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Introduction · 

Groups and monoids and their·algebras 

A cohomological study I 

by 

Olav Arnfinn Laudal 

The following pages contain the three first paragraphs of a study 

on the cohomological properties of groups and monoids and their 

associated algebras. 

The starting point of this study was the realization that the 

Massey-type product structure of the cohomology of a p-group 

determines quite a bit of the structure of the group, see [La 3]. 

This together with the fact that the classical Massey products 

only depend upon the group-algebra, made me hope that a finer 

study of the cohomology product structure would lead .to a solution 

of the isomorphism problem for p-groups. 

The ·following paper will show that I did not succede. 

However, it seems to me that some of the results still merit 

publication, in particular since they have applications in other 

directions. 

It turns out that the results of Chapter 1 may be, successfully, 

used in the study of the Bettiserics of two-dimensional torus 

imbeddings, and in the study of deformations of torus imbeddings, 

in general. 

The work on this paper was completed while I was on sabbatical 

leave at the University of California at Berkeley. Thanks are due 

to the mathematical department of that institution and, in 

particular, to the specialists in group theory there. 

I was financially supported by The Norwegian Research Council 

for Science and the Humanities (NAVF), through contract nr: 

D.QO.Ol.096. 



. 2. 

Chapter 1. Cohomology of groups and algebras 

The object of this chapter is firstly to prepare the 

ground for the next two chapters, secondly to prove the 

existence of a canonical isomorphism between the cohomology of 

an abelian monoid and the cohomology of the corresponding 

monoid-algebra, ( 1 . 3) . 

This isomorphism will be usefull in the study of deformations 

of monoid algebras, such as affine torus imbeddings. 

We start by constructing a cohomology theory for groups, 

applying the method of model categories and the corresponding 

derived functors of the projective limit functor as in [An], 
[La1], [La2]. 

We then show the relationship between this kind of cohomology 

and the classical cohomology of groups, suggested by Barr and 

. Reinhardt in [ B-R ]. 

In ( 1 , 2) we copy the procedure in ( 1 • 1 ) for the cas.e ·of not 

necessarily commutative algebras, and in (1,3) we relate the 

cohomology of a group to the cohomology of the corresponding 

group-k-algebra. The main theorem applies to monoids as well. 

Finally we add an appendix on the Betti-numbers of monoid

algebras. 
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(1.1) Cohomology of groups and monoids 

If S is any set, we may consider the free group F(S) and 

the free abelian group Fab(S) generated by S. The full 

subcatgories of ~, respectively abgr, generated by the free 

groups will be denoted by free respectively free ab. 

Given a morphism of groups P ~ G we shall be interested in 

the category P-~/G of all commutative diagrams in S£ of the 

form 

p -~--- Q 

( 1 ) f: 
&\/& 1 

G 

The full subcategory of P- ~/G generated by the diagrams (1) 

for which Q = F(S)*P and ~ is the canonical morphism of P 

into the direct sum F(S)*P, will be called P-free/G. 

For the purpose of studying deformations, i.e. composite 

extensions, of groups, we need to consider a slightly more 

elaborate category. 

Definition (1.1.1) A morphism of groups &: P-> G, together 

with a G-action n: Hom(G,Aut(P)), on P is called a 

normal morphism if for every p E P and every g E G, 

g&(p)g-l = &(n(g)(p)). 

Given two normal morphisms (&,n): P-> G and (& 1 ,n 1
): P-> Q 

a morphism ~: (& 1
, n 1

) -> ( & , n) is a commutative diagram 

( 2) f: 

&I Q 

p~!~ 
&.....__G 

with n 1 =~on: G-> Aut(P). 

Denote by n-P - gE/G the category of such diagrams. 

The diagrams (2) in which Q i G is the quotient of an 



object of P-free/G, F(S) P ~ G, by the normal subgroup 

generated by the elements of the form fpf-111($(f))(p) 

f E F(S) and p E P, generate a full subcategory n-P-fre~/G 

of n-P-,9_!/G. 

Now, let G-bimod be the category of G-bimodules. An 

object M of G-bimod is a k-module with commuting left 

and right G-actions. 

Given a G-bimodule M and an object (1) respectively (2), 

we denote by 

Derp(f,M) ={DE Set(Q,M)i for all q
1
,q

2 
E Q 

D(q
1

•q
2

) = oj>(q
1

)D(q
2

) + D(q
1

)$(q
2
), 6'oD = 0}, 

the k-module of derivations on Q vanishing on P. 

Assume P operates trivially on M via 6, then for any 

pEP, q E Q and DE Derp(f,M) we find D(q6'(p)q-l) = 0 • 

• 
Therefore any derivation on F(S)*P = Q', see above, vanishing 

on P will factorize through Q = F(S)*P/~. 

Obviously Derp(G,M) is a k-sub-module of the k-module 

Sets(G,M) " Mi Gi . Put MG = {mEMEgEG, gm-mg = o} and observe 

4. 

that there is a natural k-linear homomorphism v: M ~ Derp(G,M) 

defined by v(m)(g) = gm-mg, mE M, g E G. Notice that if P is 

the trivial group, v induces the exact sequence 

(3) 0 ~ MG ~ M ¥ Der(G,M) ~ Hl(G,M) ~ 0 

where H1 (G,M) is the ordinary cohomology of G provided 

the right action of G on M is trivial. 

In general, the correspondence 

contravariant functor 

P-free/G ~ k-mod 

or 

n-P-free/G + k-mod 

f + Der ( f ,M) 
p defines a 

depending on which category one chooses to consider. 
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The construction of the cohomology, and the elementary results we 

are going to prove in this paragraph, will be complete analogues 

whether we choose one or the other. In fact, we might also 

consider the commutative case without much change. 

Therefore we shall focus on the case of a normal morphism 

6 P + G, thus on the functor: 

Definition (1.1.2) Suppose 6: P + G is a normal morphism 

and M a G-bi-module such that P, via 6, operates 

trivially on M. Then the algebra cohomology of 6 with 

values in M is the graded k-module 

. ( . ) 
A (P,G;M) = lim Derp(-,M), 

0 (n-P-free/G) 

When P is the trivial group, we write 

Proposition ( 1 , 1 • 3) "Leray spectral sequence". Let 6: 

F(S)*P/~ ++ G be a surjective normal P-morphism of groups. 

Put F
0 

= F(S)*P/~ and consider the semi-simplicial group 

F • : G <- -- F 
0 

<-
<- F 

0 
X F 
G o 

<-
<- F 
<- 0 

X F 
G o 

X F 
G o 

Then there is a spectral sequence with 

• 

••• 

converging to the cohomology A (P,G;M), 

Proof, This is a trivial consequence of the Leray spectral 

sequence (2.1,3) of [La 2]. 

Q.E.D. 
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Proposition (1 .1.4) With the hypothesis of (1.1.2) we have: 

(i) Any short exact sequence of G-bimodules induces a long 

exact sequence in cohomology. 

( i i) 0 A (P,G;M) = Derp(G,M) 

Al (P,G;M) Hom (J,M)/ 
= F

0
class Derp 

where J is the kernel of any surjective morphism of 

P-groups:. 

where R
1 

P-groups: 

= F(S 1 )*P/~ ~~ G, 

=Hom (R1/R
0

,M)/Der 
F1-class P 

is the kernel of any surjective morphism of 

$ : F = F(S )*P/~ ~ F xJ, 
2 1 2 0 

Proof. (i) is trivial, as is the first assertion under (ii). 

The last two formulas follow from (1.1.3) by streightforward 

computation, see (La 2, (5 .1)]. 

Proposition (1 .1 .5) Assume, in the situation of (1 .1.3) that 

the right action of G on M is trivial. Then there are 

canonical isomorphisms 

n· n+1 
A (G,M) ~ H (G,M) for n > 1 

Moreover, given an exact sequence of G-modules 

0 ~ M' ~ M ~ M'' ~ 0 

there is a commutative diagram of the form: 

0 0 0 
+ + + 

0 ~ M'G ~ MG ~ M"G 
+ + + 

0 ~ M' ~ M ~ M" ~ 0 
+ + + 
A0 (G,M') A0 (G,M) A0 (G,M") ~ A1 (G,M') • 

0 ~ ~ ~ ~ •• 
+ + + II 
H1 (G,M') H1 (G,M) H1 (G,M") ~ H2 (G,M') • ~ ~ ~ •• 
+ + + 
0 0 0 

in which all sequences are exact. The obvious snakes lemma 

produces the long exact sequence of ordinary cohomology. 
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Proof.· Given an object of SE/G, i.e. any morphism of groups H + G 

consider the non-homogenous complex c'(H,M), see [c.-E. p.174]. We 

need to know that for p > 1 Cp(H,M) = Sets(.Hxoo•x!j,,M) and that 
p 

Der(H,M) = ker(cl(H,M) ~ c2(H,M)) 

Hi(H,M) = Hi(c'(H,M)) fori> 

Moreover, for H i free, H (H,M) = 0 for all i ) 2. Consequently 

• Der(H,M) + C (H,M)i> 1 is a resolution of Der(H,M) for all M and 

all free groups H. 

We obtain a functor 

• 0 
c (-,M): (free/G) + compl. k-mod 

and we may consider the double complex 
• • • 0 • 

K = c ((free/G) ,c (-,M)) 

There are, as usual, two spectral sequences given by, 

q * 1 

Der(-,M) q = 

. "E~,q = Hp( lj,m(q) • C (-,M)) 

(free/G) 
0 

Both converging to the cohomology of the double complex • • 
K 

The first part of the proposition is a consequence of the following, 

Lemma (1.1 .6) With the above assumptions, we have 

• • 
(i) lim C (-,M) = C (G,M) 

(free/G) 0 

(ii) lj,m(q) cP(-,M) = o for q > 1 and p > 1. 
0 

(free/G) 

Proof of lemma. For every p > 1, and every element ~ = 

(g1, ... ,gp E GP, let the morphism 

E(g_): F(p) = F( {1 ,2, ... ,p)) + G 

be defined by. E(~) (i) = g .• 
~ 



a. 

Consider E(_g) as an object of free/G, and let b 1 1' • 0 be nny 

other object, then 

Mor(E(.s_),6) = {(f
1

, ... ,f )EFx• .. xFI6(f,) 
p p l. 

= g 0, 
l. 

i=1, •.. ,p). 

Therefore the union U Mor(E(.s_),6') considered as a union of 
.s_EGP 

subsets of pP is equal to pP, Consequently, the IT-flabby object 

0 

of the category a= k-mod(free/G) of all functors 

0 
(free/G) ~ k-mod, defined by the objets E(g) and the k-module M 

see [La 1, p. 255], is given by 

6 ~ IT M = IT M = cP(F,M) 
U Mor(E(.s_), 6) Fp 

.9. E Gp 

Thus Cp(-,M) is IT-flabby, and it follows easily that 

lim(q)Cp(-.M) = 0 for q) 1 • .. 
(free/G) 0 

For q = 0 we find, • 
ltm c (-,M) = Mor (k,Cp(-,M)) = a . 

(free/G) 0 

= IT Mork d(k,M) = Cp(G,M) -mo 
GP 

This proves the lemma. Q.E.D. 

The last assertion of the proposition follows from the existence of 

the exact sequences (3), and easy diagram chasing. Q.E.D. 

Interlude on monoids. Given a morphism r ~A of monoids a A-bi-

-module M is a k-module with commuting left and right A-actions. 

We define in exactly the same way as above the categories 

r-free/A s r-mon/A and the functor 
0 

Derr(-,M):(r-free/A) ~ k-mod. 

Therefore we may copy the definition of the cohomology groups, . ( . ) 
A (f,A1M) = l~m Derr(-,M) 

( r-free/ A 0 

and prove the same kind of results as· in the case of groups. In 

particular the propositions (1.1.3) and (1 .1.4) have obvious 

analogies. We shall not insist upon the details. 
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However, in the case of monoirls, we shnll be pnrtl.m1lnr ty J.ntu!'ellt&d 

in the commutative situation. 

Suppose therefore that r = (1} and A is a commutative monoid. 

Rephrasing (1.1.3) we find the following result: 

There is a spectral sequence with 

• converging to A (AIM), where F ++ A 
0 

is a surjective 

homomorphism of a free commutative monoid 

and F. the simplicial monoid 

<- <-
F <- F X F <- F X F X F • • • • 

0 OA 0 <- 0 0 0 

II II 

F1 F2 • • • • 

F 
0 

onto A, 

Example (1 .1.7). If A is the submonoid of zn generated by 

a
1

, .•• ,a E zn, pick F = zr with the map 6: F ++A defined by 
- -r o + o 

6((0, ... ,1, .... 0)) = a. • 
-~ 

i 
r 

Then F 
0 

X F 
A o 

=Ig.a.}. 
i=1 ~-~ 

There is a map defined by 

(f,£) + (f-£) = (f 1-g 1 , •.. ,fr-gr). The image is 
r 

J = ((n1, ... ,n) ~ Zrl I nia. = o). 
r i=1 -~ 

Any element of F
0 

x F 
A o 

may be 

written as (f,£) + (h,h) + (i' r£') where f' g' = 0 i, i for i = 1 , •• 

.. ,r. If DE Der(F ><F ,M) then D((f,£)) = (l!)•D((f',£')) + 
oA o 

D((!:!_,!:!_))•(f'). If, moreover, DE ker(Der(F1 ,M) + Der(F2 ,M)) then 

one checks easily that D((l!,l!)) = 0 for all h ~ Fn. Therefore 

such a D is uniquely determined by its values on elements of the 

form (f' •£') with f.•g. = 0, i = 1, ••• ,r. 
~ ~ 

We shall be particularly interested in the case M = k[A]. Since 

where are the standard 

generators of zn c 
+-

zn , we may identify k(A) with a sub k-algebra 

r 
of [ -1 -1] If f E F r put Iii j }; f .a.· k t 1 ,t1 , ... ,tn,tn • " z+' = , 

·o . ~ ~) 
~=1 



j = l, ••• ,n where a.= (ai 1 , ... ,a,) 
-1. . Lll 

n 
1£1 = (! 1 , ... , £ n) t Z • Since for 

. n 
~ z , 

we may without confusion put I (£,9.)1 = Iii = 

n I fl. 
!1(£,9.)1 the product ITt.- J E k[zn]. 

j=1 J 

ann let: 

(-: l'' X F 
o A o 

n 
19.1 E Z • 

Given a derivation DE ker{Der(F 1,k[A]) ~ Der(F
2
k[A])} 

1 0. 

, I £1 = 19.1 , 

Denote by 

then the map 

D
0

: F 1 ~ k[Zn] defined by D
0

((f,9_)) = !-(£,9.) •D((£,9_)) factorizes 

J 

where D1 is a homomorphism of the abelian group J into the 

abelian group underlying the k-module 
n k[ z ] . 

Conversaly, if D
1 

is a homomorphism, then is a deri-

vation contained in ker{Der(F1 ,k[A]) ~ Der(F2 ,k[A])} if and only if 

1111 n 
t •D0 maps F

0 
~ F

0 
= F1 into k[A] ~ k[Z ]. 

Now, J is a free abelian group. Fix a basis {j
1 

, ••• ,jm}. Then 

D1 is determined by a sequence of rank J = m elements of k[Zn]. 

Therefore we have an isomorphism 

ker{Der(F
1 

,k[A]l 

" {(u1 , ... ,um) E 

for all i = 

~ Der(F
2

,k[A))} 

ll(f,,9_.)11 
k[Zn]ml t -J. J. •u. E k[A] 

- l. 

1, ... ,m, where l)(f.,9_.).= j.} 
-J. l. l. 

Moreover, Der(F ,k[A]) " k(A)r, and any derivation D' E Der(F ,k[A]) 
0 0 

is determined by the sequence vk=D' ((~,·~·,1,•••0)) E k[A], k = 1, 
k 

... ,r. The image D of D' in Der(F 1 ,k[A]) is defined by 

r 
D( (£,9.)) = D' (9_)-D' (i) = l: ( g 1 I ••• I gk- 1 I ... , g ) D I ( ( 0 I ... I 1 I ... , 0) ) 

k=1 r k 
gk*o 

r 
r r n E.= 1 g.a.,~.-ak,9. - L (f 1 , ••. ,fk-1, .•• ,f )•D'((O, ... ,1, •.• ,0))= L (ITt J J J )v 

k=1 r k k=1 J.=1 J. k 
fk*o 



The corresponding· D
0 

is therefore given by 

r 
D((f.,9_.))= 

0 -~ ~ 
z: 

k=l 

r -a u 
( IT t~ ) vk 
~=1 

Thus: 

otherwise oik = E sign(jik). 

f *0 
k 

where 

Summing up, we have got the following result 

where ~ is given by the matrix 

Note that 

which is 

n -a 1 ~ 
6ll ( IT t~ ) , ... 

~=1 

n -au 
6ml(ITt~ ), •.• 

~=1 . 

6
ik 

= 0 if fik 

6 ik = -1 if fik 

6
ik 

= +1 if gik 

well defined since 

n -a 
d ,61 (ITt,) 

r ~=1 " 

n -a 
,6 ( IT t d) 

mr ~=l 

= gik = 0 

* 0 

* 0 

fik •gik = 0 for all 

As in [La 2,(5.1)] we find using the Leray spectral 

if 

i, k. 

sequence: 

1 1 • 

Notice that if A is a free monoid, then k[A) is a free k-algebra 

Moreover if M is any A-bi-module, then Der(A;M) ~ Derk(k[A],M) 

for any monoid A. This suggests that there is a close correspon-

dence between the cohomology of monoids and the cohomology of 

k-algebras. 

This is the subject of the next two paragraphs. 
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The case of profinite p-groups. We shall need a slightly more 

refined theory to study profinite, or finite p-groups. 

Let G be any group, p a prime and E any subset of G. Denote 

by r 1 (E) = r 1 (E,G) the (normal) subgroup of G generated 

elements of the form [g,e], gEG, eEE and by the elements 

by the 

p 
e , eEE. 

Put for every n) 2, rn(E) = r 1 (rn_ 1 (E)), and put r = r (G). 
n n 

Then 

of 

c r c r c • • •cr c G = r n+1 - n - - 1 - n are all characteristic subgroups 

G, and r /r n n+1 
are elementary abelian p-groups, i.e. F -

p 

vector spaces. 

Moreover, given any subcategory c of S£• the correspondences 

G + r (G) and G + G/r (G), defines functors 
n n 

r c + S£ n 

id/rn: c + S£ , 

respectively. 

In particular if c = 3E• the image of id/r 
n 

is a subcategory ~ 

of S£ on which r is trivial, and the restriction of 
n 

id/r to 
n 

~+1 is a functor 

id/rn: 3En+1 + ~ , n ) 1 • 

Definition (1 .1.8). Given a prime p, we shall let Pro-p-S£ be the 

category for which the objects are sequences G = { G } 
n n) 1 

of 

finite p-groups G E ob gr 
n n 

together with homomorhisms 

If G = {G } and 
n 

G' = {G'} are two objects of prop-S£, 
n 

a morphism ~= G + G' is a sequence ~ = {~n}n> 1 of mor-

ph isms ~ : G + G' making all relevant diagrams commute. 
n n n 

Remark (1 .1 .9). For the general notions of procategory or pro group, 

see [ S 1 ) • 

Note that amalgamated sums and fibered products exist in 

pro p-S£ and are defined at each level 
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There is a canonical funcor: 

id/r: ~ + prop-~ 

defined by (id/r) (G) = {G/r (G)} . One checks easily that this 
n n) 1 

functor maps free groups to free objects in pro p-~· In particular 

(id/r) (F(S)) = F (S) = F(S) is projective as an object of pro p··.9£· 
p 

The full subcategory of pro p-~ generated by the objects of the 

form (S) should be called free pro p-~, shortened to pro free. 

If G and P are pro p-groups, an action of G on p is a 

sequence n = {nn)n) 1 

the diagrams 

of homomorphisms n : G + Aut(P ) 
n n n 

making 

commute. 

Gn+1 

+ 
G 

n 

-.-+ 
nn+1 

Aut(P n+ 1 ) 

+ 
Aut(P n) 

If M is a G-bi-module, and if Ec M is a subset, put r
1 
(E)~ 

r
1

(E,G) = submodule of M generated by the elements of the form 

gm-m and m-mg where g E G, m E E. By induction we define 

r 1 ( r n- 1 (E) , G) +r 1 ( r n- 2 (E) , r 1 (G) ) + • • • +r 1 ( E, r n- 1 (G) ) • 

Notice that c r (E) c r (E) c .. •c M 
n+1 - n 

is a filtration of M 

r 
n 

by 

G-bi-invariant k-submodules. We shall in particular be interested 

in the submodules r = r (M). The motivation for this filtration 
n n 

is the following. If D E Der(G,M) is a derivation, then D 

induces a derivation G/r (G) + M/r (M). 
n n 

Given a pro-p-group G , a G-bi-module is then a sequence 

of 

+ M 
n 

G -bi-modules M , together with homomorphisms 
n n 

inducing isomorphisms of Gn+ 1-bi-modules 

G -bi-mod be the category of -bi-modules. 

Given a group G there is then a functor 

id/r: G-bi-mod + (id/r)(G)-bi-mod 

defined by (id/r)(M) = {M/rn(M,G))n~ 1 , matching the functor 

id/r: ~+prop-~· 
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Now, as above we may define the notion of normal morphism of pro-p-

groups. Moreover, given any morphism of pro-p-groups 15: I' • U wo 

define the category I' -pro-p-92:./G ns usunl. The objects of the 

form 

15' p ---> Q 

~~ 
( 4) 

G 
where Q = P * F (S) and 15' is the canonical morphism, will be 

called P -free. The full subcategory of p -pro-92:./G generated by 

the P -frees will be denoted by P -free/ G • 

If & is a normal morphism, we may, as above consider the category 

n- P -pro 92:./ G of diagrams where & ' is normal and <1> is a 

morphism of normal morphisms. If the object (4) is p -free in the 

sense above, and if 15 is normal, then the object 

p _15 _ _, Q 

'\./ 
G 

defined by 

is easily seen to be a free object of n- p -pro 5fE_/ G • The full 

subcategory of n- P -pro SJE_/ G 

denoted by n- P -free/ G • 

generated by these objects will be 

Now, given a morphism (resp. normal morphism) P-> G of pro p-groups 

and a G bi-module M , there is a natural functor 

Der (-,M): P-free/G -> k-mod 
p --

(re.sp. Der (-,M): n-P-free/G -> k-mod") 

defined by: 

where Derp (Q,M) 

derivations D 

P. -> Q 

Der ( ( \G / ) , M ) = Derp ( Q, M) 

is the k-module of sequences D = {D } of 
n n~ 1 

E Der (Q ,M ) commuting with the morphisms 
p1n+r n 

and Pn : Mn+l -> Mn. 
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Notice that when M is eventually constant, i.e. 

~ M = M are isomorphisms for all n > N, then 
n 

n+1 
when pn 

Der
0 

(Q, ) = 

= lim Der(Qn ,M). 
n 

Definition (1.1.10). The algebra cohomology of the morphism (resp. 

the normal morphism) p: P ~ G of prop-groups with values 

in M , is the graded k-module 

A' ( P , G 1 M ) = l~m ( ' ) Der p (-. M ) 

(P -free/G) 0 

(resp: A~(P,GrM) = l~m(•) Der (-, M)) 

(n-P -free/G )0 

• As in the case of groups we shall use the shorthand A (G,M) 

• 
for A ( ( 1 ) ,G 1M ) • 

Remark (1.1.11). With this definition there are propositions 

analogous to (1.1 .3) and (1.1 .4). The changes we will have 

to make in the statments are pretty obvious. Observe that 

(1.1 .3) is a categorical statement depending only upon the 

existence of fibered products and free objects in the 

relevant categories. ( 1 . 1 • 4) follows as before from ( 1 • 1 . 3) 

by streightforward computation. 

Corollary (1.1.12) (Tate). If G is a pro-p-grous then 

(i) d = dimp A
0

(G,F ) is the minimum number of generators 
p p 

of G as a pro-p-group. 

( ii) r = dimF A1 (G,F ) 
p p 

is the minimum number of relations 

in a presentation of G . 



16. 

Proof. This follows from (1.1.4) and (1.1.11). In fact A0 (G,Fp) ~ 

Der(G,F) ~ HomF (G/r 1(G),F ), and A1(G,Fp) ~ HomF(J'Fp)/Der = 
p p p 

l~m Hom(Jk/r 1 (Jk,Fk) ,F ) where F = F (S) is a free profinite 
k p 

p-group, n: F ~ G is a surjection and J = ker n. Remember that 

r 1 (Jk,F) =group generated by the elements [f,j] and jp where 

f E Fk and j E Jk. Q.E.D. 

(1 .2) Cohomology of algebras 

In this paragraph we shall sketch how to generalize the 

ordinary cohomology of commutative algebras, see [An], [ Q] and [La], 

to the case of noncommutative algebras. There are no surprises, but 

since we shall need the formalism later on we shall never the less 

give all nessecary definitions and state the theorems we need in the 

sequel. 

Consider the category of k-algebras for which k is central, 

k-~· A free k-algebra is simply a tensor algebra on a free 

k-module. If T is any set F{T) denote the tensor algebra on 

the k-module k(T) = ¥k· F(T) is obviously a free k-algebra, and 

a free object of k-~· 

Given any k-algebra S we shall consider the k-algebras of the form 

S~F(T) i.e. the categorical direct sum of s and F(T) in k-~. 

(This is not the tensor S-algebra of s(T) = 11 Ts, as one might hope.) 

Given a morphism 6: s ~ A of k-algebras, we may consider the 

category s-~/A of commutative diagrams of k-algebras 

The full subcategory of 8-~/A generated by those objects for 

which B = S#F(T) and 6' is the canonical morphism, is denoted 

by 8-free/A. 



For any A-bi-module M, defl.ne 

Der
8

(A,M) = {DHio~(A,M)/Va 1 ,a
2

tA,D(a
1

oa
2

) 

= a
1 

D(a
2 

)+D(a
1 

)a
2

, p oD=O }. 
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With this done, we copy the construction of the cohomology of (1 .1), 

Definition (1.2.1). The algebra cohomology of the morphism S +A 

with values in M is the graded k-module 

0 ( 0 ) 

A (A,A;M) = lim Der8 (-.M), 
S-free/A 

Proposition (1.2.2). Let S~F(T) +A be a surjective morphism of 

s-algebras. Put F = SIIF(T) 
0 k 

and consider the simplicial 

s-algebra 

'<
Fo:A<---F <-FxF 

0 OA 0 
0 0 0 

then there is a spectral sequence with 

0 

converging to A (S,A;M). 

Proposition (1.2.3). (i) Any short exact sequence of A-bi-modules 

induces a long exact sequence in cohomology. 

(ii) 0 
A (S,A;M) = Der

8 
(A,M) 

Al(S,A;M) = HomF (J,M)/Der 
0 

where J is the kernel of any surjective s-morphism on 

We also copy the definitions of pro-category and the corresponding 

cohomology, for the case of k-algebrs. 

The category of augmented k-algebras is the category k-~/k. 

Given an object k ~ A ~ k, the ideal m = ker p is called the 

augmentation ideal. The powers n+1 
m of the augumentation ideal is 

going to play the role of r , see ( 1 • 1 ) • 
n 

In particular we define 
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the functor 

by: 

The image of this functor is denoted by (k-~/k) , n > 0. 
n 

There 

is an obvious restriction functor 

Definition (1.2.4). We shall denote by pro-k-~ the category for 

which the objects.are sequences A; {A ln>O} of augemented 
n 

k-algebras A , together with morphisms 
n 

inducing isomorhisms 

n+1 
An+1/~ (An+1) ~ A • n 

A morphism 1>: A + B , where A ; {A } and B = {B } 
n n>O n n>O 

are pro k-algebras is a sequence 1>; {$n}n>O of morphisms 

of augmented k-algebras $n: An + Bn , making all relevant 

diagrams commute. 

There is an obvious functor 

r: k~alg/k + pro k-~ 

{ n+1 } defined by r(A) ; A/~ (A) n>O' Since the free k-algebra F(T) 

has a natural augmentation, mapping T to 0, F (T) ; r(F(T)) is 

defined. It is easy to see that F (T) is a projective object of 

pro k-~· .The full subcategory of pro k-alg generated by these 

objects is called free pro k-alg. 

If k + A + k is an augemented k-algebra, and M is an A bi-

-module, put for any subset E of A, r
1 

(E) = ideal generated by 

m•E+E•m in A. Byinduction rn(E);f 1 (rn_1 (E)). 

Now, given a pro k-algebra A = {A } an 
n n> 1 

A -bi-module is a 

sequence M = {M } 
n n> 1 

of A -bi-modules M , together with 
n n 

morphisms of An+ 1-bi-modules M • n 
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Put: 

Derk ( A, M) = ( D=(D f 
1

1 D tDer(A ,M ) s.t. n n) n n n 

n+l = 11 oD , V n> 1 l , n n 

and consider the functor: 

defined as in (1.1). 

Definisjon (1.2.5). The algebra cohomology of the pro k-algebra A 

with values in M is the graded k-module 

• 
A (k, MM) = 

Remark (1 .2.6) 

lim (') 
+ 

(free pro 

Der(-,M) 

k-.~!s/Al o 

It is pretty safe to leave to the reader to state and prove the 

analogies of (1.2.2) and (1.2.3) in the pro-situation. 

Notice, in particular, that the Corollary (1 .1.12) properly modifed 

holds in the pro k-algebra case. 

(1.3) Relations between the cohomology of groups and 

the cohomology of the corresponding group-algebras 

Let G be a group and let M be a G-bi-module. M is by 

definition a k(G)-bi-module, and we may consider the cohomology of 

• the groups A (G,M) and the cohomology of the corresponding group-

• algebra A (k,k(G);M). Since 
0 

A (G,M) = Der(G,M) = Derk(k(G),M) = 

A0 (k,k(G);M) it is reasonable to believe that there exist some kind 

of relationship between the two types of cohomology. In fact, we 

shall show that there is a natural spectral sequence relating them. 

Remark (1 .3.1). Observe that the construction part of this paragraph 

works equally well for pro groups and monoids as for groups. 

To avoid boring repetitions, we shall not insist upon the 
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obvious changes in notations etc., assuming that the reader 

will see what should be done. 

Observe also that there is a commutative theory, as well as a 

noncommutative theory, see (1 .1), 

Consider the functor 

i: free/G + k-~/k(G) 

defined by i(F+G) = k(F) + k(G). Given an object 6: F + G of 

free/G we may also consider the functor 

j: k-free/k(F) + k-free/k(G) 

defined by j(F ~ k(F)) = F p~o k(G). 

j: induces a morphism of complexes 

c'(k-free/k(G), Derk(-,M)) 

+ 
c' (k-free/k(F), Derk(-,M)) = c'(o) 

The last complex is a contravariant functor defined on free/G, and 

we may consider the double complex 
• 0 • 

C ((free/G) ,C (k-free/k(-), 

Derk(-,M))). Since H0 (c'(k-free/k(F),Derk(-,M)) = Derk(k(F),M) = 

Der(F,M) there are canonical morphisms of complexes: 

c'(free/G,Der(-,M)) 

+ 
c'(free/G,c'(k-free/k(-),Derk(-,M))) 

t 

c' (k-free/k(G), Derk (-,M)). 

Proposition (1.3.2). For all groups G and any G-bi-module M, we 

have 

l~m(p) c' (k-free/k(-) ,Derk(-,M)) 

(free/G) 0 

{ 

0 for p > 1 

= c'(k-free/k(G),Derk(-,M)) for p = 0. 
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Assume the proposition proved, then the first spectral sequence of 

the double complex above converges to the cohomology of the double 

complex, which by the second spectral sequence is seen to be 

isomorphic to A•(k,k(G))M). This implies, 

Corollary (1.3.3), For any group G, and any G-bi-module M, there 

is a spectral sequence with 

E~' q = lj.m ( p) A q (k, k (-) 1M) 

(free/G) 0 

converging to A'(k,k(G)1M). 

In particualar there is an edge homomorphism 

• 
A (G,M) ~A (k,k(G)1M). 

Corollary ( 1 • 3. 4) . If G is a pro-p-group, and M is a G-bi-

module, there are natural isomorphisms 

Proof. This follows from the fact that if F is a free pro-p-group, 

then F (F) is a free-pro-F -algebra. Therefore the spectral 
p p 

sequence of (1.3.3) degenerates, and the result follows from 

Q.E.D. 

There is an interesting consequence in the commutative case, namely: 

Corollary (1.3.5), For any abelian group G and any G-bi-module M 

there is a canonical isomorphism 

Proof. Due to (1 .3.3) we just have to prove that for any F + G, 

F ~ zn being a free abelian group Aq(k,k(F)1M) = 0 for q) 1. But 

this follows from the fact that k(F) ~ k(t1 ,t,
1 , ,,,,tn,t~l) ~ 

k[t 1 , ... ,tn){t
1 
.... tn} is a localization of a free k-algebra. 



Therefore = Aq(k,k[tl, ... ,t );M){t t I"' 0 
n 1'"""' n 

q > 1, see [An]. 

Proof of the proposition (1.3.2). Notice that the functor 

P, free/G ~ k-mod defined by 

is a product of the functors 

<!> <!> 
E = E(F

0
....:!.... Fl"~ '/L F'p): free/G ~ k-mod 

6~ + ~ 6P 
k(G) 
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for 

Q.E.D. 

defined for every string of p composable morphisms (<!> , .... <\>) 
1 p 

k-free/k(G), by 

E(F+G) =_ ~ Derk(F ,M). 
F ~ k(F) 0 

6:~ ,I 
k(G)) 

It suffices therefore to prove that 

lim(p) E = 0 

(free/G) 0 

for p > 1 

lim E = Derk(F0 ,M). 

(free/G) 0 

Put Derk(F
0

,M) = N, and observe that E is the restriction to 

free/G of a functor defined on ~/G. Let 6: F + G be an object 

of free/G, such that 6 is surjective, and consider the semi

simplicial group object 

.. .. 
F : G <---F .. F X F .. F X F X F ...... • + + + 

G G G <-

Apply the extended functor E to this semi-simplicial object, and 

obtain the complex 

in 



E ( F ) : 
• 

n N -> 
F -> k(F) -> p"' / 

k(G) 

-> n N -> 
F -> k(FxF) 

p ....... ~ G 
k(G) 

-> ••• 

We want to prove that this complex is ascyclic. This amounts to 

proving that the semi-simplicial set 

K = Mor (F ,k(F )) 
k-~/k{G) p • 

is ascyclic, 

Lemma (1,3.6), Consider the simplicial abelian groups 

+ K • k(F) + k(Fx F) + "" • + G + 

and 

L : k(F) 
+ 

+ k(F) X k(F) + ••• 
+ k(G) + 

(i) The canonical morphism of simplicial abelian groups 

p: K -> L , is surjective. 
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(ii) The kernel of p, which is a simplicial abelian group, 

is homotopically trivial. 

(iii) Let n: K-> k(G), n : L-> k{G) be the canonical 
0 

morphisms of simplicial groups, and pick an element 

x E k(G). Then K(x) = n-1{x) and L(x) = n~l(x) are 

Kan complexex and the restriction of p, 

p-: K<x> .. L(x> 
X 

is Kan-fibration with fiber ker p. 

Proof of lemma. Simplicial groups are Kan complexes and surjective 

morphisms of simplicial groups are Kan-fibrations. 

Therefore K, L and the constant simplicial group 

k{G) t k(G) x k(G) t ••• denoted by k(G) are Kan complexes, as 
k(G) 

are the fibers K(x) and L(x). This proves (iii). 

To prove (i), pick any element 
n n

1 
n 

w = (Ei~laifi,Ej=lpjgj,•••,Ek~lykhk) 



of k(F)xk(F)x•••xk(F) = L, where we assume all coefficients 
p 
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a., p ,, • ••, yk occuring are t 0. Tf h';!:: 0 t-1H1n obvlr)\\~ly ~~\ ( int ~\, 
l. J 

This is the case iff llwll = {n , .. •,n} = (0,0,"•,0). Now we shall n P 
show that if II wll > 0 

p+1 
in the obvious ordered set Z+ , then we may 

find and such that w 
1 

E ker p and 

11w
2

11 < llwll. The assertion follows then by induction on llwll. 

So assume llwll > 0. We may then assume that n
0 

> 1, therefore that 

a 
1 

:f 0. Let { f , f . , • • • , f , } , { g . , g . , • • • , g . } , • • • • • , 
1 1.2 l.s )1 )2 Jt 

{hk ,hk ,•••,hk} be the subsets formed by the elements of 
1 2 u 

{f.}, {g.}, • • •, {h } , respectively, mapped to l. J -K: 

c5(f, ) =oo •= O(f, 
1.2 l.s 

=&(g. ) =&(g. ) 
J 1 J 2 

c5(f
1

) by c5 (i.e. c5(f
1 

)= 

c5(g, ) =oo•= O(h ) = 
Jt k1 

&(h ) =•••= &(h )) Suppose one of these subsets is empty, 
k2 ku . 

say {g. , .. •,g,} = ¢. Then since &'(Ea,f,) = c5'(Ej3,g,), where 
)1 )2 l. l. J J 

&': k(F) ~ k(G) is induced by &, we must have 

This is a concequence of k(G) being a free k-module. 

In this case put g;. = f 1 
for ~ = 1, •••,s. If a subset other than 

{hk ,•••,hk }, is not empty, put 
1 u 

-
h 0 = h 1 

" k1 

~ =1, •••,s. But let f~ = fi~ for ~ = 1,•••,s. Consider now the 

element Obviously 

w = 1 
and llw-w 

1
11 < II wll • 

This proves (i), and we are left with (ii). 

Consider 

Up= (kerp)p = {E: 1a.(f .,f1 ., ... ,f ·ll (f .,f1 .,• .. ,f .) E 1.= l. 01. l. pl. 01. l. pl. 

F x F x " • x F, I:~ 1 a . fk . = 0 for k = 0, • • • , p} . 
G G G 1.= l. l. 

Any element of 

I 
gEG 

U may be written in the following way 
p 

L a.(f ,,f
1

., ... ,f .) 
{ilg=&(f .)} l. 01. l. pl. 

01. 
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Therefore we must have 

I a,fk. = 0 
{il6(fki)=g) ~ ~ 

for k = O,•••,p and g E G. 

In particular I a.= 0 
{il g=6(fki> l ~ 

for k=O,•••,p and g E G. 

Let cr: G + F be a set-theoretical section of 6: F + G. Consider 

the map 

H : U + U 
p p p+1 

defined by 
r r 

H (E. 
1
a.(f ., .. •,f .)) =E. 

1
a.(f ., ... ,f .,cr(6(f .))) p ~= ~ 0~ p~ ~= ~ 0~ p~ 0~ 

which is weell defined since 

I: 
1 

a. ( cr ( 6 ( f . ) )) = I 
~= ~ 0 ~ gEG 

a. (cr(6(f . )) 
~ 0~ 

{ i I g=6 ( cr ( 6 ( f 
0 

i )) ) ) 

= I 
gEr 

I ai cr (g) = 0 

{il g=6(f
0
i)) 

H is additiv, and we shall see that {H ) is a contracting 
p p p>O 

homotopy of u. In fact H 1 (d(E:-_ 1a.(f .,•••,f .))) = 
p- ~- ~ 0~ p~ 

p k r ) r k 
Hp-1 (Ek=0(-1) dk(Ei=1ai(foi' '",fpi) ) = Hp-1 (Ek=0(- 1 ) 

(E:- 1a.(f ., ... ,'fk., ... ,f .)) 
~= ~ 0~ ~ p~ 

= Ekp =O ( - 1 ) k E: 1 a . ( f . , .. • , 'fk . , .. • , f . , cr ( 6 ( f . )) ) = 
~= ~ 0~ ~ p~ 0~ . 

p k r 
Ek=0(-1) dk(Hp((Ei=1ai(foi'''',fpi))) = 

r 
= d H (E. 1a.(f ., .. •,f .)) -

p ~= ~ 0~ p~ 

p+1 r 
(-1) E. 1a.(f ., ... ,f .) 

~= ~ 0~ p~ 

H d- d H · = (-1)p id. 
p-1 p 

i.e. 
Q.E.D. 

Proof of (1 .3.2) continued. Let F be the free k-algebra on the 
p 

set 

6 
p 

{x1,'",xq). 

is the morphism 

Put x.=6 (x.), i = 1,•••,q where we recall that 
~ p ~ 

-F + k(G), part of the definition of E above. 
p 

Observe that the simplicial set K=Mor(F ,K) 
p 

is the carthesian 

product of K(xi), i = 1, .. •,q, and that L = Mor(Fp,L) is the 

carthesian product of L(xi), i = 1,•••,q. Now, for each i = 

1, ... ,q, L(x.> 
~ 

then 

is the trivial simplicial set, i.e. if 

L X ••• XL • 
0 p+1 0 

L=L(x.) 
0 ~ 0 



Therefore L(xi) is homotopically trivial, which implies that 

is homotopically trivial, since U is. In particular K(x.l 
1 

lu 

acyclic. By Eilenberg-Zilber the carthesian product of K(xi) for 

i = 1, • • •, q if> therefore acyclic, thus. K is acyclic. 

Using the Leray spectral sequence [La 2) we have proved that 

Replace G 

lim E = N 
+ 

(free/G) 0 

lim ( 1 ) E = 0 
+ 

0 (free/G) 

by the group F x •••x F = F , and obtain 
G G P 

lim ( 1 ) E = 0 . for p > 0 
+ 

(free/F ) 0 

-- p 

therefore by the same spectral sequence, 

etc. 

This proves the proposition. Q.E.D. 

Remark (1.3.7). In the above proof we never used the group properties 

of the objects G, F etc. It is easy to see that the same 

results hold for progroups and monoids. 

Corollary (1.3.8), Let A be a monoid and let M be any A-bi-

module. Then we have natural isomorphisms (in the commutative 

as well as in the non-commutative case) 

i ) 0. 

Proof, If r is a free monoid, then k(r) is a free k-algebra. 

Then use the monoid variant of (1 .3.3) Q.E.D. 

Remark (1.3.9), If .Ac Zn is a commutative monoid, then (1.1.7) 

furnishes a calculation of Ai(A,k(A)) for i = 1,2. By 



(1 .3.8) this gives us Ai(k,k(A};k(A)) for i = 1,2. In 

particualar A
1

(A,k(A)) is the tangent space of the formal 

moduli of the singularity k(A). 

(1.3.10) Appendix on the Betti-numbers of monoid algebras 

Let A be a commutative monoid with cancellation law, i.e. 

such that A'll = A 'I-I' implies 1-1 = 1-1 ' • 
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Let A = k[A] and put m = A •A where A+ = A--.. { 1 I . Assume 
+ 

A/JE. = k, 
., 
1. e. assume A has no non-trivial subgroups. 

Put fli = dimk Tor~(k,k), the i-th Betti-number of k[A). 

In this appendix I shall show how to compute the fl ' ' s 
]. 

using 

only the combinatorial properties of A+, 

Let A+ be ordered as follows; A
1 

( A
2 

if and only if there 

exists a 1-1 E A such that ll'A
1 

= A
2

• There is a natural 

presheaf (projective system) defined on A+' 

with 

Lemma 1. 

F: A -> Ab 
+ -

F( A) = A 

F(A
1 

<A
2

): F(A
2

) -> F(A
1

), multiplication by 

A2 
1-1 =-

A1 

Proof. For every A E A+' consider the morphism ~A:F(A) ->A, 

multiplication by A • This defines a morphism 

Given an element a E ~· then there is a unique representation 

F( A.) 
]. 

and let 

by 

Consider a. as an element of 
]. 

be the image of a. 
]. 

in Define 

!l(a) 
N 

=/:a .• 
i=1 ]. 

Then is an inverse of ~ . 
Q.E.D. 
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Lemma 2. 1 *m ( n) f' ~ 0 for n > 1 • 

+ 
Proof. By [La 1,(1 .1 .4)] it is enough to show that F is 

coflabby (coflasque). Thus, let A c A+ and suppose 

A
1 

c {A'EA+jA<A'} is such that if A' c A
1 

and A1 ~A" then 

'" E A " 1 • F is coflabby if in this situation 

lim F ~ F(A) ~ A 
{At EA +I A~ A I } 

is an injection. 

However, the proof of Lemma 1 applies to show that lim F = 
-> 
A1 

~ {A~IA'EA 1 }•A and that the morphism + lim F = A 
{AtEA+jA~A'} 

is the obvious inclusion. Therefore we are done. Q.E.D. 

Consider the resolving complex c,(A+;-) for lim , see [R) or 
-> 
A+ 

[La 1,(1.2)]. By Lemma 2, C (A ,F) • + is an A-free resolution 

of the maximal ideal m of A. Therefore 

Now C (A ;F)®k = C (A ;F®k), therefore • + • + 
A A 

~ lim ( . _
1 

) ( F®k) . 
A-> 1 A 
+ 

i > 1 

Hi_
1 

(C • (A, ;F)®k) = 
A 

Observe that the projective system F ® k is isomorphic to 
A 

ll k( A) I where k( A) is the projective system defined by: 
AEA 

+ 

~ {: if A' * A 
k(A)(A') 

if A' ~ A 

k(A)(A'<A"): k(A)(A") -> k(A}(A') is zero if A I *A II. 

Put for any A E A+ 

~ = {A'EA+jA'<A} 

L(A) = {A'EA+jA'~A,A'*A}. 
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It is easy to see that there are isomorphisms: 

for n ~ 0. 

In fact this follows from the existence of a ll-projective 

resolution of k(A) trivial outside of ~. see [La 1, (1 .2)]. 

Let ~). be the constant projective system on A defined by 

~).().') = k, ahd let k' be the sub projective system of ~A -A 

defined by k I (A I ) =0 
-A if ).' = A and k I (A I) 

-A = k if A'* A . 

Then there is an exact sequence of projective systems on A 

0 ~ k' ~ k ~ k(A) ~ 0 
-A -). 

jk for n = 0 
As 11m(n) k = -). 

jo for n > 1 ~ 
and since 

l;im(n) k' " l;im(n) k " H (E(A);k) n ) 0 -). n 
~· L(A) 

where k is the constant projective system k on L( A), and 

where we denote by E().) the simplicial set defined by the 

ordered set L().), see [La 1,(1.1)], we obtain an exact 

sequence 

0 ~ l~m( 1 )k(A) ~ ltm ~~ ~ k ~ ltm k().) ~ 0 

and isomorphisms: 

n > 2. 

Notice that l~m k(A) = 0 unless ). is minimal in A+ , in 

~ 
which case l!m k(A) "k, and 

A 

If A is not minimal, then 

~ 

lim(
1

)k(A) "H
0

(E(A);k) 

A 

where H, is the augmented homology. 

Together we have proved the following 



Proposition 

k n = 0 

Tor~(k, k) " kp n = 
II H 2 (E(1-.);k) 

AEA n-
+ 

for n ) 2 

where p is the number of minimal elements of A • 
+ 
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