ISBN 82-553-0484-3

Mathematics May 25

No.8 1982

PLURISUBHARMONIC FUNCTIONS
ON SMOOTH DOMAINS

by

John Erik Fornæss

Plurisubharmonic functions on smooth domains

by

John Erik Fornæss

1. In this short note we will discuss regularization of plurisubharmonic functions. More precisely, we will address the following problem:

Question. Assume Ω is a bounded domain in \mathbb{C}^n ($n \ge 2$) with smooth (c^{∞}) boundary and that $\rho: \Omega \to \mathbb{R} \cup \{-\infty\}$ is a (discontinuous) plurisubharmonic function. Does there exist a sequence

$$\left\{\rho_{n}\right\}_{n=1}^{\infty}$$
 , $\rho_{n}:\Omega\rightarrow\mathbb{R}$, of e^{∞}

plurisubharmonic functions such that

ρ_nν ρ <u>pointwise?</u>

If ρ is continuous, the answer to the above question is yes (see Richberg [3]). On the other hand, when ρ is allowed to be discontinuous and Ω is not required to have a smooth boundary, the answer is in general no (see [1], [2] for this and related questions).

Our result in this paper is that the answer to the above question is no. We present a counterexample in the next section. The construction leaves open what happens if we make the further requirement that Ω has real analytic boundary. Another question, suggested to the author by Grauert, is obtained by replacing Ω by a compact complex manifold with smooth boundary, and assuming

continuity of p.

In the next section we need of course both to construct the domain Ω and the function ρ . These constructions are intertwined and therefore we need at first to define approximate solutions Ω_1 and ρ_1 and then use both to define Ω and ρ . The geometric properties we seek of Ω are the following. There exists an annulus $A \subset \overline{\Omega}$ such that $\partial A \subset \Omega$. Furthermore there exist concentric circles C_1 , C_2 , C_3 in the relative interior of A arranged by increasing radii such that C_1 , $C_3 \subset \partial \Omega$ and $C_2 \subset \Omega$. Finally there exists a sequence $\{A_n\}_{n=1}^\infty$ of annuli such that $A_n \to A$ and $A_n \subset \Omega \ \forall n$. The properties we seek of ρ are as follows. The function ρ is strictly positive on C_2 and is strictly negative on ∂A . A simple application of the maximum principle now shows that smoothing is impossible.

The example we construct is in \mathbb{C}^2 . This is with no loss of generality as one obtains then an example in \mathbb{C}^n by crossing with a smooth domain in \mathbb{C}^{n-2} , rounding off the edges and pulling back ρ to the new domain.

2. All domains and functions which we will consider in $\mathbb{C}^2(z,w)$ will be invariant under rotations in the z-plane, i.e. will depend only on |z|. They will also be invariant under the map $(z,w) \rightarrow (1/z,w)$. Because of the latter we will describe only those points (z,w) in these domains or domains of definitions for which $|z| \le 1$.

If U is a domain in $\mathbb{C}^2(z,w)$, we let U_z denote the part of U over z, i.e. $U_z := \{(\eta,w) \in \mathbb{C}^2 : \eta = z \text{ and } (\eta,w) \in \mathbb{U}\}$. Abusing notation we will also take U_z to mean the set $\{w \in \mathbb{C} : (z,w) \in \mathbb{U}\}$.

Similarly, if σ : U \to IR $\upsilon\{-\infty\}$ is a function, then $\sigma_{_{\bf Z}}$ denotes the restriction of σ to U $_{_{\bf Z}}.$

A = {(z,w); w = 0 and $1/2 \le |z| \le 2$ }. This is then the limit of a sequence of annuli $\{A_n\}_{n=1}$ where $A_n = \{(z,w); w = 1/n \text{ and } 1/2 \le |z| \le 2\}.$ We will next describe a bounded domain Ω_1 in \mathbb{C}^2 with C^∞ boundary containing all A_n 's (and hence A) in it's closure. It will suffice to describe

 $\Omega_{1,z}$ for various z's. That these can be made to add up to a

domain with c^{∞} boundary will be clear throughout.

Let A be the annulus in \mathbb{C}^2 given by

Choose a sequence of positive numbers $\{r_k\}_{k=1}^{\infty}$, $0 < r_1 < r_2 < \dots < 1$, with $r_3 = 1/2$. We let $\Omega_{1,z} = \emptyset$ if $|z| \le r_1$ and $\Omega_{1,z}$ be a nonempty disc, concentric about the origin if $|z| \le r_1$ and $|z| \le r_2$. Recall that |z| = |z| = |z| for all |z|. If $|z| \le |z| \le r_2$ we make the extra assumption that |z| = |z| has radius 2. For $|z| > r_4$ we will break the symmetry in the |z| direction at first by letting |z| gradually approach the shape of an upper-disc. (This is a rough description to be made more precise below.) Increasing |z| further we will rotate this approximate upper half disc 180° clockwise until it becomes approximately a lower half disc. Then we proceed by reversing the process, first by rotating counterclockwise back to an approximate upper half disc and then expanding this back to a disc of radius 2 near |z| = 1. As mentioned earlier, if |z| > 1, then |z| = |z| = 1. As

We now return to the more precise description of $\Omega_{1,z}$ for $|z|>r_4$. Writing w=u+iv in real coordinates u,v, let v=f(u) be

a \mathcal{C}^{∞} function defined for uCIR with f(u) = 0 if u \leq 0 or $u \ge 2$, $f \ge 0$ and f(u) = 0 on (0,2) if and only if u = 1/n for some positive integer n. We may assume that |f|, |f'|, |f''| are very small and therefore in particular that the graph of f only intersects the boundary of any disc $\Delta(0;R) = \{|w| < R\}$ in exactly two points. If $r_{\Delta} < |z| < r_{5}$, we let $\Omega_{1,z}$ be a subdomain of $\Delta(0;2)$ containing those $u + iv \in \Delta (0; 3/2)$ for which $v \ge f(u)$. When $r_5 \le |z| \le r_6$ we choose $\Omega_{1,z}$ independent of z with the properties that $\Omega_{1,z} \subset \Delta(0;7/4) \cap \{v > f(u)\}$ and $\Delta(0;3/2) \cap \{v > f(u)\} \subset \Omega_{1,z}$. Let $\Theta(x)$ be a real C^{∞} function on \mathbb{R} with $\Theta(x) = 0$ if $x \le r_6$, $\Theta(x) = \pi$ if $x \ge r_7$ and $\Theta'(x) > 0$ if $r_6 < x < r_7$. Then we can rotate $\Omega_{1,z}$ 180° clockwise for $r_6 \le |z| \le r_7$ by defining $\Omega_{1,z} = e^{-ie(|z|)} \Omega_{1,r_6}$ for such z. Further, we let $\Omega_{1,z} = \Omega_{1,r_7}$ when $r_7 \le |z| \le r_8$. Reversing the procedure, we rotate $\Omega_{1,z}$ back 180° when $r_8 \leq |z| \leq r_9$ so that Ω_{1,r_0} again equals Ω_{1,r_6} . Continuing, we let $\Omega_{1,z} = \Omega_{1,r_6}$ whenever $r_9 \le |z| \le r_{10}$. Reversing the procedure between r_4 and r_5 we obtain $\Omega_{1,z}$'s, $r_{10} \le |z| \le r_{11}$ so that in particular $\Omega_{1,r_{11}}$ is the disc $\Delta(0,2)$. When $r_{11} < |z| \le 1$, we let $\Omega_{1,z}$ always be this same disc. This completes the construction of Ω_1 .

The next step is to define an (almost) plurisubharmonic function ρ_1 . Let $\{\varepsilon_n\}_{n=1}^\infty$ be a sufficiently rapidly decreasing sequence of positive numbers, $\varepsilon_n \searrow 0$. Then $\sigma_1(w):=\sum\limits_{n=1}^\infty \varepsilon_n\log|w-\frac{1}{n}|$

is a subharmonic function on the complex plane and $\sigma_1(0) \in (-\infty,0)$. Letting $\sigma(w) = \sigma_1(w) + 1 - \sigma_1(0)$ we obtain a subharmonic function on $\mathfrak{C}(w)$ with $\sigma(0) = 1$ and $\sigma(1/n) = -\infty$ $\forall n \in \mathbb{Z}^+$. If the constant $\mathbb{K} > 0$ is chosen large enough, the plurisubharmonic function $\sigma(w) + \mathbb{K} \log(|z|/r_5)$ will be strictly less than -1 at all points $(z,w) \in \Omega_1$ for which $|z| \le r_4$. The function $\rho_1:\Omega_1 \to \mathbb{R}$ is defined by the equations $\rho_1(z,w) = \rho_1(1/z,w)$ and $\rho_1(z,w) = \max\{\sigma(w) + \mathbb{K} \log(|z|/r_5), -1\}$ when $|z| \le 1$. Then ρ_1 is the restriction to Ω_1 of the similarly defined function on \mathfrak{C}^2 and ρ_1 is plurisubharmonic at all points (z,w) with $|z| \ne 1$. This completes the construction of ρ_4 .

We have two main problems left. The annuli A_n all lie partly in the boundary of Ω_1 , so Ω_1 has to be bumped slightly so that they all lie in the interior. However, this bumping should not change the extent to which A lies in the boundary. The other main problem is the failure of plurisubharmonicity of ρ_1 at |z|=1. We will change ρ_1 near |z|=1 so that it will equal $\max\{\sigma(w),-1\}$ in a neighbourhood of this set. In order to deal with both these problems, we will at first construct a subharmonic function $\tau(w)$ which can be used for patching purposes.

Our first approximation to τ will be τ_1 .

The domain of τ_1 will be $D: = \{w; \ |w| < 2, \ w \notin (-2,0], \ w \notin \{1/n\}\}.$ The properties we will require of τ_1 are that $\tau_1(u+iv) = 0$ when $v \ge f(u)$, $\tau_1(u+iv) \ge 1$ when $v \le 0$, τ_1 is C^{∞} and τ_1 is strongly subharmonic at all

Let K_0 denote the compact set $\{w = u + iv; |w| \le 2 \text{ and } \}$

points u + iv with v < f(u).

v \geq f(u) \rightarrow Since K_0 is polynomially convex, there exists a C^∞ subharmonic function $\lambda_0: \mathbb{C} \to [0,\infty)$ which vanishes precisely on K_0 and which is strongly subharmonic on $\mathbb{C} - K_0$. Choose an increasing sequence of compact sets $F_1 \subset \text{int } F_2 \subset F_2 \subset \text{int } F_3 \subset \ldots \subset D$, $D = \mathbb{U} F_\ell$. Letting $K_\ell = K_0 \mathbb{V} F_\ell$ we may even assume that each bounded component of $\mathbb{C} - K_\ell$ clusters at some 1/n and in particular therefore that there are only finitely many of these components. With these choices it is possible for each $\ell \geq 1$ to find a non-negative C^∞ function λ_ℓ such that $\lambda_\ell | K_\ell \equiv 0$, $\lambda_\ell \geq 1$ and strongly subharmonic on $\{u+iv \in K_{\ell+2} - int K_{\ell+1}: v \leq 0\}$ and λ_ℓ fails to be subharmonic only on a relatively compact subset of $\{int K_{\ell+3} - K_{\ell+2}\} \cap \{v \leq 0\}$. But then, if $\{C_\ell\}_{\ell=0}^\infty$ is a sufficiently rapidly increasing sequence, $\tau_1 := \sum_{\ell=0}^\infty C_\ell \lambda_\ell$ has all the desired properties.

1/n over to the origin. First, let us choose discs $\Delta_n = \Delta(1/n, \rho_n)$ small enough so that $\sigma(w) + K \log 1/r_5 < -1$ on each Δ_n . We will first perturbe τ_1 inside each Δ_n . We can make a small perturbation of the situation by making a small translation parallel to the v-axis in the negative direction in a smaller disc about 1/n patched with the identity outside a slightly larger disc in Δ_n to obtain a new C^∞ function $\tau_2 \ge 0$ and a new C^∞ function $\tau_1 \le 0$ and a new C^∞ function $\Delta_1 \le 0$ and a new $\Delta_1 \le 0$ when $\Delta_1 \le 0$ when $\Delta_1 \le 0$ when $\Delta_1 \le 0$ when $\Delta_2 \le 0$ and $\Delta_3 \le 0$ and $\Delta_4 \le 0$ when $\Delta_1 \le 0$ when $\Delta_1 \le 0$ when $\Delta_2 \le 0$ and $\Delta_3 \le 0$ and $\Delta_4 \le 0$ when $\Delta_1 \le 0$ when $\Delta_1 \le 0$ when $\Delta_2 \le 0$ when $\Delta_3 \le 0$ and $\Delta_4 \le 0$ when $\Delta_4 \le 0$ except in very small discs about 1/n and

We next want to push the singularities of τ_1 at the points

 $\tau_{3} = \begin{cases} 0 & \text{when } v > f_{1}(u) \\ & \text{is strongly subharmonic when } v < f_{1}(u). \end{cases}$ $\tau_{2} + (v - f_{1}(u))^{2} \text{ otherwise}$

The singularities of τ_1 at the points 1/n have thus been moved down to the points $\rho_n = 1/n + if_1(i/n)$. Let $\Delta_n' = \Delta(1/n, \rho_n')$, $0 < \rho_n^* << \rho_n$ be discs on which $\tau_3 \equiv 0$. We may assume that $\rho_n \notin \overline{\Delta}_n^*$. Let γ be a curve from p_1 to 0 passing in the lower half plane through all the $\ p_n^{\, \text{!`}} \ s$ and avoiding all the $\ \overline{\Delta}_n^{\, \text{!`}} \ r^{\, \text{!`}} \ s$. We can assume say that γ is linear between $\ \boldsymbol{p}_n$ and $\ \boldsymbol{p}_{n+1}$. Let $\ \boldsymbol{V}$ be a narrow tubular neighbourhood of γ - {0} also lying in the lower half-plane and avoiding all the $\bar{\Delta}_n^{\text{I}}$'s. The restriction $\tau_3 | V$ is C^{∞} , subharmonic and ≥ 1 except for singularities at each p_n . Let $\tau_4 \geq 1$ some open set containing $\partial V - \{0\}$. A construction similar to the one for τ_1 yields a C^{∞} subharmonic function $\tau_5 \ge 0$ on \mathbb{C} - (0) which vanishes outside V and is such that τ_4 + τ_5 is subharmonic on V. Finally, let τ : {(w) < 2, w \notin [-2,0]} \rightarrow \mathbb{R}^+ be the C^{∞} subharmonic function given by $\tau = \tau_3$ outside V and $\tau = \tau_4 + \tau_5$ Then $\tau = 0$ on each Δ_n^1 and $\tau(w) = 0$ when $v \ge f_1(u)$ except possibly on a concentric disc Δ_n' , $\Delta_n' \subset \Delta_n'' \subset \Delta_n$. Also, $\tau(w) \ge 1$ when $v \le 0$, $w \notin U \triangle_{\eta_1}^{\eta_1}$. This completes the construction of the patching function τ .

The construction of Ω can now be completed. A point $(z,1/n)\in A_n$ lies in the boundary of Ω_1 only when |z| or 1/|z| is in $[r_5,r_6]\cup [r_7,r_8]\cup [r_9,r_{10}]$. This set is contained in the open set $\{(z,w)\,;\,|z|\text{ or }1/|z|\in (r_4,r_{11}) \text{ and } w\in \Delta_n^{\perp}\}=: \cup_n$. We let

 Ω be a domain with \mathcal{C}^∞ boundary which agrees with Ω_1 outside UU_n and which contains all A_n' s in it's interior.

Next we define the plurisubharmonic function ρ : $\Omega \to \mathbb{R}$. Let $\sigma' = \max \{\sigma, -1\}$ and choose a constant L >> 1 such that $\rho_1 \leq L - 1$ on $\bar{\Omega}$. If $|z| \leq r_6$, let $\rho_z := \rho_{1,z}$. For $r_5 \le |z| \le r_6$, this definition agrees with $\rho_z = \max\{\rho_{1,z}, \sigma' + L\tau\}$ since τ is then 0 and $\rho_1 = \sigma' + K \log (|z|/r_5)$. If $r_6 < |z| \le r_8$, let $\rho_z := \max\{\rho_{1,z}, \sigma' + L\tau\}$. For $r_7 \le |z| \le r_8$, this definition agrees with ρ_z = σ' + L τ . To see this, observe that if $w \in \Delta_n^{"}$, then $\rho_{1,z} = -1$ and $\sigma' = -1$ while $\tau \ge 0$. If on the other hand $w \notin U \Delta_n^{\text{II}}$, then v < 0 and $\sigma' + L \tau \ge -1 + L \ge \rho_1$. If $r_8 < |z| \le r_{10}$, let $\rho_z := \sigma' + L\tau$. For $r_9 \le |z| \le r_{10}$ this definition agrees with ρ_z = σ' since τ = 0. Also, if $r_{10} \le |z| \le 1$, let $\rho_z := \sigma'$, and if |z| > 1, let $\rho_z := \rho_{1/z}$. Then ρ is plurisubharmonic on Ω , $\rho(e^{i\Theta},0)=1$ $\forall \theta \in \mathbb{R}$ and $\rho(e^{i\Theta}/2,0) = \rho(2e^{i\Theta},0) = -1 \quad \forall \theta \in \mathbb{R}$. If there exists a sequence of \textbf{C}^{∞} plurisubharmonic functions $\rho_{\textbf{m}}$: Ω + \mathbb{R} , $\rho_{\textbf{m}}$ \searrow ρ , then there exists an m for which $\rho_{m}(e^{i\Theta}/2,0)$, $\rho_{m}(2e^{i\Theta},0)$ < 0 \forall $\theta \in \mathbb{R}$. Hence, for all large enough n, $\rho_{m}(e^{i\Theta}/2, 1/n)$, $\rho_{m}(2e^{i\Theta}, 1/n) < 0$ $\forall \theta \in \mathbb{R}$. By the maximum principle applied to the annuli $A_n \subset \Omega$, it follows that $\rho_{m}(e^{i\Theta},1/n)<0$ $\forall\;\theta\in\mathbb{R}$ and all large enough n. Hence, by continuity of ρ_{m} , $\rho_{m}(e^{i\Theta},0) \leq 0 \quad \forall \, \theta \in \mathbb{R}$. This contradicts the assumption that $|\rho_{m}| \ge |\rho|$ and therefore completes the counterexample.

REFERENCES

- Bedford, E.: The operator (dd^c)ⁿ on complex spaces (preprint)
- Fornæss, J.E.: Regularizations of plurisubharmonic functions. Math. Ann. (to appear).
- 3. Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 251 286 (1968).