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§ 0 Introduction.

E-Recursion was introduced by D. Normann [1978] as a natural
generalization of normal Kleene recursion in objects of finitve
type. Unless otherwise stated the E-closed sets we shall con-
sider shall be of the form E(a) for some a €O0R.

In §1 we introduce the REA co-RE cofinality and show that
the X,-admissibility of E(a) implies that its greatest cardinal
has REA co-RE cofinality w. In addition we show that Rb-
cofinality w does not imply admissibility.

Section § 2 is devoted to a dynamic proof of selection
(i.e. Y = cfE(a>(a) then we have uniform selection over RE
subsets of any $<y on E(a)), which can therefore be relativigzed.
This selection theorem thus has among its corollaries the con-
sistency of the extended plus one hypothesis at the type three
level with —CH.

Applications of the proof of selection given in § 2 are pre-
sented in § 3. We show that if vy is the cofinality of o in
E(a), then the co-RE cofinality of y dis y. The proof of this
gives rise to an effective covering property, namely, any co-RE
subset of ¥ can be covered by a EEC set of the same order type.
The final application makes clear the connection between selection

and singularities. We show that for o <8 such that cf(g) <o
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by a function f recursive in «,8 and some & <o, then
cf(8) fa by some £ wrecursive in «,B8.

The last section (§ 4) treats the interplay between monotone
inductive definitions and E-recursive set functions using mebthods
from Girard's B-logic [198 ?], without introducing 8-logic or
its proof theory. If a A w{x,°) alwvays has a solution in Tj?
(the least fixed point of monotone inductive T° over x), then
the function giving that solution is E-recursive in x. As a
corollary we have an elementary proof of a theorem of Van de Wiele
[1981]:

If F:V >V is uniformly ¥,-definable and total over all
admissible sets, then I is E-recursive. Outside of § 4, RE,

co-RE etc., are the boldface notions.

§ 1, Iffective Cofinalities,

Much attention has been given %o various notions of definable
cofinality, particulariy in connection with priority arguments
E-Recursion, We shall not attempt to give a complete picture
and so the interested reader is directed to Griffor [1980]}, Sacks
F19801 or Slaman r1981]. The first question we address here was
asked by Sacks, namely, is there a cofinality condition on «
which caracterizes when (o) is L,-admissible. The question
was mobivated by a result of Kirousis that: if E(a) |= cf(a) = w,
then KE(a) is I,-admissible. Thus an attractive conjecture
was that: E(g) is L ~admissible if and only if Tla) 1= cf (@) = w.
However, Slaman noticed that if y is the least ordinal where
E(Y) |= of(¥) > w, then E(y) is 3 -admissible. If E(a) is

Z,~admissible Sacks [19801 showed that there is a divergent



computation without a Moschovakis witness in E(o), This witness
induces an w-seqguence through o and we will first analyse the

level of definability of one such sequence.

Definition. Consider E(o), o €OR, and without loss of generality
assume that o 1is the greatest cardinal in E(o). Define the

BE  join  co-RE  cofinality of o as:

RE A co-RE-c¢f(o) = least 7 <a such that there exists an
R=oa of order type T unbounded in o and R is REAco-RE, i.e,

R is the intersecction of an RE and a co-RE set.

Theorem 1.0. Suppose E(o) is I,-admissible, then

REAco~RE~cf{a) = w.

proof. As above we assume that o 1is the greabtest cardinal
in ®(a) (which is L, for some w>a). If e€w, a€E(a), then
associated with the computation tuple <{e,a) is the trec of sub-
computations T(e,a} (which is recursive in <{e,a) if {e}(a)&,
hut is in gemeral only RE in (e,a)). Assume that E(a) is
2, -adnissible.

By Sacks [1980] there exists an e€yw and a€E(0) such

that T<e5a> 18 not well-founded, but

i 2 et T . H
Lnl" T(e,a) ig well-founded'.

Claim 1. The leftmost path in T(e a) is in RE A co-RE
1

proof. We say that o 1is on the leftmost path if

(1) 06T, .y (RE)

(ii) GT (co-RE)
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(iii) If 1<0¢ in the lexicographical ordering and n is
minimal such that 71(n)<o(n), then ?(n+1)¢ (RE).

This proves claim 1.

Now assume that we have an effective coding of all finite

sequences from o by o such that
A
(o " 7y>(c), where T £ { ).

fet (8,4,...,8,2 €A if 8. is the index for the it sequence
of the leftmost path through T<e ade Then A is the inter-
9

secbion of an RBE seb Aq and a co-RE set Ago
Claim 2, A is unbounded in o.

proof., If A is bounded by A <o, then use standard proper-
ties of the Zy-projectum on adnmissible ordinals to show that
A Nxe Ela), AN NeE E(e) and so A€E(n), which is impossible.

This completes the proof of the theorem.

Definition. With (o) as agbove let

(i) REC-cf(a) = pt <a such that there exists REC

RCa of order type T unbounded in oj
(ii) RE-cf(a) = ur <¢ such that there exists RE

RSa of order type T unbounded in «a.

As one might expecct The recursive cofinality is no stronger, on

ordinals less than #, than the cofinality in the sense of E(a).

Proposition 1.1. If y <u, then

L
REC -- cf(y) = ef *(vy).
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L L
proof <: let f:ef u(y)-*y, fel, witness cf “(y) ana

without loss of generality we may assume that f is strictly

inereasing. Let R = im(f), then R witnesses
Ly,
REC - cf(y) <cf “(¥).

> let RCY witness the REC-cf(y) = 7, then REL,

by the bounding principle and the function f:T7~ Yy given by :0 <7,

f{g) = o tR element of R

e

xJ
is in I, and witnesses cf K(y):iRECn-cf(y)o

Corollary 1.2, If REC-cf(a) = @, then E(a) is %, -admissible.,

proof. Use the proposition and the selection-theorem of

Kirousis [19781 stating
Ela) |= ef(@) = @ => E(a) is T, -admissible.,

We shall see now that RE-cf(a)=w 1is not enough to

guarantee admissibilibty.

Theorem 1.5, RE-cf(a) = w £ E(a) is L, -admissible,

proof. Begin with FE(X)) (which is not T,-admissible) and

define the following n,—Sequence:

nr(O) = Ko

a“r(n)

nr(n+1) = % .  Now consider

T
{XIXEE(RJ) and x5 Kr(n) for some neéw} =M. Let M be the

Mostouski collapse of M, then M is E-closed and satisfirs the
Moschovakis Phenomenon (use the MP in E(Ny and the definition

of ar) and M 3ig an B-closure of one of its elements,
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But M has an w--sequence of nr's, Let o = (gggq and
let
R = {x<alx is the index for an ordinal B8

a
such that 8 = x, for some a<g}l,

R is RE and unbounded in o and clearly of order Type w.
Thus M is not r,~admissible, while over M RE-cf(a) = w,

where o = (}_\’j)ﬁ .

§ 2. Dynamic Szlection.
We shall give a dynamic proof of the following theorem:

Let o Dbe the greatest cardinal in E(a) and let y be
the E(o)-cofinality of o. Then we have uniform selection for

RE subsets of any &<y,

As it stands, the theorem was proven by Kirousis (1978],
but the 'dynamic' proof we shall give can be relativigzed, whereas
Kirousis made use of a Skolem Hull ~ collapsing argument. A
similar proof using & collapsing argument was given by Normann
{1979] for the case ¥y = a, i.e. o 18 a regular cardinal in
E(a). Ve now give the dynamic proof,

et & be fixed as in the theorem and 1let f be a &-se-
guence of computations., Let R be the Moschovakis E1967] Sub-
computation relation which is RE and, finally, let RB denote
the SEQ approximation to R. The relation R is such that for
a given compubtation, the set of immediate subcomputations can

uniformly be indexed by a finite set or by o (the case of an
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a-branching). In the case of composition we let the innermost

computation be the leftmost one, If this one is convergent, then

we know the other subcompubations.

Following Harringbon-MacQueen [1976] we let
min(f) = inf{{{£(y)l| : y <8}, where

!

.| denotes the function giving the height of a computation, if
convergent, and equals o otherwise. If min(f) <o, i.e. one

of the f(y)'s is convergent, we shall show that wmin(f) is
uniformly recursive in f for fé¢B(a). The situation min(f) <o
corresponds to the non--emptiness of the associabed RE subset

of & and, thus, we have shown selection over 6.

The proof proceeds by transfinite induction on min(f). An
application of the recursion theorem yields the required uniformity.
The relation min(f) = 0 is recursive, so assume that n
min(f) >0 and that we have computed mnin(g) for all g such

that min(g) <min(f).

If min(f)>8 (which is recursive in B) we let

gs(y) = leftmost subcomputation =z of
£(y) such that Hzll>g ;

and otherwise we let gg = f. Clearly 8q is recursive in f,B
and if min(f)>8, then

5 < min(ga) < min(f).

et T be a recursive function defined by:
7(0)
(1)

It

1

supf{r(B)is <A} "if A is

]



a limit ordinalj

T(B+1) = min(gT(8)+1)o

Claim. 1(a) >min(£),

. . 2 < =
proof (Claim) Otherwise for each B8<a let hB = Br(g)et
then if Bq‘iﬁg, there is a y<8& such that

< —
118,1@) hee(y)o Let sy~hs(y),

then if for some 1y, {sy_:s'<n} is unbounded, we have
Hf(y)“:ﬁT(q), so this cannot be the case. Let B; = sup{ByJB <al.,
Since

§ <y = cfE(a)(a), we have that

o = sup{B§Jy*<6}‘<a . But for each B8<a

there is one minimal y such that (B+1)yﬂ>5yo This gives a
one-to-one map of o dinto 6 X0, which is impossible and gives

the clainm.

Since 1(a) is recursive, we have computed min(f) from f

giving the theorem,

Corollary 2,0. We have selection over vy = cfE(a)(a) if and

only if we have selection over a.

proof. Selection over a clearly implies selection over Y.
The other direction follows from the theorem and the dynamic proof
of selection due to Sacks-Slaman (Theorem 2.8 in Slaman [1981])

which inspired this proof.

Now assume that E(a) is not r,~admissible and, hence, wa do

not have selection over o. The above corollary tells us we do
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not have selection over vy, however the theorem tells us:

Corollary 2,1. ILet &<y, CC8& be RE, then Ce€E(a).

proof. Since we have selection over &, it follows that
sup{n§|y<<6} < % and
C can be definedthis level in E(a).

Corollary 2.2, (Furbther Reflection) Let 6,C be as above, then

C,8
(a) SRR

H o

(b) if B< E(a) is RE and B(C) holds, then there exists

a b-recursive B such *hat B(Oé) holds.
proof. immediate.

Covollary 2.%. Suppose il %, % 18 a regular cardinal and

/A
there is a well-ovdering of 2¥ of height x recursive in B

and a real. Then the extended plus one hypothesis is true at the

type % level.

This last corollary was pointed out to us by T. Slaman. The
exbended plus-one hypothesis (for reals) states: if P is a normal
type n+2 object and n>1, then there exists a normal type 3

object G such that

; sc(G) = ; sc(F) , where

1
2

Some real.

sc{l’) is the collection of sets of reals recursive in F and

For background and further results on the extended plus-one

hypothesis see Sacks [19771] or Slaman {19811,
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§ 3. Applications: co-RE Cofinality, Effective Covering and
Uniform Computation of Cofinality.

We turn first to an application of the above selection
result which will yield a covering property for many co-RBE sets
"preserving cofinality’rand characterize what will call co-RE
cofinality. Let o Dbe an ordinal and consider again E(o) = LK

for some u>g. Without loss of generality we assume o is the

greatest cardinal in L~ and we let y = cf n(a)ol

Definition. Let 8<# and define the co-RE cofinality of 8 Dby:

’couRE-cf(B) = least & such that there is a co-RE
subset A of B of order type &

and unbounded in §.
Lemma 5,0, co-Re - ¢f(a) = co-RE - cf(y).

proof. Let f:Y~ao Dbe increasing and witness that

cf *(a) = vy.

<: If Acy is co-RE and of order type & then
Af = {f(y)ly €A} is the same order type through o. If A 1is

unbounded in vy, then Af is unbounded in «.

> Let AcCao be co-RE, unbounded and of order type §.
Let y’EAﬁ, if there exists 2z € [f(y),f(y+1)) N A, The RE sets
are closed under the quantifiers VYz €u, so the co-RE sets are
closed under dz €u, Thus A* is co-RE and clearly unbounded

in y. In addition o.t. (A*)j(uto(A)a

We shall show that co-RE-cf(y) = y. By the above selection
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theorem, pB<y dimplies that the RE predicates are uniformly

closed under Iy <8 and, in addition, that
LKQUF(B)ELK, where WF(3)

denotes the set of well-founded relations as 8xp (the latter

cannot in general be relativized).

Theorem 3.1, co-RE-cf(y) = v,

proof. Let Acy be co-RE, cofinal in y of order type 8.

Let Aé be the 635-}3 approximation to A from the outside, i.e.

Ay = {yllg ¥ y£AY.

We will show that there is a recursive & such that o.t(4) = o.,t,(AG:
Let y<y, then o.5.(ANy) < 8 and by Further Reflection

applied to cA, there is a & wmecursive in y such that
ooto(Aaﬂy)<B .

Using this we construct a recursive increasing function g:i:vy " n

such that vy <y (o.t.(Ag(y)Ny)<B).

Let & = sup{g(y)iy<v}, then & is recursive so let C = Ay
Thus C is recursive and ACC. If o0.t.(C)>8, then there exists
a y<y such that o0.%.(CNy) = 8. But CﬂyEAg(y)ﬂy since
g(y) <8, Bince ooto(Ag(y) Ny) <8, we have a contradiction.

Corollary 3.2. (Covering Property) Any co-RE subset A of v

can be covered by a REC set of the same order type.

The corollary is proven in the proof of the theorem and we
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used the ordinal @ as a parameter. This lack of uniformity
makes extension of the result in the corollary to ordinals other

than vy difficult, however we offer:

Problem. 1Is there a bounded co-RE set that cannot be covered

by a REC set of the same order type?

If L is X,-admissible, then co-RE-cf(n) =w (zecall
that L, = E(a)), but the converse is not true.
As far as the questions of section § 1 go these results show

that
¢o-RE - cf{c) = w => E(a) is r,-admissible, however

E(a) L, -admissible #> co-RE - ef(a) = W,

Together with the results of § 2 this shows that there is no
natural cofinality-assumption that will characterize when E(a)
is admissible, the best seems to be the one implicit in the lack

nf certain Moschovakis Witnesses.

Our next application makes clear the interplay between selec-

tion and singularities.

Theorem %.%. Let ¢ <8 be ordinals such that c¢f(B) <o by some

function f recursive in a,p and some &<a. Then cf(B)<a

by some function recursive in o,8.

proof. let g: a~f be a list of 'computation tuples' over 8
such that (Hé‘ia)[g(é)i,]o The intuition here is that we attempt
to carry out a search for the & <qg in guestion and we either
compube it effectively, and hence the witness to c¢f(8) <o, or we

don't and in so doing (not doing) obtain a witness to c¢f(8) <a.
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Let min(g) = min{llg(s)l | 8 <al.

By the selection theorem in section 2: if E(B) = cf(B)>a, we
kxnow that min(g) is computable by some recursive function M(g).
In general it is sufficient for M(g) +to be defined that min(g)

exists. If M(g)<min(g) +this means that we have
EM(g)+1(a)‘: cf(8) <a; where for y<ORNE(a)

Ey(a) = {x €E(a)|x comppted by & compubation of height <y}. Now
let g(8) be an index for f recursive in &,a,p wibtnessing
that e¢f(B) <o. BSince min(g) exists we have that the selection
algorithm M(g) satisfies M(g)@o

If min(g) = M(g) we have compubed the level at which the
cofinality map is constructed. If M(g) <min(g), this is because
we know at that ordinal that c¢f(g) <a. Thus in both cases we
can find from M(g) an f collapsing the cofinality of 8

below o+1.

If L, = E(a) +then for all y such that o <y<xn we can

find effectively in a,Y a map in L, witnessing

The above theorem will enable us to do this in many more cases.

Suppose LK is E--closed and has a greatest cardinal (ge(n)).

Coraollary. 3.4, If y>gc(n), let f? be the least (in the sense
of <L) collapse of Yy to ge(n). If for some a,Y, <H* we

have that

&) (VY = Yo)(:']z <8G(%))[fY§E a,YO,EC(H),Ygzj ’
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then the function y - f_ is uwniformly computable in Yo,a,gc(x)

y
and a gc(n)-enumeration of Yoo

proof. We proceed by induction on Yg:yon

Y = Y, is trivial. If Y=Y let aY be so large that all

y' <y are collapsed to gc(n) by level « Let ozo, such

YO
that:
if L. = y>ge(n), then
o
Y
LaI= y = (ge(n))’, where

t7 is the successor cardinal of T, By the theorem there is

an o recursive in v,a, v, gc(n) and the collapse of Yo
sucih that
I l= of(y) <go(n).

But a successor cardinal is regular, so this singularity will
demonstrate that ¥ = ge(#n) and the collapsing map can be com-

puted.

Corollary 3./ can be used to show that under ) we have

Corollary 3.5. Let I, be E-closed and let a = ge(L,). Assume

E 3
that Eﬁlizz,Then tho Tollowing are equivalent

(i) I, dis RE in an clement of L,

(ii) Both L, N (@) and # are RE in an element of L.

Remark. Using forcing-methods of Sacks [1987] we may show that

if * holds, then L, is not R.E,
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§ 4, E-Recursive Functions and Inductive Definability.

In this section we shall give a treatment of monotone induc-
tive definitions using methods from Girard's B8-logic [1987]1, but
without introducing B8-logic and its proof theory. Masseron [1980]
has used the proof theory of g-logic to show that every total
wggirecursive function on ng is dominated by a primitive re-
cursive dilator on infinite arguments. As a corollary we give a

proof of Van de Wiele's theorem:

If F:V >V dis total wniformly Zﬂ-definable over every

admissible set,then F is FE-recursive.

The converse for FE-recursive functions (lightface) is imme-
diate. Slaman has given an alternate proof, but his proof uses
the theory of reflection in E-recursion, whereas we will require
only femiliarity with the generating schemata of E-~recursion.

Like the completeness theorem for p-logic this proof is
based on the Henkin-type construction of term models, otherwise
the proof is elementary. For each set x let TX be a uniformly
A (x) positive inductive definition on x. Let <  denote the
stage comparison relation on =x. The following lemma is valid for

monotone inductive definitions in general.

Lemma 4.0, Let Yox, < be a relation on y such that

(ii) for each vy€Y
{y'1y' 2y} = v{y'ly' <y}) , then

-~
TX

o
(T,

<Y and S is the well-founded initial segment of <

is the least fixed-point of Fx)a
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For each =x, let T, be the closure ordinal of T, and let

p be a Aouformula such that
. v+
VX ﬂy<TXQp(X,I‘X ).

Theorem 4.1. There is an E-recursive function G such that

Vo vx(rank(x) <o => Byjmin((}(a.),Tx)cp(x,f‘;{m)) ;

Definition., Let T = Tr © be the following first order theory:

9

unary predicates x, Y, ON
binary predicates P (for < ) and ¢
unary function R (for rank)

constants Cor Cq9 coo

Take standard axioms like regularity, extensionality, etc.

together with:
(1) Y =71 ;
(ii) fp(x,{ylg(yﬁg)}) —> vz € Y(o(x, {y|2(y,2)}) = 2,(32,2));
(1i1) E(&iﬁ’f_i_) A ”@-(?_j;’giﬁ) j and

(iv) vzeY({ylP(y,2)} = T({y|P(y,2) A "R(2,7)1)) .

Definition (a) Let T denote the part of T that does not

contain any ¢, for i>n 4

(b) TLet T, T:l denote the respective Henkin-
exbensions i

(¢) TLet €y €4 seee be a recursive enumeration of

———c

the terms of T  such that vie, em;) )
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Now if f:W-> ON, let T° be T extended with the fol-

lowing axioms:

(R(e;) £ R(eI£(E) < 2()Y.

Lemma 4.2. Let f£:IN - ON and T° be as above, then T' is

inconsistent.

proof. Assume ¥ is consistent for a contradiction and
let Tf denote a consistent completion of ﬁf, The term model
for T will then be a model of T and since the rank-relation
is well-founded, the model will be isomorphic %to a set 2z where

x 1s interpreted as a subset of z. TLet y'<¢x be such that

@(X,F§+q)o By lemma the interpretation Cy of Co must be

1

a—t

. o ‘
in T~ and have rank <vy+1. But then interpretations of c.
will form an <-infinite descending sequence, which is absurd.

If o is a finite sequence of ordinals we define 1°  as an

F
extension of Tlh(c) as before. Thus we have

VE: > OR3r € WML ) i inconsistent].

Definition. Let ¢ be a sequence of ordinals of length n, then

we say 0 1s good if we cannot prove a contradiction from i
using a proof of length <n and at most the n first axioms

o) \ . ' . '
of T (in some uniform enumeration of Tf S).

Iror o €0R we let

By = {olo is good and Vi <1h(o)(o(i)<a))

and set G{a) = height of Sﬁ. Then G is E-recursive since
we can uniformly compute the height of any well-founded relation

in Berecursion.
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Lemma 4.5, Tet rank(x) <o, then we can find y<G(a) such that

w(x,ri+q) holds.

proof. Fix x and let vy be minimal such that w(x,ri+q)
and choose yéEF;+1—-Tl, Let p denote the ordinal norm function
on F;G induced by T,. Then we have p(y) = y. Assume that

=2}

Tgreoe19n1 is a segquence from Ty such that Vo = ¥ and
p(y;) <p(yi_,]) for 41<i<n,

We shall construct a model for Tn using TC(x) as the

. oC
domain, =x for x, T~ for ¥, = for P and ¥ ,.0-,7, 14
for CureoesCp g e This model can be extended to a model fom

neamaae

% . ¥ A ' '
Tn since Tn 18 a conservative extension of Tn and we do nob

change the domain. Tor i<n let o(i) = rank(ei) (ei is the
interpretation of e;). Note that if we extend g in a con-
sistent way, then wzgﬁay extend o (i.e. we cannot choose O
such that it is inconsistent with the construction based on
extensions of ¥).

If o = rank(x), then rank(ei)‘ia by our choice of domain
as TC(x)) and so céisq . By induction on p(yh”ﬂ) we can
show that P(Ynmq)fiuaus . The induction is trivial by the above
remark on the consistencg—considerations and, hence, the lemma

follows., The theorem follows from the lemma,

Remark., The theory T in the proof asserts that x 1is a rela-
tion on a transitive set y; <(Y,P) is the prewellordering in-
duced by T° over x and there is no ZGEP;? satisfying .

If T' is a primitive recursive theory in the language of set

theory, then the same proof gives:
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Corollary 4.4, Tet T, ¢ and T, De as above. If

vx(x = T = 3y <13{w(xg P;+1D then there is an E-re-

cursive function G such that
! < et ¥+
vx(x = T => 3y <min{7_,G(rank(x))}e(x,I}" "))
Fxamples of such theories are:

(i) =x is transitive, infinite and closed under finitve

subsets;

(ii) =x dis rudimentarily closed.

Now if x is transitive, infinite and closed under finite
subsets, then we have a notation system for the next admissible
(HYP(x)) and that notation system is defined by a monotone in-
ductive definition. If 3y € HYP(x)p(x,y), then there is a A
formula ¢ such that m'(x,ri) for the least y such that
HyGSLY[x]@(X,y) where I©° defines that notation system.

Using this we have proven the following theorem of

Jd. Van de Wiele:

Corollary 4.5, (Van de Wiele) Let ¥:V «=V be uniformly -

definable and total over all admissible sets, then F 1is E-re-

cursive,

proof follows immediately from the theorem and the above

remarks on the inductive generation of HYP(x).

Note that we actually show that F is computable in a
weaker system than E-recursion, since we use elementary functions
together with the operator which computes the height of a well-

founded relation.
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