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One of the objectives of mathematics is to construct suitable 
models for practical or theoretical phenomena and to explore the 
mathematical richness of such models. This enables other scien­
tists to obtain a better understanding of such phenomena. As an 
example we will mention the real line and related structures. 
The line can be used profitably in the study of discrete phenomena 
like population growth, chemical reactions etc. 

Today's version of the real line is a topological completion 
of the rational numbers. This is so because then mathematicians 
have been able to work out a powerful analysis of the line. By 
using the real line to construct models for finitary phenomena 
we are more able to study those phenomena than we would have 
been sticking only to true-to-nature but finite structures. 

So we may say that the line is a mathematical model for 
certain finite structures. This motivates us to seek natural 
models for other types of finite structures, and it is natural 
to look for models that in some sense are complete. 

In this paper our starting point will be finite systems of 
finite operators. For the sake of simplicity we assume that they 
all are operators of one variable and that all the values are 
natural numbers. There is a natural extension of the systems 
such that they accept several variables and give finite operators 
as values, but the notational complexity will then obscur the 
idea of the construction. 

Our first systematisation will be to regard such systems as 
subsystems of a system of infinite operators: 
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Definition 

We define the· finitary operators r•../ "\'"" 

{~=U 8-k 
l kEN 

of finite type by: 

i All numbers n are in \):: 0 • 

ii A function 
. -J 

f : E .... :N is in d-- 1 if f is almost constant. -
iii Let if there are -

Y 1 , o •• , Y n E J k-1 , i, t such that 

* ~($) depends only on $(Y1), ••• ,¢(yn) 

* * If for some j _::: n ¢ ( y . ) > i then cp( $) = t. 
J 

We will now be looking for a suitable completion ()of This 

cannot mean a completion in a precise topological sense since 

there is no canonical metric or other topological structure on 
rJ 

the space ~ • We rather mean that it in some sense is a natural 
,r·...? 

extension of j- containing the elements it ought to. 

Clearly we do not want to add any elements which do not 

preserve any form of finitarity. This means that we should not 

for instance include the operator of type 2: 

E(f) = [: 

if f = 0 

if 3x E :N(f(x) ,i 0) 

since we require information about f that cannot be finitary 

described in order to find E(f). 

Kleene [4] and Kreisel [51 defined independently a hierarchy 

of functionals called the countable or continuous functionals, 

(Ct(k))kEE and there are several results indicating that the 

continuous functionals is a natural candidate for They 
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both used associates in one form or another; an associate for a 

functional ~ is a coding of w consisting of finite bits of 

information sufficient to describe w completely. The original 

formal definitions were hard to penetrate and later attempts have 

been made to give a more "civilized" characterisation of these 

functionals. 

We recommend Hyland (3] for a general and thorough dis-

cussion of alternative descriptions of the continuous functionalsD 

Hyland showed that the continuous functionals can be constructed 

in a natural way as filter-spaces, limit-spaces and topological 

spaces. In all three cases one start with lli and iterate a 

standard construction of function spaces. Moreover Bergstra (1] 

characterized (Ct(k))kEN as the maximal type-structure support­

ing a natural recursion theory and not containing the functional E 

described above. 

Recently Moldestad [6] gave an elegant characterization based 

on the idea of completing the hereditarily monotone partial 

operators of finite type with a finitebasis and then take the 

total core. Moldestad's approach is analogue to a more general 

approach in Ershov (2], but it shows more clearly how these objects 

can be created from finitary ones. 

In this note we will add one more characterization. We will 

use a few elements from the theory of non-standard analysis to 
'1-/ 

give a natural completion of ,_t • Since the structure we construct 

turns out to be just the continuous functionals again, we have 

given support to the thesis that (Ct(k))kEE is the natural 

completion of 
,-y 
$ and that it as such deserves the interest of 

mathematicians. 
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We do not need to know much about non-standard theory. It is 

based on the interplay between two structures, V and the 
W+W 

non-standard extension *V , with an elementary imbedding 
W+W 

* : x.....).*x. Elementarity of * is often called the transfer 12rinciple 

and means that all truths and falsities are transferred by * • If 

we want to use non-standard theory at a more elaborate level, we 

must be far more precise, but for our purpose this will be suffi-

cient. Let us just mention that a set is hyperfinite when *V 
W+W 

believes that it is finite, i.e. in 1-1-correspondance with an 

element of ~ by a function in 

on truely finite objects. 

*V w+w· * is the identity only 

One of the methods used in non-standard theory is to regard 

a hype~inite version of some finite but large structure. The 

strength of the theory lies in the interplay between the discrete 

hyper-finite structure and its standard part. The standard part 

will often be a complete standard version of the finite structures 

one originally had. This is also the basis of our construction, 

we just take the standard parts of the hyper-finitary functionals 

in * '):' • 
u 

Our motivation is not to give an alternative definition of 

the continuous functionals from which the theory naturally dave­

lopes, only to show how natural the structure is as the completion 

of finite systems of finite operators. Thus we do not hesitate 

to use known facts about (Ct(k) )kE:N and we give no applications 

of the main theorem. 
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Definition 

Let * .~f be the non-standard set of hyper-finitary fnnctionals. 

By induction on k E JN we define Ak and the equi valence-rela­

tion ~k by 

i 

ii 

A = E , n ::' m if and only if n = mo 
0 0 

Let f E *~~+1 • Then f E ~+1 if 

'Vg, h EAk(g ::::'kh =>f(g) = f(h)EJN) 

Let f 1 ,f2 E Ak+1 • Then 

f 1 ~k + 1 f 2 if 'V g E Ak ( f 1 (g) = f 2 (g) ) • 

Let (~k = Ak/~ke ((;k>kEE can in a canonical way be seen as a 

hierarchy of functionals. 

Remark 

At each stage we let Ak+1 be the set of functions f such 

that is well defined and a standard function from 

Our main result will be 

Theorem 

In order to prove this theorem we need to define the continu­

ous functionals, and we will stick to Kleene's original definitiono 

By an effective enumeration all finite sequences of natural 

numbers can be enumerated, let (an}nEE be the enumeration, n is 

called the sequence-number of an ~~d we will identify a sequence 

with its sequence-number. 



- 6 -

If f: E-<IN then f(n) = (f(O), .... ,f(n-1)). 

Definition 

Ct(O) = E, Ct(1) = NJN and a function is its own associate. 

Assume that Ct(k) is defined together with the associates 

for the functionals in Ct(k). 

Let 1jr: Ct (k) .... N • Then 1jr E Ct (k+1) if * has an associate, 

where an associate for $ is any function a satisfying the 

following: 

Whenever cp E Ct (k) and S is an associate for cp then 

3n\im((m<n =>o:,(S(m)) = 0) 1\ (m,2:n =>a(S'(m)) = \jr(cp) + 1)). 

The finitary functionals can be regarded as. a natural sub­

class of the continuous functionals. 

Let B~ = [ 1\r E Ct (k); tlr has an associate a extending cr}. 

Kleene [4] showed that if is nonempty then contains a 

finitary element-. If cp E Ct(k), then the principal associate 

for cp is the function a defined by: 

a(cr) 

rt+1 

=1o· 
if cp is constant t 

otherwise. 

Again by Kleene [4] cp is constant t on Bk-1 
(J 

if and only 

if cp is constant t on Bk.._1 () 'Y 
cr .:r " This means that we can 

define non-standard associates for f E * ']:" without reference 

a non-standard version of (Ct(k))kEE. 

The theorem will now follow from 

to 
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Lemma 

Let k E E, w E * JN ' ::N • Then 

Let a. be an associate for 1Jr E Ct (k) and let f be a a. 
k hyper-finitary element of ~(w)• 

if ~ is another associate for ~ 

Then f E Ak. Moreover a. 

then fa. ::-k f 13 o 

ii Let f E ~· Let a.f be the principal non-standard associate 

for f. Then a.f [':N is an associate. Moreover, if f ~kg 

and are associates for the same functional. 

Proof 

We use induction on k. 

For k = 0 and k = 1 this is trivial (For k = 0 we have not 

even defined the cpncepts of the lemma) 0 So assume that k > 1 

and that the lemma holds for all 1 < k. 

i Let a.'~ be given, gEAk_1 • Then o.g ~ E is an associate 

for a functional cp, and there is .some n,t such that 

a.(O:g(n)) = t+1 0 Then fa.(g) = 1\f(cp) since f is constant 

~-1 and k-1 If g ~k-1 h then and on . a.g(n) g E ~ (n) o a.g a.h 
g 

are associates for the same functional cp so in both cases 

t = 1\f(cp). The value t is also only dependent of $ and 

and not of a.. 

ii Let f EAk be given. Let 13 be an associate. Let af be 

the non-standard associate for :r .. If 'Vn E JN af('S (n)) = 0 

then \in E N3h1 , h2 E ~C~) (f(h1);i f(h2)). 

t 

cp 

Since nothing drastic can take place on the borderline between 

JN and *:N' JN (The non-standard world does not recognise JN 
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as a set) there is an w1 E *E '\ JN such that 

By the induction hypothesis h1 E Ak-'1 and h 2 E Ak-'1 and 

h1 zk_1h2 so f(h1 ) = f(h2 ) since f E Ak. 

This ends the proof of the lemma, and the theorem. 

Remarks 

a Let f E Ak. a.f as constructed above is not necessarily a 

principal associate. We can, in fact get all associates for 

typ·e k functionals from elememnts in . ~ in this way. 

b Instead of using the hyper-finite functionals we could have 

used a hyper-finite collection of thema 

If wE *N " JN let J'" = (Ti )i <w be defined by 

T0 = {i; i _:: w} 

Tj+"l = [cr;cr:Tj .... T0 } • 

• ···..._,! 

If we use ,J instead of ·J in defining Ak and 

still get the continuous functionals. 

then we 
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