ISBN 82 553-459-2
Mathematics
No 12-Septembre
No

SOME CONSEQUENCES OF AD FOR
KIEENE RECURSION IN ${ }^{3}$ E
by
E。R. Griffor ${ }^{1)}$
Inst. of Math., University of Oslo

PREPRINT SERIES - Matematisk institutt, Universitetet i Oslo

1) Partly supported by grant from the National Science Foundation of the U.S.A.

> Some Consequences of $A D$ for Kleene Recursion in ${ }^{3} \mathbb{E}$. E.R. Griffor Oslo -1981

§ 0 Introduction

In this paper we derive some consequences of $A D$（axiom of Determinacy）for Kleene recursion in ${ }^{3} \mathbb{E}$（the type three func－ tional giving the equality predicate for sets of reals）．In § 1 we state and sketch the proof of a result of Moschovakis which is key to many of the results in subsequent sections．

A．S．Kechris asked：Does AD imply any＂large cardinal properties＂for $K_{1}^{3} \mathbb{E}$ in $L[\mathbb{R}] ?$ In § 2 we show that $K_{1}{ }^{3} \mathbb{E}$ is weakly inaccessible under AD，＂larger＂than measurability need imply（ \mathbb{L}_{1} is measurable under $\left.A D\right)$ 。

A recurrent theme in recursion in higher types and E－recur－ sion is that of selection theorems，i。e。for which sets Z are the classes semirecursive（ $R E$ ）in ${ }^{3} \mathbb{E}$ and a real closed under the quantifier $\exists a \in Z$ ？Under $A D$ we show that these classes are closed under the quantifier $\exists a<\gamma$ for every $\gamma<\mathbb{K}_{1}^{{ }^{3}} \mathbb{E}$ ：This should be contrasted with the situation under $V=I$ where $K_{1}^{3} \mathbb{E}>\lambda_{1}{ }_{1}$ ，but the $R E$ classes are not closed under $\exists a<\gamma$ for any γ such that：$\left\langle\sum_{1} \leq y<K_{1}^{3} \mathbb{E}\right.$ ．We also sketch the proof of a part of the folklore using $A D$ that we can select an element from a set of reals recursive in ${ }^{3} \mathbb{E}$ ，a uniformly in a for $a \in 2^{\omega}$ 。 These results on selection appear in §3．

It was known that $A D$ implied that the structure of the $R E$ degrees was trivial，i．e．an $R E$ class is either complete RE or REC（recursive）．In § 4 we strengthen this result to show that $A D$
implies that any regular $R E$ class is $R E C$ ，hence there is no regular complete $R E$ class．This adds some force to the conjecture that there is a model of ZF （assuming ZF is consistent）in which any regular $R E$ set is REC（and hence that the degree structure is trivial）。 Also in § 4 we employ the tools of $\S 2$ to describe the degrees of subsets of $\mathbb{K}_{1}^{3} \mathbb{E}$ under $A D$ ．The result here is that any $A \subseteq K_{1}^{3} \mathbb{E}$ is recursive in ${ }^{3} \mathbb{E}$ and a real．

The author is grateful to Dag Normann for many helpful dis－ cussions．
§ 1．Prewellorderings and the Moschovakis Lemma．

Following Moschovakis［1980］，a prewellordering of \mathbb{R}（with field \mathbb{R} ）is a relation \leq on \mathbb{R} such that for some ordinal δ ， some surjection

$$
\begin{aligned}
\varphi: \mathbb{R} \longrightarrow & >\delta \text { and all } x, y \in \mathbb{R}, \\
x & \leq y<=>\varphi(x) \leq \varphi(y), \text { where }
\end{aligned}
$$

the \leq on the right side is the order relation on OR（＝ordinals）． It is immediate that such φ and δ are unique when they exist； we call δ the length of \leq and φ the canonical surjection （of s）。

A relation is a prewellordering iff it is reflexive，transi－ tive，connected and well－founded（equivalently（DC）has no un－ finite descending chains。）．Let Λ be aclass of subsets of \mathbb{R} and assume Λ contains all singletons and is closed under con－ tinuous substitution and 7 。 An ordinal δ is realized in Λ
if there is a prewellordering \leq of some subset of \mathbb{R} in Λ with length δ ．These closure properties of Λ imply：
（i）δ realized in Λ and $\zeta<\delta \Rightarrow$ ζ is realized in Λ ；
（ii）δ realized in $\Lambda \Rightarrow \delta+1$ is realized in Λ ；and
（iii）$\delta>0 \wedge \delta$ realized in $\Lambda \Rightarrow \delta$ is the length of some prewellordering of \mathbb{R} in Λ 。

Let $\theta(\Lambda)=\sup \{\delta \mid \delta$ is realized in $\Lambda\}$ 。
Remark Let $\Lambda^{3} \mathbb{E}=\{x \mid x$ is a prewellordering of $\mathbb{R} \wedge x$ is re－ cursive in ${ }^{3} \mathbb{E}$ and a real\}, then $\theta(\Lambda)=K_{1}^{3} \mathbb{E}$ and Λ clearly satisfies the closure properties above．

If the length of \leq is δ and $\varphi:$ fld $(\leq) \rightarrow>\delta$ is the canonical surjection，then φ gives a＇coding＇of δ in the space X（a product space on \mathbb{R} ），i。e．we can think of each $x \in \operatorname{fld}(\leq)$ such that $\varphi(x)=\eta<\delta$ as a code or name for η_{0} If Y is such a product space and $f: \delta \rightarrow Y_{2}$ is a function on δ to subsets of Y ，we can represent it by a subset of $X \times Y$ as follows：

$$
\operatorname{Cod}(f ; \leq)=\operatorname{df}\{(x, y): x \leq x \wedge y \in f(\varphi(x))\}
$$

Definition．Suppose $f: \delta \rightarrow Y_{2}$ is a function．A choice sub－ function of f is any $g: \delta \rightarrow Y_{2}$ such that for all $\eta<\delta$ ：

$$
\begin{aligned}
g(\eta) & \subseteq f(\eta) \\
f(\eta) \neq \varnothing & \Rightarrow g(\eta) \neq \varnothing, \quad \text { i.e. }
\end{aligned}
$$

$g(\eta)$ chooses a non－empty subset of $f(\eta)$（provided $f(\eta) \neq \varnothing$ ）．

The following lemma is the main tool of this note and is due to Moschovakis [1970].

The Moschovakis Lemma (ML) assume AD.

Let \leq be a prewellording with field a subset of some X and length δ, let $f: \delta \rightarrow Y_{2}$ be a function. Then there exists a choice subfunction g of f such that

$$
\operatorname{Cod}(\mathrm{g} ; \leq) \text { is a } \sum_{\sim}^{1}(\leq) \text { subset of } X \times Y \text {. }
$$

pf we give the main idea of the proof - the case we shall be interested in is $\mathbb{R}=X=Y$. For each $\zeta<\delta$ let f_{ζ} be defined by:

$$
\begin{aligned}
f_{\zeta}(\eta)= & f(\eta), \\
\varnothing & \text { if } \eta<\zeta \\
\varnothing, & \text { if } \zeta \leq \eta<\delta
\end{aligned}
$$

Suppose there is some $\zeta \leq \delta$ such that f_{ζ} does not have a choice subfunction with cod in $\underset{\sim}{1} 1(\leq)$, let λ be the last such S. ${\underset{\sim}{1}}_{1}^{1}(\leq)$ is parameterized, hence the class of ${\underset{\sim}{1}}_{1}^{1}(\leq)$ subsets of $X \times Y$ is parameterized let

$$
G \subseteq \mathbb{R} \times X \times Y \text { be fixed universal set for it. As usual, }
$$

let

$$
G_{\alpha}=\{(x, y) \mid(\alpha, x, y) \in G\} \text { and }
$$

consider the game: I plays α and II plays β, then

II wins $<>7 \exists \eta\left[g_{\eta}\right.$ is a choice subfunction

$$
\begin{aligned}
& \text { of } f_{\eta} \wedge G_{\alpha}=\operatorname{Cod}\left(g_{\eta} ; \leq\right) \vee(\exists \eta<\lambda) \\
& (\exists \zeta<\lambda)\left(\exists g_{\eta}\right)\left(\exists g_{\zeta}\right)\left[g_{\eta}\right. \text { is a choice } \\
& \text { subfn of } f_{\eta} \wedge g_{\zeta} \text { is a choice subfn } \\
& \text { of } \left.f_{\zeta} \wedge \eta<\zeta \wedge G_{\alpha}=\operatorname{Cod}\left(g_{\eta} ; \leq\right) \wedge G_{\beta}=\operatorname{Cod}\left(g_{\zeta} ; \leq\right)\right]
\end{aligned}
$$

If we think of α as a code of a function g when $G_{\alpha}=\operatorname{Cod}(g ; \leq)$ then II wins if either I does not code a choice subjunction of an initial segment of f on I does and II codes a choice subfn of a longer initial segment of f 。

Moschovakis shows that the existence of a winning strategy for either I or II (AD) yields a choice subjunction of f_{λ}, g_{λ} with $\operatorname{Cod}\left(g_{\lambda} ; \leq\right) \in \sum_{\mathcal{N}}^{1}(\leq)$, contradicting the choice of λ_{0} For details of the proof see Moschovakis [1970].
$\frac{\text { Remark }}{3^{3} \mathbb{E}}$ Note that if \leq is a prewellordering on \mathbb{R} sot.
$\leq \in \Lambda^{2}$ and

$$
\begin{aligned}
& \operatorname{cod}(\mathrm{g} ; \leq) \in \underset{\sim}{\Sigma_{1}^{1}}(\leq) \text { then } \\
& \operatorname{Cod}(\mathrm{g} ; \leq) \in \Lambda^{3} \mathbb{E}
\end{aligned}
$$

As a corollary of the Moschovakis Lemma we have:

Corollary 1 Assume $A D$. Let \leq be a prewellordering on \mathbb{R} with length δ and let $A \subseteq \delta$. Then

$$
\operatorname{Cod}(A ; \leq) \in \underset{\sim}{\sum_{1}^{1}}(\leq)
$$

pf $f i x \quad \alpha_{0}, \alpha_{1} \in \mathbb{R}$ and set

$$
f(\eta)=\left\{\begin{array}{lll}
\left\{\alpha_{0}\right\}, & \text { if } & A(\eta) \\
\left\{\alpha_{1}\right\}, & \text { if } & A(\eta)
\end{array}\right.
$$

The only choice subfunction of f is f itself and hence by $M I$,

$$
\begin{aligned}
& \operatorname{Cod}(f ; \leq) \in \underset{\sim}{\Sigma_{1}^{1}}(\leq) \text { and } \\
& x \in \operatorname{Cod}(A ; \leq)<=>\left(x, a_{0}\right) \in \operatorname{Cod}(f ; \leq)
\end{aligned}
$$

$\S 2\left[\mathbb{K}_{1}^{3} \mathbb{E}\right]^{\mathrm{L}[\mathbb{R}]}$ under AD.
We will now use the tools of § 1 to answer the question of Kechris stated in the introduction positively.

Theorem 2 Assume $A D$. In $L[\mathbb{R}]$ we have that $K_{1}{ }^{3} \mathbb{E}$ is weakly inaccessible.
pf it suffices to show that
$\mathbb{K}_{1}^{3} \mathbb{E}$ is a regular limit cardinal in $L[\mathbb{R}]$. We use the notation $\delta^{+}(\delta \in \mathrm{OR})$ to denote the least cardinal greater than δ and $\delta_{2}=\{f: \delta \rightarrow\{0,1\}\}$.
We first show that $\mathbb{K}_{1}{ }^{3} \mathbb{E}$ is a cardinal. Suppose not and let $\eta<K_{1}{ }^{3} \mathbb{E}$ and

$$
\mathrm{f}: \mathbb{K}_{1}^{3} \mathbb{E} 1-1 \text {. П. Also }
$$

let $\leq \in \Lambda^{3}{ }^{3}$ with length η_{0} (we can suppose η is a cardinal). The function f induces a relation on $\eta \times \eta$), (a subset of $\eta \times \eta$), R_{f}, given by

$$
\left.\langle\sigma, \delta\rangle \in R_{f}<=\right\rangle f^{-1}(\sigma) \leq f^{-1}(\delta) .
$$

R_{f} is a well-founded relation on η^{2} of height $K_{1}^{3} \mathbb{E}$. By an easy generalization of the corollary to ML to n-arr relations

$$
\operatorname{Cod}\left(R_{f} ; \leq\right) \in \Sigma_{1}^{1}(\leq) \text { and }
$$

hence

$$
\operatorname{Hod}\left(R_{f} ; \leq\right) \in \Lambda^{3} \mathbb{E}_{1} \text { which is }
$$

absurd since the bounding principle then implies that the height of R_{f} is less than $K_{1}{ }^{3} \mathbb{E}$ 。 Suppose now that $\mathbb{K}_{1}^{3 \mathbb{E}}$ is singular:
let $\eta<K_{1}{ }^{3} \mathbb{E}$ be a cardinal sot. there exists

$$
f: \eta \frac{\text { increase }}{\text { unbdd }} \cdot K_{1}^{3} \mathbb{E} .
$$

Let $\leq \in \Lambda^{3} \mathbb{E}$ of length η and for each $\gamma<\mathbb{K}_{1}^{3} \mathbb{E}$ define

$$
I_{\gamma}=\{b \in \mathbb{R} \mid b \text { is an index for } \gamma\}
$$

(i.e. be codes a convergent computation in ${ }^{3} \mathbb{E}$ of height γ). Define $h: \eta \rightarrow \mathbb{R}_{2}$ by for $\delta<\eta$:
$h(\delta)=I_{f(\delta)}$. By $M 山$ there exists a choice subfunction $g: \eta \rightarrow \mathbb{R}_{2}$ of h such that

$$
\operatorname{Cod}(g ; \leq) \in \sum_{\sim}^{1}(\leq) \cdot \text { Note that }
$$

for $\gamma<K_{1}^{3} \mathbb{E}, \quad I_{\gamma} \neq \varnothing$ and hence for $\delta<\eta$

$$
\begin{aligned}
& g(\delta) \subseteq h(\delta)=I_{f(\delta)} \quad \text { and } \\
& g(\delta) \neq \varnothing
\end{aligned}
$$

Now define $\tau: \eta \rightarrow K_{1}^{3} \mathbb{E}$ by for $\delta<\eta$:

$$
\tau(\delta)=\text { suprenum }\left\{\|b\|_{3_{\mathbb{E}}} \mid b \in g(\delta)\right\}
$$

Since $\operatorname{Cod}(\mathrm{g} ; \leq) \in{\underset{\sim}{1}}_{1}^{1}(\leq), \operatorname{Cod}(\mathrm{g} ; \leq)$ is recursive in ${ }^{3} \mathbb{E}, \leq$ and clearly $\forall \delta<\eta$

$$
\tau(\delta)=f(\delta), \text { contradicting }
$$

the bounding principle again.
It remains only to show that $\mathbb{K}_{1}^{3} \mathbb{E}$ is a limit cardinal. This will follow by an argument first noticed by H. Friedman [198?] for $\theta\left(\mathbb{R}_{2}\right)$. let $\delta<\mathbb{K}_{1}{ }^{\mathbb{E}}$, then we show that $\delta^{+}<\mathbb{K}_{1}{ }^{3} \mathbb{E}$: We first show given $\delta<\mathbb{K}_{1}^{3} \mathbb{E}$ then there exists $\varphi^{*}: \mathbb{R} \rightarrow \delta_{2}$ such that φ^{*}
has

$$
\operatorname{cod}\left(\varphi^{*} ; \leq\right) \in \sum_{1}^{1}(\leq) \quad \text { where }
$$

$\leq \in \Lambda^{3} \mathbb{E}$ of length δ. By the corollary to $M \mathbb{L}$ if $A \leq \delta$ then

$$
\operatorname{Cod}(A ; \leq) \in \sum_{\sim}^{1}(\leq), \text { thus }
$$

if G is universal for ${\underset{\sim}{1}}_{1}^{1}(\leq)$ and hence recursive in ${ }^{3} \mathbb{E}_{1} \leq$ define for $\alpha \in \mathbb{R}$:

$$
\varphi^{*}(\alpha)= \begin{cases}A & \text { if } G_{\alpha}=\operatorname{Cod}(A ; \leq), A \subseteq \delta \\ \varnothing & \text { otherwise }\end{cases}
$$

Then φ^{*} is the desired surjection
Now consider $\delta<K_{1}^{3} \mathbb{E}$ and assume δ is a cardinal w.l.o.g. Then as above there exists $\psi: \mathbb{R} \rightarrow{ }^{\delta \times \delta}$ 2, but there is a map

$$
\begin{aligned}
x: & { }^{\delta x \delta_{2} \rightarrow} \delta^{+} \text {given by } \\
x(A) & = \begin{cases}0 . t .(A), & \text { if } A \subseteq \delta \times \delta \text { is a wellordering, } \\
0 & , \text { otherwise. }\end{cases}
\end{aligned}
$$

So $x \circ \psi: \mathbb{R} \rightarrow \delta^{+}$and $\delta^{+}<K_{1}^{3} \mathbb{E}$. This completes the proof the $K_{1}{ }^{3} \mathbb{E}$ is weakly inaccessible

Under $A D$ (i.e. without the $A C$) the labyrinth, of so called 'large cardinal properties' becomes less manageable. For example, $A D \rightarrow\left\rangle_{1}\right.$, is measurable', but λ_{1}, is $\prod_{1} 1$ describable and a suchcessor。*) Nevertheless, assuming $A D K_{1}{ }^{3}$ 正 may well be measurable or satisfy $K \rightarrow(K)^{2}$ (weak compactness) etc..
*) Contrast this with the result under AC that every measurable is inaccessible and Π_{1}^{2}-indescribable.

§ 3 Selection under $A D$ 。

Section § 2 demonstrates the 'weakness' of the ordinals under $A D$. An example of previous evidence for this is the ordinal additivity of Lebesgue measure (i.e. λ is γ-additive for every $\gamma \in O R$). Selection over ordinals shall be yet another. Definition 3: Let $Z \in L{ }_{K_{1}}[\mathbb{E}]$ and say that we have selection över Z, if for all $R(\vec{x}, b) \in \underset{\sim}{R E}$, let

$$
Q(\vec{x}) \equiv \exists b \in Z R(\vec{x}, b), \quad \text { then }
$$

$Q(\vec{x}) \in \underset{\sim}{R E}$.
Some known results are:

1) We do not have selection over 2^{ω}. (Moschovakis [1967]);
2) Selection over ω (Gandy [1962]).

An immediate result of 1) is,
Proposition 4: ($V=I$) Let $\gamma \in O R$ s.t. $\left\langle_{1} \leq \gamma<K_{1}^{3} \mathbb{E}\right.$, then we do not have selection over γ.

and the L-wellordering $<{ }_{L} \prod_{\mathbb{R}^{I}} \times \mathbb{R}^{I}$ to show that we have selection over 2^{ω} contradicting 1).

This 'weakness' of the ordinals under $A D$ is demonstrated by the following selection theorem

Theorem 5: Assume $A D$ and let $\gamma<K_{1}^{3} \mathbb{E}$. Then we have selection over γ.
pf let $\leq \in \Lambda^{3} \mathbb{E}$ with length γ then the map $\varphi_{\gamma}^{*}: \mathbb{R} \rightarrow \gamma_{2}$ using the universal ${\underset{\sim}{1}}_{\mathcal{1}}(\leq)$ set G given by：

$$
\varphi_{\gamma}^{*}(\alpha)= \begin{cases}A, & \text { if } G_{\alpha}=\operatorname{Cod}(A ; \leq), A \subseteq \gamma \\ \varnothing, & \text { otherwise }\end{cases}
$$

is recursive in ${ }^{3} \mathbb{E}, \leq$ ．With the power set of γ we can now carry out a Harrington－MacQueen［1976］－style argument to show that we have selection over γ 。

A selection result which is part of the folklore（it was noticed by A．S．Kechris and D．Normann）for ${ }^{3} \mathbb{E}$ under $A D$ is that ordinary uniformization holds（this actually only uses deter－ minacy for sets of reals recursive in ${ }^{3} \mathbb{E}$ and a real $-\Lambda^{{ }^{3} \mathbb{E}}$ ）。 If $Z \subseteq 2^{\omega}$ and $Z \leq{ }^{3} \mathbb{E}$ a for some real a ，then uniformly in a we can choose an element of Z（assuming $Z \neq \varnothing$ ）．The proof uses a scale on Z recursive in ${ }^{3} \mathbb{E}$ ，a．

Theorem 6：$\left(\operatorname{Det}\left(\Lambda^{{ }^{3}} \mathbb{E}\right)\right)$ There exists a $S: \mathbb{R} \rightarrow \mathbb{R}$ recursive in ${ }^{3} \mathbb{E}$ such that if $B \subseteq \mathbb{R}$ and $b \leq{ }^{3} \mathbb{E}, a$ for some $a \in 2^{\omega}$ ，then

$$
\begin{gathered}
B \neq \varnothing \rightarrow S(a) \downarrow \text { and } \\
S(a) \in B .
\end{gathered}
$$

proof（sketch）For the theory of scales and their construc－ tion using determinacy the reader is directed to Moschovakis 「1980 T． Uniformly by transfinite recursion on the height of a computation construct a scale $\varphi=\left\{\varphi_{n}\right\}_{n} \epsilon_{\omega}$ on

$$
C=\left\{\langle e, \vec{a}, n\rangle \mid\{e\}\left({ }^{3} \mathbb{E}, \vec{a}\right) \downarrow \wedge\{e\}\left({ }^{3} \mathbb{E}, \vec{a}\right)=n\right\},
$$

the set of computation tuples, where a computation tuple σ is of the form:

$$
\sigma=\langle e, \vec{a}, n\rangle \quad e, n \in \omega
$$

and \vec{a} a finite vector of reals. For pairs $\sigma, \tau \in C$ we proceed by transfinite recursion on

$$
\begin{gathered}
\gamma=\max (\|\sigma\|,\|\tau\|), \text { where } \\
\|\sigma\|=\left\{\begin{array}{l}
\text { height of the computation given by } \\
\sigma, \text { if } \sigma \in C \\
\infty, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

to define prewellorderings \leq_{i}. A standard argument will then show that a small change in the associated norms φ_{i} gives a scale on C.

Computations of height 0 are given in a Σ_{1}^{0} way and hence have a scale. Let C_{γ} denote computations of height γ and $C_{\leq \gamma}$ those of height less than or equal to γ 。 If $\left\{\varphi_{i}^{\gamma}\right\}_{i \in \omega}$ are the norms given so far as $C_{\leq \gamma} \backslash C_{\gamma}$ we need only extend them to C_{γ}.

For $\sigma, \tau \in C_{\gamma}$ we order them $\sigma \leq i^{\top}$ by least index $\left((\sigma)_{0}\right)$ and value $(\sigma)_{l h(\sigma)}$ in that order, given by clopen sets and then proceed by induction on the schemata S1-S9 of Kleene. We consider only an application of S 8 :

$$
\begin{aligned}
&\{e\}(\vec{a})={ }^{3} \mathbb{E}(\lambda x\{e\}(\vec{a}, x)) \text { which satisfies: } \\
&\}_{\mathbb{E}}\left(\lambda x\left\{e^{\prime}\right\}(\vec{a}, x)\right)= \begin{cases}0, & \text { if } \forall b \in w_{w}\left\{e^{\prime}\right\}(\vec{a}, b)=0 \\
1, & \text { if } \exists b \forall c \exists n\end{cases} \\
& {\left[\{e\}(\vec{a}, c)=n \wedge\left\{e^{\prime}\right\}(\vec{a}, b) \neq 0\right] }
\end{aligned}
$$

corresponding to $\Pi_{1}^{1}\left(C_{<\gamma}\right)$ and $\Sigma_{2}^{1}\left(C_{<\gamma}\right)$ respectively. In both
cases the arguments in Moschovakis [1980, pp. 310-17] yield the necessary norms for defining \leq_{i} here.

These norms can be shown to give a scale on C using the recursion theorem $\bar{\varphi}=\left\{\varphi_{n}\right\}_{n} \in_{\omega}$.

Remark Notice that by the definition of $\left\{\leq_{i}\right\}_{i \in \omega}$ if $\left\{x_{i}\right\}_{i \in \omega} \subseteq C$ and

$$
\lim _{i} x_{i}=x \text { such that }
$$

for all n

$$
\varphi_{n}\left(x_{i}\right) \text { is constant for all large } i \text {, }
$$

then a tail if the sequence lies on the same level of each \leq_{i} by definition of s_{i}. A straightforward induction on $K_{1}^{3} \mathbb{E}$ shows $\lim _{i} x_{i}=x \in C$.

To define the uniformizing function S : take an index for $\bar{\varphi}$ and given $a \in 2^{\omega}$ such that

$$
\mathrm{B} \leq{ }^{3} \mathbb{E}, \mathrm{a} \text { and } \mathrm{B} \neq \varnothing \text {. }
$$

Recursively in a compute $B^{*} \subseteq B$ minimizing the height of computation, i。e. if

$$
\begin{aligned}
& \{e\}(a, b)=\left\{\begin{array}{l}
0, \text { if } b \in B \\
1, \text { if } b \notin B 。 \text { Now let }
\end{array}\right. \\
& \alpha=\mu_{\gamma} \in O R \exists b[\{e\}(a, b)=0 \wedge \\
& \quad\|\langle e, a, b, 0\rangle\|=\gamma] \quad \text { (recall } B \neq \varnothing),
\end{aligned}
$$

and let $B^{*}=\{b \in B \mid\|\langle e, a, b, 0\rangle\|=\alpha\}$. The index for $\bar{\varphi}$ gives a scale on computations of the same height i.e. B^{*}, call it $\bar{\varphi}_{\alpha}=\left\{\varphi_{\alpha, n}\right\}_{n \in \omega^{\circ}}$ If we now compute

$$
\left\{b \in B^{*} \mid \varphi_{a, o}(b) \text { is minimal }\right\} \text {, it }
$$

will be a singleton by the definition of $\bar{\varphi}$ and gives the value if $S(\langle e, a\rangle)$.

If Λ is a class of subsets of \mathbb{R} and we write:

Scale (Λ) \Leftrightarrow for all $Z \in \Lambda$ there is a scale on Z defined by some $\omega \in \Lambda$,
then we have shown,

Corollary 7: Scale (RE)
pf use an index for $\bar{\varphi}$ on C and an index for any $\underset{\sim}{R E}$ class to get an $\underset{\sim}{\mathrm{RE}}$ scale on that class.

Remark The proof of Theorem 6 is eased by the fact that C is given by a positive monotone inductive definition. If one instead works with Harringtons [1973] representation of the sets of reals recursive in ${ }^{3} \mathbb{E}$ and a real i.e。

$$
\mathrm{I}_{K_{1}} \mathbb{E}^{\left(2^{(w)}\right), \quad \text { then the }}
$$

fact that levels here are given by first order definability makes the inherent positivity of the inductive definition less apparent.

The Moschovakis Lemma of $\S 1$ is a powerful tool for analyzing $\theta\left(\mathbb{R}_{2}\right)$ under $A D$. The obvious strengthening of $M L$, even in the absence of definability considerations, implies $\neg A D$ 。

Proposition 8: Let \leq be a prewellordering of \mathbb{R} of length $\eta \geq \lambda_{1}$, and let
$f: \eta \rightarrow \mathbb{R}_{2}$ sot. for uncountably many $\gamma<\eta$ $f(\gamma) \neq \varnothing$. If $\exists g \cdot \eta \rightarrow \mathbb{R}_{2}$ a choice subfunction of f such that $\forall \gamma<\eta$

$$
f(\gamma) \neq \varnothing \rightarrow g(\gamma) \text { is a singleton, then } \sim A D \text {. }
$$

pf the existence of g would yield an uncountable wellordered set of reals W. Now define from W and uncountable set of reals with no perfect subset, contradicting AD.
§ 4 Degree Theory

$$
\begin{aligned}
& \text { If } A_{K_{1}}^{A_{\mathbb{E}}}\left(2^{\omega}\right) \text { is } \underset{\sim}{R E}, \text { then the degree of } A \text { is: } \\
& \left\{B \subseteq L_{K_{1}}{ }^{\left.\left(2^{(\omega)}\right) \mid \exists a, b \in 2^{\omega} \quad A \leq{ }^{3} \mathbb{E}, B, a \wedge B \leq{ }^{3} \mathbb{E}, A, b\right\} .}\right.
\end{aligned}
$$

The degrees under the induced ordering form an upper semi-lattice and we say that $A \in \underset{\sim}{R E}$ is complete, if for all $B \in R E$ there exists $b \in 2^{\omega}$ such that $B \leq^{3} \mathbb{E}, A, b$ 。 The degree structure is said to be trivial if every $A \in \underset{\sim}{R E}$ is either complete or $\underset{\sim}{R E C}$. We say that $A \subseteq I_{K_{1}} \mathbb{E}^{\left(2^{w}\right)}$ is regular (amenable) if $\forall Z \in I_{K_{1}}{ }^{\left({ }^{(2 w}\right)}$

$$
A \cap Z \in L_{K_{1}} \mathbb{E}^{\left(Z^{W}\right)}
$$

It had been remarked (cf. Normann [1979]) that AD implied that the degree structure for ${ }^{3} \mathbb{E}$ is trivial. We extend that result here to show any regular $\underset{\sim}{\mathrm{RE}} \mathrm{A}$ is $\underset{\sim}{\mathrm{REC}}$ under AD 。 Theorem 9: (AD) If $A \subseteq I_{K_{1}}\left(2^{\omega}, 3^{3} \mathbb{F}\right)$ is $R E$ and regular, then A
is REC. Corollary 10: (AD) Any RE subset of $\mathrm{I}_{\mathrm{K}_{1}}\left(2^{(\omega)},{ }^{3} \mathbb{F}\right)$ is either
REC or complete.
proof (Cor.) by the theorem A is regular, then A is REC so it suffices to show that if A is not regular, then A is complete. We show this by showing that there is a computation in A with height $K_{1}^{3} \mathbb{F}$.

$$
A \cap I_{\gamma}\left(2^{(\omega)},{ }^{3} \mathbb{F}\right) \in L_{K_{1}}{ }_{\mathbb{F}}\left(2^{\omega},{ }^{3} \mathbb{F}\right)
$$

Remark In what follows we regard reduction procedures on the indexical set (Sacks [1980]) or computations uniform in indices for sets (Normand [1979]): where $X \in L_{K_{1}}\left({ }^{3} \mathbb{F}, 2^{(w)}\right.$ is indexical, if
$\exists I_{X} \subseteq 2^{\omega}$ sot.
(i) $I_{X} \neq \varnothing \wedge I_{X} \leq{ }_{{ }_{X}} X$ and
(ii) $\left(\forall a \in I_{X}\right)\left[\left\{(a)_{0}\right\}\left({ }^{3} \mathbb{F},(a)_{1}\right) \downarrow\right.$ and
$\left.\left\{\left(a_{0}\right)\right\}\left({ }^{3} \mathbb{F},(a)_{1}\right)=X\right]$ a set of
indices for the set X 。

To complete the proof of the corollary let γ_{0} be least witness to A not regular, ide

$$
A \cap L_{Y_{0}}\left({ }^{3} \mathbb{F}, 2^{w}\right) \underset{K_{1}}{\mathcal{K}_{1}}\left({ }^{3} \mathbb{F}, 2^{(w)}\right)
$$

and define $f: I_{\gamma_{0}}\left({ }^{3} \mathbb{F}, 2^{w}\right) \rightarrow K_{1}{ }^{3} \mathbb{F}$ by

$$
f(X)= \begin{cases}\left|\{c\}\left({ }^{3} \mathbb{F}, X\right)\right|, & \text { if } X \in A \\ \varnothing & \text { otherwise, where }\end{cases}
$$

c is the index witnessing A RE．Then f is REC in $3_{\mathbb{F}, A}$ and

$$
\sup _{X \in I_{\gamma_{0}}} \frac{f}{\left({ }^{3} \mathbb{F}, 2^{W}\right)}=K_{1}^{3} \mathbb{F} \text { by the }
$$

choice of γ_{0} ，as desired．Cor。
proof（theorem）given A RE via $c \in 2^{\omega}$ consider the game G_{A}＊where

$$
\begin{aligned}
& A^{*}=\left\{\langle a, b\rangle \in 2^{w} \times 2^{w} \mid a \text { is an index } \wedge\right. \\
& {[b \text { not index } \vee(b \text { is index } \wedge} \\
&\left.A \cap I_{|a|}\left({ }^{3} \mathbb{F}, 2^{(w)}\right) \neq A|b| \cap L_{|a|}\left({ }^{3} \mathbb{F}, 2^{w}\right)\right\},
\end{aligned}
$$

where A_{α} for $\alpha<K_{1}^{3} \mathbb{E}$ is
$\left\{X \in L_{\alpha}\left({ }^{3} \mathbb{F}, 2^{(\omega)}\right)\left|I_{\alpha}\left({ }^{3} \mathbb{F}, 2^{(\omega)}\right)\right|=\{c\}\left({ }^{3} \mathbb{F}, \mathbb{X}\right) \downarrow\right\}$ ，the portion of
A＇s enumeration complete by＇stage＇α 。 Hence Player I builds a and Player II builds b。

By $A D G_{A} *$ is determined：

Case 1：Player I has a winning strategy σ ，then

$$
\sigma^{\prime \prime}\left[2^{w}\right]=\left\{\sigma^{*} b \mid b \in 2^{w}\right\} \subseteq \text { indices }
$$

and $\sigma \in 2^{\omega}$ gives $\sigma^{\prime \prime}\left[2^{\omega}\right] \leq 3_{\mathbb{F}} \sigma_{0}$ ．By the bounding principle

$$
\sup _{c \in \sigma^{\prime \prime}\left[2^{w}\right]}|c|=\delta_{0}<K_{1}^{3} \mathbb{F} \text { for some } \delta_{0} .
$$

If there is no γ with $\delta_{0} \leq \gamma<K_{1}^{3}$ IF A．t．

$$
A \cap I_{\delta_{0}}\left({ }^{3} \mathbb{F}, 2^{(w)}\right)=A_{\gamma} \cap I_{\delta_{0}}\left({ }^{3} \mathbb{F}, 2^{w}\right)
$$

then A is complete since $A \cap I_{\delta_{0}}\left({ }^{3} \mathbb{F}, 2^{w}\right) \in I_{K_{1}}\left(2^{w},{ }^{3} \mathbb{F}\right)$（by reg。 and an argument similar to that in the Corollary and if A not regular，then A complete and we＇re done。）

If we let b be an index for any such γ ，then II wins playing b against σ ，a contradiction with the choice of σ ． Thus A is complete RE。

Case 2：Player II has a winning strategy σ ：then for all indices a

$$
\begin{gathered}
r^{*} a \text { is an index and } \\
A \cap L_{|a|}\left({ }^{3} \mathbb{F}, 2^{w}\right)=A_{\left|\sigma^{*} a\right|} \cap L_{|a|}\left({ }^{3} \mathbb{F}, 2^{w}\right) .
\end{gathered}
$$

We claim that A is $R E C$ in ${ }^{3} \mathbb{F}, c, \sigma$ where c was the index defining A ：
 in σ compute

$$
\sup _{c \in \sigma " I_{X}}(|c|+17)=\gamma<K_{1}^{3} \mathbb{F} \text {. By the choice of } \sigma
$$

$$
X \in A \Leftrightarrow X \in A_{\gamma} \text { and so } A \text { is } R E C \text { in } 3_{\mathbb{F}}, c, \sigma
$$

as desired．

Remark Sacks［1980，Sacks and Griffor］has shown using a well－ ordering of reals，that there exists a regular complete $\underset{\sim}{\mathrm{RE}}$ class。 The foregoing indicates that this assumption is probably necessary。

In closing we employ the tools of § 1 to describe the degrees of arbitrary $A \subseteq K_{1}{ }^{3} \mathbb{E}$ under $A D$ 。
Theorem 12：（AD）Let A be a subset of $K_{1}^{3} \mathbb{E}$ ，then A is recúr－ sive in $3^{\mathbb{E}}$ and a real．
proof We require a lemma guaranteeing the regularity of A ， Lemma 13：If $A \subseteq K_{1}^{3} \mathbb{E}$ ，then A is regular．
pf（lemma）：By Cor 1，§ 1 we have $\forall \gamma<K_{1}^{3} \mathbb{E}$ ，

$$
\operatorname{Cod}(A \cap \gamma ; \leq) \in{\underset{\sim}{1}}_{1}^{1}(\leq), \quad \text { where }
$$

\leq is in $\Lambda^{3} \mathbb{E}$ of length γ_{0} Then clearly $\operatorname{Cod}(A \cap \gamma ; \leq)$ is recursive in ${ }^{3} \mathbb{E}, \leq 。$

To complete the proof of the theorem，let $\alpha<K_{1}^{3} \mathbb{E}$ and

$$
\begin{gathered}
A_{\alpha}=\left\{a \in 2^{W} \mid a\right. \text { is an index and } \\
|a| \in \alpha \cap A\} .
\end{gathered}
$$

We consider the following game：As usual I and II play reals a，b respectively．Put

II wins iff a is not an index or

$$
\begin{aligned}
& \text { (a is an index and } b \text { is a code for } \\
& \text { some } A_{\beta} \text { for } \beta \geq|a| \text {). }
\end{aligned}
$$

This is a so－called Solovay－game and hence I cannot have a winning strategy，if A is regular．Thus A would be recursive in ${ }^{3} \mathbb{E}, \tau$ for τ any winning strategy for II。

By Lemma 13 every $A \subseteq K_{1}^{3} \mathbb{E}$ is regular and，hence，A is recursive in $3_{\mathbb{E}, a}$ for some real a 。

Friedman，H．and Solovay，R．，Large Ordinals and the axiom of determinateness，to appear［198？］．

Gandy，R．O．，General recursive functionals of finite type and hierarchies of functions， Univ．of Clermont Ferraud［1962］．

Harrington，L_{0} ，Contributions to Recursion Theory on Higher Types，Ph．D．Thesis M．I．T，［1973］。
and MacQueen，D．B．，Selection in Abstract Recursion Theory，JSL 41，［1976］，pp．153－158。

Moschovakis，Y。No，Hyperanalytic Predicates， TAMS 129 ［1967］，pp．249－282．
，Determinacy and Prewellorderings of the continuum Math Logic and Foundations of Set Theory， （y．Bar－Hillel，ed．），N．H．－New York［1970］，pp．24－62．
，Descriptive Set Theory，
NoH．Publishing Co．，New York［1980］：637。

Normann，D．，Degrees of Functionals， Annals of Math．Iogic［1979］，pp．269－304．

Sacks，GoE．，Post＇s Problem，Absoluteness and Recursion in Finite Types，The Kleene Symposium，N．H．［1980］，pp．181－202． and Griffor，E．R．，E－Recursion Theory， Harvard University Preprint，［1980］．

