# ISBN 32-553-0460-6 <br> 1981 <br> Mathematics <br> September 25 

# A NOTE ON SUFFICIENT AND NON-GUFFICIENT JETS 

by<br>Hans Brodersen<br>University of Oslo

## A Note on Sufficient and Non-sufficient Jets

## Hans Brodersen

## Introduction

Let $E_{[k]}$ denote the set of germs of $C^{k}$ mappings $f:\left(R^{n}, 0\right) \rightarrow$ $\left(R^{p}, 0\right)$. Given a jet $z \in J^{r}(n, p)$, we say that $f \in E[r+s], s \geqslant 0$, is a realization of $z$ if $j^{r} f(0)=z$. $z$ is $C^{0}$-sufficient in $E_{[r+s]}$ if all realizations are $c^{0}$ equivalent. That is, if $f$ and $g$ are realizations of $z$ in $E_{[r+s] \text {, then there exists a germ }}$ of a homeomorphism $h:\left(R^{n}, 0\right) \rightarrow\left(R^{n}, 0\right)$ such that $f=g o h$. In [11] Thom conjectures that if $z$ is not sufficient, then $z$ admits an infinite number of realizations which are not topologically equivalent. When $p=1$, and we consider $c^{0}$-sufficiency in $E_{[r]}$ and ${ }^{E}[r+1]$, this is proved in [3]. On the other hand, Thom's conjecture becomes false when we consider sufficiency in $E[r+s]$, $s>1$. In [6], there is given an example of a $z \in J^{6}(2,1)$ for which all realizations in $E_{[8]}$ fall into two distinct $C^{0}$ equivalent classes.

In the case $p=1, c^{0}$-sufficiency in $E_{[r]}$ (resp. $E_{[r+1]}$ ) is equivalent with $v$-sufficiency in $E_{[r]}$ (resp. $E_{[r+1]}$ ).(See [1].) Recall that a jet $z \in J^{r}\left(n_{s} p\right)$ is v-sufficient in $E_{[r+s]}$ if the set germs $f^{-1}(0), g^{-1}(0)$ are homeomorphic for any two $c^{r+s}$ realizations $f$ and $g$. Hence when $p=1$, Thom's conjecture is proved by showing that if $z \in J^{r}(n, 1)$ is not v-sufficient in $E_{[r]}$ (resp. $E_{[r+1]}$ ), then it admits an infinite number of realizations having non homeomorphic zero-sets.

In the case $p>1$, a jet $z \in J^{K}(n, p)$ can be v-sufficient and still not $c^{0}$-sufficient. Hence the proof of Thom's conjecture


#### Abstract

of non-sufficiency in $E_{[r]}$ or $E_{[r+1]}$ does not carry automatically over from $p=1$ to $p>1$. In $\$ 1$ of this paper we will Give a proof of this conjecture also for $p>1$. Here we follow an idea inspired by Wilson [16], to use Whitney Extension Theorem to construct certain realizations of a non-sufficient jet. Compare this with the proof in case $p=1$ ([3]), which is of more analytic nature.

In [9], it is proven that certain characterizations of v-sufficiency is equivalent with some regularity conditions for stratifications. This gives a geometric explaination of the example in [6]. In $\$ 2$ we will define analogue conditions, which will be relevant for $c^{0}$-sufficiency when $p \geqslant 1$, and prove corresponding results.


S1. Non sufficiency in $E_{[r]}{ }^{E}[r+1]$ when $p \geqslant 1$.
Let us first recall some results about sufficiency of jets which are proved in [2]. Let $z \in J^{r}(n, p)$, and consider $z$ as a polynomial mapping $z=\left(z_{1}, \ldots, z_{p}\right):\left(R^{n}, 0\right) \rightarrow\left(R^{p}, 0\right)$ of degree $r$. Let $\mathrm{d}\left(\operatorname{Grad} z_{i}(x), \sum_{i \neq j} R \operatorname{Grad} z_{j}(x)\right)$ denote the distance from Grad $z_{i}(x)$ to the linear subspace in $R^{n}$ spanned by the $\operatorname{Grad}^{z}{ }_{j}(x)^{\prime} \operatorname{sij} \neq i$. Put $d\left(G r a d z_{1}(x), \ldots, G r a d z_{i}(x)\right)=\min d\left(G r a d z_{i}(x), \sum_{i \neq j} R \operatorname{Grad} z_{j}(x)\right)$. Then the following theorem is proved in [2].

Theorem (Bochnak, Kucharz [2]). Let $z \in J^{x}(n, p)$ be a jet with a critical point at 0 .

A The following conditions are equavalent.
i) $Z$ is sufficient in $E[r]$
ii) $\exists C, \varepsilon>0$ such that
$d\left(\operatorname{Grad} z_{1}(x) \ldots \ldots, \operatorname{Grad} z_{p}(x)\right) \geqslant C\|x\|^{r-1}$ for $\|x\|<\varepsilon$.
iii) $\forall f \in E[r]$ with $j^{\Sigma} E(0)=z, 0$ is an isolated critical point of $f$.

B The following conditions are equivalent.
i) $z$ is sufficient in $E_{[r+1]^{\circ}}$
ii) $\exists \mathrm{C}, \delta, \varepsilon>0$ such that
$d\left(\operatorname{Grad} z_{1}(x) \ldots, \operatorname{Grad} z_{p}(x)\right) \geqslant C\|x\|^{x-\delta}$ for $\|x\|<\varepsilon$.
Note that in [2] part $A$ of the theorem above is announced for jets with $j^{1} z(0)=0$. The proof, however, is yalid for all $z$ which have critical point at 0.

Now let us announce the main resuit of this section:

Theorem 1 Assume $z \in J^{r}(n, p)$ is not $C^{0}-\operatorname{sufficient}$ in $E[r]$ (resp. $\left.E_{[r+1}\right]^{\prime}$. Then there exists a sequence $f_{k} \mathcal{L}^{\text {with }} f_{k} \in E_{[r]}$ (resp. $\left.f_{k} \in E_{[k+1]}\right)$, and $j^{r} f_{k}(0)=2$, such that $f_{k}$ and $f_{j}$ are not $C^{0}$ equivalent when $k \neq j$.

Remark. When $n<p$, any jet $z \in J^{r}(n, p)$ is not sufficient. If $n \geqslant p$, and $z \in J^{\prime}(n, p)$, is not sufficient, then $z$ is not surjective. In both these cases, it follows that im $z$ has measure zero in $R^{p}$, and it is possible to construct a sequence $\left\{f_{k}\right\}$ of mappings realizing $z_{\text {, }}$ with $i m f_{k} \neq i m f_{j}$ when $k \neq j$. This will show that Theorem 1 is true also in these cases, we will, however, omit the proof of this, and stick to the case $n \geqslant p$ and $r>1$.

Let us first prove Theorem 1 in the case $E[r]$. We will start by proving a lemma, which is a $C^{r}$ version of Wilson's Lemma 3.3 in [16]. First identity $J^{r}(n, p)$ with a Euclidean space in an obvious way

Lemma 1 Let $\left\{x, 1\right.$, $x_{i} \neq 0$ be a sequence in $R^{n}$ converging to 0 . and let $\left\{\left(y_{i} z_{i}\right)\right\}$ be a sequence in $R^{p} \times J^{2}(n, p)$ such that $y_{i}=$ $o\left(\|x\|^{r}\right), z_{i}=o\left(\|x,\|^{x-1}\right)$, Then there exists a $C^{r}-\operatorname{map} h: R^{n} \rightarrow R^{p}$ such that $j^{x} h(0)=0$, and $\left(h(x,)^{j^{x} h\left(x_{j}\right)}=\left(y_{i} L_{i}\right)\right.$ holds fox a subsequence of $\left\{x_{i} \backslash\right.$.

The proof of this lemma is almost a copy of the proof of Lemma 3.3 in [16]. Since this is not yet published, we will give the details.

Proof of Lemma 1. By passing to a subsequence if necessary, we may assume that for $i, j, j>i$ we have: $\left\|x_{i}\right\|<2\left\|x_{i}-x_{j}\right\|,\left\|x_{j}\right\|<\left\|x_{i}\right\|$. Let $K=\{0\} u \quad u\left\{x_{i}\right\}$. Then $\left\{\left(y_{i}, z_{i}\right)\right\}$ defines a raylorfield on $\left\{x_{i}\right\}$, which we extend to $x$ by adding the zero series at 0 . Call this field $F=\left(F^{k}\right)_{|k| \leqslant r}$. We will prove that $E$ is a $C^{r}$ Whitneyfield. Then the lemma follows from Whitney's Extension Theorem. (Here and throughout the article we will use the notation, and results in [12] concerning whitney fields.)

Let $k=\left(k_{i} \ldots \ldots k_{n}\right),|k| \leqslant r$, denote any multiindex. We have to prove that

$$
\left(R_{x}^{F} F\right)^{k}(y)=F^{k}(y)-D^{k} o T_{x}^{r} F(y)=o\left(\| x-y^{r-k}\right) \text { when } x, y \in K
$$

Note that since $y_{i}=o\left(\left\|x_{i}\right\|^{r}\right), z_{i}=o\left(\left\|x_{i}\right\|^{x-1}\right)$ and $\|x\| \leqslant 2\|x-y\|$ if $x, y \in X_{\text {, }}$ we have that

$$
F^{0}(x)=o\left(\|x-y\|^{r}\right) \text { and } F^{k}(x)=o\left(\|x-y\|^{r-1}\right) \text { if }|k|>0
$$

If follows that

$$
\left(R_{x} F\right)^{0}(y)=F^{0}(y)-\sum_{\| \sum^{1} \leqslant x^{l!}} \frac{F^{2}(x)}{l y-x)^{2}}=0\left(\| x-y y^{r}\right.
$$

When $|k|>0$ we have that

$$
\left(R_{x} F\right)^{k}=F^{k}(y)-\sum_{\mid \ell!\{r-!k!} \sum_{F^{k+2}(x)}^{h!}(y-x)^{\ell}=o\left(\|x-y\|^{2-1}\right)
$$

This shows that $F$ is a Whitney fieid, hence the lemma follows.
Now let us assume that $z \in J^{r}(n, p)$ is not sufficient. It follows that there exists a sequence $\left\{x_{i}\right\}$ tending to 0 , such that $d\left(\operatorname{Grad} z_{1}\left(x_{i}\right) \ldots, \ldots \operatorname{Grad} z_{p}\left(x_{i}\right)\right)=0\left(\left\|x_{i}\right\|^{r-i}\right)$. Let $\left\{\subset J^{l}\left(n_{i} p\right)\right.$ be
the set of singular jets. It is easy to see that
$d\left(G r a d z_{1}\left(x_{i}\right), \ldots G r a d z_{p}\left(x_{i}\right)\right) \leqslant d\left(j^{1} z\left(x_{i}\right), l^{\prime}\right)$ (the distance from $j^{1} z\left(x_{i}\right)$ to $\Sigma$ ). Consider the set $\left(\pi_{1}^{2}\right)^{-1}\left(\sum\right)$, where $\pi_{1}^{2}: J^{2}(n, p) \rightarrow J^{1}(n, \mu)$ is the canonical projection. In the set $\left(\pi_{1}^{2}\right)^{-i}\left(\sum\right)$, the Boardmanstratum $\sum^{(n-p+i, 0)}$ is of codimension 0 , but all other Boardmanstrata have greater codimension. This follows from the formula of the codimension of the Boardmanstratum given in [10]. It follows that $\sum^{(n-p+1,0)}$ is open and dense in $\left(\pi_{1}^{2}\right)^{-1} \sum$. Let $\pi_{2}^{r}: J^{r}(n, p) \rightarrow J^{2}(n, p)$ be the canonical projection. It follows from above that the set $W=\left(\pi_{2}^{r}\right)^{-1}\left(\sum^{(n-p+1,0)}\right)$ is open and dense in $\left(\pi_{1}^{r}\right)^{-1}\left(\sum\right)$. The jets in $\left(\pi_{2}^{r}\right)^{-1}\left(\sum^{(n-p+1,0)}\right.$ are folds, which have a normal form given in [5] p. 88. Erom this follows that they are not $C^{0}$ equivalent with submersions.

Now, since $d\left(j^{l} z\left(x_{i}\right), \dot{l}\right)=c\left(\forall x_{i} \|^{x-1}\right)$, it follows that we can find a sequenct $\left\{z_{i}\right\}$ in $J^{r}(n, p)$ such that $z_{i}=o\left(\left\|x_{i}\right\|^{x-1}\right)$, and $j^{r} z\left(x_{i}\right)+z_{i} \in W$. By Sard's Theoxem, find a sequence $\left\{y_{i}^{1}\right\}$ in $R^{p}$ such that $y_{i}^{\prime}=o\left(\left\|x_{i}\right\|^{r}\right)_{e}$ and $y_{i}^{1}+z\left(X_{i}\right)$ is a regular value for $z$. By Lemma 1 , we can find a $C^{r}$ mapping $h,\left(R^{n}, 0\right) \rightarrow\left(R^{P}, 0\right)$ such that $j^{r} h_{j}(0)=0$, and $\left(h_{i}\left(x_{i}\right), j^{r} h\left(x_{i}\right)\right)=\left(y_{i}^{\prime}, z_{i}\right)$ holds on a subsequence of $\left\{x_{i}\right\}$, which we still denote by $\left\{x_{i}\right\}$. put $f_{1}=z+h_{1}$. Since $f_{f}\left(x_{i}\right)=y_{i}^{1}+z\left(x_{i}\right), f_{1}$ is a fold around $x_{i}$, and $y_{i}^{1}+z_{i}\left(x_{i}\right)$ is a regular value for $z$, it follows that $z$ and $E$ are not $C^{0}$ equivalent. To end the proof assume we have constructed realizations $f_{1} \ldots . f_{k}$ of $z$ which are not $C^{0}$ equivalent. By repeating the arguments above, find a sequence $\left\{y_{i}^{k+1}\right\}$ in $R^{p}$ such that $y_{i}^{k+1}=o\left(\left\|x_{i}\right\|^{c}\right)_{\text {, }}$ and $z\left(x_{i}\right)+y_{i}^{k+1}$ is a regular value for $f_{1} \ldots$. ... $E_{k}$. Then find a $C^{r}$ mapping $f_{k+1}$ such that $j^{r_{f}} f_{k+1}(0)=z$ and $\left(f_{k+1}\left(x_{i}\right), j^{r} f_{k+1}\left(x_{i}\right)\right)=\left(z\left(x_{i}\right)+y_{i}^{k+1}, j^{r} z\left(x_{i}\right)+z_{i}\right)$, on a subsequence of $\left\{x_{i}\right\}$. It follows that $f_{k+1}$ is not $c^{0}$ right equivalent with any $f_{i}$, $i \leqslant k$. In this way we can construct the sequence $\left\{f_{k}\right\}$, and prove Theorem 1 in the case $E_{[r]}$,

To prove Theorem 1 in the case $E_{[r+1]}$, it is enough to construct a realization $f$ of $z$ in $E_{[r+1]}$, such that 0 is not an isolated critical point. From the theorem of Bochnak, Kucharz follows that $j^{r+1} f(0)$ is not sufficient in $E[r+1]$, and from above follows that we can construct an infinite number of not equivalent $c^{r+1}$ realizations of $j^{r+1} f(0)$, which also are $c^{r+1}$ realizations of $z$. To find such a $f$ we need a lemma:

Lemma 2. Let $\left\{x_{i}\right\}, x_{i} \neq 0$, be a sequence of points in $R^{n}$ converging to 0 . Let $\alpha:\left\{x_{i}\right\} \rightarrow R$ be a function for each $j, 1 \leqslant j \leqslant n$, such that $\alpha_{j}\left(x_{i}\right)=O\left(\left\|x_{i}\right\|^{r}\right)$. Then there exists a $C^{r+1}$ function $f: R^{n} \rightarrow R$ such that $j^{r} f(0)=0$, and $\frac{\partial f}{\partial x_{j}}\left(x_{i}\right)=\alpha_{j}\left(x_{i}\right)$ holds for a subsequence of $\left\{x_{i}\right\}$.

Proof. Let $x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)$. By passing to a subsequence if necessary, we can assume that $\left\{\frac{\alpha^{j}\left(x_{i}\right)}{\left\|x_{i}\right\|^{r}}\right\}$ 。 $\left\{\frac{x_{i}^{j}}{\left\|x_{i}\right\|}\right\} \quad j=1, \ldots, n$ are convergent sequences.
Put $\alpha_{j}=\lim _{i \rightarrow \infty} \frac{\alpha_{j}\left(x_{i}\right)}{\left\|x_{i}\right\|^{r}}, v_{j}=\lim _{i \rightarrow \infty} \frac{x_{j}^{j}}{\left\|x_{i}\right\|}$, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, $v=\left(v_{1}, \ldots, v_{n}\right)$. Since $v \neq 0$ assume that $v_{1} \neq 0$.

Since $\left\{x_{i}\right\}$ is convergent to 0 , it is not hard to see that it is possible to choose a subsequence of $\left\{x_{i}\right\}$ such that the following holds:

For each $n \in N$ we can find $N_{n} \in N$ such that if $x_{i}$, $x_{q}$ are in the subsequence, and $q>i \geqslant N_{n}$, we have:
*) $\left|\frac{\left\|x_{i}\right\|}{\left\|x_{i}-x_{q}\right\|}-1\right|<\frac{1}{n}, \frac{\left\|x_{q}\right\|}{\| x_{i}{ }^{-x_{q} \|}}<\frac{1}{n}$,
and either the $j^{\prime}$ th component of the subsequence are identically
zero or
**) $\left|\frac{x_{i}^{j}}{x_{i}^{j}-x_{q}^{j}}-1\right|<\frac{1}{n} \cdot\left|\frac{x_{q}^{j}}{x_{i}^{j}-x_{q}^{j}}\right|<\frac{1}{n}$.
Let us still denote this subsequence by $\left\{x_{i}\right\}$. Put $K=\{0\} \cup u_{i}\left\{x_{i}\right\}$. We will define a Taylorfield on $K$ and show that it is a Whitneyfield.

To define the Taylorfield $F=\left(F^{k}\right)|k| \leqslant r+1$ on $K$, consider first the multiindexes

(1 at j'th place)

Put

$$
F^{k^{1}}(0)=\frac{r!\alpha_{1}}{\left(v_{j}\right)^{r}}-\sum_{j=2}^{P} \frac{r r!\alpha_{j} v_{j}}{\left(v_{1}\right)^{r+1}}
$$

and

$$
F^{k^{j}}(0)=\frac{r!\alpha_{j}}{\left(v_{1}\right)^{r}} \text {, when } j=2, \ldots, n
$$

For all other multiindexes put $F^{k}(0)=0$.
Define

$$
P(x)=P^{0}(x)=\sum_{|k|<r+1} \frac{F^{k}(0)}{k!} x^{k}
$$

and

$$
P^{k}(x)=D^{k} P(x) \text { for each } k,|k|<x+1
$$

At last, if $k=(j)=(0, \ldots .1, \ldots .0)\left(1\right.$ at $j^{\prime t}$ th place), put

$$
F^{k}\left(x_{i}\right)=\alpha^{j}\left(x_{i}\right)
$$

and put

$$
F^{k}\left(x_{i}\right)=p^{k}(v) \| x_{i} v^{n+1-|k|}
$$

otherwise.

To prove that $F$ is a Whitneyfield we have to show that

$$
\frac{\left(R_{x}^{r+1} F\right)^{k}(y)}{\|x-y\| r+|-|k|}=\frac{F^{k}(y)-D^{k} \circ T_{x}^{r+1} F(y)}{\|x-y\|^{r+1-|k|}} \rightarrow 0
$$

when $x, y \in K$ and $\|x-y\|>0$. This will follow from calculating some limits. These calculations will mostly be based on the inequalities *) and **) above.

Assume first that we consider points $x, y \in K$ with $x=x_{i}$. $y=x_{q}$ and $q>i$.
We have that

Because $\frac{\left\|x_{q}\right\|}{\left\|x_{i}-x_{q}\right\|} \rightarrow 0$ when $i, q \rightarrow \infty \quad$ and $\frac{\alpha_{j}\left(x_{g}\right)}{\left\|x_{q}\right\|^{r}}$ is bounded, we have


When $|k|=r+1$ we have that $\frac{F^{k}(y)}{\|x-y\|^{r}+T-|k|}=p^{k}(v)$. Since $p^{k}(0)=0$ when $|k|<r+1$, and $F^{k}(0)=P^{k}(v)$ for $|k|=r+1$, we conclude that $\frac{F^{k}(y)}{\|x-y\| x+1-k} \rightarrow p^{k}(0)$ when $\|x-y\|+0$.

On the other hand we have that

$$
\begin{aligned}
& \frac{D^{k}{\underset{O}{x}}_{r+1} F(y)}{\|x-y\| r+1-|k|}=\frac{0 \leqslant|\ell| \leqslant r+1-|k|^{\frac{1}{\ell!} F^{\ell+k}\left(x_{i}\right)\left(x_{q}-x_{i}\right)^{\ell}}}{\| x_{i}-x_{q}{ }^{r+1-|k|}}= \\
& =\sum_{0<|\ell| \leqslant r+i-i k \mid} \frac{F^{\ell+k}\left(x_{i}\right)}{\left(x_{q^{-x}}^{-x_{i}}\right)^{\ell}} \frac{\| x_{i}^{-x_{q} \|} n^{n+1-|\ell|-|k|}}{\| x_{q}^{\|}|\ell|} .
\end{aligned}
$$

It is easy to see that $\frac{\left(x_{q}-x_{i}\right)^{\ell}}{\left\|x_{i}-x_{q}\right\|}{ }^{|\ell|}+(-v)^{\ell}$ when $i, q \rightarrow \infty$. We also have that for $\mid \ell+k i \neq 1$, then

$$
\begin{aligned}
& \frac{F^{\ell+k}\left(x_{i}\right)}{\left\|x_{i}-x_{q}\right\|^{r+1-|\ell|-|k|}}=\frac{p^{\ell+k}(v)\left\|x_{i}\right\|^{r+1-|\ell|-|k|}}{\left\|x_{i}-x_{q}\right\|^{r+1-|\ell|-|k|}} \rightarrow P^{\ell+k}(v) \text { when } \\
& i, q \rightarrow \infty \text {. When } \ell+k=(j) \text { we have that }
\end{aligned}
$$

$$
\frac{F^{\ell+k}\left(x_{i}\right)}{\left\|x_{i}-x_{q}\right\|^{r+1-|\ell|-|k|}}=\frac{\alpha_{j}\left(x_{i}\right)\left\|x_{i}\right\|^{x}}{\left\|x_{i}\right\|{ }^{n}\left\|x_{i}-x_{q}\right\|^{r}} \rightarrow a_{j}
$$

when $i, q \rightarrow \infty$. It is easily seen that $\frac{\partial P}{\partial x_{j}}(v)=\alpha_{j}$, hence when $\|x-y\| \rightarrow 0$ we have that

$$
\frac{\mathrm{D}^{k} \mathrm{or}_{x}^{r+1} F(y)}{\|x-y\|}{ }_{\|+1-|k|} \sum_{0 \leqslant|\ell|\langle r+1-| k \mid} \frac{\mathrm{p}^{\ell+k}(v)}{\ell!}(-v)^{\ell}=p^{k}(0)
$$

because $P$ is analytic.
Hence $\frac{\left(R_{x}^{r+1} F\right)(y)}{\|x-y\|^{r+1-k}}+p^{k}(0)-P^{k}(0)=0$ when $\|x-y\| \rightarrow 0$ and $x=x_{i}, y=x_{q} \quad q>i$.

If we interchange $x$ and $y$, considerations similar to those above give that

$$
\frac{F^{k}(x)}{\|y-x\| r+1-|k|}+p^{k}(v) \text { and } \frac{D^{k} o T^{r+1} F(x)}{\|y-x\|^{r+1-|k|}} \rightarrow p^{k}(v)
$$

when $\|x-y\| \rightarrow 0$. Hence $\frac{\left(R_{y}^{x-1}\right)^{k}(x)}{\|x-y\|^{x+1-|k|}}+0$ when $\|x-y\| \rightarrow 0$ in this case too. The case where $x$ or $y$ is 0 can be treated in a similar manner. This proves that $F$ is a whitneyfield, and the lemma follows from Whitney Extension Theorem.

Now let us end the proof of Theorem 1 in the case ${ }^{E}[r+1]^{\text {. }}$ Put $h_{i}(x)=d\left(\operatorname{Gradz}_{j}(x), \sum_{i \neq j} \mathbb{R} \operatorname{Grad}_{j}(x)\right)$. Since $z$ is not
sufficient in $E[x+1]$, we can assume that for each $\delta>0$ there exist: a sequence $\left\{x_{i}\right\}$ tending to 0 such that $h_{1}\left(x_{i}\right)=o\left(\| x_{i}{ }^{r-\delta}\right)$. Note that by $[7\rfloor \mathrm{p} .118,\left(\mathrm{~h}_{1}\right)^{2}$ is a bounded rational function. It follows from the Tarski-Seidenberg Theoren that the set
$V=\left\{(u, v) \in \mathbb{R}^{2} \|(u, v)=\left((h,)^{2}(x),\|x\|^{2}\right), x \in \mathbb{R}^{n}\right\} \quad$ is semialgebraic. It is not hard to see that the set $\{(u, v) \in V \mid u=$ $\left.\min _{\|x\|^{2}=v}\left(h_{1}\right)^{2}(x)\right\}-\{0\}$ is a component of $\left(v-v^{\circ}\right)-\{0\}$, hence semialgebraic. It follows from the Curve Selection Lemma that there exists an analytic arc $B:[0, \varepsilon] \rightarrow V$ such that $B(0)=0$ and $B(t) \in\left\{x \mid h_{1}(x)=\min _{\|w\|=\|x\|} h_{1}(w)\right\}$. Assume that $|B(t)| \sim t^{q}$ and that $\mid h_{1}\left(B(t) \mid \sim t^{s}\right.$. (Note that £rom the expression of $h_{1}$ given in [7], it will follow that $s$ is an integer.) from the theorem of Bochnak, Kucharz follows that $s / q \geqslant x$. Let $\left\{x_{i}\right\}$ be a sequence on $B([0, \varepsilon])$ converging to 0 . Then we must have $h_{1}\left(x_{i}\right)=O\left(\left\|x_{i}\right\|^{r}\right)$. Now since $h_{1}\left(x_{i}\right) \geqslant d\left(j^{1} z\left(x_{i}\right), L_{i}\right.$, it follows that we can find $a$ sequence $\left\{z_{i}\right\}$ in $J^{1}(n, p)$ such that $z_{i}=O\left(B x_{i}{ }^{r}\right)$ and $j^{1} z\left(x_{i}\right)+z_{i} \in \sum$. Now apply Lemma 2 for the $p$ components of $z_{i}$, to find a $C^{r+1}$ map $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ such that $j^{r} h(0)=0$, and $j^{l} h\left(x_{i}\right)=$ $z_{i}$ holds on a subsequence of $\left\{x_{i}\right\}$.
Put $f=z+h$. Then $f$ is the desired realization of $z$ with singular points on a subsequence of $\left\{x_{i}\right\}$. This completes the proof of Theorem 1 in the case $E[r+1]^{\circ}$

Remark. From the arguments above follows directly that sufficiency of $z$ in $E_{[r+1]}$ is equivalent with the condition that every $c^{r+1}$ realization of $x$ admits 0 as an isolated critical point.

## § 2. Geometric conditions of sufficiency.

As in [9], consider $z \in J^{r}\left(n_{\varepsilon} p\right)$ as a polynomial map
$z=\left(z_{1}, \ldots, z_{p}\right):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ of degree $r$, and define

$$
F(x, \lambda)=\left(F_{1}\left(x, \lambda^{(1)}\right), \ldots, F_{p}\left(x, \lambda^{(p)}\right)\right)
$$

where

$$
F_{i}\left(x, \lambda^{(i)}\right)=z_{i}(x)+\sum_{|\alpha|=r} \lambda_{\alpha}^{(i)} x^{\alpha}, \quad 1 \leqslant i \leqslant p .
$$

Consider the Euclidean space $\mathbb{R}^{n} \times \Lambda$ where $\Lambda$ is formed by the $\lambda_{\alpha}^{(i)}$ 's. As explained in [9], the Grad $F_{i}^{\prime} s, 1 \leqslant i \leqslant p$, are linearly independent at points $(x, \lambda) \in \mathbb{R}^{n} \times \Lambda$ where $x \neq 0$. It follows that $F^{-1}(F(x, \lambda))$ is a manifold of codimension $p$ for $x \neq 0$. Now consider the following conditions:
$\left(w_{F}\right)$. There exists a neighbourhood $U$ of 0 in $\mathbb{R}^{n} \times \Lambda$ and $C>0$ such that for $(x, \lambda) \in U, x \neq 0$, we have

$$
d\left(0 \times \Lambda, T(x, \lambda)^{F^{-1}}(F(x, \lambda))\right) \leqslant C\|x\| .
$$

(Recall that when $V$ ow are linear subspaces of $\mathbb{R}^{n}$ then $\left.d(V, W)=\sup _{\substack{v \in V \\\|v\|=1}} \inf _{w \in W}\|v-w\|.\right)$
$\left(t_{F}^{S}\right)$. Let $M_{s}^{n}$ denote any $C^{s}$ submanifold, $s \geqslant 1$, of $\mathbb{R}^{n} \times \Lambda$ of dimension $n$ with $0 \in M_{s}^{n}$. Assume that $M_{S}^{n}$ is transverse to $0 \times \Lambda$ at 0 , then there exists a neighbourhood $U$ of 0 in $\mathbb{Z R}^{n} \times \Lambda$ such that when $(x, \lambda) \in U \cap M_{S}^{n}, x \neq 0$, then $M_{S}^{n}$ is transverse to $F^{-1}(F(x, \lambda))$ at $(x, \lambda)$.

Note that the conditions ( $w_{F}$ ) and ( $t_{F}^{S}$ ) are generalizations of Verdiers Condition and the Trotman Condition ( $\mathrm{t}^{5}$ ), (see [9]) where we also compare $0 \times \Lambda$ with the manifolds $F^{-1}(a), a \neq 0$, in a neighbourhood of 0 .

Now we have:

Theorem 2. Let $z \in J^{r}(n, p)$ be an $x$ jet. Assume $s \in \mathbb{N}$; s 2 1. Then the following conditions below I and II are equivalent respectively.

I
(i) $\quad 2$ is $C^{0}$ sufficient in ${ }^{E}[r]^{-}$
(ii) The condition ( $W_{F}$ ) is satisfied.

II
(i) The condition $\left(t_{F}^{S}\right)$ is satisfied.
(ii) Any $w \in J^{r+s}(n, p)$ with $j^{r} w(0)=z$ is $C^{0}$ sufficient in ${ }^{E}[r+s]^{-}$
(iii) $z$ admits only a finite number of $C^{r+s}$ realizations which are not $C^{0}$ equivalent.
(iv) Any $C^{r+s}$ relazation $f$ of $z$ admits 0 as an isolated critical point.
(v) For any family of $C^{s}$ functions $\lambda_{\alpha}^{(i)}(x),|\alpha|=x, 1<i \leqslant p$, $\lambda_{\alpha}^{(i)}(0)=0$, the $C^{s}$ mapping $F(x, \lambda(x))$ admits 0 as an isolated critical point.

Remark. Inspired by Theorem A in [9], the author was a while tempted to guess that sufficiency in $E_{[r+1]}$ was equivalent with the condition ( $a_{F}$ ) below, which is a generalization of the Whitney (a) condition.
( $a_{F}$ ). Assume $\left\{\left(x_{i}, \lambda_{i}\right)\right\}$ is a sequence with $x_{i} \neq 0$ tending to 0 in $\mathbb{R}^{n} \times \Lambda$. Assume that $T_{\left(x_{i}, \lambda_{i}\right)} F^{-1}\left(E\left(X_{i}, \lambda_{i}\right)\right) \rightarrow \tau$ in the appropriate Grassmanian, then $\simeq 0 \times \Lambda$.

The equivalence between sufficiency in $E[r+1]$ and the condition $\left\{a_{F}\right\}$ is however false. A counterexample is the following: Consider $z \in J^{4}(2, i), z=x_{1}^{3}-3 x_{2} x_{2}^{3}$. From calculations in [8] p. 228 it follows that $z$ is sufficient in $E_{[5]}$ but
 down along the curve $x_{1}=t^{3}, x_{2}=t^{2}, \lambda_{\alpha}=0$, for $\alpha \neq(0,4)$, and $\lambda_{(0,4)}=\frac{9}{4} t$. From this example it is also easy to construct counterexamples when $p>1$. It is however possible to prove that ( $a_{F}$ ) implies sufficiency in $E_{[x+1]}$. We will here omit the details.

Let us now prove part $I$ of Theorem 2. Lei $N_{i}\left(x_{i} \lambda\right)=\operatorname{GradF}_{i}(x, \lambda)$ -$-P_{i}(x, \lambda)$, where $P_{j}(x, \lambda)$ is the projection of $G r a d F{ }_{i}(x, \lambda)$ onto the linear space spanned by the $\operatorname{GradF}_{j}(x, \lambda)^{\prime} s j \neq i$. Then, using formula (3.3) of [7], the distance from the unit vector $\frac{\partial}{\partial \lambda_{\alpha}(i)}$ to the tangentspace $T(x, \lambda)^{-1}(F(x, \lambda))$ when $x \neq 0$ is

$$
\delta_{\alpha}^{(i)}(x, \lambda)=\left\|\sum_{j=1}^{p} \frac{\partial}{\partial \lambda_{\alpha}^{(i)}} \cdot \operatorname{Grad} F_{j}(x, \lambda) \frac{N_{j}(x, \lambda)}{\left\|N_{j}(x, \lambda)\right\| 2}\right\|=\frac{\left|x^{\alpha}\right|}{\left\|N_{j}(x, \lambda)\right\|}
$$

To prove $(i) \Rightarrow$ (ii) assume $z$ is sufficient in $E_{[r]}$. From the theorem of Bochnak, Kucharz follows that $d\left(\operatorname{cradz}_{1}(x), \ldots, G r a d z p(x)\right)$ $\geqslant C\|x\|^{r-1}$ for some $C>0$ when $\|x\|$ is small. As in the proof of Lemma $4.3[7]$, it follows that $d\left(\operatorname{GradF}_{1}(x, \lambda), \ldots, \operatorname{GradF}_{p}(x, \lambda)\right)$ $\geqslant \frac{C}{2}\|x\|^{i-1}$ in a sufficiently small neighbourhood of 0 . Since $\left\|N_{i}\right\| \geqslant d\left(G r a d E_{1} \ldots . . . G r a d F_{p}\right)$, it follows that $\delta_{\alpha}^{(i)}(x, \lambda) \leqslant \frac{2}{c}\|x\|$. Since $0 \times \Lambda$ is spanned by the orthnormai vectors $\frac{\partial}{\partial \lambda_{\alpha}(i)}$, the condition $\left(w_{F}\right)$ is satisfied.

To prove (ii) $\Rightarrow$ (i) assume that $x$ is not sufficient in $E[r]^{\text {. }}$ Then there exists a $c^{r}$ function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, with $j^{r} h(0)=0$ such that $E=z+h$ have a sequence $\left\{x_{i}\right\}$. of critical points tending to 0 . Hence we can assume that on this sequence we have Grad $f_{1}=\sum_{j=2}^{p} B_{j} \operatorname{Grad} E_{j}$ where the $\beta_{j}{ }^{\mathrm{F}} \mathrm{s}$ are numbers with $1 \beta_{j} 1<1$. Write Grad $F_{j}=\left(\operatorname{Grad}_{x} F_{j}, G r a d_{\lambda} F_{j}\right)$. It follows from a short calculation that

$$
\operatorname{Grad}_{x} F_{1}=\sum_{j=2}^{P} \beta_{j} \operatorname{Grad}_{x} F_{j}+\sum_{j=2}^{p} \beta_{j} \operatorname{Grad} h_{j}-G r a d h_{1}
$$

on the sequence $\left\{\left(x_{i}, 0\right)\right\}$ in $\mathbb{R}^{n} \times \Lambda$. From this we get that:

$$
\begin{aligned}
\operatorname{Grad}_{1} & =\left(\text { Grad }_{x} F_{1}, \text { Grad }_{\lambda} F_{1}\right) \\
& =\sum_{j=2}^{p} B_{j} \operatorname{Grad}_{j}+\sum_{j=2}^{p} G_{j} \text { Grad }_{j} \text {-Grad } h_{1} \\
& +\operatorname{Grad}_{\lambda} F_{1}-\sum_{j=2}^{D} B_{j} \text { Grad }_{\lambda} F_{j}
\end{aligned}
$$

on the sequence $\left\{\left(x_{i}, 0\right)\right\}$. From this follows that:

$$
\begin{aligned}
\left\|N_{1}\right\| & =\left\|G r a d F_{1}-P_{1}\right\| \\
& \leqslant \sum_{j=2}^{p} B_{j} \operatorname{Grad} h_{j}-G r a d h_{1}+\operatorname{Grad}_{\lambda} F_{1}-\sum_{j=2}^{p} B_{j} \operatorname{Grad}_{\lambda} F_{j} \| \cdot
\end{aligned}
$$

Now since $\left.\left\|G r a d \lambda_{j}\right\|^{\prime}=O\left(\|2\|^{r}\right),\left\|G r a d h_{j}\right\|=o i\| \|^{r-1}\right),\left|\beta_{j}\right|<1$, $1<j<p$, it follows that $\left\|N_{1}\right\|=O\left(\|x\|^{x-1}\right)$ on the sequence $\left\|\left(x_{i}, 0\right)\right\|$. From this it is clear that for some $\alpha,|\alpha|=r, \frac{\left|x^{\alpha}\right|}{\left\|N_{1}\right\|\| \|}$ is not bounded on $\left\{\left(x_{i}, 0\right)\right\}$. Since $\delta_{\alpha}^{(1)}\left(x_{i}, 0\right\}=\frac{\left|x_{i}^{\alpha}\right|}{\| N_{1}\left(x_{i}\right)}$, is the distance from $\frac{\partial}{\partial \lambda_{\alpha}^{(1)}}$ to $T_{\left(x_{i}, 0\right)^{-1}\left(F\left(x_{i}, 0\right)\right)}$ it follows that $\left(w_{F}\right)$ fails along $\left\{\left(x_{i}, 0\right)\right\}$, proving (ii) $\Rightarrow$ (i). Hence the proof of Theorem 2 part $I$ is complete.

Part II of Theorem 2 is very similar to Theorem $C$ in [9], and the proof is also very similar. We will only sketch it, pointing out the main differences from the proof of Theorem $C$. The proof of (i) $\Rightarrow$ (v) is almost a copy of (C.l) $\Rightarrow$ (C.5) in [9]. This is also the case for $(i) \Rightarrow(i i)$ which is similar to (C.1) $\Rightarrow$ (C.2). Note however that it is not necessary to have critical points along a Lojasiewicz arc, but only along a seequence tending ot 0 . Tc prove (ii) (iii), note that (ii) implies that every $w \in \mathcal{J}^{r+s}(n, p)$ with $j^{r} w(0)=z$ admits 0 as an isolated critical point. In the terminology of [2]
p. 118 this means that $w \in J_{\sum:}^{r+s}(n, p)$. From Theorem 4 of [2] follows that there exists a partition of $J_{\Sigma}^{r+s}(n, p)$ in finitely many connected analytic varieties such that the jets occuring in the same variety are $C^{0}$ equivalent. It follows that $J_{\Sigma}^{r+s}(n, p)$ consists of finitely many $C^{0}$ equivalence classes. This will imply (iii). (Compare this with the proof of (C.2) $\Rightarrow$ (C.3) using Fukuda's Theorem. When $p>1$ Fukuda's Theorem is not valid.)
(iii) $\Rightarrow$ (iv) is similar to (C.3) $\Rightarrow$ (C.4) using Theorem 1 in this article instead of the results in [3].

At last the procf of (iv) $\Rightarrow(v)$ is similar to (C.4) $\Rightarrow$ (C.5). The only obstacle is that we lack a theorem corresponding to Theorem A in [9]. (See the remark above.) From the remark below the proof of Theorem 1 in the case $E[r+1]$ follows however, that it is sufficient to prove that sufficiency in $E[r+1]$ implies the condition (v) when $s=1$. To prove this, assume (v) fails for $z \in J^{r}(n, p)$. Then there exists a family of $C^{l}$ functions $\lambda_{\alpha}^{(j)}(x),|\alpha|=r$, $1<j<p$, and a sequence $\left\{x_{i}\right\}$ in $\mathbb{R}^{n}$ tending to 0 , such that $f(x)=F(x, \lambda(x))$ has critical points along $\left\{x_{i}\right\}$. Hence we can assume that for each $i$ there exists numbers $B_{j} 2<j<p$ with $\left|\beta_{j}\right|<1$ such that

$$
\operatorname{Grad} f_{1}\left(x_{i}\right)=\sum_{j=2}^{p} B_{j} \operatorname{Grad} f_{j}\left(x_{i}\right)
$$

where the $f_{j}$ 's are the component functions of $f$. From this we get:

$$
\begin{aligned}
\operatorname{Grad}_{x^{F}}= & \sum_{j=2}^{p} \beta_{j} \operatorname{Grad}_{x} F_{j}+\sum_{j=2}^{P} \beta_{j} \sum_{\alpha} \frac{\partial F_{j}}{\partial \lambda_{\alpha}^{(j)}} \operatorname{Grad} \lambda_{\alpha}^{(j)} \\
& -\sum_{\alpha} \frac{\partial F_{1}}{\partial x_{\alpha}^{(1)}} \operatorname{Grad} \lambda_{\alpha}^{(1)} \text { along }\left\{\left\{x_{i}, \lambda\left(x_{i}\right)\right\}\right\} .
\end{aligned}
$$

Note that since the $\lambda_{\alpha}^{(j)}$ is are $c^{1}$ and $\lambda(0)=0$, we have $\lambda_{\alpha}^{(j)}(x)=O(\|x\|)$. From this fojlows Grad$X_{j}=G r a d z_{j}+O(\|x\|)^{r}$ along $\left(x_{i}, \lambda\left(x_{i}\right)\right) . S$ Sustituting this in the equality above, and using that
$B_{j}<1, \| G r a d \lambda_{\alpha}^{(j)_{i}}$ is bounded and that $\frac{\partial F_{j}}{\partial \lambda_{\alpha}^{(j)}}(x, \lambda)=O\left(\|x\|^{r}\right)$ get that

$$
\operatorname{Grad} z_{i}=\sum_{j=2} B_{j} \operatorname{Grad} z_{j}+O\left(\|x\|^{r}\right)
$$

From this follows that $d\left(G_{r a d z}, \ldots, \operatorname{Gradz}_{p}\right)=0\left(\| \|^{r}\right)$ along $\left\{x_{i}\right\}$.
It follows from the theorm of Bochnak, Kucharz that $x$ is not sufficient in $\left.E_{[r+1}\right]^{\circ}$. This completes the proof of (iv) $\Rightarrow$ (v) and Theorem 2.

Acknowledgement. The author would like to thank Per Holm, Andrew du Plessis and Les Wilson for helpful comments and communications.

References

1. Bochnak, J., Lojasiewicz, S.: A Converse of the Kuiper-Kuo Theorem. Proc. of the Liverpool Singularities Sym. Springer Lecture Notes in Math. 192; 254-261 (1971).
2. Bochnak, J., Kucharz, W.: Sur les Germes d'Applications Differentiables a Singularités Isolées. Trans. Amer. Math. Soc. 252, 115-131 (1979).
3. Bochnak, J., Kuo, T.C.: Different Realizations of a Non-Sufficient Jet. Indag. Math. 34 (1), 24-31 (1972).
4. Fukuda, T.: Types Topologiques des polynômes. Publ. I.H.E.S. 46 (1976).
5. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Math. 14, Springer Verlag, Berlin- Heidelberg, New York, 1973.
6. Koike, So. Kucharz, W.: Sur les Realizariones de Jets Non--sufficantes. C.R. Acad. Sc. Paris 288, 457-459 (1979).
7. Kuo, T.C.: Characterizations of v-sufficiency of Jets. Topology 11. 115-131 (1972).
8. Kuo, T.C.: A complete Determination of $C^{0}$-Sufficiency in $\mathrm{J}^{\text {r }}(2,1$ ). Invent. Math. 8, 226-235 (1969).
9. Kuo T.C., Lu, Y.C.: Sufficiency of Jets via Stratification Theory. Invent. Math. 57, 219-226 (1980).
10. Mather, J.N.: On Thom-Boardman Singularities. Dynamical Systems, 233-248. Edited by peixoto, Academic press (1973).
11. Thom, R.: Manifolds, Amsterdam 1970, Edited by N.H. Kuiper, Springer Lectuxe Notes in Math. 197.
12. Tougeron, J.C.: Ideaux de Fonctions Differentiables. Ergebnisse Pand 71, Springer Verlag. Berlin-Heidelberg-New York (1972).
13. Trotman, D.J.A.: A Transversality Property Weaker Than Whitney (a)-regularity. Bull. of the L.M.S. 8, 225-228 (1976).
14. Trotman, D.J.A.: Interprétations Topologiques des Conditions de Whitney, Soc. Math. France, Asterisque 59-60, 233-248 (1978).
15. Verdier, J.L.: Stratifications de Whitney et Theorem de Bertini-Sard. Invent. Math. 36, 295-312 (1976).
16. Hilson, J.C.: Infinitely determined Map germs. To appear in Canad. J. Math.
