Hx H )r+l-1 kl 
P (vl 9 -
• • U X · -x H r 

l q 

aj(x ) ___ L_ = 
II X. -x U r. 

l q 

aj(x )( Ux 11 \r __ q_ g; ) 
U X U r II Xi -x U 1 

q q 

+ 0 when i,q + 01) and 
a . ( x ) 

J g_ 
u x u r 

q 

when k. * 1. 

when k = ( j) • 

is bounded, we have 

that 
Fk(y) 

----~-~~~ + 0 when !kl * r+l 
llx-yllr+l-lkl 

for such points x,y • 

When I kl = r+l we have that 
Fk(v) k 

.1. = P (v). Since 
II x-yH r+1-l kl 

when ikl < r+l, and Pk(O} = Pk(v) for !kl = r+l, we conclude 

Fk(y) + Pk(O) 
r+1- k Ux-yH 

that when P.x-yll + 0. 

On the other hand we have that 

nx-yur+l-lk! 

= 
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.t ( x -x . ) · o 

9 1. ( }A IJl.l..,. -v when 
Nx.-x a 

It is edsy to see that 

1 q 

We also have that for ll+ki * l, then 

F,t+k(x.) 
1 

" 11 r+l-111-lkl 
uX. -X 

1 q 
= ux.-x 0r+l-111-ikl 

1 q 

i,q + ~. When l+k = (j) we have that 

I ki 

+ a . 
J 

i,q + co. 

when 

when i,q ..,. ""• It is easily seen that ~(v) h he ox. • aj, ence w n 

Hx-yn ..,. 0 we have that 

llx-yllr+J-Ikl 
+ }: 

0..; Ill <: r+ 1- I ki 

because P is analytic. 

( R~+ l F) ( y) 

Bence ------~--~ + Pk(O)-Pk(O) = 0 
llx-yd r+l- k 

x=x.,y=x 
1 q q > i. 

J 

when 

1 (-v) 

and 

If we interchange x and y, considerations similar to those above 

give that 

Fk (X) k 

H U r+ 1 - I k I ..,. P ( v) 
y-x 

when nx-yH ..,. 0. Hence 

case too. The case where 

and 

u x-y 11 r+ l - I k I 

x or y 

+ 0 

is 

when ux-yn + 0 in this 

0 can be treated in a 

similar manner. This proves that F is a Wh i tneyf ield, and the 

lemma follows from Whitney Extension Theorem. 

Now let us end the proof of Theorem 1 in the case E[r+l]" 

h. (X) 
1. 

= d(Gradz. (x) I L m Gradz. (x}). 
1 i*j J 

Since z is not 

Put 
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sufficient in E[r+l]' we can assume that for each 6 > 0 there exist~ 

r-& a sequence {xd tending to 0 such that h 1 (x 1 ) = o( DxiH ) • Note 

that by l 7 J p. 11 U, (h 1 ) 2 is a bounded ra tiona! function. It follows from 

the Tarski-Seidenberg Theorem that the set 

V = {{u,v) E:m2 1(u,v) =((h1 ) 2 (x),axn 2 ),x€mn} is semialge

braic. It is not hard to see that the set { (u,v) E VI u = 

min (h 1 ) 2(x) }-{0} is a component of (V-V0 )-{0}, hence 
nxu2=v 

semialgebraic. It follows from the Curve Selection Lemma that there 

exists an analytic arc 8:[0,£] ~ V such that 8(0) = 0 and 

8(t} E {xth 1 (x) = min h 1 (w)}. Assume that I B(t)l ,.. tq and that 
Uwll=HxU 

jhl(J3(t)l ts. (Note that from the expression of h 1 given in 

[7], it will follow that s is an integer.) From the theorem of 

Bochnak, Kucharz follows that s/q ) r.. Let {x 1} be a sequence 

on converging to 0. Then we must have r h 1 (x.) = O(llx.ll ). 
1 1 

h 1 {x.) ) d{j 1 z(x.),L) 1 it follows that we can find a 
1 l 

Now since 

sequence {z.} in J 1 (n,p) such that z. = O(ftx 1.11r) and 
1 1 

j 1z(x.)+z. E L• 
l 1 

Now apply Lemma 2 for the p 

r+l n p c map h: lR + m such that 

components of 

z 1 holds on a subsequence of {x 1}. 

z 1 , to find a 

j 1h(x.) = 
l 

Put f = z+h. Then f is the desired realization of z with sin-

gular points on a subsequence of {xi}. This completes the proof of 

Theorem 1 in the case E[r+1]" 

Remark. From the arguments above follows directly that sufficiency 

of z in E[r+l] is equivalent with the condition that every cr+l 

realization of x admits 0 as an isolated critical point. 

S 2. Geometric conditions of sufficiency. 

As in [9], consider r z E J (nrp) as a polynomial map 

z = (zl,. •• ,zp): (lR~O) + (JR~O) of degree r, and define 

• (1) • (p) 
F(X 1 A.) = \F 1 (x,X ), ••• ,Fp(x,A. )) 
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i " i " p. 

where A is formed Consider the Euclidean space mn X A 

by the X~i>,s. As explained in [9], the Grad F.'s, 1 " i" p, 
1 

are linearly independent at points n (x,A} Em x A where x*O· 

It follows that F-l(F{x,)..)) is a manifold of codimension p for x*O. 

Now consider the following conditions: 

(wF). There exists a neighbourhood U of 0 in mn x A 

and C > 0 such that for (x,A) E U, x * 0, we have 

-1 
d(OxA,T(X,A)F (F(x,A))) ( CP.xl. 

(Recall that when VrW are linear subspaces of m0 then 

d(V,W) = sup 
Vf_V 

uvn=l 

inf uv-wu .. ) 
Wf_W 

Let Mn denote any C5 submanifold, 
s 

of dimension n with Assume that is transverse to 

0 X A at o, then there exists a neighbourhood u of 0 in 

mn A such that 1t1hen (X, A) E 
n 

X :f: 0, then n 
is X u n Ms, Ms 

-1 
transverse to F (F(x,A)) at (x,X}~ 

Note that the conditions and are generalizations of 

Verdiers Condition and the Trotm~n. Condition 
s . 

{ t. ) , (see [ 9 ]) where 
-1 

we also compare 0 x A with the manifolds F (a}, a * 0, in a 

neighbourhood of 0. 

Now we hu.ve: 

Tl 2 r t E _r' ' leorem • ue. z u \n,p; be an r jet. Assume s E m~ 

s) 1. Then the following conditions below I and II are egui

valent respectively. 
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I 

( i ) z is sufficient in 

(ii) The condition (wF) is satisfied .. 

II 

(i) The condition is satisfied. 

(ii) r+s with .r 
w(O) is co sufficient Any w E J (n,p) J = z 

in E[r+sr 

(iii) z admits only a finite number of cr+s realizations which 

are not c0 equivalent. 

(iv) Any Cr+s relazation f of z admits 0 as an isolated 

critical point. 

(v) For any family of 

A(i)(O) = O, the 
a 

c5 functions X(i)(x), la:l = r, 
a 

Cs . 
mapp:til9_ F(x,1-..(X)) admits 0 

isolated critical point. 

1<i<:p, 

as an 

Remark. Inspired by Theorem A in [9], the author was a while 

tempted to guess that sufficiency in E [r+l] was equivalent with 

the condition (aF) below, which is a generalization of the 

Whitney (a) condition. 

Assume 

n 
lR X A. 

{(x.,A.}} is a sequence with x 1. * 0 tending to 
1 l 

Assume that Tlx. A.)F- 1(F(x 1 ,Ai)} + ~ in 
. 1, l 

the appropriate Grassmanian, then ~ ~ OxA. 

The equivalence between sufficiency in E[r+l] and the 

condition (aF) is however false. A counterexample is the 

following: Consider z € J 4 (2,1)~ z ~ xt-3x1 xt. From calcula

tions in [ 8] p. 228 it follO'It!S that z is sufficient in E[ 5 ] but 
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not in E(4)'" An easy calculation will show that breaks 

down along the 

9 
A-(0,4) = 4t. 

curve x 1 = t3, x 2 = t2, X = 0, for a * (0,4), and 
a 

From this example it is also easy to construct 

counterexamples when p > 1. It is however possible to prove that 

implies sufficiency in E(r+l]" We will here omit the 

details. 

Let us now prove part I of Theorem 2. Let N.(x,X) = GradF.(xtA.)-
l l 

-Pi(x,A.), where Pi(x,X) is the projection of GradFi(x,)..) onto the 

linear space spanned by the GradF j ( x, A)'s j * i. Then, using 

formula (3.3} of [7] 1 the distance from the unit vector 3 (') to 
3A 1 

the tangentspace 

p 
= II L 0 

j=l oA ( f1 
0: 

o Grad 

\vhen X * 0 is 

N.(x,A.) 
F.(x,A.) J n = 

) HNj{x,A.)U2 

0: 

UN.(x,A.)II 
J 

To prove (i) * {ii) assume z is sufficient in From the 

theorem of Bochnak, Kucharz follows that d(Gradz 1 (x), •• ,Gradz (x)) p 

) C ux llr-l for some C > 0 when u XII is small. As in the proof 

of Lemma 4.3 [7], it follows that 

) ¥nx llr--l in a sufficiently small 

d(GradF 1 (x,A.), ••• ,GradFP(x,A.)) 

neighbourhood of 0. Since 

6 (i) (lt,A.) ( 1_ IIXU • 
0: c 

Since is spanned by the orthnormal vectors 0 --- the 
oX (i)' 

condition (wF) is satisfied. 

To prove (ii) • {i) assume that 

Then there exists a Cr function 

X 

0: 

is not sufficient in E(r]" 

h: mfl...-nf, with jrh(O}=O 

such that f = z+h have a sequence {xi}, of critical points 

tending to 0. Hence we can assume that on this sequence we have 

Grad f 1 = ~ 
j=2 

.a. Grad f. 
J ) 

where the 

vlri te Grad F = (Grad F. , Grad F. I. 
j X ) A J 

calculation that 

.a . P s are numbers with 
J 

lf3.1 < 1. 
J 

It follows from a short 
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p p 
Grad Fl = l B Grad F.+ L B. Grad h.-Grad hl 

X j=2 j X ] j=2 J J 

on the sequence {<xi,o)} in lRnx A. From this we get that: 

p p 
= 1 B. Grad F.+ LB. Grad h.-Grad h1 

j=2 J J j=2 J J 

0 

+ GradA.F 1-! 6. GradA.F. 
j==2 ] J 

on the sequence {(xi,O)}. From this follows that: 

( a lp B. Grad h.-Grad h 1 +Grad F 1- f B. Grad F.l. 
j=2 ) J A j=2 J A J 

Now since KGr.adAFjn = 
l,j,p, it follows that 

r . r-1 o ( u l~ 1 } , u Grad h . n = o ( a x a ) , 1 ~ J. 1 < 1 , 
J 

r-1 
aN 1 u = o( 1 x D ' ) on the sequence I (xi, 0} u ~ 

From this it is clear that for 
lxal 

some a., Ia I = r, is not 
UN 1 UHxU 

a 

bounded on {<x.,O)}. Since 
1 

{ 1 ) i X. I 
6 a ( x i , 0 ; = 11 N 1 ~ x . ) 0 , is the d is tan c e 

from 

along 

l 

to T( O)F- 1 (F(x.,O)) 
Xi t l 

it follows that fails 

{(x. ,0)}, proving (ii) ~ (i)o Hence the proof of Theorem 2 
1 

part I is complete. 

Part !! of Theorem 2 is very similar to Theorem C in [9], and 

the proof is also very similar. We will only sketch it, pointing out 

the main differences from the proof of Theorem c. The proof of (i) ~ 

(v) is almost a copy of (C.l) ~ (C.S) in [9]. This is also the case 

for (i) ~ (ii) which is similar to (Col) • {C.2}. Note however that 

it is not necessary to have critical points along a Lojasiewicz arc, 

but only along a seequence tending ot Oo · To prove (i.i) .. (iii), 

note that (ii) implies that every wE Jr+s(n,p,} with jrw(O) = z 

admits 0 as an isolated critical point. In the terminology of (2) 
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r+s [ ] p. 118 this means that w E Jr. (n,p). From Theorem 4 of 2 follows 

that there exists a partition of J~+s(n,p) in finitely many 

connected analytic varieties such that the jets occuring in the same 

' t C0 • 1 t It follows that Jr+s ( ' var1e y are equ1va en • E n,p, consists 

of finitely many c0 equivalence classes~ This will imply (iii). 

(Compare this with the proof of (C.2} • (C.3) using Fukuda's 

Theorem. When p > 1 Fukuda's Theorem. is not valid.) 

(iii) • {iv) is similar to (C.3) • (C.4) using Theorem 1 in this 

article instead of the results in [3]. 

At last the proof of {iv) * {v) is similar to (C.4) ~ (C.S). 

The only obstacle is that we lack a theorem corresponding to Theorem 

A in [ 9]. (See the remark above.) From the remark below the proof 

of Theorem 1 in the case follows however, that it is suffi-

cient to prove that sufficiency in E[ 1 , implies the condition r+ J 

(v) when s = 1. To prove this, assume {v) fails for r z e: J (n,p). 

Then there exists a family of c 1 functions A(j)(x} lal = r, 
a ' 

l(j(p, and a sequence 

f(x) = F(X 1 A(X)) has 

{x.} in ~n tending to 0, such that 
l 

critical points along {Xi} • Hence we can 

assume that for each i there exists numbers 6., 
J 

2(j<p with 

IB · l J < 1 

where the 

get: 

such that 

f . 's 
) 

are t.he component functions of f. 

P ~ oF. . . > l B. Grad F.+ l B. I ~( ."'~ Grad 1\. { J 
j=2 J x J j~2 J a of, ]J a 

a 

aFl n i 
- ~ -~1 Grad A' along {(x.,A(x.))}. \ } a 1. 1 a ax 

a 

From this we 

Note that since the 
t .; ) 

, • .; ;s are c1 
IX 

and A(O) = o~ we have 

A.~j) ( x) = 0( n x n}. From this follows GradxFj = Grad z j+O( IX 1) r along 

(Xi'A(xi)). Substituting this in the equality above, and using that 
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B. < 1 , YGradA. ( j) R is boun<'led and that 
J a 

()F. 
• 1~· • ( x, A.) = 0( 1 xU r) we 
3A.. J) 

a 

get that 

Grad z, = }. B. Grad z .+O(UxUr) 
1 j~2 J J 

From this follows that d(Gradz 1 , •• v,Gradzp) = O{ftxlr) along {xi}. 

It follows from the theorm of Bochnak, Kucharz that x is not 

sufficient in This completes the proof of (iv) • (v) and 

Theorem 2. 

Ackngwledgemen~. The author would like to thank Per Holm, Andrew du 
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