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1. Introduction . -

In this note, all the groups we consider are supposed to be count .. 

able and discrete. For such a group G, v1e let C*(G) (resp. U(G)) 
r 

deno·te the c•\-algebra (resp. the von Neumann algebra) generated by 

the left regular representation of G on ~ 2 (G). C*(G) coincides 
r 

Hith the full group C•\-algebra C1:(G) if and only if the group G 

is amenable, and 1-1hen this happens, it is known that C1: (G) possess 
r 

a (non-trivial) multiplicative linear functional, and thus 

is not simple. In 1974 Powers showed that C1: (]' ) 
r 2 

is simple and 

has a unique tracial state, where ]" 
2 deno·tes the free group on tl'lo 

generators [l1]. Since this time, many mathematicians have refined 

Po\'lers' method of proof and so enlarged the class o.f groups possessing 

the same properties ( (1], [2], (3], (4], (9], •.. ). 

funong this class one finds 

- All .free products of the form G1 •\G 2 , Hhere G
1 

and G2 are 

t\-10 non-trivial groups not both of order 2 ( (9]). 

This case is subsumed in 

- all groups con·taining a normal non-abelian free subgroup with 

trivial centralizer ([2]), 

At last we mention that the class also includes 

- non elementary Fuchs ian and Klein ian groups ( [ 4)). 

The main purpose of this note is to show that under some suitable 

assumptions, free products with amalgamation belong to this class too. 

Such groups appear naturally in topology in connection with fundamen-

tal groups and in fact a lot of groups can be writ·ten as free products 

1-1i th amalgamation. Under some slightly stronger assumptions, vie also 

show that the group von Neumann algebra of a free product with amalga-

mation is a 11 1 ·-factor which does not possess property r of Murray 

and Neumann. 
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2. Notatio~ and preliminari~s 

For genel"al information about C>~-algebra theory we refer to [ 10], 

about combinatorial group theory to [5) and [6). Briefly we recall 

some of what is needed in this paper and fix some notation. 

Given a group G, 111e denote by 2 2 (G) the Hilbert space of all complex 

valued functions f on G such that }: jf(g)j2 < 00 , and by u the 

left regular represen·tation of G in 
gEG 
R.~(G), C* (G) 

r 
(resp. U(G)) is 

then defined as the closure of the linear span of {U(g)' gC:G} in 

the operator norm topology (resp. in the weak operator topology). 

The canonical tracial state T on U(G) is defined by T(T) = (To,o), 

T € U(G), where o denotes the characteristic function of the identity 

of G. \<Je denote also by T the restriction of T to ct<(G), 
r 

A group G is said to be amenable if there exists a state on R,
00

(G), 

the bounded complex valued functions on G, which is invariant under 

translations by G. 

Let no1v H and K be groups with presentations 

Let A c H and B c K be subgroups such that there exists an iso·-

morphism ~: A+ B. Then the free product of H and K, amalga­

mating the_subgroups A and B by the isomorphism 4> is the grou12. 

§___given_Ey 

\<le will v1ri te this more simply as 

G = <H:'<K; A=B, 4>>, or even more 

when no confusion is possible, 

G = Ht<K 
A 
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The basic idea of the free product with amalgamation is that the sub­

group A is identified with its isomorphic image cj>(A). The free 

product 1~ith amalgamation depends on H, K, A, B and cJ> The groups 

H and K are called the factors of G, while A and B are called 

the amalgamated subgroups. Free product with amalgamation clearly 

reduces to the ordinary free product if the amalgamated subgroup is 

the identity. 

Let now G=H I:H 
1 A 2 

be the free product of two groups 

with amalgamated subgroup i\, If u E G, then either u C: A or else 

m ;:: 1, lvhere each h. E Hv.-A for some 
1. l 

viE {1,2} and no vi= vi+1 . In the latter case m and the sequence 

<v1 , ..• ,vm) are uniquely determined by u, but not (unless m = 1 or 

il = 1) the factors hi; 1ve nonetheless call the product h
1 
... hm a 

normal form for u, [this is a familiar abuse of lenguage: the normal 

form is not the product h 1 ... h , which is simply the element 
m u, 

but rather the sequence (h
1

, ... ,hm). Further this departs from the 

usual usage of "normal form" lvhich involves choosing coset represen-

tatives 1. For u as above, we define the length I u I of u to be 

lui = 0 if u E A and lui = m otherwise. 

X " if X = and 

If x e u
1

u 2 , we say that x begins with u
1 

and ends in u 2 . 

One of the most famous group which can be written as a free product 

with amalgamation is It is isomorphic to 
4 6 2 3 

<a,b;a ,b ,a =b > 

= 7Z I'+'ZZ ;, 7Z /67Z 

7Z/27Z 

(the cyclic groups of order 4 and 6 being generated 

by (-~ ~) and (0 -1) 1 1 , and 'ZZI 27Z by (-6 ~1)>. 
As another example we mention the Higman group 

G <a,b,c,d; b-1ab 2 -1 b2 d- 1cd 2 ··1 d2>. = = a , c be = = c a da -, , 
It can be written as a free product with amalgamation in the following 
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~~ay: 

Let H1 = < a,b C' , b-1ab = 
2 -1 b2 > and a ' c be = 

Let H2 < C,d ,a .. ; ct- 1c' d c 2 a - 1da d2 > . = = ' = 

Then G = < H1 1: H2; a = a ' 
c = c .. >. 

3, Operator algebras associated with free products with amalgamation 

Let G = H Jt K be the free product of the two groups H and K with 

amalgamated subgroup A. It is rather clear that some additional 

* hypotheses must be made on G to ensure that cr (G) will be simple 

with a unique tracial state. Indeed, if G = SL 2 (LZ) then G has a 

non trivial center, so G is not ICC, hence U(G) is not a factor. 

This easily implies that the canonical tracial state cannot be the only 

tracia1 state on 

vie need the following definition: 

Let B be a subgroup of a group F. Let {x
1 

,x2 } be a pair of dis­

tinct elements of F, neither of which is in B. \1e say that {x
1 

,x2 } 

is a blocking pair for B in F if the following condition is sa-

tisfied: 

(*) If bCB, b ~ 1, then 

Note that (*) implies that 

unless £ 0 x.x. = 1, 
]. J 

and that 

£ 0 
X, bx. rl B, 1 :i i , j :i 2 , £ = + 1 , o = + 1 , 

]. J 

x~x~tB, 1 ;; i,j s 2, e = ! 1, o = + 1 
]. J 

(*) is trivially satisfied if B = {1}, 

As remarked in [5], the existence of blocking pairs is not an un-

reasonable condition in groups in which there is a lot of "freeness". 

vie say that a group G is an amalgam if it can be written G " H A K 

with H ~ A ~ K, 

We shall prove: 

Theorem 1: Let G " H A K be an amalgam such that there exists a 

blocking pair for A in one of the factors of G. Then 

C*(G) is simple with a unique tracial state. r 
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As examples of groups for which the theorem is valid, we mention: 

a) the free product of tHo non-trivial groups, not both of order two. 

b) G "' H ~' K, where H is a free group, A is a finitely generated 
A 

subgroup with infinite index in H and K is any group containing 

as a proper subgroup an isomorphic copy of A (see [5]). 

c) the Higman group (the existence of a blocking pair is shown in 

[12]). 

Proof of theorem 1: 

It is enough to prove the theorem in the case when there is a blocking 

pair {x1 ,x2} for A in K. 

By [4, proposition 4] the theorem will be proved if He can show that 

G satisfies Powers' property: 

For every finite subset F of G - {1} and for every 

I natural number r ~ 1, there exist elements b1 , ... br of 

(1n<) G and pain-1ise disjoints subsets z1 , ... , Zr of G such 

that 

b fb- 1 y E Z , for all f E F, y E G-Z , IE {1, ... ,r}. 
I t. t t 

The structure of our proof that G satisfies (**) is inspired by 

the proof of [9, theorem 1]. 

Let u be an element of H not in A and set 

vie need to establish some lemmas. 

Lemma 1. For m E:l·N U{ 0}, let 

For all g (' G { 1} such that 

normal form which begins with 

even and g can be written as 

mcl'Nu{o}. 

Proof: 1) Suppose m = 0, 

u 

P(m 

lgl 
and 

m 
+ 2 

X' 

) be the following assertion: 

= m, m+1 r g X' 
-(m+1) has a 

ends with -1 unless is u m 

Then P(m) is true for all 
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Let gEA- {1}. Then Since 

blocking pair for A in K, we have that 

clearly P(O) is true for g. 

' 
2) Suppose m = 1 

If gEH-A, 

Let g E K-A. 

then 

Then 

P(1) is obviously true for g. 

2 -2 -1 -1 -1 -1 r gr = ax1 ax1gx1 a xi a 

is a 

··~ 

If 

then P(i) is again true for g. So we must check the case when 

xigx~i E A- {1}. They are then t\-10 possibilities: 

-1 -i 
a(xigxi )a e.H~A and so P(1) is clearly true for g. 

-i -i 
- a(xigxi )a E A-{1} and it follows that P(i) is true for g by 

-i -i 
using i) on ax1gxi a 

3) Suppose m = 2 

Let gEG- {1}, with JgJ = 2. 

a) Suppose g 

Then r 3gr- 3 

has a normal form g = kh, where 

-i -i -i -i -i -i 
= axiDXiaxi khxi a xi a xi a 

k E" K-A, hE H-A. 

If x
1

kE: K-A, then P(2) is obviously true for g. So suppose 

x1 k EA. They are then three possibilities: 

- axikh = i' i.e. g = r -i and P(2) is true for g. 

a xi kh E A - {1}. By using :l) on ax1kh, it follm1s that 

-1 -1 a nol'mal form axi(ax1kh)x1 a has which begins with a and ends with 

-1 Then clearly the same yields 3 -3 i.e. P(2) is .true for g. a r gr 
' 

- ax
1
kh€H-A. Then P(2) is obviously true for g. 

b) Suppose g has a normal form g = h'k', where h' E:H-A, k'( K-A. 

We can proceed in the same way as in a) by ''looking'' at k'x~1 

instead of x1k, so we omit this. 

4) Suppose P(&) is true for all 1 S &S m, where m~2. 

The lemma will be pr•oved by induction if 1-1e show that P(m+1) is 

then also true. 
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a) Suppose first m + 1 is odd, so m+1 = 2n+1, n C m, 

If g has a normal form g = g1 ... g 2n+ 1 where g1 , g 2n+ 1E H-A, 

then P(m+1) is obviously true for g. 

So suppose g has a normal form g = g1 ... g 2n+i' where 

g1' g2n+1E K-A. 

i) if x
1
g

1 
E A, then ax

1
g1 E H-A and there are two possibilities: 

ii) 

the first is that (ax1g1 )g2E A, which implies that 

ax1g1g 2g3 € K-A, and we can use P(m-1) on (ax1g1g 2g 3)g4 ... g 2n+1 

to obtain that P(m+1) is true for g. 

-the second is that (ax1 g1 )g 2 ~ H-A. Then J<ax1g1g 2 )g3 . • .g2n+ 1 1 

Now obviously but also 

ax1 g1 .. , g 2n+ 1 ~ rn, (Because if 

but JgJ = m +1 while Jrn-il = 

n n-1 
ax1gi .•. g 2n+1 = r, then g=r 

m-2). Using that P(m) is true 

for (ax1g 1g 2 )g3 •.. g 2n+1 , we clearly obtain that P(m+i) is 

true for g. 

if · x
1 

g1 E K-A, then we "look" at 

-1 - if g 2n+ix1 E K-A, then P(m+1) is obviously true for g. 

-1 -i -1 . 
- if g 2n+i x1 £A, then g 2n+i xi a E H-A and we can clearly 

proceed in the same way as in i), 

b) Suppose that m+1 is even, so m+1 = 2p, p ~ 2, 

Suppose so that g has a normal form where 

g1 E" K-A, g 2p E H-A. 

If xi g1 E K-A, then P(m+1) is obviously true for g. 

If x1 g1 E A, then ax1 g1 E H-A and so there are two possibilities : 

- the first is that ( ax1 g1 g 2 ) E H··A and P(m+1) is then clearly 

true for g. 
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(ax
1

g1 g 2g 3 )g 4 ... g 2p has length 2p- 2 and we can use that 

P(2p-2) is true on it. Thus we obtain that either 

2p-1 - ( 2p-1) 
r (ax1g1g2g3)g4'''g2pr has a normal form Hhich begins 

with a and ends with a- 1 which implies that the same yields 

2p+1 2p+1 
r g r , or (ax1g1g2g3)g4'' .g2p can be IVritten as 

- (p -1) 
r ' 

(it cannot be written as 

that g can be written as 

P(m+1) is true for g. 

rp- 1 since g (. H-A), 2p- which implies 

-p 
r • All together this means that 

At last if g has a normal form g = g1. · · g2p where 

g 2p E: K-A, then we can proceed in the same \'lay by "looking" at 

-1 
g 2px1 instead of x 1 g1 . 

o (End of the proof of lemma 1) 

next lemma is an immediate consequence of lemma 1. 

Lemma 2.: Let F be a finite subset of G - { 1 } , and define 

j = 1 + maxi fl. Then for ~11 f E F, rjf r -j has a normal form 
HF 

l'lhich begins lvi th and ends with -1 unless f be 1vri tten a a can 

as a pmver of r in which case of course rjf r-j = f. 

For k = 1,2, ... , let Zk be the set of all elements w in G 

such that -1 -k s r w has no normal form 'llhich begins with an element 

of K-A. 

For example, k 
1'1 = r sh, where hE H-A, is an element of Zk. 

Lemma 3: The Z IS 
k 

are pair1vise disjoint. 

Proof: Let 9. , 9.' ( { 1, 2, ... } and suppose that 

Set n = 9. I - 9. E m . Let w E z 9.. Then 
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-1 -~' -1 -n -~ -1 -n -1 -~ 
s r w = s r r w = s r s s r w 

-1 -(n-1) -1 -1 -1 -1 s r x1 a ax
2

(s r w) 

-1 -(n-1) -1 ( -1 -1 = s r x1 x2 s r w) 

Since wE Z 
-1 -1 

we have that either s r 11 E A, or that s - 1r- 1w has 

a normal form <t~hich begins with an element of H-A. In both cases, 

it follo~<JS no1-1 easily from the fact that 
-1 

x 2 E. K-A (since {x1x2} x1 

is a blocking pair for A in K)' that -1 -I' has normal form s r w a 

which begins with 
-1 x
2 

E K-A. By definition, this implies that 

w[ A~,, i.e. we have shown that A
1
n A~, = 11. D 

Lemma 4: -2 -1 s r y has a normal form which begins with for all 

yEG- z
1

, ~ = 1,2, ... 

Proof: Let ~El'N. Forall yEG-Z
1
,does s- 1r-~y havea 

normal form which begins 

of z
1

• Thus s- 2r-~y = 

with an element of K-A, by definition 

-1 -1 -1 -~ x
2 

a ( s r y) has a normal form which 

begins with for all y ~ G-z
1

• 

Now let F be a finite subset of G - {1} , say 

F = { f 
1

, ... , f n} , n f. l'N . Set so 

j = 1 + max I f I , I = 1 , 2 , ... 
fEF 

If we can shmv that 

(***) 

~ 2 • 
b = r s rJ 

I ' 
where 

iE{1, •.. ,n}, 

D 

R, = 1,2, ..• ' 

we will have shown that G has Powers' property (lemma 3 shows that 

the Z IS 
k are pairwise disjoint) and so the proof of the theorem will 

be finished. 

Proof of('~**): Let yEG-Z
1

, ~EN'! and iE{1, ... ,n} 

Suppose fi is a 

-1 
Then b~fib~ y = 
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-2 - ~ By lemma 4 s r y has a normal form which begins with x;1 

-1 Since x1 x 2 E K-A, it follows easily that 
-1 -9, -1 

s r (btfib~ y) 

-2 -~ = (ax 2 )(ax
1

) .. ,(ax
1

)(s r y) has a normal form which begins with 

-1 
a€H-A, i.e. b~fib~ yE Z~. 

-1 -1 -1 -1 is a negative power of r,fi = <x1 ~ ) ... <x1 a ) 

~ -1 -1 -1 -1 -2 ··~ 
~ r s(ax2 ><x1 a ),, .<x1 a )(s r y), and again, 

using lemma 4 and the fact that -1 x1 x 2 E K-A, we obtain that 

-1 
btfibt y t. z~. 

- At last suppose r. 

Then 

By lemma 2 rj f. r -j has a normal form which begins with a E H-A , l 

and ends Hi th a -i € 1-1-A. Using lemma 4 this clearly implies that 

s·- 1 r-t(btfib~1y) = (ax2 )(rjfir-j)(s- 2 r··~y) has a normal form 

-1 
which begins with a € H-A, i.e. b~fibt y € Z~. 

a (End of the proof of theorem 1) .. 

Remarks. 1) The existence of a blocking pair for A in one of the 

factors of G is essential in the proof of theorem 1. 

2) Any group G satisfying the assumptions of theorem 1 is 

ICC. This can be shown directly, but it is also a 

consequence of the theorem, 

3) The theorem is also valid if G is the free product of 

subgroups Hv' for v in an index set I, with a subgroup 

A is a proper subgroup of Hv and such that there exists 

a blocking pair in one of the factors of G. 

In another direction we have: 

Theorem 2: Let G ~ H * K be an amalgam such that: 
A 

a) there exists a blocking pair {x
1

,x2} for A in K, 
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b) there exists an element a E H-A such that a- 1ha tl A for all 

hEA-{1}. 

Then U(G) is a II1-factor which does not possess property r 

of Murray and von Neumann (see [7]). 

Proof: G is ICC so U(G) is a II1-factor. 

Define F = {wE G I w has a normal form which begins with an . 

element of H-A}. 

We will show that the following two statements are true: 

i) F ua F a- 1 = G - {1.} ' 

ii) F, -1 x1 F x 1 , x2 F -1 
x2 are pairwise disjoint. 

By [ 7 l ' this will prove the theorem. 

Let g E G - { 1} , g ( F 

If lgl = o, 
-1 

i.e. gEA- {1}; then b) implies 

-1 gEaFa 

that 

a gaE:H-A, - 1 EF hence so a ga , 

If lg I ;: 1' then g has a normal form which begins with 

an element of K-A and it is easy to see that -1 ga E: F a 

so again g E: a F a -1 

Thus i) is true. 

It is easy to verify that F and (resp. 

are 

Let 

disjoint. We show at 

-1 a = x 2 x1 . Since 

-1 -1 
last that x1Fx1 and x2F x2 d' · · t 

. are lSJOln • 

{x1 ,x2 } is a blocking pair for A 

in K, a E: K-A. It follows clearly that f3f f3 -i ft F for all 

f C F. This implies that 

-1 -1 -1 -1 
x1 f x1 f. x 2 F x 2 for all f E F, i.e. x1 F x1 n x 2 F x 2 = 11) 

tJ 

Theorem 2 is valid for example when G is the Higman group (because 

[121 shows the existence of a blocking pair in both factors of G) 
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or of course when G is the free product of two non-trivial groups 

not both of order two ([7]), 

We conclude this note 1~i th a negative remark. 

Let C be a group, C is said to be SQ-universal if every countable 

group can be embedded in a quotient group of C. (see [5)), 

The main result of [12) is that any group satisfying the hypotheses 

of theorem 1 is SQ-universal. It is also shown in [8] that if G 

is a finitely generated Fuchsian group which is not elementary, then 

* G is SQ-universal, Thus it is natural to ask: Is Cr(G) simple 

with a unique tracial state whenever G is ICC and SQ-universal? 

To see that this question has a negative answer, we need the 

following result of [9): 

If G has a normal amenable subgroup ~ {1}, then c*(G) 
r 

is not 

simple and the canonical tracial state is not the only tracial state 

on c; <G). Now, let G be the direct product of an amenable ICC 

group H1 and of a ICC SQ-universal group H2 (for example take 

H1 to 

be FF 2 , 

"f {1} 

be the group of all finite permutations of IN and H2 to 

Then is ICC, has a normal amenable subgroup 

and is easily seen to be SQ-universal. 

This provides also an example of a ICC SQ-universal group such that 

its group von Neumann algebra possess property r (in contrast to 

theorem 2). 
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