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§ 0 Introduction. 

E-Recursion was introduced by D. Normann [1978] as a natural 

g.cmeralization of normal Kleene recursion in objects of finite 

type. Unless otherlvise stated the E-closed sets we shall con-

sider shall be of the form E(Cl) for some a E OR. 

In § 1 we introduce the RE 11 co-RE cofinali ty and show that 

the L:radmissibility of E(o) implies that its greatest cardinal 

has RE 11 co-RE cofinali ty w. In addition we show that RE·-

cofinali ty UJ does not imply admissibility. 

Section § 2 is devoted to a dyD.amic proof of selection 

(i.e. y = cfE(o.)(a) then we have uniform selection over RE 

subsets of any 6 < y on E(a)), vlhich can therefore be relativized. 

This selection theorem thus has among its corollaries the con··· 

sistency of the extended plus one hypothesis at the type three 

level with -,CH. 

Applications of the proof of selection given in § 2 are pre--· 

sented in § 3. He show that if y is the cofinality of a in 

E(a), then the co-RE cofinality of y is y. The proof of this 

gives rise to an effective covering property, namely, any co--RE 

subset of y can be covered by a REO set of the same order type. 

The final application makes clear the connection bet\veen selection 

and singularities. vle show that for a< B such that cf((l) _::a 
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by a function .f recu:rsi ve in a, 8 and some o <a, then 

cf(B) ::;,a by some f recursive in a,~. 

The last; section ( § L") treats the interplay betvreen monotone 

inductive definitions and E-recursive set; functions using methods 

from Girard's ~--logic [ '198 ?] , vrithout; introducing B··logic or 

its proof theory. al1vays has a solution in 

(the least fixed point of monotone inductive r over x), then 

the function giving that solution is E-recursive in x. As a 

corollary we have an elementRry proof of a theorem of Van de Wiele 

["198'1 J: 
If F : V ~> V is uniformly Z::-1-·definable and total over all 

admissible sets, then .1!' is E--recursi ve. Outside of § 4, RE, 

co-RE etc. are the boldface notions. 

§ "1. Effective Cofinalities. 

Much attention has been given to various notions of definable 

co.finality, particularly in connection with priority arguments 

E-Recursion. He shall not attempt to give a complete picture 

and so the interested reader is directed to Griffor ["1980], Sacks 

["1980] or Slaman ["198"1]. The first question we address here was 

asked by Sacks, namely, is there a cofinality condition on a 

which caracterizes vrhen E(a) is Z::-1-admissible. The question 

was motivated by a result of Kirousis that: if E(a) I= cf(a) = w, 

then E(o.) is Z:'l .. admissible. Thus an attractive conjecture 

was that: E(o) is Z:radmissible if and only if E(a) I= cf(a) = w. 

HO\·rever, Slaman noticed that if y is the least ordinal where 

E(y) I= cf(Y) ~- w, then E(y) is Z:radmissible. If E(a) is 

z:'l .. admissible Sacks ["1980] showed that there is a divergent; 
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computation without a Moschovakis 1·1i tness in E(o.). This v1i tness 

induces an w-seguence through a and we will first analyse the 

level of definability of one such sequence. 

DefinitioJl. Consider E(o), o E OR, and without loss of generality 

assume that a. is the greatest cardinal in E(o.). Define the 

RE ~oin co-RE cofin.ality of a as: 

REA co-RE-cf(a) = least 'T <a such that there exists an 

R <a of order type 'T unbounded in a and R is REA co~RE, i.e. 

R is the intersection of an RE and a co-RE set. 

Theorem 1.0. Suppose E(o) is 6radmissible, then 

REAco-RE-cf(a) =~J. 

goof. As above 1ve assume that o is the greatest cardinal 

in E(o.) (Hhichis Lx. for some x.>o.). If eEw, aEE(a), then 

associated with the computation tuple (e,a) is the tree of sub-

computations T (e,a) (which is recursive in (e,a) if 

but is in general only RE in (e,a)). Assume that E(a) is 

61-admissible. 

that 

By Sacks ( 1980 l there exists an e E w and a E E(o) such 

T (e,a) is not well-founded, but 

LX I= 'T(e,a) is well-founded'. 

Claim 'I. The leftmost path in T(e,a) is in REA co-RE 

goof. vle say that a is on the leftmost path if 

(i) 

(ii) 

oET (e,a) (RE) 

(co-RE) 
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(iii) ::.-.f T < o in the lexicographical ordering and n is 

minimal such that r(n)<o(n), then 1'Cn+1)~ 

This proves claim 1, 

(RE), 

Now assume that 1ve have an effective coding of all finite 

sequences from o_ by o such that 

1\ 
( o T) > < o) , where T -1 ( ) , 

Let ( ~ 1 , ••• , ~n) E A if ~i is the index for the 
.th 
:t- sequence 

of the leftmost path through T(e,a)' Then A is the inter-

section of an RE set A1 and a co-RE set A2. 

Claim 2, A is unbounded in o. 

proof. If A is bounded by A< a, then use standard proper

ties of the >:1-projectum on admissible ordinals to show- that 

A1 n A E E(a), A2 n A E E(a) and so A E E(a), I•Thich is impossible. 

This completes l:;he proof of the theorem. 

Definit~. With E(a) as above let 

(i) REG- cf(a) ~ J--tT .=;a such that there exists REG 

R;:: a of order type T unbounded in o.; 

(ii) RE- cf(a) ~ J--lT _::a such that there exists RE 

R c n of order type T unbounded in a, 

As one might expect the recursive cofinality is no stronger, on 

ordinals less than 1\, than the cofinality in the sense of E(a). 

Prouosition 1.1. If y < 1\, then 

L 
REG ·• cf ( y) ~ cf 1

' ( y). 
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let 
L~ 

f : cf ( y) ~ y, f E L~ witness and 

without loss of generality I·Te may assume that f is strictly 

increasing. Let R ~ im(f), then R witnesses 

L., 
REO - cf ( y) ,::: cf 1 

( y). 

>: let R :=: y l;Ji tness the REC-cf( y) ~ 'f, then R E L1, 

by the bounding principle and the function f : 'f ~ y given by : a <'f. 

f(a) ~ at~ element of R 

is in L~ and witnesses cf:S~(y)_:REC-cf(y). 

goo~. Use the pro.;>osition and the selection-theorem of 

Kirbusis [19781 stating 

E(u) I= cf(a) = w => E(o.) is I:radmissible. 

We shall see nmv that RE- cf(u) ,.. w is not enough to 

guarantee admissibilit;y. 

proof. Begin with E(~) (which is not I:radmissible) and 

define the following ~r-sequence: 

= n r Now consider 

(x\xEE(~~) and x<E~r(n) for some nEw}= M. Let r1 be the 

Mostouski collapse of M, then M :Ls E.-closed and satisfirs the 

Moschovakis Phenomenon (use the MP :Ln E(Xy and the definition 

of ~ ) and Pi is an E-closure of one of :Lts elements. 
r 
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But !1 has an I!J··-sequence of and 

let 

R = [x < o_ I x is the index for an ordinal [3 

such that 
a 

!3 = x.r for some a <o}. 

R is RE and unbotmded in o. and clearly of order type w. 

Thus !1 is not E1-admissible, while over M RE-cf(ll) = w, 

where a = (i(J)Pl' • 

§ 2. Dynamic 88lection. 

vie shall give a dynamic proof of the following theorem: 

Let a be the greatest cardinal in E(a) and let y be 

the E(a)-cofinality of a. Then we have uniform selection for 

RE subsets of any o < y. 

As it stands, the theorem was proven by Kirousis f1978], 

but the 'dynamic' proof we shall give can be relativized, whereas 

Kirousis made use of a Skolem Hull -· collapsing argument. A 

similar proof using a collapsing argument \•ras given by Normann 

[ '1979] for the case y = o , i.e. a is a regular cardinal in 

E(a). VIe now give the dynamic proof. 

Let o be fixed as in the theorem and let f be a o··-se

quence of computations. Let R be the !1oschovakis ~1967] sub

computation relation vrhich is RE and, finally, let R~ denote 

the Gth approximation to R. The relation R is such that for 

a given computation, the set of immediate subcomputations can 

uniformly be indexed by a finite set or by a (the case of an 
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o.~branching), In the case of composition we let; the innermost 

computation be the leftmost one, If this one is convergent, then 

we kno1v the other subcomputations, 

Following Harrington-MacQueen [ 1976 J 1ve let 

min(f) = inf(\Jf(y)!l :y<o}, where 

!I, II denotes the function giving the height of a computation, if 

convergent, and equals a::: othervlise, If min(f) < oo, i,e, one 

of the f (y) 's is convergent, v/e shall show that min(f) is 

uniformly recursive in f for f E E(o.), The situation min(f) <co 

corresponds to the non--emptiness of the associated RE subset 

of 6 and, thus, we have shown selection over 6, 

The proof proceeds by transfinite inc1uction on min(f), An 

application of the recursion theorem yields the required uniformity, 

The relation min(f) = 0 is recursive, so assc~e that m 

min(f) > 0 and that we have computed min(g) for all g such 

that min(g) <min(f), 

If min(f) > 13 (which is recursive in 13) we let 

gi3(y) = leftmost subcomputation z of 

f(y) such that llz\1;::13 

and otherwise we let Clearly g
8 

is recursive in f,B 

and if min(f) > 13, then 

Let; r be a recursive function defined by: 

r(O) = 1 . 
' 

r(:X.) = sup(r(s)IB <:X.} ·if :X. is 
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a limit ordinal; 

Claimo --· 'T(a) .:;::min(f) o 

12..roof (Claim) Otherwise for each s<a let hp = g'T(f3)+1 ' 

then if s1<s2, there is a y<6 such that 

hf3 (y) <hf3 (y)o Let a = hs (y)' 
1 2 y 

then if for some y, [!3y : G < o} is unbounded, we have 

lif(y)li2. 'T(o.), so this cannot be the caseo Let s; = sup[Syl f3 <o L 

Since 

6 < y = cfE(o.) (a), we have that 

* a= sup(f3 iy<6}<ao But for each f3<a y 

there is one minimal y such that ( !3+1 )y > Syo This gives a 

one-to-one map of a into 6 x a , which is impossible and gives 

the claimo 

Since 'T(o.) is recursive, we have computed min(f) from f 

giving the theoremo 

Corollary 2o0o We have selection over y = cfE(a)(a) if and 

only if we have selection over ao 

proofo Selection over a clearly implies selection over Yo 

The other direction follows from the theorem and the dynamic proof 

of selection due to Sacks-Slaman (Theorem 2o8 in Slaman [1981]) 

which inspired this proofo 

Now assume that E(o} is not 2::1 -admissible and, hence, we do 

not have selection over Clo The above corollary tells us 1ve do 
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not have selection over y, however the theorem tells us: 

Corollary 2.1. Let o<y, ceo be RE, then CEE(a). 

proof. Since we have selection over & , it follows tha.t 

C can be definedthis level in E(n). 

Corollary 2.2. (Further Reflection) Let o,c be as above, then 

(a) )\ c, 6 < ){.6 ; 
0 r 

(b) if Be E(a) is RE and B(C) holds, then there ex.i.sts 

a &-recursive 13 such +;hat B(C0 ) holds. 

proof. immediate. 

Corollary 2. 3. Suppose 2w = l\ , l\ is a regular cardinal and 

there is a well-ordering of of height recursive in '+JE 

and a real. Then the extended plus one hypothesis is true at the 

type 3 level. 

This last corollary 1·1as pointed out to us by T. Slaman. The 

extended plus-one hypothesis (for reals) states: if F is a normal 

type n+2 object and n .:=: 1, then there exists a normal type 3 

object G such that 

1 1 sc(G) = 2 sc(F) , where 2 

~ sc(F) is the collection of sets of reals recursive in F and 

some real. 

For backgr01md and further results on the extended plus·-one 

hypothesis see Sacks (19771] or Slaman (19811. 
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§ 3. Applications: co-RE Cofinality, Effective Covering and 

Uniform Computation of Cofinality. 

We turn first to an application of the above selection 

result which will yield a covering property for many co-RE sets 

'preserving cofinality' and characterize 1vhat will call co-RE 

cofinality. Let a be an ordinal and consider again E(o) = L 
1'. 

for some 1<. > o.. Hithout loss of generality we assume a is the 
Ll'. 

greatest cardinal in L and we let y = cf (a). 
1'. 

.!J.£.finition. Let B < 1t and define the co-RE cofinality of (3 by: '-
,,.. 
co--RE- cf( S) = least o such that there is a co-·RE 

Lemma 3.0. 

subset A of B of order type & 

and unbounded in B. 

co--Re-cf(a) = co-RE--cf(y). 

proof. Let f y ""o be increasing and witness that 

~: If A _s y is co--RE and of order type & then 

Af = (f(y)\y EA} is the same order type through a. If A is 

unbounded in y, then Af is unbounded in a. 

_2:: Let Aco. be co-RE, unbounded and of order type &. 

Let yEA*, if there exists z E [f(y) ,f(y+1 )) n A. The RE sets 

are closed under the quantifiers V z E u, so the co-RE sets are 

* closed under 3z E u. Thus A is co-RE and ·clearly unbounded 

* in y. In addition o.t. (A )::_o.t.(A). 

vle shall show that co-RE- cf( y) = y. By the above selection 
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theorem, 13 < y implies that the RE predicates are uniformly 

closed under 3y < 13 and, in addition, that 

denotes the set of well-founded relations as fl X ~ (the latter 

cannot in general be relativized). 

Theorem 2.1. co--RE·- cf(y) ~ y. 

;Q_~oof. Let A~ y be co-RE, co final in y of order type i3. 

Let A0 be the 6th approximation to A from the outside, i.e. 

We will shovr that there is a recursive 6 such that o.t(A) ~ o.t.(A6 : 

Let y < y, then o. t. (Any) < ~ and by Further Reflection 

applied to cA, there is a & recursive in y such that 

Using this we construct a recursive inereasing function g : y ~It 

such that vy<y (o.t.(Ag(y)ny)<f3). 

Let & ~ sup(g(y)iy<y}, then & is recursive so let C = A0 • 

Thus C is recursive and A::;c. If o.t.(C)>B, then there exists 

a y<y such that o.t.(Cny) =e. But cny~Ag(y)ny since 

g(y) < &. Since o.t.(Ag(y) n y) < 13, we have a contradiction. 

Corollary 3.2. (Covering Property) Any co-RE subset A of y 

can be eovered by a REC set of the same order type. 

The corollary is proven in the proof of the theorem and we 
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used the ordinal s as a parameter. This lack of uniformity 

makes extension of the result in the corollary to ordinals other 

than y difficult, hm·rever we offer: 

Problem. Is there a bounded co-RE set that cannot be covered 

by a REO set of the same order type? 

If Lit is ~_,-admissible, then co-RE- cf(~t) = OJ (recall 

that Lit = E(a)), but the converse is not true. 

As far as the questions of section § 1 go these results show 

that 

co-RE- cf(a.) = w => E(a) is ~_,-admissible, however 

E(o.) ~radmissible I> co-RE--cf(a) = w. 

Together \'lith the results of § 2 this shov/S that there is no 

natural cofinality-assumption that vlill characterize when E(a) 

is admissible, the best seems to be the one implicit in the lack 

of certain Moschovrucis Witnesses. 

Our next application makes clear the interplay between selec

tion and singularities. 

Theorem 3. 3. Let c. < f3 be ordinals such that cf ( !3) _::a by some 

function f recursive in a, fl and some 6 <a. Then cf ( fl)< a 

by some function recursive in n.,B. 

proof. let g: a -• fl be a list of 1 computation tuples 1 over S 

such that (36 <a)(g(o)~]. The intuition here is that >ve attempt 

to carry out a search for the 6 <a in question and v1e either 

compute it effectively, and hence the witness to cf(fl) <a., or we 

don't and in so doing (not doing) obtain a 1vitness to cf(fl) _::a. 
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Let min(g) ~ min[l\g(o)!i I 6 <a.}. 

By the selection theorem in section 2: if E(!3) l~ cf(~) >a, we 

know that min(g) is computable by some recursive fcmction M(g). 

In general it is sufficient for M(g) to be defined that min(g) 

exists. If M(g) < min(g) this means that we have 

EM(g)+1 (a) I~ cf(S)_::rq where for y<ORnE(a) 

EyCo.) = [xEE(a)\x comp1lted by a computation of height <y}. Now 

let g(o) be an index for f recursive in o,n,!3 witnessing 

that cf(~) _::o. Since min(g) exists we have that the selection 

algorHhm M(g) satisfies M(g),)t. 

If min(g) = M(g) we have computed the level at which the 

cofinality map is constructed. If M(g)<min(g), this is because 

we kn01~ at that ordinal that cf ( f3) .::_a. Thus in bo-t;h cases we 

can find from M(g) an f collapsing the cofinality of !3 

belm~ a.+1. 

If L/1. = E(a) then for all y such that a< y < 11. we can 

find effectively in a,y a map in Lit witnessing 

L L 
= 11. 1\ y = 0. 

The above theorem will enable us to do this in many more cases. 

Suppose Lit is E--closed and has a greatest cardinal (gc(1t)). 

Coraollar.y. 3.1£. If y > gc(11.), let fy be the least (in the sense 

of ~) 

have that 

(*) 

collapse of y to gc(11.), If for some a, y < 1t we 
0 

( \1 > y ) (3 z < gc ( 11.) ) [ f <"' a , y , gc ( ~>) , y , z } , 
y o Y-= o 
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then the function y -> f y is uniformly computable in 

and a gc(K)-enumeration of y
0

• 

proof. Vle proceed by induction on y > y • 
- 0 

y ; y 
0 

is trivial. If y > y 
0

, let ay be so large that all 

' y < y 

that: 

are collapsed to gc(K) by level a.y. 

if L I; y > gc ( K) , then 
a.y 

L I; Y; (gc(K))+, where a 

Lot a.>o 
- y 

such 

r+ is the successor cardinal of r. By the theorem there is 

an a recursive in y,a, y
0

, gc(K) and the collapse of y
0 

such that 

L I; cf(y) < gc(K). 
a -

But a successor cardinal is regular, so this singularity v1ill 

demonstrate that y ; gc(K) and the collapsing map can be com·-

puted. 

Corollary 3.11· can be used to show that under (*) we have 

Corol]-ary 3.5. Let LK be E-closed and let a ; gc(LK). Assume 

that IJ
11 

1S* f. Then the foll01ving are equivalent 

(i) LK i.s RE in an element of LK 

(ii.) Both L" n (Cl) and K are RE in an element of LK. 

Remark. Using forcing-methods of Sacks [198?] vie may shov1 that 

if * holds, then L
11 

is not R.E. 
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§ 4. E--Re cursive l!'unctions and Inductive Definability. 

In this section we shall give a treatment of monotone induc

tive definitions using methods from Girard's 8-logic ['198?], but 

1·1ithout introducing 8-logic and its proof theory. Masseron [1980] 

has used the proof theory of ~-logic to show that every total 

CK . f t' w1 -recurslve unc lOll on CK 
w1 is dominated by a prim~.ti ve re-

cursive dilator on infinite arguments. As a corollary we give a 

proof of Van de Wiele's theorem: 

If F : V ~> V is total uniformly ~1 -definable over every 

admissible set,then F is E-recursive. 

The converse for E-recursive functions (lightface) is imme-

diate. Slaman has given an alternate proof, but his proof uses 

the theory of reflection in E-re curs ion, v1hereas 1ve will require 

only familiarity with the generating schemata of E-recursion. 

Like the completeness theorem for ~-logic this proof is 

based on the Henkin-type construction of term models, otherwise 

the proof is elementary. For each set x let rx be a uniformly 

/:o.o(x) positive inductive definition on x. Let < -x denote the 

stage comparison relation on x. The following lemma is valid for 

monotone inductive definitions in general. 

Lemma 4.0. Let Y !;X, < be a relation on y such that 

(i) r(Y) = Y ; and 

(ii) for each yEY 

r:::u<Y 
X -

( 
CD ' rx lS 

(y' \y' .:::_y} = r((y'\y' <y)) , then 

and < is the well-founded initial segment of -x 
the least fixed·-point of r X). 

< 
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For each x, let 1x be the closure ordinal of rx and let 

~ be a n
0

-formula such that 

Theorem 4.1. There is an E-recursive function G such that 

lfCJ. 1/x(rank(x) <a => 3 <min(G(a),t )~(x,rxY+1 )); 
- y- X 

Definition. Let T = T1 be the following first order theory: 
.~ 

unary predicates 3_, Y, ON 

binary predicates p (for < ) -x and i 
unary function R (for rank) 

constants co, c1 ' . . . - -
Take standard axioms like regularity, extensionality, etc. 

together with: 

(i) y = rc:;o ; 

(ii) ~(x,[y\P(y,c0 )}) -> 1/z EX.(((l(x,(y\P(y,z)}) -> P(c
0

,z)); 

(iii) P(c. 1 ,c.) 1\ -..P(c. ,c. 1 ) ,· and - ~]. + ...2:. - ....1:. -]. + 

(iv) 1/Z E Y( (y\P(y,z)} = I'( (y\P(y,z) 1\ -,p(z,y)})). 

Definition (a) Let Tn denote the part of T that does not 

contain any ci for i 2: n ; 

(b) Let denote the respective Henlcin-

extensions ; 

(c) 

the terms of T* 

Let be a recursive enumeration of 

such that If i (e. E T:) • 
..2. ]. 
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* f : :N -> ON, let T extended with the fol-

lowing axioms: 

[R(e.) < R(e.)\f(i) < f(j)1 • 
..2:. - .2 ··-

Lemma 4. 2. Let f: JN -> ON and Tf be as above, then Tf is 

inconsistent. 

let 

Q£90f. Assume Tf is consistent for a contradiction and 

denote a consistent completion of -f T . The term model 

for Tf will then be a model of T and since the rank-relation 

is well-founded, the m0del will be isomorphic to a set z where 

x is interpreted as a subset of z. Let y < ,. be such that 
X 

By lemma the interpretation of must be 

in and have rank ~ y+1 • But then interpretations of c . 
..2:. 

will form an <-infinite descending sequence, which is absurd. 

If a is a finite sequence of ordinals we define T0 as an 

* extension of Tlh(a) as before. Thus we have 

V f N -> OR 3r E JN[Tf'Gi} is inconsistent l. 

Definit~on. Let a be a sequence of ordinals of length n, then 

we say a is good if we cannot prove a contradiction from T0 

using a proof of length ~ n and at most the n first axioms 

of T0 (in some uniform enumeration of Tf's). 

For a E OR ~re let 

Sa= (a\a is good and vi<lh(a)(a(i)<a)) 

and set G(a) = height of s . 
n 

Then G is E-recursive since 

we can uniformly compute the height of any well-founded relation 

in E-recursion. 
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Lemma 4.3. Let rank(x) ~o., then v1e can find y _:: G(a) such that 

~(x,r~+1 ) holds. 

proof. 

and choose 

JJ'ix x and let y be minimal such that ~(x,r~+1 ) 

Y E rY+1 -· rY Let 
X X • 

p denote the ordinal norm function 
·X> 

on rx induced by rx. Then we have p(y) = y. Assume that 

y
0

, ••• ,yn_1 is a sequence from r: such that y
0 

= y and 

p(yi)<p(yi __ 1 ) for 1<i<n. 

We shall cons-cruet a model for Tn using TC(x) as the 

domain, x for :x:_, r
00 

for Y < for P and y y - x -' -x o•···• n--1 

for C 'ooo,C 1• o n- This model can be extended to a model for 
- -

T~ since T* is a conservative extension of 
n 

and we do not 

change the domain. For i<n let a(i) = rank(ei) (e. is 
l ,. 

interpretation of ei). Note that if we extend g in a con-

sistent way, then we may ext end a (i.e. we cannot choose 

such that it is ineonsistent with the construction based on 

extensions of y). 

a 

the 

If n = rank(x), then rank( ei) <a by our choice of domain 

as TC(x)) and so aES 
a • By induction on we ean 

shm-1 that p(yn __ 1 ).::,\\a!l 8 The induction is trivial by the above 
a. 

remark on the consistency-considerations and, hence, the lemma 

follows. The theorem follmvs from the lemma. 

Remark. The theory T in the proof asserts that x is a rela-

tion on a transitive set y; (Y,P) is the prewellordering in

duced by r over x and there is no z E r: satisfying ~· 

If T' is a primitive recursive theory in the language of set 

theory, then the same proof gives: 
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Corollary 4. L>. Let r, cp and r x be as above. If 

vx(x I= T
1 => 3y < 'fx.:P(x, r~+ 1 )) then there is an E-re

cursive function G such that 

Examples of such theories are: 

(i) x is trensitive, infinite and closed under finite 

subsets; 

(ii) x is ruc1imentarily closed. 

No1·r if x is transitive, infinite and closed under finite 

subsets, then we have a notation system for the next admissible 

(HYP(x)) and that notation system is defined by a monotone in

ductive definition. If 3y E HYP(x)cp(x,y), then there is a 11
0 

formula I 
cp such that for the least y such that 

3y E L (xlro(x,y) where r defines that notation system. y - y 

Using this we have proven the following theorem of 

J. Van de Wiele: 

Corollary 4.5_:c (Van de Wiele) Let li': V -> V be uniformly ~1 -
definable and total over all admissible sets, then F is E.-re-

cursive. 

proof follows immediately from the theorem and the above 

remarks on the inductive generation of HYP(x). 

Note that we actually show that F is computable in a 

weaker system than E-recursion, since we use elementary functions 

together with the operator which computes the height of a well-

founded relation. 
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