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A CLASSIFICATION OF COVARIANTS 
AND CONTRAVARIANTS OF PLANE CUBICS 

by 

Trygve Johnsen 

CHAPTER 1 

Introduc-tion 

Let the group SL
3 

act on v3 , a three-dimensional vector 

space over the field, k, (k is alg.closed, char k = 0). This 

induces an action of SL
3 

on Sym v
3, and also on Sym(Sym3v3), 

and hence on Sym(Sym3 V 3) 0 Sym V 3 , which is isomorphic to a 
k 

bigraded polynomial ring. 

Similarly we obtain an action on Sym(Sym3 V 
3) 0 Sym(Sym1 V 3), 

k 
which is also isomorphic to a bigraded polynomial ring. 

We will find a set of ring generators over k, and the rela

tions between them, for the subring of Sym(Sym3v3)®SymV3 , 
k 

which is invariant with respect to the action of SL3• In 

classical notation (i.e. Salmon), the bihomogeneous elements of 

this subring are called covariants. I will also describe the 

corresponding invariant subring of Sym(Sym3V 3) 0 Sym(Sym1 V 3). 

The bihomogeneous elements of this ring are called contravariants 

in classical notation. A subring of both these invariant subrings 

is the ring of invariant elements of Sym(Sym V 3). The homogeneous 

elements of this ring are called invariants in classical notation. 

The classification of generators of this ring is a corollary of 

both the preceeding more general classifications. An easier proof, 

which I here omit, is also possible. 

All these problems are special cases of classifying the in

variant elements of the trigraded ring 
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The trihomogeneous invariant elements of this ring are called 

mixed concomitants in classical notation. This general problem is 

not solved here. 

The results that I will show in this paper, are partly sug

gested by Salmon, see [1], but he has not given any exact proofs 

in this book. 

The last chapter in this paper is devoted to showing the con-

nection between the invariants described here, and the so-called 

j-invariant, described f,ex. by Hartshorne, see [3]. 

CHAPTER 2 

MAIN THEOREMS. 

-2.1 A_ description of the action of GL
3 

• 

Let g E GL
3 

be given by 

\ve define: 

g•v ~ (>.11v1 + >-12v2 + >-13v3, >-21v1 + >-22v2 + >-23v3, >-31v1 + >-32v2 + >-33v3). 

When pESymV3 , which is isomorphic to k(x,y,z], 

d f . ( -1 ) e ~ne g•p = p g v • 

This gives: 

x = >.11g•x + >.12g•y + >.13g· z 

y = >.21g•x + >.22g•y + >.23g• z 

z = >.31g•x + >.32g•y + >.33g• z 
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Let a,~,y be the generators of Sym(Sym1v3) over k. Similarly 

11e obtain: 

g•a = A.11a+A.21~+A.31Y 

g• ~ = A.12a + }..221! + }..32 Y 

g•y = A.13a + }..231! + A.33Y 

where "the general line" is given by ax+ ilY + yz = 0, 

Correspondingly we let "the general cubic in JP~" be given by 

We interpret a, ••• ,m as the generators of Sym(Sym
3
v

3
). Similar 

to the above obtained actions of GL
3

, we get: 

and so on for g·b, ••• ,g•m. Common to all 10 is that the degree 

in the set A. 11 , ••• ,A.33 is 3. 

We no\v define: 

Rdef k[ ] a, ••• ,m,x,y,z N 

Vdef k[ a l a, ••• ,m,a,~,yJ N 

Sym(Sym
3
v

3
) ® Sym v

3 k 

Sym(Sym
3
v

3
) ® Sym(Sym1V

3
) 

k 

We define the bidegree of a bihomogeneous element of R to be 

(G,o), if the degree in a, ••• ,m is G, and the degree (order) 

in x,y,z is o, 

We define the bidegree of a bihomogeneous element of V to be 

(G,u), if the degree in a, ••• ,m is G, and the degree (order) 

in a,~,Y is u. 



- 4 -

For homogeneous elements of W we simply have a degree, G. 

2.2. Theorems 

We will prove these theorems: 

Theorem 2.2.1. 

SL3 R = k[S,T,U,H,e,J), where S,T,U,H,®,J have bidegrees 

(4,0), (6,0), (1,3), (3,3), (8,6), (12,9) resp. The only algebraic 

relation between these is: 

J 2 
= 4®3 + T2u2e2 + ®( -'+S3u4 + 2STU3H - 72S2u2H2 - 18TUH4 + 108SH4 ) 

- 16S4u5H- 11S2Tull·H2 - 4T2U3H3 + 54STU2H4 - 432S2UH5- 27TH6 • 

A more precise description of S,T,H,U,e,J follows in § 2.4. 

Theorem 2.2.2. 

SL3 V = k[S,T,P,Q,F,KJ, where S,T,P,Q,F,K have bidegrees: 

(4,0), (6,0), (3,3), (5,3), (4,6), (12,9) resp. The only algebraic 

relation between these is: 

K2 = ~(T2 + 64S3)F3- 1/8 TF2Q2- 12S2F2PQ + ~STF2P2 + ~ FQ4 

+ f SFQ2P2 - ~ TFQP3 - 27S2FP4 + ~ Q3p3 + 54SQP5 - 27TP6 • 

A closer description of P,Q,F,K follows in § 2.4. 

Corollary 2.2.3. 

SL3 W = k[S,T]. No algebraic relations between S and T. 
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2.3. ~restatement of the property of being a co/contravariant •. 
SL

3 
Sl

3 We recall that the bihomogeneous elements of R and V 

were called covariants and contravariants respectively. 

It can be easily shown that for a bihomogeneous polynomial 

C E R, the property of being a covariant is equivalent to: 

(2.3.1) C(g•a, ••• ,g·m,g•x,g•y,g·z) = (det g)w C(a, ••• ,m,x,y,z) 

for all g E GL3 , and 3w = 3G- o, where bidegree of C is (G,o). 

Similarly for a bihomogeneous B E V, bidegree B = ( G, u), 

the property of being a contravariant can be expressed as: 

(2.3.2) w B(g•a, .... ,g•m 1 g•o.,g•l3,g•y) = (det g) B(a, ••• 1 y) 

for all g E GL
3

, and 3w = 3G + u. It also follows easily that 

wE :N
0

• w is called the weight in both cases. 

We now take (2.3.1) and (2.3.2) as definitions of covariants 

and contravariants respectively. 

2.4. A description of S,T,U,H,®,J,P,Q,F and K. 

We refer to U as "the curve itself" or as "the general cubic". 

H def the Hessian of U. The formula for H is given in [ 1], 

page 183. 

It can be shown that the zeroes of a covariant in JP~ is a set 

of points, related to the "original curve", U , s. t. the zeroes do 

not change, even if we change the systems of coordinates (act with 

a g E GL3). Conversely will any coordinate-free geometrical alge

braic property be described by the locus of one or more covariants. 
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Such a geometrical property (for details, see [1] and [2] 

gives rise to another covariant, e, of bidegree (8,6). I don't 

know the general formula for this, but I will give the so-called 

canonical form of @ in 2.5. 

In each of the 9 inflexional points of a non-singular cubic (U), 

the polar conic splits up into the inflexional tangent and another 

line, the so-called harmonic polar. The product of these nine 

harmonic polars is a covariant of bidegree (12,9). We call this J. 

See 2.5. 

In C2], Salmon defines a so-called symbolic method from which 

all invariants and covariant can be defined. A proof of this is 

given in [4]. Symbolically we define 

s defm 234m~ ' and 

T def 123' 124' 2)5 Ylb 4% 2• The degrees are 4 and 6 resp. 

For fomulas, see [1]. 

We now define the contravariants K, P, Q and F. F is 

defined as the dual curve of U (bidegree (4,6)). K is defined 

as the product of the 9 inflexional points of U, considered as 

lines in the dual space (bidegree (12,9)). P is defined as the 

first evectant of S. (bidegree (3,3)). Q is defined as the 

first evectant of T. (bidegree (5,3)). For definitions of 

evectants, see [2], 

~ D?scription of canonical form. 

Choosing a proper system of coordinates, a nonsingular cubic 

can be written: 
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There are in general 12 possible m's for a given curve, 

Any other covariant/contravariant/invariant can also be written 

on such a canonical form, since they are defined by a, ••• ,m 

defining U. On canonical form, v1e obtain: 

4 
Scan = m- m 

@ 
can 

3 6 = 1-20m - 8m 

= -m2 (x3 + y3 + z3) + ( 1 + 2m3)xyz 

= (1 + 8m3)3(z3 _ x3)(y3 _ z3)(x3 _ y3) 

= 3m3(1 + ?..m3)(x3 + y3 + z3)2 - m(1- 2om3- 8m6 )xyz(x3 + y3 + z3) 

- 3m2(1- 20m3- 8m6 )(xyz)2 - (1 + 8m3)2 (y3x3 + y3z3 + x3z3) 

Pcan = m(a3 + f33 + y3) + (1- 4m3)a~y. 

Qcan = (1- 10m3)(a3 + ~3 + y3)- (30m2 + 2L~m5)al')y 

Kcan = (1 + 8m3)3(y3 _ a3)(f33 _ y3)(a3 _ f33) 

F = a 6 + f,l 6 + y3- (2 + 32m3)(a3f33 + a\3 + f.l\3)- (24m+ L~8mL~)(af,ly) 2 can 
2 3 7. 3 ·-24m af.ly(a +!3 7 +Y ). 

CHAPTER 3 

-·PROOF OJ!' THEOREMS, 1' ST PART 

In this chapter we will find sets of generators for the rings 

SL3 SL3 R and V • 

~· Some technical lemmas. 

For a co/contrcvariant 0, we denote its canonical form by Ocan· 
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are co/contravariants, and A can divides 

and A neither possesses multiple factors nor has the discriminant 

of U, D, as factor, then A divides B in general. (D = T2 + 6483). 

Proof of lemma 3.1.1._ 

It is enough to prove A = 0 => B = 0. Pick a set of values 

a, ••• ,m, and an associated "canonical" value for m, m
0

• This is 

possible if a, ••• ,m represents a canonical curve. We assume for 

simplicity of notation that A is a covariant. 

A(a, ••• ,m,x,y,z) = 0 => Acan(m
0

,x,y,z) = 0 

=> Bcan(m
0

,x,y,z) = 0 => B(a, ••• ,m,x,y,z) = 0 

Look at the hypersu:cface A = 0 in /A~3(or lPf X JP~) 

B\A=o = 0 on a dense open set on A = 0. (i.e. on each of its 

irreducible components), since DnA has coo.im2:2. Therefore: 

B = 0 on A = 0. Q.E.D. 

Lemma _).1. 2. 

a.) m U H ® ' can' can' can are alg.indep./k. 

b.) m, pcan' Qcan' Fcan are alg.indep./k. 

functions in Proof: a.) 

x3 + y3 + z3, 

The elementary symmetric 

x3y3 + x3z3 + y3z3, (xyz)3 can be written as rational 

functions in m U H and ® • ' can' can can 
Sioilarly for b.) Q.E.D. 
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Lemma 3.1.3. 

For a covariant C, bidegree ( G, o), 1veight = w, we have, 

v1here 

2 w = (e -e) Ccan(m,x,y,z), 

c.) 2 G 1-e2m 2 W (1+2€ m) c (. 2 ,g
3
x,g

3
y,g

3
z) = (e -e) Ccan(m,x,y,z), 

can 1+2e -m 

d.) Exchange x,y,z with a,~,y resp. in a.), b.), and c.). 

Then a., b., and c. applies to contravariants, C , as well. 

Proof of lemma 3.1.3: 

A direct calculation using formulas (2.3.1) and (2.3.2). 

We now introduce the concepts x-weight, y-weight, z-v1eight, 

where each of these are defined for a, ••• ,m,x,y,z,a,~,y. The 

x-weight of a product is the sum of x-1veights of its factors. 

Similarly for y--weights and z-weights. 
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We have the following table (definition): 

a b c a2 a2 b1 b3 c1 c2 m X y z a 13 y 
. 

x-w. 3 0 0 2 2 1 0 1 0 1 -1 0 0 1 
. 

Y·•W, 0 3 0 1 0 2 2 0 1 1 0 -1 0 0 
~---~ - . ···-· -

0 0 3 o 1 1 0 1 2 2 1 0 0 -1 0 Z-Wo 
·~ 

Lemma: 3.1.4: 

Let C be a co/contravariant of \'leight w. For all terms 

of C we have: x--weight = y-weight = z-weight = w. 

Proof of lemma 3.1.4. 

· Act on C v1ith g = ( 6 ~ 2) 
0 0 1 

formulas (2.3.1) and (2.3.2). 

g -- (g1 0? 0~) Similarly when " or 

).. arbitrary in k , and use 

(
1 0 01 0 1 0 
0 0 ).. 

g. Gradual approach to finding sets of generators for 
SL

3 and V , 

0 

1 

0 

We now list a sequence of lemmas that will bring us nearer to 

the conclusions of theorems 2.2.1 and 2.2.2. 

Lemma .2. 2. 1 • 

a.) For a covariant, C , we have: 

where P
0

,P1 ,P2 are polynomials in 4 indeterminates. 

0 

0 



- 11 -

b. ) For a contravariant , B , we have: 

( 3 3 3 ( ) ( 3 3 3 ( )2 ( 3 3 3 Bean = P
0 

m,o. ,!3 ,y ) + o.!3y P1 m,o. ,!3 ,y ) + n!3Y P2 m,o. ,!3 ,y ), 

where P
0

,P1 ,P2 are polynomials in 4 indeterminates. 

Lemma 3.2,2. 

a,) For covariants, C, where weight C is even, we have: 

h It). 1 '1' w ere ,J ~s a po ynom~a 1n 4 indeterminates, 

b, ) For contravariants, B , where vreight B is even, we have: 

0 where 0 is a polynomial in 4 indeterminates. 

Lemma 3.2.3. 

a,) For even-weighted covariants, C , we have: 

(3.2.1.) 

b.) For even-weighted contravariants, B , vre have: 

(3.2.2.), 

Lemma 2,.2,4. 

a.) If an even-weighted covariant, C , is written in the 

form (3.2.1.), and there exist terms with 1 = 0, we have for the 

corresponding i,j,k-values: 

G-i-3j-8lt s O(mod 6), and G-i-3j-8k >o, where bidegree C = (G,o). 
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b.) If an even--weighted contravariant, B, is written in the 

form (3.2.2.), and there exist terms with 1 = 0, we have for the 

corresponding i,j,k-values: 

G-3i-5j-4k"' O(mod 6), and G-3i-4k-5j _::: 0, \1here bidegree B = (G, u). 

Lemma 3.2.5. 

a.) Assume 0 is an even-weighted covariant. Referring to 

formula (3.2.1.), v1e have: 

9,;-;:i-.-2~-_f3k 
0- 2: q. 'k T • uiHjek is a covariant that has S 

l=O 1J 0 

among its factors. 

b.) Assume B is an even-weighted contravariant. Referring to 

formula (3.2.2.) we have: 

among its factors. 
',,· . 

Proposition 3.2.6. 

a.) All even-vJeighted covariants, 0 , can be written on the form: 

4i+6j+k+31+8m = G, 3k+31+6m = 0, and bidegree 0 = (G,o). 

b.) All even-weighted contravariants, B , can be written on the 

form: 

4i + 6j + 3k +51+ 4m = G, 3k + 31 + 6m = u, and bidegree B = (G,u). 
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~emma 2.2.7. 

a.) An odd-weighted covariant has J among its factors. 

b.) An odd-weighted contravariant has K among its factors. 

The quotient then is an even-weighted co- or contravariant 

resp., and we have found sets of generators for RSL3 and VSL3 
' 

provided the sequence of lemmas are proved. 

).3. Proof of~ sequence of lemmas listed in section 2.2. 

Proof of lemma 3.~. 

Put 

We let 

1 i j k 
= L:qijklm x y z • 

I e o ol 
g1 = 1 o 1 o , 

\0 0 1 

on C. Applying (2.3.1), we get: 

(3.3.1) 

(1 0 0) 
0 e: 0 
0 0 1 

act 

(3.3.2): 2i+l .. 2j+l" 2k+l ='W (mod3) for all terms in (3.3.1). 

This implies i " j "' k (mod 3), which gives us the conclusion of 

lemma 3.2.1 a. For contravariants the analogous formula to (3.3.2) 

is i + 1 " j + 1 " k + 1 s (mod 3) which gives the conclusion of 

lemma 3.2.1. b. 

Proof of_l§mma 3.2.2: 

An even-weighted co-· or contravariant is symmetric in x, y 

and z over k(m] on canonical form. This makes P
0

,P1 and P2 
of lemma 3.2.1 to be symmetric in their 3 last arguments (inde

terminates). This gives the conclusion of lemma 3.2.2. 
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Proof of lemma 2._.2.3. 

This part of the sequence is the hardest to prove. In lemma 

3.2.1 we used the fact that we can *stretch" each axis with a 

factor e, and still maintain the canonical form. In lemma 3.2.2 

we used the fact that we could permute the axis. Here 1ve 1vill 

change to another system of lines connecting the 9 inflexional 

points. There are 4 such systems altogether. 

Lemma 3.2.2 enables us to write a co- or contravariant 

( C or B) on the canonical form like this: 

l ~ ~ 3 i j 3 3 3 3 3 3 k 
C = L: m (x? + y? + z ) (xyz) (x y + x z + y z ) •q .. 

can f' 't ~Jkl 
~n~ e 

This gives: 

0 can = L: q. '11' 
ijkl ~J c 

B = L: C. 'kl 
can ijkl ~J 

We now multiply the t1vo last equations with 

• 

where D is the discriminant, and r is a large integer (large 

enough to make the denominators vanish). This gives: 
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for suitable polynomials p and q. 

We now use lemma 3.2.2 on the covariants DrC, U,H,® and on 

the contravariants, DrB,P,Q,F to show that we can "cancel" the 

factor ((1+2m)(1+2em)(1+2e2m)]r on the left sides of (3.3.L>.) 

Lemma 3.2.2.a m1d calculation gives: 

= 

2 j 
• [ (1-m) u 3 . . H J . 

( 1+2m)3 can- (1+2m)3 can 

k 

i 
1-m H J 

(1+2m)4 can 

3((1-m)(1+2m2.3 + 2{1-m)4 ) 
(1+2m)s 

(UH)can-

® J can • 

Bidegree C = (G,o). 

This gives us (1+2m) as factor 3r times on the left side, 

and (G-1)- (i+2k) + 3r times on the right side for each combina-

tion i,j,k,l. 

Corresponding usage of lemma 3.2.2.d. gives 3r times on the 

left side, and 3r+ (G-1)- (2i+k) times on the right side for the 

contravariant, B. 
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Analogous usage of lemma 3.2.2, b, c, and d gives the same 

result for the factors (1+2em), and (1+2e2m). Since 

m,Ucan'Hcan'@can are alg.indep./k, and m,Pcan'Fcan'Qcan are 

alg.indep./k,k[m,Ucan'Hcan'@can] and k[Pcan,Qcan'Fcan] are 

UFD's. This enables us to "cancel" factors successively in both 

rings, and the problem of showing the lemma is reduced to show: 

(G-1)- (i+2k) >O, for each term of Ccan 

(G-1)- (2i+k)>O, for each term of Bean' 

corresponding to the expressions (3.3.3.). 

We start with the covariant case, and repeat first part of 

which is a sum of products. One typical product contains the term: 

n ml x3i+3k+j y3k+j zj 
~ijkl. • 

This monomial may be cancelled by another, coming from another 

product (but not from the same). For the moment, assume it is not 

being cancelled by any other monomial. Then it is a "canonical 

specialisation" of a term 

sbt v 1 x3i+3k+j y3k+j j a c •m z •qijkl• 

We have: G- 1 = s + t + v. 

Lemma 3.1.4 gives: t ~ V+k, s = v+k+ i, which gives: 

G- 1 = s + t + v = 3v + i + 2k z i + 2k. 
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•. 
Now we treat the "contravariant" case. In the same way we 

.-
Lemma 3:1.4 gives: 

s + i = t , t + k = v, and G - 1 = s + t + v ,:::: k + 2i. 

The proof is not finished yet, because the monomials we have 

referred to, may be cancelled by other monomals coming from other 

products corresponding to other i, j, k-combinations with the same 1. 

The point is, however, that these new products will contain other 

monomials which are not cancelled by anyone from the "old" product. 

Also the "new" (i+2k)·- and (2i+k)·-value do not decrease, and 

this process of cancelling monomials and "substituting" them with 

new ones can not go on infinitely long. The task of verifying the 

existence of such a process is tedious, and I omit describing it 

in details here. It can be illustrated like this: 

j 

~------------~ 

l·- difference is divisible 
by 3 

We just remark that the last, uncancelled term we end up with; 

coming from a product; 

1 3 3 3 i1 j1 3 3 3 3 3 3 k1 :!:qijkl m (x +Y +Z ) (xyz) (x y +X z +y z ) 

has the property that j 1 - j .:5_ 0, j 1 - j "' 0 (mod) 3) , 
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i 1 + j'l + 2k1 = i + j + 2k. This applies also if we use a, S, y in

stead of x,y,z respectively. 

We now obtain: G- 1 ;:: 2k1 + i 1 > 2k + i 

for covariants, and 

for contravariants. Q.E.D. lemma 3.2.3. 

Proof of lemma 3. 2.L! .• 

Lemma 3.2.3 now gives: 

We were to prove that if there were any terms with 1 = 0, 

then for the corresponding i, j, k-val ues, G- i - 3j - 8k ::> 0, 

G- i- 3j- 8k "' 0 (rood 6) • Now 

The i J' k' s ' , in this summation are referring simultanously to 

those in expression (3.3.3) and (3.3.L~) with 1 = 0. The remarks 

at the end of the proof of lemma 3.2.3 ensure the existence of a 

term of the form 

where G = s + t + v = 3v + i 1 + 2k1 , corresponding to each i, j ,k

combination. This gives: 
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(j1-j) "' 0 (mod 3) , so we have to prove that 3(v-j) "' 0 (mod 2) • 

But: weight: W: G-o/3: 3v+i1 +2k1 -i1 -j1 -2k1 : 3(u-j1 )+2j1 

is even, so 3(u .. j 1 ) is even, and hence: G-i-3j-8k = 0 (mod6). 

For contravariants lemma 3.2.3 gives: 

(3.3.5) 

vle were to prove that for those terms 1vith l : 0, for the corre-

sponding i,j,k-values: 

G- 3i- 5j- 4-k > 0, G- 3i- 5j- 4k - 0 (mod 6) • 

We look at: 

and a slightly modified version of the analogous proof for co-

variants gives: 

G-3i-5j-Lfk --0 (mod6) for the current i,j,k-combinations. 

Application of lemma 3.2.2 gives that 

i for suitable g_ijkl E k. Comparison with (3.3,l!-) gives 

G- i- 3j - 8k ,2: 0 for all combinations i, j ,k corresponding 

to l : 0 in (3.3.4-), Similarly G- 3i- 5j- 4k > 0 for 

i, j ,k-combinations lvhen l : 0 for contravariants. 

Q.E.D. lemma 3.2.4. 
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Proof of lemma 3.2.5. 

Let 0 and B be evenweighted co- and contravariants 

respectively. 

Put (3.3.4) 

Lemma 3.2.ll- gives that 

is a well-defined covariant which has m as factor on canonical 

form (where combinations of i,j,k,l correspond to thoffiof (3.3.4)). 

2 Lemma 3.2.2, a, b, and c gives that (m-1), (m-e), (m-e ) 

also are factors of Lean' where e = ei2n/3. This means that 

Scan= m(m-1)(m-.e)(e2-m) = m-m4 is factor in Lean' Since S 

has no multiple factor, and no factors in common with the discri

minant, S divides L in general. 

Analogous usage of lemma 3.2.2.d gives the result for the contra

variant B. 

Proof of proposition 3.2.6. 

Lemma 3.2.5 gives that an even-·vleighted covariant 0 can be 

written as 

where 01 is either 0, or a covariant of bidegree (G-4,o). 

If 01 is a constant, are we through; if not, we have weight 01 
is G- 4- o/3 = weight 0- 4 is even, and we repeat the process 
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on c1 • After maximally (*) steps, the process stops, and we 

have reached the conclusion of the lemma for covariants. 

The "contravariant case" is treated in the same way. 

Proof o.f lemma 3.2~. 

Let C and B be odd-weighted co- and contravariants 

respectively. 

Independent of the lveight-assumption we obtained in lemma 3. 2. '1 

that 

( 3 3 3) ( 3 3 3 ( 2 3 3 3 Ccan~P0 m,x ,y ,z +xyzP'l m,x ,y ,z )+ xyz) P2 (m,x ,y ,z ). 

Similar as in lemma 3.2.2 we now obtain that P
0

,P1 ,P2 are anti-

symmetric in their 3 last indeterminates. 

(x3-y3)(y3-z3)(z3-x3) is .factor in ccan· 

This means that 

Since J ~ can 
J is factor can 

In order to generalize to general .form, we must show that J 

has no multiple .factors, and none common with D on general form. 

This is not immediate since the statement is not valid on canonical 

form If J had multiple factors on general form, this would 

be the case on canonical form; and therefore we can conclude that 

no such eventual .factor can contain x, y, or z, since there 

are 9 different ones of these on canonical form. Therefore vle 

are in a position to use lemma 3. '1. '1 if we can show that J has 

no factors only including a,b,c,a2 , ••• ,c2 ,m. 

The plane cubics constitute a JP~. It is enough to show that 

the curves on which J vanishes identically, constitutes a subset 

of codimention ~ 2. 
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Since J = (1+8m3)3(x3-z3)(x3-y3)(z3-y3) J does not 
c~ ' c~ 

v~ish identically on the non-singular curves; (1+8m3)3 I 0, 

when a curve is non-singular. 

From the c~onical form, J(1,1,1,0, ••• ,0,m,x,y,z), we c~ 

construct J(a,b,c,O, .•• ,o,m,x,y,z), using lemma 3.1.3. This gives: 

\1e here remark tha·t; the reasoning for contravari~ts goes on in 

~ ~alogous way all the way through the proof of this lemma, with 

a,~,y in the place of x,y,z, and K in the place of J. For 

K(a,b,c,o, ••• ,o,m,a,p,y), we obtain 

(abc+8m3)3(ay3-ca3)(ai33-ba3)(bY3·-cS3). He put b = c = m = 1, a= 0. 

Then "the original curve", U , becomes: y3 + z3 + 6xyz = o. This 

is a curve with a node in (1,0,0), ~d neither J nor K 

v~ishes indentically for this node-curve. This me~s that J 

(or K) only v~isb.es on a set of curves included in cusp-curves 

~d reducible curves. Cusp-curves correspond to T = S = o, ~d 

is a set of curves of codimension 2. Reducible curves constitute 

a JP~ x JP~ which is also of codimension 2. 

Therefore neither J nor K possesses factors only containing 

a,b,c,ooo,mo Therefore J divides DC (K divides DB) in 

general when C(B) is odd-weighted. But since J(K) has no 

factors in common with D, J divides c (K divides B) • 

Q.E.D. 

\1e have now obtained the results of theorems 2.2.1 ~d 2.2.2, 

with one import~t exception; the statements about relations, 
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CHAPTER 4 

PROOF OF THEOREMS (PART 2). 

We now will find the relations be·i;ween the generators we found 

in chapter 3. 

a. S,T,U,H,® are alg.indep/k. 

b.) S,T,P,Q,F are alg.indep/k. 

Proo{. 

a.) Tr.d k[S,T,U,H,®]: k[S,Tl = 3 which is true on canonical 

form, and therefore in general (see lemma 3.1.2). 

Therefore it is enough to sho~;: Tr.d k[S,T]: K = 2. Assume 

3GEk[X,Y], s.t. g(S,T) = 0. 

X or Y as factor because 

We can assume 

siTj contains 

G does not have 
2. . 

(abc) J(abcm)~, 

which is not 0, as an additive term. Hence there are some terms 

in G, containing only X or some containing only Y (or none 

of them). If some with only Y exist;, S = 0 => 

that only a finite number of T-values is possible 11hen S = 0. 

a = b = c = r, a2 = a 3 = ••• = c 2 = m = 0 gives S = 0 , 

T = r 6 , r arbitrary, so this is a contradiction. 

We obtain a similar contradiction assuming that some t.erms 

with only X exist, so there can be no such G. This proves part a.) 

b. ) Similar. 
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Proposition 4o2, 

The relations 

J 2 = lf.@3 + Tu2e2 + ®( -4S3uL~ +28TU3H-72S2U2H4 -18TUH3 +108SH4 ) - 16Slf·u5H -

- 11S2TU4H2 - 4T2u3H3 + 54STU2H4 - 432S2UH5- 27TH6 

and (4o2o1) 

K2 
= ~(T2 +64S3):m3 - ~ TF2Q2 - 12S2F2PQ + ~ STF2P2 + 1~ FQ4 + 4f SFQ2P2 :.. 

- ~ TFQP3- 27S2FPlf. + ~ Q3p3 + 54SQP5- 27TP6 

are valid, and are the only polynomial relations between 

S,T,U,H,®,J and S,T,P,Q,F,K, respectivelyo 

Proof of pr~ L~o.S• 

It is clear that J 2 and K2 can be uniquely expressed in 

S,T,U,H,@ and S,T,P,Q,F since they are even-weighted, and since 

each of the tvro sets are alg.indepo/ko 

In [1], Salmon has calculated the first relation, and I have 

copied his way of calculation, in order to express K2 in S,T,P,Q,Fo 

I will now show that each polynomial relation between S,T,U,H,®,J 

contains (LJ.o2o1) as a factoro The "contravariant case" can be 

treated analogouslyo 

_tpdef 
vle define ,,/\. 

relation 

k(S,T,U,H,€1). J satisfies the polynomial 

(4.2.2) 

To show that (L~o2o2) is irreducible in ~[X], it appears to be 

enough to show that 
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It cannot be so, because the largest degree in @ is three, which 

is an odd number, 

It is now easy to verify that all polynomial relations betlveen 

S,T,U,H,®,J must contain (4.2.1) as a factor; x2 -R being the 

irreducible polynomial of J over Jr. 
For contravariants the proof is built on the fact that 

.,fkCT2 + 6483)113- 1/8 TF2Q2 + ••• - 27TP6 cannot be a square in 

k(S,T,P,Q,F), the largest degree in F being 3. 

This gives the proposition. 

CHAPTER 5 

REMARKS ON THE j-INVARIANT 

R. Hartshorne mentions in [3] an entity called the j-invariant 

(which has nothing \·lith the mentioned J -covariant to do). 

After a change of coordinates a plane non-singular cubic can 

be written 

iz = x(x-z)(x-AZ), A E k, 

i.e. a different canonical form from that Salmon (and I) has used. 

The j-invariant is defined as 

8 2 
j(A) = 2 ~A -A+1) • 

A (A-1) 2 

According to Hartshorne, this j classifies a non-singular cubic 

up to projective equivalence (Hartshorne has a more general view-
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point, classifying elliptic curves). There are altogether 6 

different A's (in general) that give the same j-value, corre

sponding to 6 projectively equivalent canonical curves. Further 

on, there are as many equivalence classes as elements of k. 

I will now define the j-invariant for a (not necessarily 

canonical) non-singular cubic in general. 

If we enlarge our concept of invariants a bit, we can talk 

about invariants that are not necessarily polynomials, but rational 

function in a, ••• ,m. These invariant must satisfy: 

I(g•a, ••• ,g•m) = I(a, ••• ,m) (5.11) 

for all g E 8L
3

, or all g E GL
3, depending on how "strong" the 

invariance is expected to be. I now go for an invariant in this 

sence, satisfying (5.11) for all g E GL
3

, coinciding with Harts

horne's for his canonical curves. Calculations, testing, and 

failing gives that 

j(a, ... ,m) = 
210-11·13·83 

T2 + 6483 
coincides with 

the j-invariant. We ·t;ake this as a definition. 

Proposition _5.1. 

j classifies all non-singular plane cubics. There are as 

many classes as there are elements of k. 

Proof of prop. 5.1. 

That j takes equivalent curves to equal values, is clear, 

since j is the quotient of t\vO invariants, the weights of the 

nominator and the denominator being equal. 
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To show that non-equivalent curves get different j-values, 

it is enough to regard canonical curves; 

Which curves correspond to a given j-value, 

the irrelevant factor 210.11·13) 

(We disregard 

[S(m)l3 This is equivalent to: 

(5.1.2) 

I.e.: Maximally 12 different m's give the same j. 

We also observe that to each value of j, there is at least 

one m. 

Lemma 3.1.3 and 3.2.1 gives that to a curve with m-value m
0

, 

there are projectively equivalent curves with m-values: 

em 
0 

1-m 
0 --

1 + 2mo 

e( 1-m ) 
0 

1 +2m 
0 

2 e ( 1-·m ) 
_Q_ 

1 +2m 
0 

1- em 
0 

1- e2m 
0 

1 + 2em
0 

1 + 2e2m
0 

e(1-em ) e(1-e2m ) ei·2n/3 0 0 
€ = 

1 + 2em 1 + 2e2m 
0 0 

e2(1-em
0

) e2(1-e2m ) 
0 

1 + 2em
0 

1 + 2e2m
0 

s.t. (maximally) 11 others are equivalent to the original one. 

Pick a j-value j
0

, and a m-value m
0

, that gives the 

j-value j
0

• vle make the equation in m, that m should be 
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either m
0

, ot' one of the 11 that we just listed: 

1-e2m 

1+2€2:0) ~ 0. (5.1.3) 

A long calculation gives that the equations (5.1.2) and (5.1.3) are 

the same. This proves the proposition. 

This also gives an interpretation of j as the product of 

the different m's corresponding to a given equivalence class 

(we disregard the factor 210 .11·13 once again). 
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Appen§ix on binary quartics. 

All the work with trinary cubics was based on the fact that 

such a curve could be 1vritten on a canonical form with only one 

coefficient, m, after an action of a suitable element of GL3 
(in the generic, nonsingular case). 

One could ask in what other cases the method of a canonical 

form with only one coefficient, could be used. If n is the 

number of variables, x,y,z, ••• , 

f . ....n-1 f' hypersur ace ~n ~ , one ~nds 

and r is the degree of the 

that this is only possible 1·1hen 

One checks immediately that n ; 3, r = 3, and n = 2, r = 4, 

are the only cases. This indicates the possibility of computing 

the covariants and contravariants of binary quartics by the same 

methods as for trinary cubics. In fact, it can be done, and this 

is no new result. For binary polynomials, we have other and 

more elegant ways to compute the covariant ring for low r, but 

just for fun, we will prove the following theorem, which is given, 

f.ex. in Springer's lecture notes, nr. 585, p. 61 (T.A. Springer). 

Theorem 1. 

For binary quarl;ics the covariant ring is given as k[S,T,U,H,J), 

where the bidegrees are (3,0), (2,0), (1,4), (2,'+), (3;6). The 

only relation between these is J 2 
= 4H3 - su3 - TU2H. 

U is "the polynomial itself". H is the Hessian of U (up 

to scalars) S = 0 expresses that U is a sum of t\vO forth powers. 
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T = r 4 (U,U), J = r 1(U,H). (Transvectants, see Springer). 

H,S,T,J are defined up to scalar factors. 

Scetch of proof: Any quartic without a repeated root can be 

written on the canonical form 

ucan 
4 LJ. 2 2 

vTe get = x +y +6mxy • 

s 3 2 4 4 2 2 2 
= m-m 1 Tcan = 1+3m, Hcan = m(x +y ) + (1~3m )x y • can 

Jean = ( 1-9m2 )xy(x 4 -y LJ.). The lemma sequence becomes: 

Analogue of lemma 3.2.1. 

Any covariant can on canonical form be written as 

( LJ. 4) ( )3 ( 4 4) xyP 1 X , y + xy P 3 X , y if \'Ieight C is odd 

4 4 2 4 4 P
0

(x ,y ) + (xy) P2 (x ,y ) if vmight C is even. 

P. are polynomials for i = 0,1,2,3. 
J. 

i = ein/2 • 

Analogue of lemma 3.2.2. 

Even-weighted covariants may be written 

0can = 
144'22' ~ m (x +y )1 (x y )J•q .. 1 • 

ijl l.J 
(I.1.) 

(one uses g = [~ 6J) 
Analogue of lemm~~?~3(weight C is even). 

Any covariant can be written: C
0

an = lliluiHjqijl 
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One uses (analogously to lemma 3.'1.3) 

to handle the factor '1 -3m of the discriminant, 2 
Dean = '1 - 9m , 

and a similar g to handle '1 + 3m. The analogue of the formula 

(G-1)- (i+2k) > 0 is (G-1)- i _;;: 0, now referring to (i. '1.) 

Analogue of lemma 3.2.4. 

If an even-weighted covariant is written on the form (I.2.), 

for 1 = o, the corresponding (i,j)-combinations give 

G- i - 2j is even, and G- i - 2j > 0 • 

froof:.: Similar to that of 3.2.4. 

An.alogue of 3. 2 .,2. 

Referring to (I.2). G-i-2j 
def ( " 2 i J' L an= C ·- "-'<;!· •1 •.T U H ) 

c l=olJ can 
has Scan as factor. 

Proof: The polynomials 4 4 4 4 2 2 4 4 2 2 
X +y, X +y +6•'1xy, X +y +6•(-'1)xy 

are projectively equivalent, so: 

=> -m(m-'1)(m+'1) = s can is factor in 

One generalizes to general form as for trinary cubics. 

Analogue to lemma 3.2.Z. 

An odd weighted covariant has J as a factor. 

Proof: xY is a factor, and 4 4 
X - y is a factor in ccan• 

The rest of the proof is similar to that in 3.2.7 •• 
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The relation J2 
= 4H3- su3 - TU2H is computed on canonical 

form, and then generalized to general form, 

Making the remaining analogues is left to the reader, lcnowing 

that: 

s 2 2 2 3 = a
0 

a2aLJ_ + a1 a2a3 - a
0 

a3 .. a1 aLJ_- a2 

T = a
0

a4 - L!-a1a3 + 3a~ 
when 


