```
ISBN 82-553-0484-3
Mathematics
NO. }
May }2
1982
```

PLURISUBHARMONIC FUNCTIONS
ON SMOOTH DOMAINS by

John Erik Fornæss

```
Plurisubharmonic functions on smooth domains
    by
John Erik Fornæss
```

1. In this short note we will discuss regularization of plurisubharmonic functions. More precisely, we will address the following problem:

Question. Assume Ω is a bounded domain in $\mathbb{C}^{n}(n \geqq 2)$ with smooth $\left(C^{\infty}\right)$ boundary and that $\rho: \Omega \rightarrow \mathbb{R} \cup\{-\infty\}$ is a (discontinuous) plurisubharmonic function. Does there exist a sequence

$$
\left\{\rho_{n}\right\}_{n=1}^{\infty}, \quad \rho_{n}: \Omega \rightarrow \mathbb{R}, \quad \text { of } \quad C^{\infty}
$$

plurisubharmonic functions such that

$$
\rho_{n} \downarrow \rho \text { pointwise? }
$$

If ρ is continuous, the answer to the above question is yes (see Richberg [3]). On the other hand, when ρ is allowed to be discontinuous and Ω is not required to have a smooth boundary, the answer is in general no (see [1], [2] for this and related questions).

Our result in this paper is that the answer to the above question is no. We present a counterexample in the next section. The construction leaves open what happens if we make the further requirement that Ω has real analytic boundary. Another question, suggested to the author by Grauert, is obtained by replacing Ω by a compact complex manifold with smooth boundary, and assuming
continuity of ρ.
In the next section we need of course both to construct the domain Ω and the function ρ. These constructions are intertwined and therefore we need at first to define approximate solutions Ω_{1} and ρ_{1} and then use both to define Ω and ρ. The geometric properties we seek of Ω are the following. There exists an annulus $A \subset \bar{\Omega}$ such that $\partial A \subset \Omega$. Furthermore there exist concentric circles C_{1}, C_{2}, C_{3} in the relative interior of A arranged by increasing radii such that $C_{1}, C_{3} \subset \partial \Omega$ and $C_{2} \subset \Omega$. Finally there exists a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of annuli such that $A_{n} \rightarrow A$ and $A_{n} \subset \Omega \forall n$. The properties we seek of ρ are as follows. The function ρ is strictly positive on C_{2} and is strictly negative on ∂A A A simple application of the maximum principle now shows that smoothing is impossible.

The example we construct is in \mathbb{C}^{2}. This is with no loss of generality as one obtains then an example in \mathbb{C}^{n} by crossing with a smooth domain in \mathbb{C}^{n-2}, rounding off the edges and pulling back ρ to the new domain.
2. All domains and functions which we will consider in $\mathbb{C}^{2}(z, w)$ will be invariant under rotations in the $z-p l a n e, i . e$. will depend only on $|z|$. They will also be invariant under the map $(z, w) \rightarrow(1 / z, w)$. Because of the latter we will describe only those points (z, w) in these domains or domains of definitions for which $|z| \leqq 1$.

If U is a domain in $\mathbb{C}^{2}(z, w)$, we let U_{z} denote the part of U over z, i.e. $U_{z}:=\left\{(n, w) \in \mathbb{C}^{2} ; \quad n=z\right.$ and $\left.(\eta, w) \in U\right\}$. Abusing notation we will also take U_{z} to mean the set $\{w \in \mathbb{C} ;(z, w) \in U\}$.

Similarly, if $\sigma: U \rightarrow \mathbb{R} u\{-\infty\}$ is a function, then σ_{z} denotes the restriction of σ to U_{Z}.

Let A be the annulus in \mathbb{C}^{2} given by
$A=\{(z, w) ; w=0$ and $1 / 2 \leqq|z| \leqq 2\}$. This is then the limit of a sequence of annuli $\left\{A_{n}\right\}_{n=1}$ where
$A_{n}=\{(z, w) ; w=1 / n$ and $1 / 2 \leqq|z| \leqq 2\}$. We will next describe a bounded domain Ω_{1} in \mathbb{C}^{2} with \mathcal{C}^{∞} boundary containing all. $A_{n}{ }^{-} s$ (and hence $\left.A\right)$ in it's closure. It will suffice to describe $\Omega_{1, z}$ for various $z^{\top} s$. That these can be made to add up to a domain with C^{∞} boundary will be clear throughout. Choose a sequence of positive numbers $\left\{r_{k}\right\}_{k=1}^{\infty}$, $0<r_{1}<r_{2}<\ldots<1$, with $r_{3}=1 / 2$. We let $\Omega_{1, z}=\emptyset$ if $|z| \leqq r_{1}$ and $\Omega_{1, z}$ be a nonempty disc, concentric about the origin if $r_{1}<|z| \leqq r_{4}$. Recall that $\Omega_{1, z}=\Omega_{1,|z|}$ for all z. If $\quad r_{2} \leqq|z| \leqq r_{4}$ we make the extra assumption that $\Omega_{1, z}$ has radius 2 . For $|z|>r_{4}$ we will break the symmetry in the $w-$ direction at first by letting $\Omega_{1, z}$ gradually approach the shape of an upper-disc. (This is a rough description to be made more precise below.) Increasing $|z|$ further we will rotate this approximate upper half disc 180° clockwise until it becomes approximately a lower half disc. Then we proceed by reversing the process, first by rotating counterclockwise back to an approximate upper half disc and then expanding this back to a disc of radius 2 near $|z|=1$. As mentioned earlier, if $|z|>1$, then $\Omega_{1, z}:=\Omega_{1,1 / z}$.

We now return to the more precise description of Ω, z for $|z|>r_{4}$. Writing $w=u+i v$ in real coordinates u, v, let $v=f(u)$ be
a C^{∞} function defined for $u \in \mathbb{R}$ with $f(u)=0$ if $u \leqq 0$ or $u \geqq 2, f \geqq 0$ and $f(u)=0$ on $(0,2)$ if and only if $u=1 / n$ for some positive integer n. We may assume that $|f|,\left|f^{\prime}\right|,|f "|$ are very small and therefore in particular that the graph of f only intersects the boundary of any disc $\Delta(0 ; R)=\{|w|<R\}$ in exactly two points. If $r_{4}<|z|<r_{5}$, we let $\Omega_{1, z}$ be a subdomain of $\Delta(0 ; 2)$ containing those $u+i v \in \Delta(0 ; 3 / 2)$ for which $v \geqq f(u)$. When $r_{5} \leqq|z| \leqq r_{6}$ we choose $\Omega_{1, z}$ independent of z with the properties that $\Omega_{1, z} \subset \Delta(0 ; 7 / 4) \cap\{v>f(u)\}$ and $\Delta(0 ; 3 / 2) \cap\{v>f(u)\} \subset \Omega_{1, z}$. Let $\theta(x)$ be a real C^{∞} function on \mathbb{R} with $\Theta(x)=0$ if $x \leqq r_{6}, \Theta(x)=\pi$ if $x \geqq r_{7}$ and $\Theta^{\prime}(x)>0$ if $r_{6}<x<r_{7}$. Then we can rotate $\Omega_{1, z} 180^{\circ}$ clockwise for $r_{6} \leqq|z| \leqq r_{7}$ by defining $\Omega_{1, z}=e^{-i \theta(|z|)} \Omega_{1, r_{6}}$ for such z. Further, we let $\Omega_{1, z}=\Omega_{1, \bar{r}_{7}}$ when $r_{7} \leqq|z| \leqq r_{8}$. Reversing the procedure, we rotate $\Omega_{1, z}$ back 180° when $r_{8} \leqq|z| \leqq r_{9}$ so that $\Omega_{1, r_{9}}$ again equals $\Omega_{1, r_{6}}$. Continuing, we let $\Omega_{1, z}=\Omega_{1, r_{9}}$ whenever $r_{9} \leqq|z| \leqq r_{10}$. Reversing the procedure between r_{4} and r_{5} we obtain $\Omega_{1, z}{ }^{-} s^{\prime} r_{10} \leq|z| \leqq r_{11}$ so that in particular $\Omega_{1, r_{11}}$ is the disc $\Delta(0,2)$. When $r_{11}<|z| \leqq 1$, we let $\Omega_{1, z}$ always be this same disc. This completes the construction of Ω_{1}.

The next step is to define an (almost) plurisubharmonic function ρ_{1}. Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a sufficiently rapidly decreasing sequence of positive numbers, $\varepsilon_{n} \downarrow 0$. Then $\sigma_{1}(w):=\sum_{n=1}^{\infty} \varepsilon_{n} \log \left|w-\frac{1}{n}\right|$
is a subharmonic function on the complex plane and ${ }^{\prime}{ }_{1}(0) \in(-\infty, 0)$.

Letting $\sigma(w)=\sigma_{1}(w)+1-\sigma_{1}(0)$ we obtain a subharmonic function on $\mathbb{C}(w)$ with $\sigma(0)=1$ and $\sigma(1 / n)=-\infty \forall n \in \mathbb{Z}^{+}$. If the constant $K>0$ is chosen large enough, the plurisubharmonic function $\sigma(w)+K \log \left(|z| / r_{5}\right)$ will be strictly less than -1 at all points $(z, w) \in \Omega_{1}$ for which $|z| \leqq r_{4}$. The function $\rho_{1}: \Omega_{1} \rightarrow \mathbb{R}$ is defined by the equations $\rho_{1}(z, w)=\rho_{1}(1 / z, w)$ and $\rho_{1}(z, w)=\max \left\{\sigma(w)+K \log \left(|z| / x_{5}\right),-1\right\} \quad$ when $|z| \leqq 1 . \quad$ Then ρ_{1} is the restriction to Ω_{1} of the similarly defined function on \mathbb{C}^{2} and ρ_{1} is plurisubharmonic at all points (z, w) with $|z| \neq 1$. This completes the construction of ρ_{1}.

We have two main problems left. The annuli A_{n} all lie partly in the boundary of Ω_{1}, so Ω_{1} has to be bumped slightly so that they all lie in the interior. However, this bumping should not change the extent to which A lies in the boundary. The other main problem is the failure of plurisubharmonicity of ρ_{1} at $|z|=1$. We will change ρ_{1} near $|z|=1$ so that it will equal $\max \{\sigma(w),-1\}$ in a neighbourhood of this set. In order to deal with both these problems, we will at first construct a subharmonic function $\tau(w)$ which can be used for patching purposes.

Our first approximation to τ will be τ_{1}.
The domain of ${ }^{\tau}$, will be
$D:=\{w ;|w|<2, w \notin(-2,0], w \notin\{1 / n\}\}$. The properties we will require of τ_{1} are that $\tau_{1}(u+i v)=0$ when $v \geqq f(u), \tau,(u+i v) \geqq 1$ when $v \leqq 0, \tau_{1}$ is \mathcal{C}^{∞} and τ_{1} is strongly subharmonic at all
points $u+i v$ with $v<f(u)$.
Let K_{o} denote the compact set $\quad(w=u+i v ;|w| \leqq 2$ and $V \geqq f(u)\}$. Since K_{o} is polynomially convex, there exists a C^{∞} subharmonic function $\lambda_{O}: \mathbb{C} \rightarrow[0, \infty\rangle$ which vanishes precisely on K_{0} and which is strongly subharmonic on $\mathbb{C}-K_{0}$. Choose an increasing sequence of compact sets
$\mathrm{F}_{1} \subset \operatorname{int} \mathrm{~F}_{2} \subset \mathrm{~F}_{2} \subset \operatorname{int} \mathrm{~F}_{3} \subset \ldots \subset \mathrm{D}, \quad \mathrm{D}=\mathrm{UF} \mathrm{F}_{\ell} \quad$ Letting $\quad \mathrm{K}_{\ell}=\mathrm{K}_{\mathrm{O}} \cup \mathrm{F}_{\ell}$ we may even assume that each bounded component of $\mathbb{C}-K_{\ell}$ clusters at some $1 / n$ and in particular therefore that there are only finitely many of these components. With these choices it is possible for each $\ell \geqq 1$ to find a non-negative C^{∞} function λ_{ℓ} such that $\lambda_{\ell} \mid K_{\ell} \equiv 0, \lambda_{\ell} \geqq 1$ and strongly subharmonic on $\left\{u+i v \in K_{\ell+2}-\operatorname{int}_{\ell+1} ; v \leqq 0\right\}$ and λ_{ℓ} fails to be subharmonic only on a relatively compact subset of (int $\left.K_{\ell+3}-K_{\ell+2}\right) \cap\{v<0\}$. But then, if $\left\{C_{\ell}\right\}_{\ell=0}^{\infty}$ is a sufficiently rapidly increasing sequence, $\tau_{1}:=\sum_{\ell=0}^{\infty} C_{\ell}^{\lambda_{\ell}} \quad$ has all the desired properties.

We next want to push the singularities of ${ }^{\tau}{ }_{1}$ at the points $1 / n$ over to the origin. First, let us choose discs $\Delta_{n}=\Delta\left(1 / n, \rho_{n}\right)$ small enough so that $\sigma(w)+K \log 1 / r_{5}<-1$ on each Δ_{n}.
We will first perturbe $\underset{\tau}{ } \quad$ inside each Δ_{n}. We will first perturbe ${ }^{\tau}$, inside each Δ_{n}. We can make a small perturbation of the situation by making a small translation parallell to the v-axis in the negative direction in a smaller disc about $1 / n$ patched with the identity outside a slightly larger disc in Δ_{n} to obtain a new C^{∞} function ${ }^{\tau}{ }_{2} \geqq 0$ and a new \mathcal{C}^{∞} function $v=f_{1}(u)$ with the properties that $f_{1} \leqq f, f_{1}<f$ near $1 / n, f_{1}=f$ away from $1 / n$ and $\tau_{2}=0$ when $v \geqq f_{1}(u)$, $\tau_{2} \geqq 1$ when $v \leqq 0$ except in very small discs about $1 / n$ and
$\tau_{3}=\left\{\begin{array}{l}0 \text { when } v \geqslant f_{1}(u) \text { is strongly subharmonic when } v<f_{1}(u) . \\ \tau_{2}+\left(v-f_{1}(u)\right)^{2} \text { otherwise }\end{array}\right.$ The singularities of ${ }^{\tau}{ }_{1}$ at the points $1 / n$ have thus been moved down to the points $\rho_{n}=1 / n+i f_{1}(i / n)$. Let $\Delta_{n}^{\prime}=\Delta\left(1 / n, \rho_{n}^{\prime}\right)$, $0<\rho_{n}^{\prime} \ll \rho_{n}$ be discs on which $\tau_{3} \equiv 0$. We may assume that $p_{n} \notin \bar{\Delta}_{n}^{\prime}$. Let γ be a curve from p_{1} to 0 passing in the lower half plane through all the $p_{n}^{\prime} s$ and avoiding all the $\bar{\Delta}_{n}^{\prime}-s$. We can assume say that γ is linear between p_{n} and p_{n+1}. Let V be a narrow tubular neighbourhood of $\gamma-\{0\}$ also lying in the lower half-plane and avoiding all the $\bar{\Delta}_{n}^{\prime}$'s. The restriction $\tau_{3} \mid V$ is C^{∞}, subharmonic and $\geqq 1$ except for singularities at each p_{n}. Let ${ }^{\tau}{ }_{4} \geqq 1$ be a C^{∞} function on V which agrees with $\tau_{3} \mid V$ on $V \cap V^{\prime}, V^{\prime}$ some open set containing $\partial V-\{0\}$. A construction similar to the one for τ_{1} yields a C^{∞} subharmonic function $\tau_{5} \geqq 0$ on \mathbb{C} - (0) which vanishes outside V and is such that ${ }^{\tau}{ }_{4}+\tau_{5}$ is subharmonic on V. Finally, let $\tau:\{(w)<2, w \notin[-2,0]\} \rightarrow \mathbb{R}^{+}$be the C^{∞} subharmonic function given by $\tau=\tau_{3}$ outside V and $\tau=\tau_{4}+\tau_{5}$ on V. Then $\tau=0$ on each Δ_{n}^{\prime} and $\tau(w)=0$ when $v \geqq f_{1}(u)$ except possibly on a concentric disc $\Delta_{n}^{\prime}, \Delta_{n}^{\prime} \subset \subset \Delta_{n}^{\prime \prime} \subset \subset \Delta_{n}$. Also, $\tau(w) \geqq 1$ when $v \leqq 0, w \notin U \Delta_{n_{-}}^{\prime \prime}$. This completes the construction of the patching function τ.

The construction of Ω can now be completed. A point $(z, 1 / n) \in A_{n}$ lies in the boundary of Ω_{1} only when $|z|$ or $1 /|z|$ is in $\left[r_{5}, r_{6}\right] \cup\left[r_{7}, r_{8}\right] \cup\left[r_{9}, r_{10}\right]$. This set is contained in the open set $\left\{(z, w) ;|z|\right.$ or $1 /|z| \in\left(r_{4}, r_{11}\right)$ and $\left.w \in \Delta_{n}^{\prime}\right\}=: u_{n}$. We let
Ω be a domain with C^{∞} boundary which agrees with Ω_{1} outside $U U_{n}$ and which contains all $A_{n}^{-} s$ in it's interior.

Next we define the plurisubharmonic function $\rho: \Omega \rightarrow \mathbb{R}$.
Let $\sigma^{\prime}=\max \{\sigma,-1\}$ and choose a constant $L \gg 1$ such that $\rho_{1} \leqq L-1$ on $\bar{\Omega}$. If $|z| \leqq r_{6}$, let $\rho_{z}:=\rho_{1, z}$. For $r_{5} \leqq|z| \leqq r_{6}$, this definition agrees with $\rho_{z}=\max \left\{\rho_{1, z}, \sigma^{\prime}+L \tau\right\}$ since τ is then 0 and $\rho_{1}=\sigma^{\prime}+K \log \left(|z| / r_{5}\right)$. If $r_{6}<|z| \leq r_{8}$, let $\rho_{z}:=\max \left\{\rho_{1, z}, \sigma^{\prime}+L \tau\right\}$. For $r_{7} \leqq|z| \leqq r_{8}$, this definition agrees with $\rho_{z}=\sigma^{\prime}+L \tau$. To see this, observe that if $w \in \Delta_{n}^{\prime \prime}$, then $\rho_{1, z}=-1$ and $\sigma^{\prime}=-1$ while $\tau \geqq 0$. If on the other hand $w \notin U \Delta_{n}^{\prime \prime}$, then $v<0$ and $\sigma^{\prime}+L \tau \geqq-1+L \geqq \rho_{1}$. If $\quad r_{8}<|z| \leqq r_{10}$, let $\rho_{z}:=\sigma^{\prime}+L \tau$. For $r_{9} \leqq|z| \leqq r_{10}$ this definition agrees with $\rho_{z}=\sigma^{\prime}$ since $\tau=0$. Also, if $r_{10} \leqq|z| \leqq 1$, let $\rho_{z}:=\sigma^{\prime}$, and if $|z|>1$, let $\rho_{z}:=\rho_{1 / z}$. Then ρ is plurisubharmonic on $\Omega, \rho\left(e^{i \theta}, 0\right)=1 \quad \forall \theta \in \mathbb{R}$ and $\rho\left(e^{i \theta} / 2,0\right)=\rho\left(2 e^{i \Theta}, 0\right)=-1 \forall \theta \in \mathbb{R}$. If there exists a sequence of C^{∞} plurisubharmonic functions $\rho_{m}: \Omega \rightarrow \mathbb{R}, \rho_{m} \downarrow \rho$, then there exists an m for which $\rho_{m}\left(e^{i \theta} / 2,0\right), \rho_{m}\left(2 e^{i \theta}, 0\right)<0 \quad \forall \theta \in \mathbb{R}$. Hence, for all large enough $n, \rho_{m}\left(e^{i \theta} / 2,1 / n\right), \rho_{m}\left(2 e^{i \theta}, 1 / n\right)<0$ $\forall \theta \in \mathbb{R}$. By the maximum principle applied to the annuli $A_{n} \subset \Omega$, it follows that $\rho_{m}\left(e^{i \theta} ; 1 / n\right)<0 \quad \forall \theta \in \mathbb{R}$ and all large enough n. Hence, by continuity of $\rho_{m}, \rho_{m}\left(e^{i \theta}, 0\right) \leqq 0 \quad \forall \theta \in \mathbb{R}$. This contradicts the assumption that $\rho_{m} \geqq \rho$ and therefore completes the counterexample.

REFERENCES

1. Bedford, E.: The operator $\left(\mathrm{dd}^{\mathrm{c}}\right)^{\mathrm{n}}$ on complex spaces (preprint)
2. Fornæss, J.E.: Regularizations of plurisubharmonic functions. Math. Ann. (to appear).
3. Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 251-286 (1968).
