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Some Consequences of AD for Kleene Recursion in 3JE • 

§ 0 Introduction 

E .. R. Griffor 
Oslo - 1981 

In this paper we derive some consequences of AD (axiom of 

Determinacy) for Kleene recursion in 3JE (the type three func

tional giving the equality predicate for sets of reals)o In § 1 

we state and sketch the proof of a result of Moschovakis which 

is key to many of the results in subsequent sections. 

A.S .. Kechris asked: 
3JE 

properties 11 for K1 in 

Does AD imply any "large cardinal 
3JE 

L[JR] ? In § 2 we show that K1 is 

weakly inaccessible under AD, "larger" than measurability need . 

imply (~1 is measurable under AD). 

A recurrent theme in recursion in higher types and E-recur-

sion is that of selection theorems, i .. e .. for which sets z are 

the classes semirecursive (RE) in 3JE and a real closed under 

the quantifier ::Ia E Z? Under AD we show that these classes 
3 

are closed under the quantifier ::Ia < Y for every <K JE I This y 1 0 

should be contrasted with the situation under V = L where 
3JE L 

K1 > ~ 1 , but the RE classes are not closed under ::Ia < y for 
3 

any y such that: ~~ :_ y < K1 JE .. We also sketch the proof of a 

part of the folklore using AD that we can select an element from 

a set of reals recursive in a uniformly in a for 

These results on selection appear in § 3 .. 

It was known that AD implied that the structure of the RE 

degrees was trivial, i.e. an RE class is either complete RE or 

REC (recursive). In § 4 we strengthen this result to show that AD 
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implies that any· regular RE class is REC, hence there is no 

regular complete RE classo This adds some force to the conjecture 

that there is a model of ZF (assuming ZF is consistent) in 

which any regular RE set is REC (and hence that the degree 

structure is trivial). Also in § 4 we employ the tools of § 2 to 
3JE 

describe the degrees of subsets of K~ under AD. The result 

here is that any A c K3JE is recursive in 3JE and a realo - ~ 

The author is grateful to Dag Normann for many helpful dis-

cussionso 

§ ~o Prewellorderings and the Moschovakis Lemma. 

Following Moschovakis [~980l, a prewellordering of JR (with 

field JR) is a relation < on JR such that for some ordinal o, 

some surjection 

cp g JR->> o and all x,y E JR, 

x.:5_y <=> cp(x)_::cp(y) , where 

the < on the right side is the order relation on OR (=ordinals). 

It is immediate that such cp and o are unique when they exist; 

we call o the length of < and cp the canonical surjection 

A relation is a prewellordering iff it is reflexive, transi

tive, connected and well-founded (equivalently (DC) has no un

finite descending chains D)., Let A be a class of subsets of .JR 

and assume A contains all singletons and is closed under con-

tinuous substitution and 1 • An ordinal o is realized in A 
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if there is a prewellordering < of some subset of JR in A 

with length 6 • These closure properties of A imply: 

(i) 6 realized in A and '< o => 

is realized in A· 
' 

(ii) o realized in A => 6+1 is realized in A; and 

(iii) 6 > 0 1\ 6 realized in A => 6 is the length of some 

prewellordering of JR in A .. 

Let 8(A) = sup[616 is realized in A}. 

Remark Let 

cursive in 31E 

3JE 
A = [xI x is a prewellordering of JR 1\ x is re-

3 
and a real1, then 8(A) = K1 JE and A clearly 

satisfies the closure properties above. 

If tb.e length of < is 6 and cp : fld(:S) ->> 6 is the 

canonical surjection, then cp gives a 'coding' of 6 in the 

space x (a product space on JR), i .. e .. we can think of each 

x E fld(::S) such that cp(x) = '11 < 6 as a code or name for 'llo 

If Y is such a product space and f : 6 -> y2 is a function 

on 6 to subsets of Y, we can represent it by a subset of X x Y 

as follows: 

Cod(f;.:5_) = df{(x,y): x_:x/\yEf(cp(x))}.. 

Definition. Suppose 
y 

f: 6 -> 2 is a function. A choice sub-

function of f is any g : o -> y2 such that for all '11 < 6 : 

g(T)) .s f('tl), 

f ( '11) ~ 0 => g( Tl) f. 0 , i o e. 

g('tl) chooses a non-empty subset of f('tl) (provided f('tl)l0). 
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The following lemma is the main tool of this note and is due 

to Moschovakis [1970]. 

The Moschovakis Le~a (ML) assume AD .. 

Let < be a prewellording with field a subset of some X and 

length 6, let f : 6 -> y2 be a functiono Then there exists a 

choice subfunction g of f such that 

Cod(g;<) is a f~(,S) subset of x xY .. 

£f we give the main idea of the proof - the case we shall be 

interested in is JR = X = Yo For each C < 6 let fC be defined 

by: 

f c ( 'rl) = f ( 'rl) , if 'rl < c 
0 if c ~ 'rl < 6 0 

Suppose there is some C~6 such that fc does not have a 1 • CQOlCe 

subfunction with Cod in r;1 
"'1 C.:::)' let A be the last such c .. 

r;1 
"'1 (_::) is parameterized, hence the class of r;1 

"'1 (.:S.) subsets 

of xxY is parameterized let 

G ~ JR XX xY be fixed universal set for it.. As usual, 

let 

G a = ( ( x, y) I (a , x, y) E G} and 

consider the game: I plays a and II plays ~' then 

II wins <=> 1 3'11 [ g is a choice sub function 
'r) 

of f A G = Cod (g ·, <) V (3'11 < A) 
'rl a 'rl -

(3C < A)(3g11)(3gC) [g'rl is a choice 

subfn of f 'rl A gC is a choice subfn 

of fC A 'rl < C A Ga. = Cod(g'rl;~) A Gf' = Cod(g' ;.:S,) ]o 
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If we think of a as a code of a function g when G = Cod (g ·, <) a -

then II wins if either I does not code a choice sub function of 

an initial segment of f on I does and II codes a choice subfn 

of a longer initial segment of fo 

Moschovakis shows that the existence of a winning strategy 

for either I or II (AD) yields a choice subfunction of fA.,gA. 

1 with Cod(gA. ;~) E ~1 (~), contradicting the choice of A.o For 

details of the proof see Moschovakis [1970]o 

Remark Note that if < is a prewellordering on JR soto 
3 

< E fl. JE and 

Cod ( g ;.:5,) E then 

Cod(g;~) E 

As a corollary of the Moschovakis Lemma we have: 

Q_orollary 1 Assume AD.. Let < be a prewellordering on JR 

with length c and let AS c.. Then 

Cod(A;.:5,) E E~ (~) 

I2! fix a 0 ,a1 E JR. and set 

J[a.o), if A(T)) 

f(T]) = 
l!a1}' if A(T))o 

The only choice subfunction of f is f itself and hence by ML, 

1 
Cod(f;~) E ~1 (~) and 

x E Cod(A;_::) < = > (x,a0 ) E Cod(f;~) 
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3 -
§ 2 [K1 :IE ]L[JRj under AD. 

We will now use the tools of § 1 to answer the question of 

Kechris stated in the introduction positively. 

Theorem 2 Assume ADo In L[JR] we have that 

inaccessible • 

.E.f. it suffices to show that 

3JE 
K1 is a regular limit cardinal in L[JR]o We use the notation 

o +( 6 E OR) to denote the least cardinal greater than o and 

0 2 = [ f : 0 -> ( 0 ' 1 } } 0 

We first show that 
3 

Suppose not and let 

11 < K :IE and 
1 

3 
let < E A JE -
The function 

Rf, given by 

with length 

f induces 

(a, o) E Rf 

'Tl· (we can suppose 11 is a cardinal)o 

a relation on 11X11), (a subset of 11XT)), 

< = > f-1 (a)_:: f-1 ( o). 

2 3:IE 
is a well-founded relation on 11 of height K1 o By an 

easy generalization of the corollary to ML to n-ary relations 

hence 

1 Cod (Rf ;~) E ,E1 (~) and 

3 
"Cod(R · <) E A En which is 

f'-

absurd since the bounding principle then implies that the height 
3:IE 

of Rf is less than K1 • 

Suppose now that K13]E . . 1 
~s s~ngu ar: 
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let 
3]E 

Tl < K'1 be a cardinal Sot. there exists 

increas 3 
f : Tl • K JE 

unbdd '1 0 

3 3JE 
Let ~ E A JE of length Tl and for each y < K'1 define 

IY = (b E JR \ b is an index for y} 

(i.e. be codes a convergent computation in 3JE of height y). 

Define h : Tl -> JR2 by for 6 < Tl: 

h(6) = If( 6). By ML there exists a choice sub

function g : Tl -> JR2 of h such that 

for 
3 

Y <K JE 
'1 ' 

Cod(g ;~) E f~ (::) o Note that 

IY ~ ~ and hence for 

g ( 6 ) c h ( 6 ) = If ( 6 ) and 

g(5) ~ ~ 0 

3 
Now define T : Tl -> K'1 JE by for 6 < 11: 

T ( 5 ) = suprenum {II b 11 3 \ b E g ( 6 ) L 
JE 

Since Cod(g;_:::) E ~~(~), Cod(g;<) is recursive in 3JE, ~ and 

clearly V 6 < Tl 

r(5) = f(o), contradicting 

the bounding principle again. 

It remains only to show that 
3JE 

K'1 is a limit cardinal. This 

will follow by an argument first noticed by H. Friedman (198?] 

8 (JR2) 0 

3 3 
for let o <K JE , then we show that 5 + < K1 JE: We first ... '1 
show given o < K7 JE then there exists * 0 such that 1 q:l : :m ->> 2 q:l * 
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has 
* 1 Cod(cp ;~) E 1;1 (~) where 

3 
< E A JE of length 5. B th 11 t MT ].. f A < ~ y e cora ary o i~ u 

Cod (A;_~) E E~ (~) , thus 

if G is universal for ~~(~) 

define for a E JR: 

and hence recursive in 

if Ga.= Cod(A;~), A:=5 

otherwise. 

* Then cp is the desired surjection. 

then 

Now consider 5 < K3JE and assume 1 5 is a cardinal w.l.o.g. 

Then as above there exists 111 : JR-> 5X52, but there is a map 

x : 5X52 ->> o + given by 

{
o. t .. (A), if A:= oxo 

x(A) -
- 0 , otherwise. 

is a wellordering, 

3 
So x o ljJ: 1R ->> 5 + and o + < K1 JE • This completes the proof thet 

3JE 
K1 is weakly inaccessible. 

Under AD (i.e. without the AC) the labyrinth, of so called 

'large cardinal properties' becomes less manageable. For example, 

AD -> ~1, is measurable', but 2:(1 , is n~-describable and a suc

cessor.*) Nevertheless, assuming AD K~ may well be measurable 

or satisfy K -> (K) 2 (weak compactness) etc •• 

*) Contrast this with the result under AC that every measurable 

is inaccessible and n~-indescribable. 
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§ 3 Selection under AD. 

Section § 2 demonstrates the 'weakness' of the ordinals 

under AD. An example of previous evidence for this is the ordinal 

additivity of Lebesgue measure (i.e. A is y-additive for 

every y E OR). Selection over ordinals shall be yet another. 

Definition 3: Let Z E L 3 [JR] and say that we have selection 
KJE 

··' 1 -
over z, if for all R(x,b) E BE, let ...... 

QCx) - 3b E ZR ( i, b ) , then 
... 

Q(x) E BE. 

Some known results are: 

1) We do not have selection over 2w. (Moschovakis [1967]); 

2) Selection over w (Gandy [1962]). 

An immediate result of 1) is, 

3 
Proposition 4: (V = L) Let y E OR s.t. ,~1 _:: y <K1JE, 

then we do not have selection over y. 

= > L 3 I• Y = l(1 , so use 
KJE 

1 

f E L 3 s. t. f : y <-> 
KlE 

1 

and the L-wellordering ~ r:mL X JRL to show that we have selec

tion over 2w contradicting 1). 

This 'weakness' of the ordinals under AD is demonstrated 

by the following selection theorem 

Theorem 5: Assume AD and let Then we have selection 

over y. 
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3 
E£. let ,:::. E A JE with length y then the map 

using the universal f~ (~) set G given by: 

-- {:,' cp~ (a.) "' 
if Ga. = Cod(A;<), A~ y 

otherwise, 

\{) * • JR ->> y 2 y • 

is recursive in 3JE, ~ o With the power set of y we can now carry 

out a Harrington-MacQueen [19761-style argument to show that we have 

selection over Ya 

A selection result which is part of the folklore (it was 

noticed by A.S. Kechris and D. Normann) for 3JE under AD is 

that ordinary uniformization holds (this actually only uses deter-
3 

minacy for sets of reals recursive in 3JE and a real - A JE) o 

If Z 5: 2w and Z.::;: 3JE, a for some real a, then uniformly in a 

we can choose an element of Z (assuming Z fo ~). The proof uses 

a scale on Z recursive in 3 JE,a • 

3 
Theorem 6: (Det(A JE)) There exists a S : JR ->JR. recursive 

in 3JE such that if B S JR and b _:: 3JE, a for some a E 2w, then 

B I ¢ -> S(a) ~ and 

S(a) E B. 

proof (sketch) For the theory of scales and their construc

tion using determinacy the reader is directed to Moschovakis f1980l, 

Uniformly by transfinite recursion on the height of a computation 

construct a scale m - (m J on .,. - .,.n nEw 
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the set of computation tuples, where a computation tuple a is 

of the form: 

a = (e,a,n) e,n E w 

and 
.... 
a a finite vector of reals. For pairs 

by transfinite recursion on 

!loll = J-height of the computation given by 
) a , if a E C 

l~ , otherwise, 

we proceed 

to define prewellorderings ~ • A standard argument will then 

show that a small change in the associated norms 

scale on C. 

cp. gives a 
l. 

Computations of height 0 are given in a ~~ way and hence 

have a scale. Let Cy denote computations of height y and 

C<y those of height less than or equal to Yo If (cpi}iEw are 

the norms given so far as c '-.. c 
:;;_y y we need only extend them to CY o 

For we order them a< . 'T by least index ( (a ) 0 ) 
-l. 

and value in that order, given by clopen sets and then 

proceed by induction on the schemata 81 - 89 of Kleene. We 

consider only an application of 88: 

(e}(a) = 3JE (A.x(e}(a,x)) which satisfies: 

if 3b 'r/c 3n 

[(el(a,c) = nA (e'}(a,b).;iO]o 

corresponding to and respectively~ In both 
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cases the arguments in Moschovakis (1980, pp .. 310-17] yield the 

necessary norms for defining <i hereo 

These norms can be shown to give a scale on C using the 

recursion theorem m - [r~ } 
"'~"' - '~"n nEw· 

Remark Notice that by the definition of [ <. } . 
-~·~Ew 

if (x.}. E c C 
~ ~ w-

and 
limx. = 

i ~ 

for all n 

cpn(xi) 

X such that 

is constant for all large i, 

<. 
-~ 

then a tail if the sequence lies on the same level of each 
3JE 

by definition of <i" A straightforward induction on K1 shows 

limx.=xECo 
i ~ 

To define the uniformizing function S: take an index for 

and given a E 2w such that 

-cp 

Recursively in a compute B* cB minimizing the height of computa-

tion, i .. e .. if 

[ e }(a 'b ) = Ia ' if b E B 
"'I 

l.1, if b ~Eo Now let 

a = IJ.y E OR 3b [ ( e 1 (a , b ) = 0 1\ 

II ( e, a, b , 0) ll = Y] (recall B ~ 0), 

and let B* = {bE B I !l<e,a,b,O)ll =a.}.. The index for cp gives 

a scale on computations of the same height i .. e. B* call it , 
m - {r~ } If we now compute Yo. - '~"a.,n nEwo 

{b E B * I cpa. 0 (b ) is minimal }, it 
' 
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will be a singleton by the definition of -~ and gives the value 

if S ( ( e, a)). 

If h is a class of subsets of lli and we write: 

Scale (h) <=> for all Z E h there is a scale on Z 

defined by some wE II., 

then we have shown, 

Corollary 7: Scale (RE) 
"' 

£! use an index for -cp on c and an index for any RE 

class to get an RE scale on that class. 

Remark The proof of Theorem 6 is eased by the fact that C is 

given by a positive monotone inductive definition. If one instead 

works with Harringtons ['1973l representation of the sets of reals 

recursive in 3E and a real i.e. 

L 3 (2w) , then the 
KE 

'1 

fact that levels here are given by first order definability makes 

the inherent positivity of the inductive definition less apparent. 

The Moschovakis Lemma of § '1 is a powerful tool for analyzing 

e(1R2) under AD. The obvious strengthening of ML, even in the 

absence of definabili ty considerations, implies -,AD. 

Proposition 8: Let .5, be a prewellordering of lli of length 

T] 2: ~i, and let 

f : TJ -> JR2 s.t. for uncountably many y < TJ 

f ( y) -J 0. If 3g• TJ -> JR2 a choice subfunction of f such that 

r;y<T] 



- 14 -

f(y) ~ 0 -> g(y) is a singleton, then .AD. 

£! the existence of g would yield an uncountable well

ordered set of reals W. Now define from W and uncountable set 

of reals with no perfect subset, contradicting AD. 

§ 4 Degree Theory 

If A _:: L 3 ( 2w ) 
KJE 

is RE, then the degree of A is: ,... 

1 

(B ~ L 3 ( 2w) \3a, b E 2w 
KJE 

1 

A < 31E , B , a 1\ B < 31E, A , b } • - -

The degrees under the induced ordering form an upper semi-lattice 

A ERE is complete, if for <:::~11 B ERE there 
"' 

and we say that 

exists b E 2w such that B ,=:. 31E ,A, b • The degree structure is 

said to be trivial if every A ERE is either complete or 

We say that is regular (amenable) if 

An Z E L 3 (Zw) o 

KJE 
1 

VZ EL 3 (2w) 

KJE 
1 

It had been remarked (cf. Normann (1979]) that AD implied that 

the degree structure for 31E is trivial. We extend that result 

here to show any regular RE A is ~ under AD. 

Theorem 9: (AD) 

is REC .. 

,...., 

If AcL 3 (2w,3JF) is RE andregular,then A 
KJE 

1 

Corollary 10: (AD) Any RE subset of L 3 (iiJ, 3JF) is either 
KJF 

REO or complete. 1 
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proof (Cor.) by the theorem A is regular, then A is 

REC so it suffices to show that if A is not regular, then A 

is complete. 

in A with 

We show this by showing that there is a computation 
3JF 

height K1 

Definition 11: A BE a subset of is regular, 

.;f K3JF _._ Vy < 1 

Remark In what follows we regard reduction procedures on the 

indexical set (Sacks [1980]) or computations uniform in indices 

for sets (Normann [19731): where X E L 3 ( 3JF ,2w) is indexical, if 
KJF 

3Ix~2w s .. t.. 1 

(i) Ix I 0 1\ rx.:: 3 X and 
JF 

(ii) (Va E Ix)[((a)0 }(3JF, (a)1 ) t and 

((a0 )}( 3JF, (a),1) =X] a set of 

indices for the set X., 

To complete the proof of the corollary let 

v.ritness to A not regular, i .. e .. 

and define 

f(X) 
= {\ [c}(3JF,X) I, if 

0 , otherwise, where 

XEA 

be least 
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c is the index witnessing A RE. Then f is REC in 3JF A , 
and 3 

sup f(X) = K1 JF by the 
XELY ( 3JF ,2w) 

0 

choice of y0 , as desired. Cor. n 
proof (theorem) given A RE via c E 2w consider the 

game G A* w.here 

A* = {(a,b) E 2w x2wl a is an index A 

[b not index v (b is index A 

A n L I a I ( 3JF , 2w ) ,J A I b I n L I a I ( 3JF , 2w ) } ' 

3 
where Aa for a. < K1 :IE is 

A's enumeration complete by 'stage' a.. Hence Player I builds a 

and Player II builds b. 

By AD GA* is determined: 

Case 1: Player I has a winning strategy a, then 

and "[2w] gives a _ _:: 3 a. 
JF 

By the bounding principle 

If there is no 

3 
sup I c I = 6 < K JF 

0 1 
cEcr" [200 ] 

for some 

y with 
3JF 

6 < y < K1 A. to o-

(> • 
0 

An L 6 (3JF,2w) == Ay n L6 (3JF,2w) 
0 0 
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then A is complete since An L0 ( 3JF, 2w) E L 3 (2w, 3JF) (by rego 
o . K JF 

1 
and an argument similar to that in the Corollary and if A not 

regular, then A complete and we're doneo) 

If we let b be an index for any such y, then II wins 

playing b against a, a contradiction with the choice of a. 

Thus A is complete REo 

Case 2: Player II has a winning strategy a: then for all 

indices a 
r * a is an index and 

3 w 3 w 
An L\a\ ( JF,2 ) = A\a*a\ n Lla\ ( JF,2 ) o 

We claim that A is REC in 3JF,c,a where c was the index 

defining A: 

Given X indexical in compute and REC 

in a compute 

3 
sup( I c I + 17) = y < K1 JF. By the choice of a 

cEa 11 I X 

as desiredo 

X E A <=>X E A y and so A is REC in 3 JF,c,a, 

Remark Sacks [1980, Sacks and Griffor] has shown using a well-

ordering of reals, that there exists a regular complete RE classo 

The foregoing indicates that this assumption is probably necessaryo 

In closing we employ the tools of § 1 to describe the degrees 
3 

of arbitrary A~K1 JE under ADo 

Theorem 12: (AD) Let A be a subset of then A is recti:I'.:.. 

sive in 3E and a real. 
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proof We require a lemma guaranteeing the regularity of A, 

Lemma 13: If 

pf (lemma): By Cor 1, § 1 

is regular. 

3 
we have v y < K1 E , 

Cod (A n y ;~) E f.~ (~) , where 

3 
< is in A E of length y. Then clearly Cod(An y;_::) is 

recursive in 3 E, ,::. 

To complete the proof of the theorem, let 

A = (a E 2wl a is an index and a. 

3 
a.< K E and 

1 

We consider the following game: As usual I and II play reals 

a,b respectively. Put 

II wins iff a is not an index or 

(a is an index and b is a code for 

some A(3 for (3,?:\a\)o 

This is a so-called Solovay-game and hence I cannot have a winning 

strategy, if A is regular. Thus A would be recursive in 3E,r 

for r any winning strategy for II. 

By Lemma 13 every A~ K~E is regular and, hence, A is 

recursive in 3JE a for some real 
' 
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