OPERATOR ALGEBRAS ASSOCTATED WITH FREE PRODUCTS OF GROUPS WITH AMALGAMATION
by
Erik Bédos University of 0slo

# OPERATOR ALGEBRAS ASSOCTATED WITH <br> FREE PRODUCTS OF GROUPS WITH AMALGAMATION 

by

Erik Bédos

## 1. Introduction

In this note, all the groups we consider are supposed to be countable and discrete. For such a group $G$, we let $C \underset{r}{*}(G)$ (resp. $U(G)$ ) denote the $C^{*}$-algebra (resp. the von Neumann algebra) generated by the left regular representation of $G$ on $\ell^{2}(G)$. $C_{r}^{*}(G)$ coincides with the full group $C *-a l g e b r a \quad C *(G)$ if and only if the group $G$ is amenable, and when this happens, it is known that $C \underset{\sim}{*}(G)$ possess a (non-trivial) multiplicative linear functional, and thus $\underset{\sim}{*}(G)$ is not simple. In 1974 Powers showed that $C_{R}^{*}\left(\mathbb{R}_{2}\right)$ is simple and has a unique tracial state, where $\mathbb{F}_{2}$ denotes the free group on two generators [11]. Since this time, many mathematicians have refined Powers' method of proof and so enlarged the class of groups possessing the same properties ([1],[2],[3],[4],[9],...).

Among this class one finds

- A1.1 free products of the form $G_{1} * G_{2}$, where $G_{1}$ and $G_{2}$ are two non-trivial groups not both of order 2 ([9]).

This case is subsumed in

- all groups containing a nommal non-abelian free subgroup with trivial centralizer ([2]).

At last we mention that the class also includes

- non elementary Fuchsian and Kleinian groups ([4]).

The main purpose of this note is to show that under some suitable assumptions, free products with amalgamation belong to this class.too. Such groups appear naturally in topology in connection with fundamental groups and in fact a lot of groups can be written as free products with amalgamation. Under some slightly stronger assumptions, we also show that the group von Neumann algebra of a free product with amalgamation is a $\Pi_{1}$-factor which does not possess property $\Gamma$ of Murray and Neumann.

## 2. Notation and preliminaries

 about combinatorial group theory to [5] and [6]. Briefly we recall some of what is needed in this paper and fix some notation.

Given a group $G$, we denote by $\ell^{2}(G)$ the Hilbert space of all complex valued functions $f$ on $G$ such that $\sum_{g \in G}|f(g)|^{2}<\infty$, and by $U$ the left regular representation of $G$ in $\ell^{2}(G) . C_{r}^{*}(G)(r e s p . U(G))$ is then defined as the closure of the linear span of $\{U(g), g \in G\}$ in the operator norm topology (resp. in the weak operator topology). The canonical tracial state $\tau$ on $U(G)$ is defined by $T(T)=(T \delta, \delta)$, $T \in U(G)$, where $\delta$ denotes the characteristic function of the identity of $G$. We denote also by $\tau$ the restriction of $\tau$ to $C \underset{r}{*}(G)$. A group $G$ is said to be amenable if there exists a state on $\ell^{\infty}(G)$, the bounded complex valued functions on $G$, which is invariant under translations by $G$.

Let now $H$ and $K$ be groups with presentations

$$
H=\left\langle x_{1}, \ldots ; r_{1}, \ldots\right\rangle \text { and } k=\left\langle y_{1}, \ldots ; s_{1}, \ldots\right\rangle
$$

Let $A \subseteq H$ and $B \subseteq K$ be subgroups such that there exists an isomorphism $\Phi: A \rightarrow B$. Then the free product of $H$ and $K$, amalgamating the subgroups $A$ and $B$ by the isomorphism $\phi$ is the group G given by

$$
G=\left\langle x_{1} \ldots, y_{1}, \ldots, r_{1}, \ldots, s_{1}, \ldots, a=\phi(a), a \in A\right\rangle
$$

We will write this more simply as

$$
G=\langle H * K ; A=B, \phi\rangle, \text { or even more } G=\underset{A}{H}
$$

when no confusion is possible.

The basic idea of the free product with amalgamation is that the subgroup $A$ is identified with its isomorphic image $\phi(A)$. The free product with amalgamation depends on $H, K, A, B$ and $\phi$. The groups $H$ and $K$ are called the factors of $G$, while $A$ and $B$ are called the amalgamated subgroups. Free product with amalgamation clearly reduces to the ordinary free product if the amalgamated subgroup is the identity.

Let now $G=H_{1} \underset{A}{*} H_{2}$ be the free product of two groups $H_{1}$ and $H_{2}$ with amalgamated subgroup $A$. If $u \in G$, then either $u \in A$ or else $u=h_{1} \ldots h_{m}$ to some $m \geqq 1$, where each $h_{i} \in H_{\nu_{i}}-A$ for sone $\nu_{i} \in\{1,2\}$ and no $v_{i}=v_{i+1}$. In the latter case $m$ and the sequence $\left(\nu_{1}, \ldots, v_{m}\right)$ are uniquely determined by $u$, but not (unless $m=1$ or $A=1$ ) the factors $h_{i}$; we nonetheless call the product $h_{1} \ldots h_{m}$ a normal form for $u$, [this is a familiar abuse of lenguage: the normal form is not the product $h_{1} \ldots h_{m}$, which is simply the element $u$, but rather the sequence $\left(h_{1}, \ldots, h_{m}\right)$. Further this departs from the usual usage of "normal form" which involves choosing coset representatives]. For $u$ as above, we define the length $|u|$ of $u$ to be $|u|=0$ if $u \in A$ and $|u|=m$ otherwise.

We write $x \equiv u_{1} \ldots u_{n}$ if $x=u_{1} \ldots u_{n}$ and $|x|=\left|u_{1}\right|+\ldots+\left|u_{n}\right|$. If $x \equiv u_{1} u_{2}$, we say that $x$ begins with $u_{1}$ and ends in $u_{2}$. One of the most famous group which can be written as a free product with amalgamation is $S L_{2}(\mathbb{Z})$. It is isomorphic to $\left\langle a, b ; a^{4}, b^{6}, a^{2}=b^{3}\right\rangle$ $=\mathbb{Z} /_{4 \mathbb{Z}} * \mathbb{Z} /_{6 \mathbb{Z}}$ (the cyclic groups of order 4 and 6 being generated $\mathbb{Z} /$| a |
| :---: |

by $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$, and $\mathbb{Z} / 2 \mathbb{Z}$ by $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ ).
As another example we mention the Higman group
$G=\left\langle a, b, c, d ; b^{-1} a b=a^{2}, c^{-1} b c=b^{2}, d^{-1} c d=c^{2}, a^{-1} d a=d^{2}\right\rangle$.
It can be written as a free product with amalgamation in the following
way:
Let $H_{1}=\left\langle a, b c ; b^{-1} a b=a^{2}, c^{-1} b c=b^{2}\right\rangle$ and
Let $H_{2}=\left\langle c^{\prime}, d, a^{\prime} ; d^{-1} c^{\prime} d=c^{2}, a^{-1} d a^{\prime}=d^{2}\right\rangle$.
Then $G=\left\langle H_{1} * H_{2} ; a=a^{\prime}, c=c^{\prime}\right\rangle$.
3. Operator algebras associated with free products with amalgamation

Let $G=H \underset{A}{*} K$ be the free product of the two groups $H$ and $K$ with amalgamated subgroup $A$. It is rather clear that some additional hypotheses must be made on $G$ to ensure that $C_{r}^{*}(G)$ will be simple with a unique tracial state. Indeed, if $G=S L_{2}(\mathbb{Z})$ then $G$ has a non trivial center, so $G$ is not ICC, hence $U(G)$ is not a factor. This easily implies that the canonical tracial state cannot be the only tracial state on $C_{r}^{*}(G)$.
We need the following definition:
Let $B$ be a subgroup of a group $F$. Let $\left\{x_{1}, x_{2}\right\}$ be a pair of distinct elements of $F$, neither of which is in $B$. We say that $\left\{x_{1}, x_{2}\right\}$ is a blocking pair for.$B$ in $F$ if the following condition is satisfied:
(*) If $b \in B, b \neq 1$, then $x_{i}^{\varepsilon} b x_{j}^{\delta} \notin B, 1 \leqq i, j \leqq 2, \varepsilon= \pm 1, \delta= \pm 1$. Note that (*) implies that $x_{i}^{\varepsilon} x_{j}^{\delta} \not \subset B, 1 \leqq i, j \leq 2, \varepsilon= \pm 1, \delta= \pm 1$ unless $x_{i}^{\varepsilon} x_{j}^{\delta}=1$, and that $(*)$ is trivially satisfied if $B=\{1\}$. As remarked in [5], the existence of blocking pairs is not an unreasonable condition in groups in which there is a lot of "freeness". We say that a group $G$ is an amalgam if it can be written $G \cong H A_{A}^{*} K$ with $H \neq A \neq K$.

We shall prove:
Theorem 1: Let $G \cong H \underset{A}{*} K$ be an amalgam such that there exists a blocking pair for $A$ in one of the factors of $G$. Then $C_{r}^{* *}(G)$ is simple with a unique tracial state.

As examples of groups for which the theorem is valid, we mention:
a) the free product of two non-trivial groups, not both of order two.
b) $G \cong H * K$, where $H$ is a free group, $A$ is a finitely generated subgroup with infinite index in $H$ and $K$ is any group containing as a proper subgroup an isomorphic copy of $A$ (see [5]).
c) the Higman group (the existence of a blocking pair is shown in [12]).

Proof of theorem 1:
It is enough to prove the theorem in the case when there is a blocking pair $\left\{x_{1}, x_{2}\right\}$ for $A$ in $K$.
By [4, proposition 4] the theorem will be proved if we can show that G satisfies Powers' property:

$$
\begin{aligned}
& \text { For every finite subset } F \text { of } G-\{1\} \text { and for every } \\
& \text { natural number } r \geqq 1 \text {, there exist elements } b_{1}, \ldots b_{r} \text { of } \\
& G \text { and pairwise disjoints subsets } Z_{1}, \ldots, Z_{r} \text { of } G \text { such } \\
& \text { that } \\
& b_{\ell} f b_{\ell}^{-1} y \in Z_{\ell}, \text { for all f } \in F, y \in G-Z_{\ell}, \ell \in\{1, \ldots, r\} \text {. }
\end{aligned}
$$

The structure of our proof that $G$ satisfies ( $\%$ ) is inspired by the proof of [9, theorem 1].

Let $\alpha$ be an element of $H$ not in $A$ and set $r=\alpha x_{1}, s=\alpha x_{2}$. We need to establish some lemmas.

Lemma 1. For $m \in N \cup\{0\}$, let $P(m)$ be the following assertion: For all $g \in G-\{1\}$ such that $|g|=m, r^{m+1} g r^{-(m+1)}$ has $a$ normal form which begins with $\alpha$ and ends with $\alpha^{-1}$ unless $m$ is even and $g$ can be written as $r^{ \pm \frac{m}{2}}$. Then $P(m)$ is true for all $m \in \mathbb{N} \cup(0)$.

## Proof: 1) Suppose $m=0$.

Let $g \in A-\{1\}$. Then $r g r^{-1}=\alpha x_{1} g x_{1}^{-1} \alpha^{-1}$. Since $\left\{x_{1}, x_{2}\right\}$ is a blocking pair for $A$ in $K$, we have that $x_{1} g x_{1}^{-1} \in K-A$ and so clearly $P(0)$ is true for $g$.
2) Suppose $m=1$

If $g \in H-A$, then $P(1)$ is obviously true for $g$. Let $g \in K-A$. Then $r^{2} g r^{-2}=\alpha x_{1} \alpha x_{1} g x_{1}^{-1} \alpha^{-1} x_{1}^{-1} \alpha^{-1}$. If $x_{1} g x_{1}^{-1} \kappa K-A$, then $P(1)$ is again true for $g$. So we must check the case when $x_{1} g x_{1}^{-1} \in A-\{1\}$. They are then two possibilities:
$\cdots\left(x_{1} g x_{1}^{-1}\right) \alpha^{-1}$ E.H.A and so $P(1)$ is clearly true for $g$.
$-\alpha\left(x_{1} g x_{1}^{-1}\right) \alpha^{-1} \in A-\{1\}$ and it follows that $P(1)$ is true for $g$ by using 1) on $\alpha x_{1} g x_{1}^{-1} \alpha^{-1}$.
3) Suppose $m=2$

Let $g \in G-\{1\}$, with $|g|=2$.
a) Suppose $g$ has a normal form $g=k h$, where $k \in K-A$, $h \in H-A$.

Then $r^{3}{ }_{g r^{-3}}=\alpha x_{1} \alpha x_{1} \alpha x_{1} k h x_{1}^{-1} \alpha^{-1} x_{1}^{-1} \alpha^{-1} x_{1}^{-1} \alpha^{-1}$
If $x_{1} k \in K-A$, then $P(2)$ is obviously true for $g$. So suppose
$x_{1} k \in A$. They are then three possibilities:

- $\alpha x_{1} k h=1$, i.e. $g=r^{-1}$ and $P(2)$ is true for $g$.
$-\alpha x_{1} k h \in A-\{1\}$. By using 1) on $\alpha x_{1} k h$, it follows that
$\alpha x_{1}\left(\alpha x_{1} k h\right) x_{1}^{-1} \alpha^{-1}$ has a nommal form which begins with $\alpha$ and ends with $\alpha^{-1}$. Then clearly the same yields $r^{3} g r^{-3}$, i.e. $P(2)$ is true for $g$.
- $\alpha x_{1} k h \in H-A$. Then $P(2)$ is obviously true for $g$.
b) Suppose $g$ has a normal form $g=h^{\prime} k^{\prime}$, where $h^{\prime} \in H-A, k^{\prime} \in K-A$. We can proceed in the same way as in a) by "looking" at $k^{\prime} x_{1}^{-1}$ instead of $x_{1} k$, so we omit this.

4) Suppose $P(\ell)$ is true for all $1 \leq \ell \leq m$, where $m \geqq 2$. The lemma will be proved by induction if we show that $P(m+1)$ is then also true.
a) Suppose first $m+1$ is odd, so $m+1=2 n+1$, $n \in \mathbb{N}$. If $g$ has a normal form $g=g_{1} \ldots g_{2 n+1}$ where $g_{1}, g_{2 n+1} \in H-A$, then $P(m+1)$ is obviously true for $g$. So suppose $g$ has a normal form $g=g_{1} \ldots g_{2 n+1}$, where $g_{1}, g_{2 n+1}{ }^{\epsilon} K-A$.
i) if $x_{1} g_{1} \in A$, then $\alpha x_{1} g_{1} \in H-A$ and there are two possibilities:

- the first is that $\left(\alpha x_{1} g_{1}\right) g_{2} \in A$, which implies that $\alpha x_{1} g_{1} g_{2} g_{3} \in K-A$, and we can use $P(m-1)$ on $\left(\alpha x_{1} g_{1} g_{2} g_{3}\right) g_{4} \ldots g_{2 n+1}$ to obtain that $P(m+1)$ is true for $g$.
- the second is that $\left(\alpha x_{1} g_{1}\right) g_{2} \in H-A$. Then $\left|\left(\alpha x_{1} g_{1} g_{2}\right) g_{3} \ldots g_{2 n+1}\right|$ $=2 n=m$. Now obviously $\alpha x_{1} g_{1} \ldots g_{2 n+1} \neq r^{-n}$, but also $\alpha x_{1} g_{1} \ldots g_{2 n+1} \neq r^{n}$. (Because if $\alpha x_{1} g_{1} \ldots g_{2 n+1}=r^{n}$, then $g=r^{n-1}$. but $|g|=m+1$ while $\left.\left|r^{n-1}\right|=m-2\right)$. Using that $P(m)$ is true for $\left(\alpha x_{1} g_{1} g_{2}\right) g_{3} \ldots g_{2 n+1}$, we clearly obtain that $P(m+1)$ is true for $g$.
ii) if $x_{1} g_{1} \in K-A$, then we "look" at $g_{2 n+1} x_{1}^{-1}$ :
- if $g_{2 n+1} x_{1}^{-1} \in K-A$, then $P(m+1)$ is obviously true for $g$.
- if $g_{2 n+1} x_{1}^{-1} \in A$, then $g_{2 n+1} x_{1}^{-1} \alpha^{-1} \in H-A$ and we can clearly proceed in the same way as in i).
b) Suppose that $m+1$ is even, so $m+1=2 p, p \geqslant 2$.

Suppose so that $g$ has a normal form $g=g_{1} \cdots g_{2 p}$ where $g_{1} \in K-A, \quad g_{2 p} \in H-A$.
If $x_{1} g_{1} \in K-A$, then $P(m+1)$ is obviously true for $g$.
If $x_{1} g_{1} \in A$, then $\alpha x_{1} g_{1} \in H-A$ and so there are two possibilities: - the first is that $\left(\alpha x_{1} g_{1} g_{2}\right) \in H \cdot A$ and $P(m+1)$ is then clearly true for $g$.

- the second is that $\left(\alpha x_{1} g_{1} g_{2}\right) \in A$. Then $\left(\alpha x_{1} g_{1} g_{2}\right) g_{3} \in K-A$ so
$\left(\alpha x_{1} g_{1} g_{2} g_{3}\right) g_{4} \ldots g_{2 p}$ has length $2 p-2$ and we can use that $P(2 p-2)$ is true on it. Thus we obtain that either $r^{2 p-1}\left(\alpha x_{1} g_{1} g_{2} g_{3}\right) g_{4} \ldots g_{2 p} r^{-(2 p-1)}$ has a normal form which begins with $\alpha$ and ends with $\alpha^{-1}$, which implies that the same yields
 (it cannot be written as $r^{p-1}$. since $g_{2 p}[H-A$ ), which implies that $g$ can be written as $r^{-P}$. All together this means that $P(m+1)$ is true for $g$.

At last if $g$ has a normal form $g=g_{1} \ldots g_{2 p}$ where $g_{1} \in H-A$, $g_{2 p} \in K-A$, then we can proceed in the same way by "looking" at $g_{2 p} x_{1}^{-1}$ instead of $x_{1} g_{1}$.

## n (End of the proof of lemma 1)

The next lemma is an immediate consequence of lemma 1.
Lemma 2.: Let $F$ be a finite subset of $G-\{1\}$, and define $j=1+\max _{f \in F}|f|$. Then for all $f \in E, r^{j} f r^{-j}$ has a normal form which begins with $\alpha$ and ends with $\alpha^{-1}$, unless $f$ can be written as a power of $r$ in which case of course $r^{j_{f}} r^{-j}=f$.

For $k=1,2, \ldots$, let $Z_{k}$ be the set of all elements $w$ in $G$ such that $s^{-1} r^{-k} W$ has no normal. form which begins with an element of $\mathrm{K}-\mathrm{A}$.
For example, $w=r^{k} s h$, where $h \in H-A$, is an element of $Z_{k}$. Lemma 3: The $Z_{k}$ 's are pairwise disjoint.

Proof: Let $\ell, \ell^{\prime} \in\{1,2, \ldots\}$ and suppose that $\ell<\ell^{\prime}$. Set $n=\ell^{\prime}-\ell \in \mathbb{N}$. Let $w \in Z_{\ell}$. Then

$$
\begin{aligned}
s^{-1} r^{-\ell} w= & s^{-1} r^{-n} r^{-\ell} w=s^{-1} r^{-n} s s^{-1} r^{-\ell} W \\
& s^{-1} r^{-(n-1)} x_{1}^{-1} \alpha^{-1} \alpha x_{2}\left(s^{-1} r^{-\ell} w\right) \\
= & s^{-1} r^{-(n-1)} x_{1}^{-1} x_{2}\left(s^{-1} r^{-\ell} w\right)
\end{aligned}
$$

Since $W \in Z$ we have that either $s^{-1} r^{-\ell} W \in A$, or that $s^{-1} r^{-l} W$ has a nommal form which begj.ns with an element of $H-A$. In both cases, it follows now easily from the fact that $x_{1}^{-1} x_{2} \in K-A$ (since $\left\{x_{1} x_{2}\right\}$ is a blocking pair for $A$ in $K$, that $s^{-1} r^{-\ell^{\prime}} W$ has a normal form which begins with $x_{2}^{-1} \in K-A$. By definition, this implies that $w \notin A_{\ell,}, \quad$ i.e. we have shown that $A_{\ell} \cap A_{\ell,}=\emptyset$. D

Lemma 4: $s^{-2} r^{-\ell} y$ has a normal form which begins with $x_{2}^{-1}$ for all $y \in G-Z_{\ell}, \quad \ell=1,2, \ldots$

Proof: Let $\ell \in \mathbb{N}$. For all $y \in G-Z$, does $s^{-1} r^{-\ell} y$ have a normal form which begins with an element of $K-A$, by definition of $Z_{\ell}$. Thus $s^{-2} x^{-\ell} y=x_{2}^{-1} \alpha^{-1}\left(s^{-1} r^{-\ell} y\right)$ has a normal form which begins with $x_{2}^{-1}$ for all $y \in G-Z_{\ell}$.

Now let $F$ be a finite subset of $G-\{1\}$, say $F=\left\{f_{1}, \ldots, f_{n}\right\}, n \in N$. Set so $b_{\ell}=r^{\ell} s^{2} r^{j}$, where $j=1+\max _{f \in F}|f|, \quad \ell=1,2, \ldots$.

If we can show that
(***) $b_{\ell} f_{i} b_{\ell}^{-1} y \varepsilon_{\ell} Z_{\ell}$ for $a l l \quad y \in G-Z_{\ell}, \quad i \in\{1, \ldots, n\}, \quad \ell=1,2, \ldots$, we will have shown that $G$ has Powers' property (lemma 3 shows that the $Z_{k}$ 's are pairwise disjoint) and so the proof of the theorem will be finished.

Proof of $(* * *)$ : Let $y \in G-Z_{\ell}, \quad \ell \in N \quad$ and $i \in\{1, \ldots, n\}$

- Suppose $f_{i}$ is a positive power of $r, f_{i}=\left(\alpha x_{1}\right) \ldots\left(\alpha x_{1}\right)$.

Then $b_{\ell} f_{i} b_{\ell,}^{-1} y=r^{\ell} s^{2} r^{j} f_{i} r_{-}{ }^{-j_{s}}{ }^{-2} r^{-\ell} y$
$=r^{\ell} s^{2} f_{i} s^{-2} r^{-\ell} y$
$=r^{\ell} s\left(\alpha x_{2}\right)\left(\alpha x_{1}\right) \ldots\left(\alpha x_{1}\right)\left(s^{-2} r^{-\ell} y\right)$

By lemma $4 s^{-2} r^{-\ell} y$ has a normal form which begins with $x_{2}^{-1}$. Since $x_{1} x_{2}^{-1} \in K-A$, it follows easily that $s^{-1} r^{-\ell}\left(b_{\ell} f_{i} b_{\ell}^{-1} y\right)$ $=\left(\alpha x_{2}\right)\left(\alpha x_{1}\right) \ldots\left(\alpha x_{1}\right)\left(s^{-2} r^{-\ell} y\right)$ has a normal form which begins with $\alpha \in H-A$, i.e. $b_{\ell} f_{i} b_{\ell}^{-1} y \in Z_{\ell}$.

- Suppose $f_{i}$ is a negative power of $r, f_{i}=\left(x_{1}^{-1} x^{-1}\right) \ldots\left(x_{1}^{-1} \alpha^{-1}\right)$ Then $b_{\ell} f_{i}^{b} \ell_{\ell}^{-1} y=r^{\ell} s\left(\alpha x_{2}\right)\left(x_{1}^{-1} \alpha^{-1}\right) \ldots\left(x_{1}^{-1} \alpha^{-1}\right)\left(s^{-2} r^{-\ell} y\right)$, and again, using lemma 4 and the fact that $x_{1} x_{2}^{-1} \in K-A$, we obtain that $b_{\ell} f_{i} D_{\ell}^{-1} y \in Z_{\ell}$.
- At last suppose $f_{i}$ is not a power of $r$.

Then $b_{\ell} f_{i} b_{\ell}^{-1} y=r^{\ell} s^{2}\left(r^{j} f_{i} r^{-j}\right)\left(s^{-2} r^{-\ell} y\right)$.
By lemma 2, $r^{j} f_{i} r^{-j}$ has a normal form which begins with $\alpha \in H-A$ and ends with $\alpha^{-1} \in H-A$. Using lemma 4 this clearly implies that $s^{-1} r^{-\ell}\left(b_{\ell} f_{i} b_{\ell}^{-1} y\right)=\left(\alpha x_{2}\right)\left(r^{j_{f}} i^{r^{-j}}\right)\left(s^{-2} r^{-\ell} y\right)$ has a normal form which begins with $\alpha \in H-A$, i.e. $b_{\ell} f_{i} b_{\ell}^{-1} y \in Z_{\ell}$.

- (End of the proof of theorem 1).

Remarks. 1) The existence of a blocking pair for $A$ in one of the factors of $G$ is essential in the proof of theorem 1. 2) Any group $G$ satisfying the assumptions of theorem 1 is ICC. This can be shown directly, but it is also a consequence of the theorem.
3) The theorem is also valid if $G$ is the free product of subgroups $H_{v}$, for $v$ in an index set $I$, with a subgroup A is a proper subgroup of $H_{v}$ and such that there exists a blocking pair in one of the factors of $G$.

In another direction we have:
Theorem 2: Let $G \cong H_{A}^{*} K$ be an amalgam such that:
a) there exists a blocking pair $\left\{x_{1}, x_{2}\right\}$ for $A$ in $K$,
b) there exists an element $\alpha \in H-A$ such that $\alpha^{-1} h \alpha \notin A$ for all $h \in A-\{1\}$.

Then $U(G)$ is a $I I_{1}$-factor which does not possess property $r$ of Murray and von Neumann (see [7]).

Proof: $G$ is ICC so $U(G)$ is a $I I_{1}$-factor. Define $F=\{w \in G \mid w$ has a normal form which begins with an . element of $\mathrm{H}-\mathrm{A}$.

We will show that the following two statements are true:
i) $F U \alpha F \alpha^{-1}=G-\{1\}$,
ii) $F, x_{1} F x_{1}^{-1}, x_{2} F x_{2}^{-1}$ are pairwise disjoint.

By [7], this will prove the theorem.
Let $g \in G-\{1\}, g \notin F$
If $|g|=0$, i.e. $g \in A-\{1\}$, then $b)$ implies that $\alpha^{-1} \mathrm{~g} \alpha \in \mathrm{H}-\mathrm{A}$, so $\alpha^{-1} \mathrm{~g} \alpha \in \mathrm{~F}$, hence $\mathrm{g} \in \alpha \mathrm{F}_{\alpha}{ }^{-1}$ If $|g| \geq 1$, then $g$ has a normal form which begins with an element of $K-A$ and it is easy to see that $\alpha^{-1} g \alpha \in F$ so again $g \in \alpha F_{\alpha}^{-1}$

Thus i) is true.
It is easy to verify that $F$ and $x_{1} F x_{1}^{-1}$ (resp. $x_{2} F x_{2}^{-1}$ ) are disjoint. We show at last that $x_{1} F x_{1}^{-1}$ and $x_{2} F x_{2}^{-1}$ are disjoint. Let $B=x_{2}^{-1} x_{1}$. Since $\left\{x_{1}, x_{2}\right\}$ is a blocking pair for $A$ in $K, \beta \in K-A$. It follows clearly that $\beta f \beta^{-1} \in F$ for all f $\in F$. This implies that $x_{1} f x_{1}^{-1} \notin x_{2} F x_{2}^{-1}$ for all f $\in F$, i.e. $x_{1} F x_{1}^{-1} \cap x_{2} F x_{2}^{-1}=\emptyset$
or of course when $G$ is the free product of two non-trivial groups not both of order two ([7]).

We conclude this note with a negative remark.
Let $C$ be a group. $C$ is said to be SQ-universal if every countable group can be embedded in a quotient group of C. (see [5]). The main result of [12] is that any group satisfying the hypotheses of theorem 1 is SQ-universal. It is also shown in [8] that if $G$ is a finitely generated Fuchsian group which is not elementary, then $G$ is SQ-universal. Thus it is natural to ask: Is $C_{r}^{*}(G)$ simple with a unique tracial state whenever $G$ is ICC and SQ-universal? To see that this question has a negative answer, we need the following result of [9]:
If $G$ has a normal amenable subgroup $\neq\{1\}$, then $C_{r}^{*}(G)$ is not simple and the canonical tracial state is not the only tracial state on $C_{r}^{*}(G)$. Now, let $G$ be the direct product of an amenable $\therefore$ ICC group $H_{1}$ and of a ICC SQ-universal group $H_{2}$ (for example take $H_{1}$ to be the group of all finite permutations of $\mathbb{N}$ and $H_{2}$ to be $\mathrm{FF}_{2}$. Then $G=\mathrm{H}_{1} \mathrm{XH}_{2}$ is ICC, has a normal amenable subgroup $\neq\{1\}$ and is easily seen to be SQ-universal. This provides also an example of a ICC SQ-universal group such that its group von Neumann algebra possess property $r$ (in contrast to theorem 2).

Acknowledgements: I would like to thank Erling St申rmer for his suggestions after reading a preliminary version of this paper.

## REFERENCES

1. Akemann, C.A.: Operaton algebras associated with Fuchsian groups. To appear.
2. Akemann, C.A. and Tan-Yu Lee: Some simple $C^{*}$-algebras associated with free groups. Indiana Math.J. 29(1980),505-511.
3. Choi, M: A simple $C^{*}$-algebra generated by two finiteorder unitaries. Canadian J.Math.31(1979), 867-880.
4. de la Harpe, P. and Jhabvala, K.: Quelques propriétés des algébres d'un groupe discontinu d'isometries hyperboliques. Monographie $n^{\circ} 29$ de L'Enseignement MathématiqueUniversite de Genève (1981).
5. Lyndon, R. and Schupp, P.: Combinatorial group theory. Springer Verlag (1977).
6. Magnus, W., Karrass, A. and Solitar, D.: Combinatorial group theory. Interscience (1966).
7. Murray, F.J. and von Neumann, J.: On ring of operators IV, Ann. of Math. 44(1943), 716-808.
8. Neumann, P.M.: The SQ-universality of some finitely presented groups. J.Austral.Math.Soc. 16 (1973), 1-6.
9. Paschke, W.I. and Salinas, N.: $C^{*}$ - algebras associated with free products of groups. Pacific J.Math. 82(1979), 211-221.
10. Pedersen, G.K.: $C^{*}$ - algebras and their automorphism groups. Academic Press (1979).
11. Powers, R.T.: Simplicity of the $C^{*}$ - algebra associated with the free group on two generators. Duke Math.J. 42 (1975), 151 - 156.
12. Schupp, P.: Small cancellation theory over free product with amalgamation. Math.Ann. 193 (1971), 255-264.
