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Let Vi be short range potential and Ai(c) analytic func-
2 n 1 

tions. \~e show that the Hamiltonians H =. -11 + 8- ~ A. (c)V. (-(•-xi)) 
8 i=1 ~ ~ £ 

converge in the strong resolvent sense to the point interactions 

as £ + 0 1 and if Vi have compact support then the eigenvalues 

and resonances of H£ which remains bounded as £ + 0 1 are ana­

lytic in £ in a complex neiojlbourhood of zero. We compute in 

closed form the eigenvalues and resonances of H£ to the first 

order in £, 
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1. Introduction. 

The ]X)int interactions were first studied in [ 1] where they 

were introduced as natural objects in non-standard analysis. 

In [2] and [3] some of their applications to physics were explored. 

However the short range expansion or the approach to point inte-

raction remained a problem. To explain shortly we consider the 

Hamiltonian of the 

H = -6 + 
£ 

form 
-2 n 1 

s Li..(£)V.(-(•-x.)) 
i=1 l l £ l 

( 1. 1 ) 

where Vi are short range potentials and ask if the limit exists 

as £ ~ o. This problem was attacked in [4] where it was proved 

that if Vi was of compact support and sufficiently regular then 

H converge in the strong resolvent sense to the Hamiltonian with 
£ 

point interactions as £ ~ o. 

However for many physical applications it is of interest to 

know what happens before one takes the limit, that is to try to 

expand H 
£ 

in powers of £. For the one center problem i.e. (1.1) 

for n = 1 this was solved in [5]. The amazing thing is. that 

(1.1) is actually analytic in s not only for n = 1 but for 

general n. This is what is proved in this paper, namely that the 

eigenvalues and resonances of H 
£ 

that remains bounded as £ ~ 0 

are analytic if the >.. (s) are analytic, and the perturbation 
l 

expansion in s is given and explicitly computed to first order 

in £. This brings a completly new class of models into the range 

of the solvable models. 

We expect that this'discovery will have application not only 

in potential scattering but also in solid state physics. In solid 

state physics we have a problem of the type (1.1) with n infinite. 

The problem of the short range expansion for an infinite number of 

centers is not attacked in this paper but in a forthcoming paper by 

the same autlx>rs. The short range expansion for a charged particle is 

studied in [ 6]. 
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2. Convergence to point interactions 

n 

R 

Let be n 

real functions such that 

different points in m3 and 

V.'ER n L1 (m3 ) for j=1, ... ,n 
J 

is the Rollnik class. ( · bl functl.' ons on =3 
l.. e. measura e ·'" 

where 

such 

that JJJv(~)V(y) I Jx-yj- 2dx dy is finite. See Simon [7] for general 

theory concerning Rollnik functions). Let further A1 , ... ,An be 

n real analytic functions defined Jn a neighbourhood of 0 with 

Then we can define a family H 
£ 

of self-adjoint operators on 

r, 2 
( m3

) by means of quadratic forms such that 

H 
£ 

= - A 
n 2 

+ t £- A.(£) 
j =1 J 

1 
V . (- ( • -x. ) ) 

J £ l. 

for small £>0 where -A is the self-adjoint Laplacian. 

In the same way we define the self-adjoint operators 

H. = -A + V. 
J J 

Using the notations 

with Imk) 0, and 

we have (Simon [7]) 

when 2 
k l{o(H.) 

J 

( 2 . 1 ) 

( 2 • 2) 

( 2 • 3) 

( 2 • 4) 

( 2. 5) 

Gk has an integralkernel which we denote by Gk(x-y) where 

Gk(x-y) = 
ikJx-yJ e 

4 nl x-yJ 
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We will also use the term Gk with Imk ~ 0 for the operator with 

integralkernel given by (2.6). From Albeverio and H¢egh Krohn [4] 

we take the following definition 

Definition 2.1 

H. has a zero energy resonance if and only if -1 is an eigen­
J 

value for the operator uj Gk vj. 

Assume now that H. 
J 

has a zero energy resonance. 2 3 
(jl.EL (lR ),tp.;lO, 

J J 

be such that 

( 2. 7) 

···---;r-·-

From Albeverio, Gesztesy and H¢egh Krohn (5] we know that the so 

called resonance function *· defined by 
J 

is locally in L2
(JR3 ) and satisfies 

= 0 

in the sense of distributions. 

But generally * j will not be in L 
2 

( :iR3 ). 

We now distinguish the following cases for the operator 

(See Albeverio, Gesztesy and H¢egh Krohn (5]). 

Case (I) 

- 1 is not an eigenvalue of u.G
0
v. 

J J 

Case (II) 

( 2. 8) 

( 2. 9) 

H., j=1, ••• ,n 
J 

- 1 is a simple eigenvalue of ujGOvj and the corresponding 

ljJ j is not in L 2 ( JR 
3 ) 
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Case (III) 

- 1 is an eigenvalue of 

and the corresponding ~jr' 

Case (IV) 

- 1 is an eigenvalue of 

u.G v. with multiplicity 
J 0 J 

r = 1, ... , N., are all in 
J 

u.G v. 
J 0 J 

with multiplicity 

N. 2: 1 , 
J 

L 2 ( lR, 3 ). 

N. ;: 2, 
J 

and at least one of the corresponding 
2 3 

r = 1 , ... , Nj is not 

in L (JR ) . 

In case (III) and (IV) we will assume that the eigenfunctions 

tpjr 

and 

' r = 1, ... ,N. 
J 

(tpjr' (fljs) = 0 

r,s = 1, ... ,Nj 

tpJ.r = tp. sgnV. 
Jr J 

are chosen such that 
j 

for r * s 

where 

With some additional assumption on the potentials 

following useful criterion to decide whether 

or not. 

Proposition 2.2 

Assume VER 

satisfy 

(1+uG v)tp = 0 
0 

1 3 and I· I VEL (IR ) and let 

With ~ = G vtp we have the following: 
0 

~­
J 

ProoF: See Albeverio, Geszteay and H¢egh Krohn [5) 

(2.10) 

(2. 11) 

we have the 

tp * 0, 

(2.12) 

(2.13) 

(J 

Following Grossmann, H¢egh Krohn and Mebkhout [2), [3) we now define 

the self-adjoint operator -~ where X= (x
1

, ... ,xn) (X, a) 

a = 
n 

(a1'"''an) EJR 
2 -1 

by its resolvent (-~(X,a)-k ) with 

integral kernel 

2 -1 
(-II (X,a) -k ) (x,y) = 

and 

(2.14) 
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n 
Gk(x-y) + L 

t, j = 1 

for Imk > 0, k
2

i(a (-ll (x,a)), where Gk (x) = f\ (x) if x 'I 0 

and 0 otherwise. 

( \'le have used -1 
[atjltj to denote the ~,j'th element of the in-

inverse of the matrix 

The self-adjoint operator -ll 
(X,a) 

represents the formal Ha-

miltonian with a- potentials situated at X= (x
1

, ••• ,xn) with 

strength a= (a
1

, ••• ,an). 

With these definitions we have the following theorem 

Theorem 2.3 

Let 3 
V.: :ffi -> :ffi fulfill 

J 
for j=1, ... ,n, 

and assume that for every j the operator H. 
J 

is either in case 

(I) or (II). 

Then the operator H 
E 

defined by ( 2 • 1 ) will converge in strong 

resolvent sense to the operator - ll (X, a) defined by ( 2. 1 4) where 

(2.15) 

in case (II) 

Remarks 

1. a. = ro means that the point x. shall be removed from the 
J J 

definition of - ll (X,a)' i.e. we use - !J. ............ 
(X,a) 

with X consisting 

of the points in X which are in case (II). If all points have 

= ro we get the free Hamiltonian, i.e. - ll = -ll 
(X, a) 
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2. The theorem is proved by other means in Albeverio and 

H¢egh Krohn [4] under the assumption that the potentials have 

compact support. 

Proof: 

Define the operator 
n 

n A= [A,.], ._
1 ~J ~,J-

on the Hilbert space 

j( = E9 L 2 (IR3) by 
j=1 

for 2,j = 1 1 o o o 1 n 

A2j = 

where 

u. (x) 
J 

v. (x) 
J 

w2Gk 
~ 

v. 
J 

~ 

given vj, w. are 
J 

= u. ( 1 (x-x.)) 
J E J 

w. (x) = E -
2 A. (E)il'. (x) 

J J J 

by 

As in Simon [7] we have for tmk sufficiently large that 

oo n 
= Gk + L ( -1) m [ Gk (L 

m= 1 j = 1 

oo m n 
= Gk + L ( -1 ) L 

m=1 2,j=1 

(For m = 1 the last bracket is defined to be o2j' and for 

m = 1 it is defined to be A2 j.> 

We now introduce the operator 
n 

B = [ B 2 . ] 2 . =1 J ,] 
Jt -+ Jt where 

has integral kernel 

B9 . 
-J 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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for t,j = 1, .•• ,n. In addition let 

have integral kernels 

C. (x,y) = Gk ( x-sy-x.) v. (y) 
J J J 

D. (x;y) = >.. (£) u. (x) Gk (sx+x .-y) 
J J J J 

c. I D. 
J J 

(2.20) 

(2.21) 

(we suppress the s and k dependence for the moment to simplify 

the notations) . 

By a change of variables (x I+~ ( x-xr)) in (2.18) we obtain the following 

expression 

(H - k2)-1 
£ 

"' n 
= Gk + L (-1.) m L 

m=1 t,j=1 
s ct [. I: . 

J1, ..• ,Jm-2 

"' 
= Gk + L ( -1) m 

m=1 

= G -
k 

n 
£ L 

t, j=1 

n m-1 
L s Ct [B ] tj Dj 

£, j = 1 

"' m m 
L (-1) [B ]t).]DJ. 

m=O 

(2. 22) 

Remark the great structuralltesemblance with the resolvent of 

- "' (X,ct) 
in equation (2.14). 

The validity of (2. 22) extends to Imk > 0, by analytic 

continuation of both sides. 

What remains to be found is the limit of B,Cj 

tends to 0 and therefore we introduce the s 

c~ = c. and £ 
D. = D .• 

J J J J 

and D. when 
J 

dependence: 

From Albeverio, Gesztesy and H¢egh Krohn [5] we have that 

n 
C ~ -+ I Gk ( • - x . ) > < v . I as c -+ 0 

J J J 
(2.23) 

£ 
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where the operator S = if >< gJ is d f' db Sh ( e ~ne y = g,h)f. 

Similarly 

D~ ~ Ju.><Gk(x.- ·) J as £.,. 0 
J J J 

Introducing the operators E£ = [E:j] and F£ = [ F~j] with 

integral kernels 

we see that 
£ £ =1+E +£F 

To find the limit of (1+B£)- 1 we see from the following 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

£ -1 
computation that it is necessary to find th~ limit of £(1+E) , 

£ -1 £ £ -1 £(1+B ) = £(1+E +£F ) = 

(2.28) 

To this end we expand around £ = 0. 

we have 

(2.29) 

for £ = 1, ... ,n where 

( 2. 30) 

and o( £) 1 II o(£ > II .,. o 
£ 

is a bounded operator such that 

as £ .,. 0. 

From Albeverio, Gesztesy and H¢egh Krohn [5] we have that 

£(1+£+u.G v. l-1 = P. + o(1) 
J 0 J J 

(2.31) 

where o(1) is a bounded operator such that I jo(1) I I .,. 0 

as £ .,. 0 and 
0 in case (I) 

!lP . > <<P . I 
J J in case "(II) 

p' = 
J 

(2.32) 

(;Jjj I (Pj) 
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Using this and the expansion (2.29) we obtain 

= d1+c+u G v +c(L -1+o(1 )) ]- 1 
tot t 

= [ 1 + ( 1 + P R. L t- P t) -
1 

0 ( 1 ) J- 1 
( 1 + P R. L R.- P R.) - 1 ( P R. + o( 1 ) ) 

-1 
= (1+PR.LR.-PR.) Pt + 0(1) 

which implies that 

as £ ... 0 

where 

K = [69-j (1+P9-L9--PR.)-
1

PR.] 

According to Albeverio, Gesztesy and H¢egh Krohn [5] we have 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
= l 0 in case (I) 

[ikl 12 I ~ -1~ ~ 4ii (vt,(j)9-) -A9-(0)((j)9-'l~9-)] (j)R.><(j)R-1 in case (II) 

So far we have only been using the assumption that 

but from lemma 2.4, proved after this theorem, we have under the 

assumptions that ( 1 +I · I) 2v. EROL 
1 ( :m3

) that 
J 

F
£ s 0 

-+ F as £ ... 0 

where 

From (2.35) and (2.36) we see that the norm of K can be made 

arbitrarily small when Irnk is large, and (2.44) implies that 

II Fe II is uniformly bounded, 

(1+£(1+Ec)- 1 F£)- 1 = 

as c -+ 0. 

(2.37) 

( 2. 38) 

(2.39) 
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Using (2.34) and (2.39) we obtain 

(2.40) 

Taking the limit in (2.22) when £ tends to zero and using 

equations (2.23), (2.24) and (2.40) we finally obtain after a 

short computation that 

as £ + 0 (2.41) 

where a= (a
1

, ••• ,an) is given according to (2.15) and remark 1. 

0 

To establish equation (2.37) we need the following lemma 

Lemma 2.4 

Let v
1

, v
2 

be real fuctions such that (1 +I· I) 
2 

vj ERn L 1 
(JR

3
) 

d d f · v. = 1 v .1 1 12 d f h an e ~ne J J an uj = v j sgn V j . Let urt er A 

be a real analytic function in a neigbourhood of 0 with A(O) = 1. 

If 
3 a r: lR ,. a f 0, and is the operator with integral kernel 

£ F (x,y) = A(£) u
1 

(x) Gk (e (x-y)+a)v
2 

(y) (2.42) 

where Gk is defined by (2.6) and Imk > 0, then 

as £ + 0 (2.43) 

Proof: 

There is no lack of generality to assume that A(£) = 1. 

First we prove that I IF£1 I is bounded by estimating the Hilbert­

Schmidt norm I 1· I 12 of F£- F0
• 

1 I ik I e (x-y) +a I 
= -

2
Jflv

1
(xliiV

2
(yll =-e ___ _ 

16n ldx-yl+l 
- e ik I a 1

1

2 

Ia I 

lal-ldx-y)+al eikle(x-y)+ali
2 

dxdy 

I£ (x-y) +allal 

dxdy 
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I e ik\£(x-y)+aJ _ eikJaJI
2 

dxdy] 

dxdy + 2JJv1 !! 1 Jiv2 1! 1 ] 

(2.44) 

where 
1/2 

II V IJR = [ff!V(x) JJ V(y) J\x-yJ-
2 

dxdy} is the Rollnik norm. 

From this uniform bound on the norm of FE we only have to prove 

that as E + 0 f 00 3 
for E C 

0 
( lR ) 

(2.45) 

For each 3 
xEJR we have from Lebesgues dominated convergence theorem 

that 

as E + 0 because f has compact support. 

1 [1 J I a 1-J £(x-y) +a I eik I £(x-y) +a J v ( ) f ( ) d J + 
4n J a I J E (x-y) +a I 2 Y Y Y 

1 

s 4nlal [2Jiv2(y)f(y)ldy + 

s C(1+\xll 

JyJ I v 2 (yl II f(yl I 
f --"T x-y+a!E I dy + lxiJ 

(2.46) 

!v2 (y)f(y)\ ) 

Jx-y+a/E J dy 

(2. 47) 
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where C is a constant independent of £ since 

( and J -=d:.:.x~" 
-lx-bl 2 

suppf 

is bounded independently of 
3 bElR ) and 

using Holder;s inequality. 

From (2.45), (2.46) and (2.47) we conclude, using dominated convergence, 

that as £ + 0 thus proving the lemma. 

0 

We will now strengthen the conditions on the potentials but also im-

prove the conclusion of theorem 2.3, treating all cases (I) to (IV). 

Theorem 2.5 

Let v1 , ... ,Vn E R be real-valued with compact support. 
I 

If H. is in case (III) or (IV) assume in addition that A:(O) r 0. 
J J 

Then the self-adjoint operator H 
£ 

defined by (2.1) will converge in 

norm resolvent sense to the self-adjoint operator -I'. 
(X 1 a) 

defined 

by (2.14) where a= (a 1 , ... ,an) is 

r oo in case (I) and (III) 

I ~ I -2 
A.(O)((jl.,tp,) (v.,<P.)I 

J J J J J 
in case (II) a. = 

J 

N. 
I J 2 

A. (0) [L I (v.,(jl. ) I 
J r= 1 J J r 

Remarks 

(2.48) 

in case (IV) 

1. a. = oo means that the point x. shall be removed from the de-
J J 

finition of the operator -l'.(X,a)' ~e. we use -l'.(X,a) 

X c X consists of the points in case (II) and (IV) . 

where 

2. Albeverio and H¢egh Krohn [4) have proved strong resolvent conver-

gence in case (I) and (II) 1 but in case (III) and (IV) they assume that 
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the potentials have definite sign. 
I 

3. If A.(O) = 0 in case (III) and (IV) we will not in general have 
J 

norm resolvent convergence, see Albeverio, Gesztesy and H¢egh Krohn 

[5]. 

Using the following proof we can also slightly weaken some of the 

conditions on the potentials in the one-center case, i.e. when n = 1, 

in Albeverio, Gesztesy and H¢egh Krohn [5]. 

Proof: 

The proof of this theorem will closely follow the proof of theorem 2.3. 

From Simon [7] it follows that Rollnik-functions with compact support 

are in L1 (m3 ) and therefore we can use the proof of theorem 2.3 

till equation (2.31) 

Instead of (2.32) we now have 

-1 
£ ( 1 + £ +u . G v . ) = P . + o ( 1 ) 

J 0 J J 

where 

0 in case (I) 

p. ::: 
J 

I <P • > <li> . I 
J J 

((i).,tp.) 
J J 

in case (II) 

in case (III) and (IV) 

We still have 

c(1+Ec)-1 n [ ( )-1 ] = K c -+ 8,. 1+P.L.-P. P. as 
-"] J J J J 

£ -+ 0 

but now 

0 in case (I) 

-1 
(1+P.L.-P.) P.::: 

J J J J 
ik 2 l-4 -I (v. ,<fJ.) I 

lT J J 
I ~ -11 ~ I - A. (0) (lJl.,~o.)] tp.><<(J. 
J J J J J 

in case (II) 

N. 

1 
I 

A . ( 0) 
J 

N. 
J 

L 
r=1 

llPjr><li>j) 

(lPjr'<Pjr) 
in case (III) 

(2.49) 

(2.50) 

(2,51) 

(2.52) 

J ik I ~ -1 ~ I 
L l·r(<P. ,v.) (v.,<IJ. )-A.(O) (<P. ,<IJ. )J I<P· ><<P. 
,s= 1 TT Jr J J JS J Jr JS rs Jr JS 

in case (IV) 
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gative eigenvalue E(c) with O<M 1SIE(c) Is M2 < oo for small c > 0. 

Let {c } by a positive sequence converging to zero and let 
n 

(Imk >0) be an accumulation point for {E(c )}. Then is a multi­
n 

valued analytic function k (E) with k ( 0) = 

where g is analytic, g ( 0) = 0, and r E JN, 

is a negative eigenvalue for H and k2 is 
E 0 

for -{', 
(X, a)· 

We have the following expansion of k(c) 

k(c) = k
0 

+ c 1/r k
1 

+ o(c 1/r) 

k ' 0 
i.e. 

( 3. 3) 

such that k 2 (c) is 

a negative eigenvalue 

( 3. 4) 

where k 1 is a solution of the implicit equation (3.34) if r ~ 1 

or ( 3. 35) if r = 1. 

Proof: 

Let p (c) = IETET, Imp (c) > 0. 

From (2.19) we see that E(c) is a negative eigenvalue of He iff 

-1 is an eigenvalue of the operator Bc,k with k =p(c) where we 

have introduced the c and k dependence for the operator defined by 

(2.19). 

We expand the operator Bc,k in powers of 

where 

and 

Bc,k = S + cT + o(c) 

G v.] 
0 J 

E 

T = [(\~(O)u.G v. + 
1

4'klu.><v.llo,. + Gk(x,-x.)lu,><v.ll 
J J 0 J TI J J hJ h J h J 

and 

! II o(cl II _,_ o ·as c ->- 0. 

( 3. 5) 

( 3. 6) 

( 3. 7) 

( 3. 8) 



From our assumptions (3.2) concerning zero energy resonance we have 

that 

Ker (1+S) = {(a1<p 1 , ... ,an<pn)j aj E<t} 

where Ker is the kernel and we recall from section 2 that 

the eigenfunction satisfying 

( 1 +u . G v . ) lP. = 0 
J 0 J J 

( 3. 9) 

<ll. is 
J 

(3.10) 

From proposition 2.2 we see that it possible to normalize <pj such 

that (v.,<p.) = 1. 
J J 

Introduce 

Xo = Ker ( 1 +S) (3.11) 

J(1 = Ran ( 1 +S) (3.12) 

Then 

p 
fo.Q,j 

l<v.Q,><(il.Q,I ] = 
((il.Q,,<p.Q,) 

(3.13) 

(recall sgn V .Q,) will be a projection onto Jf
0

• 

We have 

(3.14) 

thus making 

Ker P = Ker (1+S*) 1. 
(3.15) 

The Fredholm alternative implies 

IP * 1. <1\ 1 = Ker ( 1 +S ) = Ker P. (3.16) 

i.e. we have that ~ is the direct sum of Jf 
0 

and $
1 

• We can also 

conclude that ( 1 +S) Ran ( 1 +S) + Ran ( 1 +S) is a bijection. 

We now split the operators s,T and o ( E:) by defining 

8 oo = PSP (3.17) 

8 10 = (1-P)SP (3.18) 

8 01 = PS (1-P) (3.19) 

s 11 = (1-P)S(1-P) (3.20) 
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and similarily for T and o(E). 

Then s00 = -P, s
10 

= s 01 = 0, thus we can write BE,k 

as 

ET.01 + 001 (E) 

using the decomposition of X into d{ 0 and .}{ 
1

. 

h 
tf)E,k 

We define t e operator w by 

-1 + T00 + - 1- o (E) 
E 00 

Then we have that 

E(1+ .nE,k) flJ!ol 
1/:J [1P1J 

(3.21) 

(3.22) 

(3.23) 

for E > 0 which shows that E(E) is a negative eigenvalue for H 
E 

iff -1 is an eigenvalue for tJ3 E, P (E) where p (E) = lET£)', Imp (E) >0. 

When E = 0 we have that 

and if 

then 

Now 

iff 

(j).Q, n 
= - (-~'---- L: 

(qJ.Q,,tp.Q,) j=1 

with c, E q: 
]_ 

[ ( N - ik ) g ~G (x x ) ] ) n 
~.Q, 411 u.Q,j - k 9-- j cj .Q, =1 

(3.24) 

(3.25) 

(3.26) 

(3.27). 

(3.28) 
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Therefore -1 is an eigenvalue for t13 ° 'k iff Ker T00 r {0} 

and by (3, 26) this is the case iff k 2 is a negative eigenvalue for 

- f'>(X,a)' 

If we define the analytic function 

(3.29) 

where det 2 is the modified Fredholm-determinant (see e.g. Simon [8]) 

then f (£, p (£)) = 0 for small £ > 0, 

Let k be an accumulation print for {p(£ )} where {£ } is a 
o n n 

positive sequence converging to zero. Then f(O,k ) = 0 which shows 
0 

that k~ is a negative eigenvalue for - f'>(X,a). 

The analytic function f(•,O) is not identically zero, and from 

implicit function theory (see e.g. Rauch [9]) we know that there is a 

multivalued analytic function k ( £) 

with g analytic, g(O) = 0 and 

f(£,k(£)) = 0 

with k(O) = k , 
0 

rE :N such that 

i.e. 

(3.30) 

(3.31) 

for small £ > 0. k(s) 2 is then a negative eigenvalue for H£ 

Returning now to the operator B£,k and putting K 
r 

= k ( £ ) , we 
r 

have an analytic Hilbert-Schmidt operator B£ 'K ( £) with - 1 as 

an eigenvalue for £ small (for £ = 0 B0 'k will always have - 1 

as an eigenvalue independently of k as will be seen from the defi­

nition of B£,k (2.19) and the assumption (3,2) on the potentials.) 

By first reducing the problem to a finite dimensional space by standard 

methods (See e.g. Reed and Simon [10] ch.XII sec.1 and 2) and using 

a theorem of Baumgartel [11] we can find an eigenvector ~£ with 

s ~ ~£ analytic such that 

(3.32) 
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£ 
d(jl • 

and put <p = _J_ I 
j a£ £ =O 

From (3.32) we see that if £ = 0 we have 

0 ( 1 +u . G v . ) <p . = 0 
J 0 J J 

(3.33) 

By taking the derivative r + 1 times in £ = 0 in (3.32) and taking 

inner product with 
~o 
<pj we obtain the following equations 

r > 1 

r = 1 

n 
+ 2 t 

j=1 
jh 

ff -;;,09, ( 0 o/ (xlvg,(x)VGk (x.-x.) • (x-y)v. y)<p. (y)dxdy 
0 h J J J 

+ 2 

n 

I 
j=1 

n 
I 

j =1 

I 

(k
1 

=K (0)} 

(3.34) 

(3.35) 

(In the r = 1 equation we have used the equation one obtains by 

taking the derivative r times in £ = 0 in (3.32) to simplify the 

expression) . 

0 
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We now want to reverse theorem 3.1 by starting with an eigenvalue 

for -I'>(X,a)· Using the norm resolvent convergence we can formu-

late the following theorem 

Theorem 3. 2 

Assume that k 2 
0 

(Imk >0) 
0 

is a negative eigenvalue for - !'> 
(X, a) 

with multiplicity m. 

Then there exist m (not necessarily different) multivalued analytic 

functions k. (£) 
J 

in a neighbourhood of 0 with k. (0) = k 
J o' 

i.e. 

1/r. 
k,(E) = k + g.(E J) 

J 0 J 

with gj analytic, gj(O) = 0, and r. E ]11 
J 

(3.36) 

such that { k ~ (E) } 
J 

are all the eigenvalues for HE in a neighbourhood of for all 

sufficiently small E. 

We have the following expansion 

where 

Proof: 

1/r. 
k.(E) =k +E J 

J 0 

1/r. 
k

1 
. + O(E J) 

, J 

is a solution of (3.34) if r. > 1 
J 

(3.37) 

or (3.35) if 

From the norm resolvent convergence proved in theorem 2.5. we can 

conclude using the convergence of the spectral families that there 

are m functions E. (s) where E.(E) is an eigenvalue for H~, 
J J ~ 

converging to k 2 
o· 

As in the proof of theorem 3.1 we obtain the multivalued analytic 

functions k.(E) and the expansion stated in the theorem. 
J 

D 
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4. Resonances 

In this section we will use the same assumptions on the potentials 

as in section 3, i.e. 

( i) V. E R and supp V. is compact ( 4 • 1 ) 
J J 

( ii) H. = - {, + V. is in case (II) ( 4. 2) 
J J 

From (2.22) we have for Imk > o, k
2

f/.cr(H£) 

( 4. 3) 

But recalling the definitions (2.19-21) of the operators B,C ,D. 
9- J 

we see (because of our assumption (4.1)) that the right hand side 

of (4.3) is a merom~rphic function of k also for Imk ~ 0. In 

analogy with the properties of negative eigenvalues, we define re-

sonances as follows. (We now introduce the £ and k dependence 

f B ' B8 'k = B) or , 1. e. 

Definition 4.1 

We say that k(e), Imk ( £) < 0, is a resonance for H if and only 
£ 

if -1 is an eigenvalue for 

For the operator -f.. 
(X,a) 

in complete analogy. 

Definition 4.2 

We say that k, Imk < 0, 

negative eigenvalues and resonances are 

is a resonance for -f.. 
(X, a) if and only if 

This definition makes it possible to study how the resonances vary 

with a= (a 1 , ... ,an) for simple geometric arrangements of 
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X= (x
1

, ... ,xn). See Albeverio and H¢egh Krohn [12] for details. 

With these definitions we can formulate the following theorem. 

Theorem 4.3 

Assume that H has a resonance K(c) with. 
£ 

for c small 

Let {en} be a positive sequence converging to zero and let k
0 

be 

an accumulation point for {K(cn)}. Then there exists a multivalued 

analytic function k (c) in a neigbourhood of zero with 

k(c) = k + g(c 1/r) 
0 

k ( 0) = k ,i.e. 
0 

( 4 • 4) 

with g analytic, g ( 0) = 0, and r E :N, where k (c ) is a resonance 

for H
8 

and k
0 

is a resonance for -6(X,a). We have the following 

c expansion 

k(c) = ko + £1/r k1 + o(c1/r) ( 4 • 5) 

where k 1 is a solution of (3.34) if r > 1 or (3.35) if r = 1. 

Proof: The proof is identical to that of theorem 3.1 except for one 

fact. For eigenvalues we have to appeal to (4.3) to say that -1 

is an eigenvalue for B 8 'k, for resonances this follows from de-

finition 4.1. The assumption JimK (c) J ~ M
1 

> 0 enables us to say 

that Imk
0 

< 0. 

0 

If we want to have an analoque to theorem 3.2 for resonances, we 

cannot use the same sort of proof because we do not have the spectral 

projections for resonances. We can now instead formulate the 

following theorem which is also valid for eigenvalues. 
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Theorem 4.4 

Assume that k
0 

(Imk
0

<0) is a resonance for -6(X,a). Then there 

exists a multivated function k(e) in a neigbourhood of 0 with 

k(O) = k
0

, i.e. 

( 4. 6) 

where g is analytic, g(O) = O, and r EN, such that k(e) is 

a resonance for H for small e > 0. We have the following expansion e 

k(e) = k + k e 1/r + o(e 1/r) 
0 1 . ( 4 • 7) 

where k
1 

is a solution of (3.34) if r > 1 or (3,35) if r = 1. 

Proof: 

The proof will depend heavily upon the proof of theorem 3.1 and we 

will use the same terminology. 

Let 

f(e,k) = det
2

(1+ 03e,k) 

where fJ3 e,k is defined by (3.22). 

( 4. 8) 

From the properties of ~e,k we have that -1 is an eigenvalue for 

so,k iff k is a resonance for 

f(O,k ) = 0 
0 

f(O,k) ~ 0 

-6 (X, a) 
which implies that 

( 4 • 9) 

(4.10) 

From implicit function theory (See e.g. Rauch [10]) we have that there 

exists a multivalued analytic function k(e) 

f(e,k(e)) = 0 

with k(O) = k and 
0 

(4.11) 

for small e. We are now in the situation covered by theorem 3.1 and 

we obtain the same expansions. 

0 
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