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1. In this short note we will discuss regularization of |
plurisubharmonic functions. More precisely, we will

address the following problem:

Question., Assume @ 1is a bounded domain in ¢n(n;2) with

smooth (¢¥) boundary and that p:Q » Ru{-«»} 1is a (discontinuous)

plurisubharmonic function. Does there exist a sequence

o tpeqg v Pyt 2> R, of ¢

plurisubharmonic functions such that

pn\: p pointwise?

If p is continuocus, the answer to the above question is vyes
{see Richberg [3]). On the other hand, when p is allowed
to be discontinuous and £ is not required to have a smooth
boundary, the answer is in general no (see [1], [2] for this and

related questions).

Our result in this paper is that the answer to the above question
is no, We present a counterexample in the next section. The
construction leaves open what'happens if we make the further
requirement that @ has real analytic boundary. Another question,
suggested to the authdr:by Grauert, 1s obtained by replacing o by

a compact complex manifold with smooth boundary, and assuming



continuity of »p.
In the next section we need of course both to construct the
domain # and the function p. These constructions are intertwined

and therefore we need at first to define approximate solutions 91
and p1 and then use both to define @ and p. The geometric.

properties we seek of @ are the following. There exists an
annulus A < & such that 3Ac @, Furthermore there exist concentric
circles 'C1, C2, C3 in the relative interior of A arranged by

increasing radii such that C C, <99 and C, € . Finally there

17 73 2
exists a sequence {An};=1 of annuli such that An + A and

An c @ v¥n, The properties we seek of p are as follows. The

function o 1is strictly positive on C and is strictly negative

2
on 3A. A simple application of the maximum principle now shows
that smoothing is impossible,
The example we construct is in @2. This is with no loss of
generality as_oﬁe obtains then an example in ¢ by crossing with
n-2

a smooth domain in ¢ » rounding off the edges and pulling back

p to the new domain.

2. All domains and functions which we will consider in ¢2(z,w)
will be invariant under rotations in the z-plane, i.e. will depend
only on |z|. They will also be invariant under the map

(z,w) » (1/z,w). Because of the latter we will describe only those
points (z,w) in these domains or domains of definitions for which
lz] = 1.

If U is a domain in ¢2(z,w), we let UZ denote the part of

U over =z, 1i.e. UZ:= {(n,w)€¢2 ; n =2 and (n,w)€VU}. Abusing

notation we will also take u, to mean the set {wee ; (z,w)E UL



Similarly, if o : U » Ru{-«»} 1is a function, then g, denotes

the restriction of o to Uz.

Let A be the annulus in ¢2 given by
A= {{z,w); w=20 and 1/2 £ |z| = 2}. This is then the limit of

a sequence of annuli {An} -1 where

A = {{z,w); w=1/n and 1/2 < |z| s 2}. We will next describe a

bounded domain 91 in ¢2 with ¢” boundary containing all

An‘s (and hence A) 1in it”"s closure. It will suffice to describe

91 2 for various z“s. That these can be made to add up to a
!

domain with ¢ boundary will be clear throughout.,

Choose a seguence of positive numbers - {rk}kzi '

0 < r, < r, < ... <1, with ry = 1/2. We let 91’2 = @
if |z sr1 and Q, be a nonempty disc, concentric about the
r
. " ] S =
origin if r, < |z] = r,. Recall that 2 Q1rlzl for all =z.
If r, < |z] s r, we make the extra assumption that 2, , has
. !

radius 2. TFor |z| > r, we will break the symmetry in the w -
direction at first by letting 91 Z gradually approach the shape of
r

an upper-disc. (This is a rough description to be made more precise
below.) Increasing |z| further we will rotate this approximate
upper half disc 180° clockwise until it becomes approximately a lower
half disc. Then we proceed by reversing the process, first by
rotating counterclockwise back to an approximate upper half disc and
then expanding this back to a disc of radius 2 near lz] = 1. As

mentioned earlier, if |z| > 1, then 20 2T 0 gy,

We now return to the more precise description of 91 ” for [z]>r4.
!

Writing w = u + 1v 1in real coordinates u,v, let v = f£(u} be



A

a € function defined for ucR with f£(u) = 0 if u s 0
or vz 2, f£z20 and f(u) = 0 on (0,2) if and only if
u = 1/n for some positive integer n. We may assume that

1£]1, 1£'], |£f"] are very small and therefore in particular

that the graph of £ only intersects the boundary of any disc

A(0;R) = {]w] < R} in exactly two points-.If r, < lz] < res we
let 91'2 be a subdomain of A(0;2)' containing those

u + iv € A (0;3/2) for which v 2 f{(u). When r5 < |zl = e we
choose 91’2 independent of 2z with the properties that

91'2 c AM0;7/4yn{v > £{(u)} and A(0;3/2)N{v > f(ul}lc 91'2.
Let o(x) be a real C° function on IR with e(x) = 0 if

X 2 Yoo of{x) =t 1if ¥ =z r7 and e'(x) > 0 1if re < x < rg.

Then we can rotate 180° clockwise for re S fz] < x, by

.91,2

- e—le(lz]) Q

for such z. FPFurther, we let
'z 1,r6

defining 91

Q =9, . when r, < lz] = rg. Reversing the procedure, we

so that @

rotate @ pack 180° when r_, s |z]| s r
9 1,.r9

1,2 8

again equals @ . Continuing, we let @ = whenever
1,r6 1,2 1,r9

r, £ lz| £ r Reversing the procedure between r, and r. we

obtain @ “s, r,, s lz] sr

’ 10 so that in particular @
12

11

is the disc A{0,2)., When «r < |zl £ 1, we let @ always

11 1,2

be this same disc., This completes the construction of 91.
The next step is to define an (almost) plurisubharmonic function

CPR Let {e_} ®

nin=1 be a sufficiently rapidly decreasing seguence

of positive numbers, ¢ NV 0. Then o (w): = £ e loglw - l]
n 1 n=1 M n



is a subharmonic function on the complex plane and u1(0)€(~m,0).

Letting ol(w) = 01(w) + 1 - 01(0) we obtain a subharmonic function

on €(w) with o(0) =1 and o(1/n) = -« VnEEZ*: If the constant
K > 0 is chosen large enocugh, the plurisubharmonic function

o{w) + K log(]z]/rs) will be strictly less than -1 at all points

(z,w) € 2, for which lz| s r,. The function o, + 9, > R s

defined by the equations p1(z,w) = p1(1/z,w) and
p1(z,w) = max {o(w) + K 1og([z[/r5), - 1} when |z| s 1. Then P

is the restriction to 91 of the similarly defined function on ¢2

and o is plurisubharmonic at all points (z,w) with Jz| # 1.
This completes the construction of Pq-
We have two main problems left. The annuli An all lie partly

in the boundary of 91, SO 91 has to be bumped slightly so that

they all 1ie in the interior. However, this bumping should not
change the extent to which A 1lies in the boundary. The other

main problem is the failure of plurisubharmonicity of Py at
lz| = 1. We will change p, near lz] = 1 so that it will equal

max{o(w), - 1} in a neighbourhood of this set. In order to deal
with both these problems, we will at first construct a subharmonic
function =1(w) which can be used for patching purposes.

Our first approximation to 1 will be Ty

The domain of Ty will Dbe
D: = {w; |w| < 2, w¢(-2,0]1, wé{1/n}}. The properties we will
require of T, are that 11(u+iv) = 0 when v z f(u), 11(u+iv)z 1

when v = 0, is ¢ and Ty is strongly subharmonic at all




points u + iv with v < f(u).

A

Let K denote the compact set {w = u + iv; lwj = 2 and
v z £(u)}. Since Ko is polynomially convex, there exists a

¢” subharmonic function AO : € » [0,»> which vanishes precisely
on KO and which is strongly subharmonic on € - KO. Choose an

increasing sequence of compact sets

F, ¢ int P, ¢« ¥, ¢ int F,coc.,.cD, D = UPF, . Letting K, = KOuF2

1 2 2 3 L L

we may even assume that each bounded component of ¢ - KQ clusters

at some 1/n and in particular therefore that there are only
finitely many of these components, With these choices it is

possible for each %21 to find a non-negative ¢” function Az

such that A£|K£ = 0, A

A%y

. 1 and strongly subharmonic on

v 2 0} and A fails to be subharmonic

- int K .

{u+1v€K£+2 4 +1 H

only on a relatively compact subset of (int K243 - K2+2)n{v < 0}.

But then, if {Cg}gzo is a sufficiently rapidly increasing seguence,

Tyt S z clxg has all the desired properties,
2=0

We next want to push the singularities of T, at the points

1/n over to the origin., First, let us choose discs An.= A(?/n,pn)

small enough so that c(wl + Klogi/r < - 1 on each An.

We will first perturbe 11 inside each An‘

We can make a small perturbation of the situation by making a small
translation parallell to the v=-axis in the negative direction in a
smaller disc about 1/n patched with the identity outside a slightly

z 0 and a

larger disc in A to obtain a new ¢”  function T, 2

new C° function v = f1(u) with the properties that f1gf, f1<f

v

f1 (u) ,

near 1/n, f1 = £ away from 1/n and T, = 0 when v

T, Z 1 when v 5 0 except in very small discs about 1/n and




0 when v » f1(u)
. = 1 is strongly subharmonic when v<f1(u).

T, + (v—fT(u))2 otherwise

The singularities of T1 at the poihts 1/n have thus been moved

down to the points Py = 1/n + if1(i/n). Let Aﬁ = A(1/n,pﬁ),

1 TR ; - ) T
0 < Py << pn be discs Qn which T4 = 0, We may assume that pnﬁah.

Let vy be a curve from < to O ‘passing.hlthe lower half plane
through all the pﬁ s and aveoiding all the EA"S. We can assume

say that Yy 1is linear between Py and p Let V be a narrow

n+1”’
tubular neighbourhood of y - {0} also lying in the lower half-plane

and avoiding all the EA “s. The restriction TBIV is €7, sub-
harmonic and 2 1 except for singularities at each Py Let 1421
be a € function on V which agrees with 3lv on vav', V!

some open set containing 38V - {0}. A construction similar to the

one for =« vields a c” subharmonic function 1. z 0 on € - (0)

1 5

which vanishes outside V and is such that Ty + Tg is subharmonic

on V. Finally, let +© : {{w) < 2, w¢([-2,0}} » R' be the C

subharmonic function given by 1 = Tq outside V and =t = Ty + Tg
on V. Then 1t = 0 on each Aﬁ and 1t(w) = 0 when v 2 f1(u)
except possibly on a concentric disc Aﬂ, Aé cczag cc:An

Also, 1(w) 2z 1 when v £ 0, wﬁljﬁgf This completes the

construction of the patching function r.
The construction of @ can now be completed, A point

(z,1/n)€A ~ lies in the boundary of Q. only when lz] or 1/|z]

is in [rs,rﬁlu {r7,r8]x:[r9,r10]. This set is contained in the open

set {(z,w); |z| or 1/]|z}| € (ry,r,.) and we€All = : U . We let

11



Q@ be a domain with ¢~ boundary which agrees with 91 outside
uu, and which contains all A; s 1in it”s interior.

Next we define the plurisubharmonic function p : € - R.
Let o' = max {o,-1} and choose a constant L »> 1 such that

< B oD £ = .
Py = L 1 on . If |z} = Yoo let G P,z For

4
A
N
n
~

this definition agrees with p, = max{p1 - g'+Lt'}
. f

since 1t 1is then 0 and Py = o' + Klog(]zl/rg). If r6<]zl§r8,

let p,: = max{p1’z, ' + Lt}. For r, s lz] = Tg» this

definition agrees with P, = ' +Lt. ‘To see this, observe that if

wE AH , then P 5 =~ 1 and o - 1 while 1 2z 0, If on the

r

1A%

other hand H!ﬁlJAA', then v < 0 and o' + L1tz -1 + 1L 2 LR

If ry, < |z| s ¢ let p_:=g¢' +Lt. For r, s |z] g-r10

107 Z ‘ 9

this definition agrees with p, = o' s8ince 1 = 0. Also, if

r-}OS ]Z[ s 1, let o) :=0"; and if IZI > 1} let p HE pni/z'

Then p is plurisuﬁharmonic on @, p(eie,O) =1 VBETR and
p(eie/Z,O) = p(2eie,0) - - 1 YVER. If there exists a sequence
of ¢~ plurisubharmonic functions pm : 0> R, pnl& p, then
there exists an m for which pm(eie/z,O), pm(2eie,0) < 0 VBETR,
Hence, for all large enough n, pm(eie/z, 1/n), pm(Zeie, 1/n} < 0
VB E€R ., By the maximum principle applied to the annuli An = 2y

it follows that pm(eie;1/n) <0 VveeR and all large enough n.

i

Hence, by continuity of p 9,0) s 0 VOER ., This contradicts

m’ pm(e
the assumption that P z p and therefore completes the counter-

example.
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