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1. Introduction

In this note, all the groups we consider are suppoesed to be count-
able and discrete. For such a group 6, we let C%(G) (resp. U(G))
denote the C%-algebra (resp. the von Neumann algebra) generated by
the left regular representation of 6 on £2(G). C%(G) coincides
with the full group C#-algebra C#*(G) if and only if the group G
is amenable, and when this happens, it is known that C;(G) possess
a (non-trivial) multiplicative linear functional, and thus CE(G)
is not simple. In 1974 Powers showed ‘that C;(Ez) is simple and
has a unique tracial state, where Ez denotes the free group on two
generators {11]. Since this time, many mathematicians have refined
Powers' method of proof and so enlavrged the class of groups possessing
the same properties ({1]1,{2]1,[3],{u4),[8],...).

Among this class one finds

- All free products of the form GlﬁGz , where G1 and 62 are
two non-trivial groups not both of order 2 ([9]).

This case is subsumed in

- all groups containing a normal non-abelian free subgroup with
trivial centralizer ([21).

At last we mention that the class aiso includes

~ non elementary Fuchsian and Kleinian groups ([u4]).

The main purpose of this note is to show that under some suitable
assumptions, free products with amalgamation belong to this class too.
Such groups appear naturally in topology in connection with fundamen-
tal groups and in fact a lot of groups can be written as free products
with amalgamation. Under some slightly stronger assumptions, we also
show that the group von Neumann algebra of a free product with amalga-
mation is a Hiufactor which does not possess property T of Murray

and Neumann.



2. Notation and preliminaries

For general information about C#-algebra theory we refer to [10],
about combinatorial group theory to [5] and [6]. Briefly we recall

some of what is needed in this paper and fix some notation.

Given a group G, we denote by £*(6) the Hilbert space of all complex
valued functiéns f on 6 such that § [f(g)]|? < » , and by U the
left regular representation of € in %%%G). Cg(G) (resp. U(G)) is
then defined as the closure of the linear span of {U(g), gCGG} in

the operator norm topology (resp. in the weak operator topologyl.

The canonical tracial state 1 on U(G) is defined by =t(T) = (T§,8),
T € U(G), where ¢ denotes the characteristic function of the identity

of G. Ye denote also by 1T the restriction of =+ to C%(G).

A group G is said to be amenable if there exists a state on 8 (G),
the bounded complex valued functions on G, which is invariant under

translations by G.

Let now H and K be groups with presentations

H

tl

<x13.‘.;r1,...> and K:<y1,...;si,..o>

Llet A< d and B < K be subgroups such that there exists an iso-

morphism ¢: A + B, Then the free product of H and K, amalga-

mating the subgroups A and B by the isomorphism ¢ is the group

G given by

G = <x1...,y13...;rl,,..,si,...,a=¢(a), atA>

We will write this more simply as

G = KH#K; A=B, ¢>, or even more G = HKK

when no confusion is possible,



The basic idea of the free product with amalgamation is that the sub-
group A 1is identified with its isomorphic image ¢(A). The free
product with amalgamation depends on H, K, A, B and ¢ . The groups
H and K are called the factors of G, while A and B are called
the amalgamated subgroups. Free product with amalgamation clearly
reduces to the ordinary free product if the amalgamated subgroup 1is

the identity.

Let now G = ﬂlgf% be the free product of two groups H1 and H2
with amalgamated subgroup A. If u € G, then either u € A or else

u = h,...h to some m 2 1, where each h, € H, ~A for somne
i it 1 \)i

v, € {1,2} and no V. = Vi, In the latter case m and the sequence
(vi”"’vm) are uniquely determined by u, but not (unless m=1 op
A=1) the factors hi; we nonetheless call the product hi“'hm a

normal form for u, [this is a familiar abuse of lenguage: the normal

form is not the product higo.h ,» wWhich is simply the element u,

Tl

but rather the sequence (hi”"’hm)' Further this departs from the
usual usage of "normal form" which involves choosing coset represen-
tatives]. For u as above, we define the length |u| of u to be

lul =0 4f u €A and |u| = m otherwise.

We wpite x = u,...u_ 4if x = ug...u and {x] = luil o000 Ju .

1 n
If x = uwu,, we say that x begins with u, and ends in u

ni
2‘
One of the most famous group which can be written as a free product

with amalgamation is SLQ(ZU. It ig isomorphic to <a,b;a”,b6,a2=b3>

= W/ % 7 /BZZ (the cyclic groups of order 4 and 6 being generated

b 72

01 0 -1 -1 0
by (~1 0) and (1 1), and %/,, Dy ( 5 _1)).

Ag another example we mention the Higman group
G = <a,b,c,d; b ab = a’, ¢ Tbe = b2, d"ted = o2, a"taa = a%>,

It can be written as a free product with amalgamation in the following



way:
Let H; = < a,b cj b~ lab = az, ¢ be = b? > and
Let H, = < ¢fd,a3 & ¢'d =%, & taa = a® >,

3. Operator algebras associated with free products with amalgamation

Let G = H i K be the free product of the two groups H and X with
amalgamated subgroup A, It is rather clear that some additional
hypotheses must be made on G to ensure that C; (6) will be simple
with a unique tracial state. Indeed, if G.= SL,(Z) then G has a
non trivial center, so 6 is not ICC, hence U(G) is not a factor.
This easily implies that the canonical tracial state cannot be the only
tracial state on C:(G).

Vle need the following definition:

l.et B be a subgrcoup of a group F, Let {xi’XZ} be a pair of dis-
tinct elements of F, neither of which is in B. e say that {x4,%,}

is a blocking pair for . B in F if the following condition is sa-

tigfied:

(*) TIf bEB, b # 1, then xgbxg € B, 1si,j5¢2,c¢€

|
-+
iy

-

O
1
+
x

!
i+
[

Note that (*) implies that xgngB, 121,22, ¢e=+1,8-=
unless xix? = 1, and that (*) is trivially satisfied if B = {1},
As remarked in [5], the existence of blocking pairs is not an un-

reasonable condition in groups in which there is a lot of "freenessg",

We say that a group G is an amalgam if it can be written G = H E K

with H #Z A # K,

We shall prove:

Theorem 1: Let G s H R X Dbe an amalgam such that there exists a

blocking pair for A in one of the factors of G, Then

C;(G) is simple with a unique tracial state,
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As examples of groups for which the theorem is valid, we mention:

a} the free product of two non-trivial groups, not both of order two.

b) G = H % K, where H. is a ffee group, A is a finitely generated
subgroép with infinite index in H and K is any group containing
as a proper subgroup an isomorphic copy of A (see [5]).

¢) the Higman group (the existence of a blocking pair is shown in

{121).

Proof of theorem 1:

Tt is enough to prove the theorem in the case when there is a blocking
pair {xi,xz} for A in K.
By [4, proposition 4] +the theorem will be proved if we can show that

G satisfies Powers' property:

( For every finite subset T of 6 - {1} and for every
natural number T 2 1, there exist elements bl""br of
(#%) 4 G and pairwise disjoints subsets %,,...,%4, of & such

that

-1 :
Py y € gt , s ¥ .’ s s

\

The structure of our proof that 6 satisfies (#%%) is inspired by

the proof of [9, theorem 1],

L.et o be an element of H not in A and set »r = aXys 8 = 0X,.

We need to establish some lemmas.

Lemma 1. For m € W U{C0}, 1let P{m ) be the following assertion:
m+1 =(m+1)

For all g ¢ G - {1} such that |g] =m, o g v has a

normal form which begins with o and ends with aﬂi unless m 1s
. + g
even and g can be written as »r . Then P(m) is true for all

m €N yf{ol}.

Proof: 1) Suppose m = 0.



Let g€A - {1}. Then rgrﬁi = ax,gx, e . Since {xi’XZ} is a
blocking pair for A in K, we have that xigx;1 € K- A and so

clearly P(0) is true for g.
L)

2) Suppose m = 1

If g€H-A, then P(1) 1is obviously true for g, i

Let g€ K-A. Then rzgrﬂz = axiaxigxgiupixiiawl. 1f xigxzif K-A,
then P(1) 1is again true for g. So we must check the case when
xigxiifiA - {1}, They are then two possibilities:

- a(xigxzi)a_1€.H:A and so P(1) 1is clearly true for g,

- a(xigxii)uﬂiEiA—{i} and it follows that P(1) is true for g by

using 1) on axlgxziaui.

3) Suppose m = 2

Let g€6G - {1}, with |g| = 2.

a) Suppose g has a normal form g = kh, where k¢ K-A, h¢ H-A,

Then rggrﬂ3 = ax, 0X axX, khxliuﬁixiiawixziumi
If x1k€IK—A, then P(2) is obviously true for g. So suppose
xikE'A. They are then three possibilities:
- ax,kh = 1, di.e. g = r"1 and P(2) is true for g.
- axikthA - {1}, By using 1) on ax kh, it follows that
Otxi(cz}{ikh)::{;im—1 has a normal form which begins with a and ends with
o ~+ 'Then clearly the same yields 1"3an3, i.e. P(2) is.true for g,
- axikhe H-A. Then P(2) is obviously true for g,
b) Suppose g has a normal form g = h'k', where h'¢€H-A, k'€ K-A.

We can proceed in the same way as in a) by "“looking" at k'x;1

instead of xik, so0 we omit this.

4) Suppose P(&) is true for all 1 £ %< m, where mz2,

The lemma will be proved by induction if we show that P{m+1) is

then also true,.



a)

i)

ii)

b)

Suppose first m + 1 is odd, so m+l = 2n+l, n € M,

If g has a normal form g = g1 Eon41 where 819 g2n+1€ H~-A,
then P(m+1) is obviously true for g.

8o suppose g has a normal form g = g1 8ons1 where

12 Boner€ KA

if xjg1€ A, then ax g, € H-A and there are two possibilities:
- the first is that (axigi)gQQ A, which implies that
ax,8,8,8, € K~A, and we can use P(m-1) on (ax1g1g2g3)gq...g2n+1
to obtain that Pmtl) is true for g.

~ the second is that (ax,g,)g,€ H-A. Then 1(ax1g1g2)g3...g2n+il

= = : -n

= 2n = m. Now obviously ax,g4...8, .4 £ r ", but also
n . . .n _ n-1

LR SRR SN £ v, (Because if OXy 81 0+8pnyq P » then g=r .

but |g| = m +1 while ]rn_ll = m=-2). Using that P(m) 1is true

for (axigigz)g3...g2n+1, Wwe clearly obtain that P{m+1) is

true for g,

P - -1
- " 1 .
if X1g1€ K-A, then we "look" at Bon+1%q

. -1 , .
- if Eon+1%1 € K-A, then P{m+1) is obviously true for g.

: -1 -1 -1
= Af gonaq ¥q €A, then g, . %,7a "€H-A and we can clearly

proceed in the same way as in 1).

Suppose that mt+l1 is even, so mt+l = 2p, p 2 2.

Suppose so that g has a normal form g = gi...gzp where

gy € K-A, €p € H-A.

If X 84 € K-A, then P{(m+1) is obviously true for g.

If x,84 €A, then ax;g € H-A and so there are two possibilities:
- the first is that (axlgigg)éiH"A and P(m+1) is then clearly

true for g.

- the second is that (ax1g1g2)€ A, Then (axlgigz)g36 K-A so



(ax1g1g2g3)gq...g2p -hasllength 2p -~ 2 and we can use that
P(2p-2) is true on it. Thus we obtain that either
~{2p-1)

2p-1 . .
T (axigigzgg)g”...gzpr has a normal form which begins

with o and ends with a_l, which implies that the same yields

r2P+1g r2p+1, or (uxigigzga)gu...g2 can be written as r—(pﬁi),

P
(it cannot be written as Pp—i_ since gzpﬁ H-A), which implies
that g can be written as r P, All together this means that

P{m+1) 1is true for g,

At last if g has a normal form g = gl...gzp where gié'HnA,
gszijA, then we can proceed in the same way by "looking" at

gsz; instead of x,8,.

o (End of the proof of lemma 1)

The next lemma is an immediate consequence of lemma 1,

Lemma 2.: Let F be a finite subset of ¢ ~ {1}, and define

3 =1 + max[f], Then for all fe€F, rlf »”? has a normal form
fer e

which begins with o and ends with a—i, unless f can be written

as a power of r in which case of course plf pd = F,

For k = 1,2,..., 1let Zk be the set of all elements w in G

such that s"ir-ka has no normal form which begins with an element

of K-A.

For example, w = rksh, where h€ H-A, 1is an element of Zk'

Lemma 3: The Zk's are pairwise disjoint.

Proof: Let £,8'€{1,2,,..1} and suppose that g < 2t

Set n = &' - LEM . Let W€Z£. Then



-1 -2 -1 -n -4 _

_ ! -1 =n
5 w =8 r v w=38 1

-1 -8
§ 8 v 'w
Sﬂlp-(n~1)x~i
1
_ .~1 _~(n-1) -t -
=s " r Xy x2(s
Since w€ 7 we have that either s_ir_gwciA, or that Snir—

a_iaxz(snirmgw)
1r_'%w)

Q'w has

a normal form which begins with an element of H-A., In both cases,

it follows now easily from the fact that xiixzeiK—A (since {xixz}
' -1 -

is a blocking pair for A in K), that s w has a normal form

which begins with x;1€ K-A, By definition, this implies that

wGiAg,, i.e. we have shown that Agn Ag, = #, o]
Lemma 4;_ sdzr_gy has a normal form which begins with xgi for all

YEG - T,y 8= 1,2,...

Proof: Let #€W. TFor all y€G-Z,, does sﬂir_gy have a

normal form which begins with an element of K-A, by definition
Thus s 2"ty = xgl o Ms" " *y) has a normal form which

2.
begins with xsi for all y<€6G-Z,. o

of 27

Now let F be a finite subset of 6 - {1}, say

% 23
>

fn}, neMW. Set so b, = rsr where

F: {fia"" 2'

i+ max|f|, & =1,2,... .
fe¢F

1.
n

If we can show that

1

(Fkx) bgfib; y€z, for all y€G-%Z,, i€{t,...,n}, ¢ = 1,2,... ,

we will have shown that G has Powers' property (lemma 3 shows that

the Zk's are pairwise disjoint) and so the proof of the theorem will

be finished.

Proof of (**%¥). let ye€6-Z,, 2£€N and i€ {1,...,n}

- Suppose f, is a positive power of r, £, = (uxi)...(axl).

-1 2.2 1 -] =2 =2
Then bgfibg Y f. s v 'y

u
i
3]
i

rgs(mxz)(axi)...(uxi)(s_zr_gy)

it
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By lemma 4 s_zr_gy has a normal form which begins with x;i.

Since xixgiéiK-A, it follows easily that swir_z(bgfibziy)

(axz)(axi)...(axl)(s-zr—ﬂy) has a normal form which begins with

a€H-A, i.e. bfibrlyen,.

. , ‘ -1 -1 -1 -1
Suppose f. is a negative power of r,f. = (%" )...(x1 a )
1 -2

y 2 rgs(axz)(xiiahi)...(xziuul)(s rﬂgy), and again,
using lemma 4 and the fact that xixgiéiK-A, we obtain that

Then bgfibg

-1
bkfibﬁ y(‘Zg.
is not a power of v,
A

~ At last suppose fi
1 L R 2, 4. -2 -
Then b, f.b, "y = r"s™(r'f.r “)(s "r “y).
By lemma 2, rjfir‘—j has a normal form which begins with o € H-A

and ends with u_iefH“A. Using lemma 4% this clearly implies that

smlr_g(bgfibziy) = (ax2)(r3fir_3)(5~2r"£y) has a normal form

1

which begins with o€ H-A, 1.e. bgfibg yEZZE.

a (End of the proof of theorem1)..

Remarks. 1) The existence of a blocking pair for A in one of the
factors of G 1s essential in the proof of theorem 1.
2) Any group G satisfying the assumptions of theorem 1 is
Ice. This can be shown directly, but it is also a
consequence of the theoren,
3) The theorem is also valid if G is the free product of

subgroups H_, for v in an index set I, with a subgroup

\)’
A is a proper subgroup of H, and such that there exists

a blocking pair in one of the factors of G.

In another direction we have:

Theorem 2: Let G 2 H * K be an amalgam such that:
A

a) there exists a blocking pair {xi,xz} for A in K,
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b) there exists an element o€ H-A such that apihang for all

he A -{1}.
Then U(G) 1is a IIimfactor which does not possess property T

of Murray and von Neumann (see [7]).

Proof: 6 1is ICC so U(G) is a IIl-factor.

Define F = {w€ G| w has a normal form which begins with an |

element of H-A}.

We will show that the following two statements are true:

i) FuaFa iz g - {1},

ii) F, xilfxgi, x, F x;l are pairwise disjoint,

By {7], this will prove the theorem,
Let g€¢G - {1}, g€ F

If lgl = 0, i.e. gecA - {1}, then b) implies that

a_lgaEH-A, 80 a—iga€F, hence gEaFa_i

If |g| 2 1, then g has a normal form which begins with

an element of K-A and it is easy to see that a_igae F

so again geafF ot

Thus 1) is true.

It is easy to verify that F and xlf:xgi (resp. xzf’xgi)

.. s . - -1 -1
are disjoint. We show at last that Xlin and szx2 are disjoint,
;1x1. Since {x,,x,} is a blocking pair for A

in K, g€ K-A, It follows clearly that ;zfﬁ,—1 dr for all

let B = x

fE€F. This implies that

-1 -1 . ~1 -1
x, £x Elefx for all feF, 1i.e. Xy FX " NX,F Xy = 9

1 1 2

Theorem 2 is valid for example when G 1is the Higman group (because

[12} shows the existence of a blocking pair in both factors of @)
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or of course when G 1s the free product of two non-trivial groups
not both of order two ([7]).

We conclude this note with a negative remark.

Let C be a group., C is said to be SQ-universal if every countable

group can be embedded in a quotient group of €. (see [5]).

The main result of {12] is that any group satisfying the hypotheses
of theovem 1 is SQ-universal, It is also shown in [8] that if G

is a finitely generated Fuchsian group which is not elementary, then

G is SQ-universal., Thus it is natural to ask: 1Is C:(G) simple
with a unique tracial state whenever G is ICC and SQ-universal?
To see that this question has a negative answer, we need the
following result of [9]:

If 6 has a normal amenable subgroup # {1}, then C;(G) is not
simple and the canonical tracial state is not the only tracial state

on C;(G). Now, let G be the direct product of an amenable - ICC

group H1 and of a ICC SQ-universal group H2 (for example take
Hy to be the group of all finite permutations of W and H, to
be IFQ. Then 6 = HixH2 is ICC, has a normal amenable subgroup

# {1} and is easily seen to be SQ-universal,
This provides also an example of a ICC SQ-universal group such that
its group von Neumann algebra possess property r (in contrast to

theorem 2).
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