ISBN 82-553-0480-0 Mathematics No 5 - March 24,

1982

EFFECTIVE COFINALITIES AND ADMISSIBILITY IN E-RECURSION

ру

E.R. Griffor and D. Normann*)
Institute of Mathematics
University of Oslo

*) The first author was partially supported by a grant from the National Science Foundation, USA.

PREPRINT SERIES - Matematisk institutt, Universitetet i Oslo

Effective Cofinalities and Admissibility in E-Recursion

E.R. Griffor and D. Normann Institute of Mathematics University of Oslo

§ 0 Introduction.

E-Recursion was introduced by D. Normann [1978] as a natural generalization of normal Kleene recursion in objects of finite type. Unless otherwise stated the E-closed sets we shall consider shall be of the form $E(\alpha)$ for some $\alpha \in OR$.

In § 1 we introduce the RE \land co-RE cofinality and show that the Σ_1 -admissibility of E(α) implies that its greatest cardinal has RE \land co-RE cofinality ω . In addition we show that RE-cofinality ω does not imply admissibility.

Section § 2 is devoted to a dynamic proof of selection (i.e. $\gamma = cf^{E(\alpha)}(\alpha)$ then we have uniform selection over RE subsets of any $\delta < \gamma$ on $E(\alpha)$), which can therefore be relativized. This selection theorem thus has among its corollaries the consistency of the extended plus one hypothesis at the type three level with $\neg CH$.

Applications of the proof of selection given in § 2 are presented in § 3. We show that if γ is the cofinality of α in $E(\alpha)$, then the co-RE cofinality of γ is γ . The proof of this gives rise to an effective covering property, namely, any co-RE subset of γ can be covered by a REC set of the same order type. The final application makes clear the connection between selection and singularities. We show that for $\alpha < \beta$ such that $cf(\beta) < \alpha$

by a function f recursive in $\alpha, 8$ and some $\delta \leq \alpha$, then $cf(8) \leq \alpha$ by some f recursive in $\alpha, 8$.

The last section (§ 4) treats the interplay between monotone inductive definitions and E-recursive set functions using methods from Girard's β -logic [198?], without introducing β -logic or its proof theory. If a Δ_0 $\phi(x, \cdot)$ always has a solution in Γ_X (the least fixed point of monotone inductive Γ over x), then the function giving that solution is E-recursive in x. As a corollary we have an elementary proof of a theorem of Van de Wiele [1981]:

If $F:V \to V$ is uniformly Σ_1 -definable and total over all admissible sets, then F is E-recursive. Outside of § 4, RE, co-RE etc. are the boldface notions.

§ 1. Effective Cofinalities.

Much attention has been given to various notions of definable cofinality, particularly in connection with priority arguments E-Recursion. We shall not attempt to give a complete picture and so the interested reader is directed to Griffor [1980], Sacks [1980] or Slaman [1981]. The first question we address here was asked by Sacks, namely, is there a cofinality condition on α which caracterizes when $E(\alpha)$ is Σ_1 -admissible. The question was motivated by a result of Kirousis that: if $E(\alpha) \models cf(\bar{\alpha}) = \omega$, then $E(\alpha)$ is Σ_1 -admissible. Thus an attractive conjecture was that: $E(\alpha)$ is Σ_1 -admissible if and only if $E(\alpha) \models cf(\bar{\alpha}) = \omega$. However, Slaman noticed that if γ is the least ordinal where $E(\gamma) \models cf(\bar{\gamma}) > \omega$, then $E(\gamma)$ is Σ_1 -admissible. If $E(\alpha)$ is Σ_1 -admissible Sacks [1980] showed that there is a divergent

computation without a Moschovakis witness in $E(\alpha)$. This witness induces an ω -sequence through $\bar{\alpha}$ and we will first analyse the level of definability of one such sequence.

Definition. Consider $E(\alpha)$, $\alpha \in OR$, and without loss of generality assume that α is the greatest cardinal in $E(\alpha)$. Define the RE join co-RE cofinality of α as:

RE \land co-RE-cf(α) = least $\tau \leq \alpha$ such that there exists an $R \leq \alpha$ of order type τ unbounded in α and R is RE \land co-RE, i.e. R is the intersection of an RE and a co-RE set.

Theorem 1.0. Suppose $E(\alpha)$ is Σ_1 -admissible, then

$$RE \wedge co - RE - cf(\alpha) = \omega$$
.

proof. As above we assume that α is the greatest cardinal in $E(\alpha)$ (which is L_{κ} for some $\kappa > \alpha$). If $e \in \omega$, $a \in E(\alpha)$, then associated with the computation tuple $\langle e,a \rangle$ is the tree of subcomputations $T_{\langle e,a \rangle}$ (which is recursive in $\langle e,a \rangle$ if $\{e\}(a) \downarrow$, but is in general only RE in $\langle e,a \rangle$). Assume that $E(\alpha)$ is Σ_1 -admissible.

By Sacks [.1980] there exists an $e \in w$ and $a \in E(\alpha)$ such that $T_{\langle e,a \rangle}$ is not well-founded, but

$$L_{\kappa} = T_{\langle e,a \rangle}$$
 is well-founded.

Claim 1. The leftmost path in $T_{(e,a)}$ is in RE \land co-RE

proof. We say that o is on the leftmost path if

(i)
$$\sigma \in T_{\langle e, a \rangle}$$
 (RE)

(iii) If $\tau < \sigma$ in the lexicographical ordering and n is minimal such that $\tau(n) < \sigma(n)$, then $\overline{\tau}(n+1)$ (RE). This proves claim 1.

Now assume that we have an effective coding of all finite sequences from α by α such that

$$\langle \sigma^{\wedge} \tau \rangle > \langle \sigma \rangle$$
, where $\tau \neq \langle \rangle$.

Let $\langle \beta_1, \dots, \beta_n \rangle \in A$ if β_i is the index for the $i^{\underline{th}}$ sequence of the leftmost path through $T_{\langle e,a \rangle}$. Then A is the intersection of an RE set A_1 and a co-RE set A_2 .

Claim 2. A is unbounded in α .

<u>proof.</u> If A is bounded by $\lambda < \alpha$, then use standard properties of the Σ_1 -projectum on admissible ordinals to show that $A_1 \cap \lambda \in E(\alpha)$, $A_2 \cap \lambda \in E(\alpha)$ and so $A \in E(\alpha)$, which is impossible. This completes the proof of the theorem.

Definition. With $E(\alpha)$ as above let

- (i) REC cf(α) = $\mu\tau \leq \alpha$ such that there exists REC R $\subseteq \alpha$ of order type τ unbounded in α ;
- (ii) $RE cf(\alpha) = \mu \tau \le \alpha$ such that there exists RE $R \subseteq \alpha \quad \text{of order type } \tau \quad \text{unbounded in } \alpha.$

As one might expect the recursive cofinality is no stronger, on ordinals less than κ , than the cofinality in the sense of $E(\alpha)$.

Proposition 1.1. If $\gamma < \mu$, then $REC - cf(\gamma) = cf^{\mu}(\gamma).$

 $\underline{\text{proof}} \leq :$ let $f: cf^{n}(\gamma) \to \gamma$, $f \in L_{n}$ witness $cf^{n}(\gamma)$ and without loss of generality we may assume that f is strictly increasing. Let R = im(f), then R witnesses

REC -
$$cf(\gamma) \le cf^{L_{\mathcal{H}}}(\gamma)$$
.

 \geq : let $R \subseteq Y$ witness the REC-cf(Y) = τ , then $R \in L_{\chi}$ by the bounding principle and the function $f : \tau \to Y$ given by $: \sigma < \tau$.

$$f(\sigma) = \sigma \frac{th}{c}$$
 element of R

is in L_{n} and witnesses $cf^{L_{n}}(\gamma) \leq REC - cf(\gamma)$.

Corollary 1.2. If REC - cf(α) = ω , then E(α) is Σ_1 -admissible.

<u>proof</u>. Use the proposition and the selection-theorem of Kirousis [1978] stating

 $\mathbb{E}(\alpha) \models \mathrm{cf}(\bar{\bar{\alpha}}) = \omega \Rightarrow \mathbb{E}(\alpha)$ is Σ_{1} -admissible.

We shall see now that $RE-cf(\alpha)=\omega$ is not enough to guarantee admissibility.

Theorem 1.3. RE - cf(α) = ω \neq > E(α) is Σ_1 -admissible.

proof. Begin with $E(\chi_I)$ (which is not Σ_1 -admissible) and define the following κ_r -sequence:

$$n_r(0) = n_r$$
;
 $n_r(n+1) = n_r$, $n_r(n)$ Now consider

 $\{x \mid x \in E(X_1) \text{ and } x \leq_E \kappa_r(n) \text{ for some } n \in w\} = M$. Let \overline{M} be the Mostouski collapse of M, then \overline{M} is E-closed and satisfirs the Moschovakis Phenomenon (use the MP in $E(X_1)$ and the definition of κ_r) and \overline{M} is an E-closure of one of its elements.

But \overline{M} has an w-sequence of κ_r 's. Let $\alpha = (\searrow)_{\overline{M}}$ and let

 $R = \{x \le \alpha | x \text{ is the index for an ordinal } \beta$ such that $\beta = \kappa_T^a$ for some $a \le \alpha$.

R is RE and unbounded in α and clearly of order type ω . Thus \overline{M} is not Σ_1 -admissible, while over \overline{M} RE-cf(α) = ω , where $\alpha = (\Sigma_1)_{\overline{M}}$.

§ 2. Dynamic Selection.

We shall give a dynamic proof of the following theorem:

Let α be the greatest cardinal in $E(\alpha)$ and let γ be the $E(\alpha)$ -cofinality of α . Then we have uniform selection for RE subsets of any $\delta \leq \gamma$.

As it stands, the theorem was proven by Kirousis [1978], but the 'dynamic' proof we shall give can be relativized, whereas Kirousis made use of a Skolem Hull — collapsing argument. A similar proof using a collapsing argument was given by Normann [1979] for the case $\gamma = \alpha$, i.e. α is a regular cardinal in $E(\alpha)$. We now give the dynamic proof.

Let δ be fixed as in the theorem and let f be a δ -sequence of computations. Let R be the Moschovakis [1967] subcomputation relation which is RE and, finally, let R_{β} denote the β -approximation to R. The relation R is such that for a given computation, the set of immediate subcomputations can uniformly be indexed by a finite set or by α (the case of an

α-branching). In the case of composition we let the <u>innermost</u> computation be the leftmost one. If this one is convergent, then we know the other subcomputations.

Following Harrington-MacQueen [1976] we let

$$min(f) = inf{||f(y)|| : y < \delta}, where$$

 $\|\cdot\|$ denotes the function giving the height of a computation, if convergent, and equals ∞ otherwise. If $\min(f) < \infty$, i.e. one of the f(y)'s is convergent, we shall show that $\min(f)$ is uniformly recursive in f for $f \in E(\alpha)$. The situation $\min(f) < \infty$ corresponds to the non-emptiness of the associated RE subset of δ and, thus, we have shown selection over δ .

The proof proceeds by transfinite induction on min(f). An application of the recursion theorem yields the required uniformity.

The relation min(f) = 0 is recursive, so assume that min(f) > 0 and that we have computed min(g) for all g such that $min(g) \le min(f)$.

If $min(f) > \beta$ (which is recursive in β) we let

 $g_{\beta}(y)$ = leftmost subcomputation z of f(y) such that $||z|| \ge \beta$;

and otherwise we let $g_{\beta} = f$. Clearly g_{β} is recursive in f, β and if $min(f) > \beta$, then

$$\beta \leq \min(g_{\beta}) \leq \min(f)$$
.

Let T be a recursive function defined by:

$$\tau(0) = 1;$$

$$\tau(\lambda) = \sup\{\tau(\beta) | \beta \le \lambda\} \text{ if } \lambda \text{ is}$$

a limit ordinal;

$$\tau(\beta+1) = \min(g_{\tau(\beta)+1}).$$

Claim. $\tau(\alpha) \ge \min(f)$.

 $\frac{\text{proof}}{\text{proof}} \text{ (Claim) Otherwise for each } \beta \le \alpha \text{ let } h_\beta = g_{\tau(\beta)+1},$ then if $\beta_1 \le \beta_2$, there is a $y \le \delta$ such that

$$h_{\beta_1}(y) < h_{\beta_2}(y)$$
. Let $\vartheta_y = h_{\beta}(y)$,

then if for some y, $\{\beta_y: 3 \le \alpha\}$ is unbounded, we have $\|f(y)\| \le \tau(\alpha)$, so this cannot be the case. Let $\beta_y^* = \sup\{\beta_y | \beta \le \alpha\}$. Since

$$\delta < \gamma = cf^{E(\alpha)}(\alpha)$$
, we have that

$$\sigma = \sup\{\beta_y^* | y < \delta\} < \alpha$$
. But for each $\beta < \alpha$

there is one minimal y such that $(\beta+1)_y > \beta_y$. This gives a one-to-one map of α into $\delta \times \sigma$, which is impossible and gives the claim.

Since $\tau(\alpha)$ is recursive, we have computed $\min(f)$ from f giving the theorem.

Corollary 2.0. We have selection over $\gamma = cf^{E(\alpha)}(\alpha)$ if and only if we have selection over α .

proof. Selection over α clearly implies selection over γ . The other direction follows from the theorem and the dynamic proof of selection due to Sacks-Slaman (Theorem 2.8 in Slaman [1981]) which inspired this proof.

Now assume that $E(\alpha)$ is not Σ_1 -admissible and, hence, we do not have selection over α . The above corollary tells us we do

not have selection over y, however the theorem tells us:

Corollary 2.1. Let $\delta \leq \gamma$, $C \subseteq \delta$ be RE, then $C \in E(\alpha)$.

proof. Since we have selection over &, it follows that

$$\sup \{ \kappa_0^y | y < \delta \} < \kappa$$
 and

C can be defined this level in $E(\alpha)$.

Corollary 2.2. (Further Reflection) Let 8,C be as above, then

(a)
$$\kappa_0^{C,\delta} < \kappa_r^{\delta}$$
;

(b) if $B\subseteq E(\alpha)$ is RE and B(C) holds, then there exists a δ -recursive β such that B(C, holds.

proof. immediate.

Corollary 2.3. Suppose $\bar{2}^{w} = \kappa$, κ is a regular cardinal and there is a well-ordering of 2^{w} of height κ recursive in ⁴E and a real. Then the extended plus one hypothesis is true at the type 3 level.

This last corollary was pointed out to us by T. Slaman. The extended plus-one hypothesis (for reals) states: if F is a normal type n+2 object and $n \ge 1$, then there exists a normal type 3 object G such that

$$\frac{1}{2}$$
 sc(G) = $\frac{1}{2}$ sc(F), where

 $\frac{1}{2}$ sc(F) is the collection of sets of reals recursive in F and some real.

For background and further results on the extended plus-one hypothesis see Sacks [1977]] or Slaman [1981].

§ 3. Applications: co-RE Cofinality, Effective Covering and Uniform Computation of Cofinality.

We turn first to an application of the above selection result which will yield a covering property for many co-RE sets preserving cofinality and characterize what will call co-RE cofinality. Let α be an ordinal and consider again $E(\alpha) = L_{\chi}$ for some $\kappa > \alpha$. Without loss of generality we assume α is the greatest cardinal in L_{χ} and we let $\gamma = cf^{\kappa}(\alpha)$.

Definition. Let $\beta \leq n$ and define the co-RE cofinality of β by:

co-RE-cf(β) = least δ such that there is a co-RE subset A of β of order type δ and unbounded in β .

Lemma 3.0. $co-Re-cf(\alpha) = co-RE-cf(\gamma)$.

 $\frac{proof}{L}.$ Let $f:\gamma \neg \sigma$ be increasing and witness that cf $^{L}{}_{\varkappa}(\alpha)$ = $\gamma.$

 \leq : If $A \subseteq \gamma$ is co-RE and of order type δ then $A_f = \{f(y) | y \in A\}$ is the same order type through α . If A is unbounded in γ , then A_f is unbounded in α .

 \geq : Let $A \subseteq \alpha$ be co-RE, unbounded and of order type δ . Let $y \in A^*$, if there exists $z \in [f(y), f(y+1)) \cap A$. The RE sets are closed under the quantifiers $\forall z \in u$, so the co-RE sets are closed under $\exists z \in u$. Thus A^* is co-RE and clearly unbounded in γ . In addition o.t. $(A^*) \leq$ o.t.(A).

We shall show that $co-RE-cf(\gamma) = \gamma$. By the above selection

theorem, $\beta < \gamma$ implies that the RE predicates are uniformly closed under $\exists y \leq \beta$ and, in addition, that

$$\mathbf{L}_{\kappa} \cap \mathbf{WF}(\beta) \in \mathbf{L}_{\kappa}$$
, where $\mathbf{WF}(\beta)$

denotes the set of well-founded relations as $3 \times \beta$ (the latter cannot in general be relativized).

Theorem 3.1. $co-RE-cf(\gamma) = \gamma$.

proof. Let $A\subseteq \gamma$ be co-RE, cofinal in γ of order type β . Let A_{δ} be the $\delta \frac{\text{th}}{}$ approximation to A from the outside, i.e.

$$A_{\delta} = \{y | L_{\delta} \neq y \notin A\}.$$

We will show that there is a recursive δ such that $o.t(A) = o.t.(A_{\delta})$. Let $y < \gamma$, then $o.t.(A \cap y) < \beta$ and by Further Reflection applied to cA, there is a δ recursive in y such that

$$\text{o.t.}(A_{\delta} \cap y) \leq \beta \ .$$

Using this we construct a recursive increasing function $g: \gamma \rightarrow \kappa$ such that $\forall y < \gamma \ (o.t.(Ag(y) \cap y) < \beta)$.

Let $\delta = \sup\{g(y) \mid y < \gamma\}$, then δ is recursive so let $C = A_{\delta}$. Thus C is recursive and $A \subseteq C$. If o.t. $(C) > \theta$, then there exists a $y < \gamma$ such that o.t. $(C \cap y) = \theta$. But $C \cap y \subseteq A_{g(y)} \cap y$ since $g(y) < \delta$. Since o.t. $(A_{g(y)} \cap y) < \beta$, we have a contradiction.

Corollary 3.2. (Covering Property) Any co-RE subset A of γ can be covered by a REC set of the same order type.

The corollary is proven in the proof of the theorem and we

used the ordinal β as a parameter. This lack of uniformity makes extension of the result in the corollary to ordinals other than γ difficult, however we offer:

Problem. Is there a bounded co-RE set that cannot be covered by a REC set of the same order type?

If L_{n} is Σ_{1} -admissible, then co-RE-cf(n) = ω (recall that L_{n} = E(α)), but the converse is not true.

As far as the questions of section § 1 go these results show that

co-RE-cf(α) = ω => E(α) is Σ_1 -admissible, however E(α) Σ_1 -admissible \neq > co-RE-cf(α) = ω .

Together with the results of § 2 this shows that there is no natural cofinality-assumption that will characterize when $E(\alpha)$ is admissible, the best seems to be the one implicit in the lack of certain Moschovakis Witnesses.

Our next application makes clear the interplay between selection and singularities.

Theorem 3.3. Let $\alpha < \beta$ be ordinals such that $cf(\beta) \le \alpha$ by some function f recursive in α, β and some $\delta < \alpha$. Then $cf(\beta) \le \alpha$ by some function recursive in α, β .

proof. let $g: \alpha \to \beta$ be a list of 'computation tuples' over β such that $(\exists \delta \leq \alpha)[g(\delta)]$. The intuition here is that we attempt to carry out a search for the $\delta \leq \alpha$ in question and we either compute it effectively, and hence the witness to $cf(\beta) \leq \alpha$, or we don't and in so doing (not doing) obtain a witness to $cf(\beta) \leq \alpha$.

Let $\min(g) = \min\{\|g(\delta)\| \mid \delta < \alpha\}.$

By the selection theorem in section 2: if $E(\beta) \models cf(\beta) > \alpha$, we know that min(g) is computable by some recursive function M(g). In general it is sufficient for M(g) to be defined that min(g) exists. If M(g) < min(g) this means that we have

$$E_{M(g)+1}(\alpha) = cf(\beta) \le \alpha$$
; where for $\gamma < OR \cap E(\alpha)$

 $E_{\gamma}(\alpha) = \{x \in E(\alpha) | x \text{ computed by a computation of height } < \gamma \}$. Now let $g(\delta)$ be an index for f recursive in δ, α, β witnessing that $cf(\beta) \le \alpha$. Since min(g) exists we have that the selection algorithm M(g) satisfies $M(g) \downarrow$.

If $\min(g) = M(g)$ we have computed the level at which the cofinality map is constructed. If $M(g) < \min(g)$, this is because we know at that ordinal that $cf(\beta) \le \alpha$. Thus in both cases we can find from M(g) an f collapsing the cofinality of β below $\alpha+1$.

If $L_{n}=E(\alpha)$ then for all γ such that $\alpha \leq \gamma \leq n$ we can find effectively in α,γ a map in L_{n} witnessing

$$\bar{\bar{y}}^{L}_{\kappa} = \bar{\bar{a}}^{L}_{\kappa}$$

The above theorem will enable us to do this in many more cases. Suppose L_{μ} is E-closed and has a greatest cardinal $(gc(\kappa))$.

Coraollary 3.4. If $\gamma > gc(n)$, let f_{γ} be the least (in the sense of \leq_L) collapse of γ to gc(n). If for some $a, \gamma_0 \leq n$ we have that

(*)
$$(\forall_{\gamma} > \gamma_{O})(\exists z < gc(n))[f_{\gamma} \leq_{E} a, \gamma_{O}, gc(n), \gamma, z],$$

then the function $\gamma \to f_{\gamma}$ is uniformly computable in $\gamma_0, a, gc(\pi)$ and a $gc(\pi)$ -enumeration of γ_0 .

<u>proof</u>. We proceed by induction on $\gamma \ge \gamma_0$.

 $\gamma=\gamma_0$ is trivial. If $\gamma>\gamma_0$, let α_γ be so large that all $\gamma'<\gamma$ are collapsed to $gc(\kappa)$ by level α_γ . Let $\alpha\geq\alpha_\gamma$ such that:

if
$$L_{\alpha_{\gamma}} = \overline{\overline{\gamma}} > gc(\varkappa)$$
, then $L_{\alpha} = \gamma = (gc(\varkappa))^+$, where

 τ^+ is the successor cardinal of $\tau.$ By the theorem there is an α recursive in $\gamma,a,\,\gamma_0,\,\gcd(\varkappa)$ and the collapse of γ_0 such that

$$L_{\alpha} = cf(\gamma) \leq gc(\pi).$$

But a successor cardinal is regular, so this singularity will demonstrate that $\bar{\gamma}=\mathrm{gc}(\varkappa)$ and the collapsing map can be computed.

Corollary 3.4 can be used to show that under (*) we have

Corollary 3.5. Let L_{κ} be E-closed and let $\alpha = gc(L_{\kappa})$. Assume that $L_{\kappa} \models^{(*)}$. Then the following are equivalent

- (i) $extsf{L}_{oldsymbol{\mathcal{R}}}$ is RE in an element of $extsf{L}_{oldsymbol{\mathcal{R}}}$
- (ii) Both $L_{n} \cap$ (a) and n are RE in an element of L_{n} .

Remark. Using forcing-methods of Sacks [198?] we may show that if * holds, then L_{κ} is not R.E.

§ 4. E-Recursive Functions and Inductive Definability.

In this section we shall give a treatment of monotone inductive definitions using methods from Girard's β -logic [198?], but without introducing β -logic and its proof theory. Masseron [1980] has used the proof theory of β -logic to show that every total \mathbf{w}_1^{CK} -recursive function on \mathbf{w}_1^{CK} is dominated by a primitive recursive dilator on infinite arguments. As a corollary we give a proof of Van de Wiele's theorem:

If $F:V \longrightarrow V$ is total uniformly Σ_1 -definable over every admissible set, then F is E-recursive.

The converse for E-recursive functions (lightface) is immediate. Slaman has given an alternate proof, but his proof uses the theory of reflection in E-recursion, whereas we will require only familiarity with the generating schemata of E-recursion.

Like the completeness theorem for β -logic this proof is based on the Henkin-type construction of term models, otherwise the proof is elementary. For each set x let Γ_x be a uniformly $\Delta_O(x)$ positive inductive definition on x. Let \leq_x denote the stage comparison relation on x. The following lemma is valid for monotone inductive definitions in general.

Lemma 4.0. Let $Y \subset x$, \leq be a relation on y such that

- (i) $\Gamma(Y) = Y$; and
- (ii) for each $y \in Y$ $\{y' \mid y' \leq y\} = \Gamma(\{y' \mid y' \leq y\}), \text{ then }$

 $\Gamma_{\mathbf{x}}^{\infty} \leq \mathbf{Y}$ and $\leq_{\mathbf{x}}$ is the well-founded initial segment of \leq $(\Gamma_{\mathbf{x}}^{\infty}$ is the least fixed-point of $\Gamma_{\mathbf{x}}$).

For each x, let $\tau_{_{\hbox{\scriptsize X}}}$ be the closure ordinal of $\Gamma_{_{\hbox{\scriptsize X}}}$ and let ϕ be a $\Delta_{_{\hbox{\scriptsize O}}}\text{-formula}$ such that

$$\forall x \exists \gamma < \tau_x \varphi(x, \Gamma_x^{\gamma+1})$$
.

Theorem 4.1. There is an E-recursive function G such that

$$\forall \alpha \ \forall x (rank(x) \leq \alpha \Rightarrow \exists_{\gamma} \leq min(G(\alpha), \tau_{x}) \phi(x, \Gamma_{x}^{\gamma+1}));$$

<u>Definition</u>. Let $T = T_{\Gamma,\phi}$ be the following first order theory:

unary predicates \underline{x} , \underline{Y} , \underline{ON} binary predicates \underline{P} (for $\underline{\leq}_{\underline{X}}$) and $\underline{\epsilon}$ unary function R (for rank) constants $\underline{c}_{\underline{O}}$, $\underline{c}_{\underline{1}}$, ...

Take standard axioms like regularity, extensionality, etc. together with:

- (i) $\underline{\underline{Y}} = \Gamma(\underline{\underline{Y}})$;
- (ii) $\varphi(x, \{y|\underline{P}(y, c_0)\}) \rightarrow \forall z \in \underline{Y}(\varphi(x, \{y|\underline{P}(y, z)\}) \rightarrow \underline{P}(c_0, z));$
- (iii) $\underline{P}(\underline{c}_{i+1},\underline{c}_{i}) \land \underline{-P}(\underline{c}_{i},\underline{c}_{i+1})$; and
- (iv) $\forall z \in \underline{Y}(\{y|\underline{P}(y,z)\} = \Gamma(\{y|\underline{P}(y,z) \land \neg \underline{P}(z,y)\}))$.

Definition (a) Let T_n denote the part of T that does not contain any c_i for $i \ge n$;

- (b) Let $\textbf{T}^{*},~\textbf{T}_{n}^{*}$ denote the respective Henkin-extensions:
- (c) Let $\underline{e_o}$, $\underline{e_1}$,... be a recursive enumeration of the terms of T^* such that $\forall i (\underline{e_i} \in T_i^*)$.

Now if $f: \mathbb{N} \longrightarrow O\mathbb{N}$, let T^f be T^* extended with the following axioms:

$$\{R(e_{\underline{i}}) \leq R(e_{\underline{j}}) | f(i) \leq f(j) \}.$$

Lemma 4.2. Let $f: \mathbb{N} \to \mathbb{O}\mathbb{N}$ and T^f be as above, then T^f is inconsistent.

proof. Assume T^f is consistent for a contradiction and let T^f denote a consistent completion of \overline{T}^f . The term model for \overline{T}^f will then be a model of T and since the rank-relation is well-founded, the model will be isomorphic to a set z where \underline{x} is interpreted as a subset of z. Let $\gamma < \tau_{\underline{x}}$ be such that $\varphi(x,\Gamma_{\underline{x}}^{\gamma+1})$. By lemma the interpretation c_0 of c_0 must be in $\Gamma_{\underline{x}}^{\infty}$ and have rank $\leq \gamma+1$. But then interpretations of $c_{\underline{i}}$ will form an \leq -infinite descending sequence, which is absurd.

If σ is a finite sequence of ordinals we define T^{σ} as an extension of $T^*_{lh(\sigma)}$ as before. Thus we have

$$\forall f: \mathbb{N} \rightarrow OR \exists r \in \mathbb{N}[\mathbb{T}^{\overline{f(n)}}]$$
 is inconsistent].

Definition. Let σ be a sequence of ordinals of length n, then we say σ is good if we cannot prove a contradiction from T^{σ} using a proof of length $\leq n$ and at most the n first axioms of T^{σ} (in some uniform enumeration of T^{f} 's).

For $\alpha \in OR$ we let

$$S_{\alpha} = \{\sigma | \sigma \text{ is good and } \forall i \leq lh(\sigma)(\sigma(i) \leq \alpha)\}$$

and set $G(\alpha)$ = height of S_{α} . Then G is E-recursive since we can uniformly compute the height of any well-founded relation in E-recursion.

Lemma 4.3. Let $\operatorname{rank}(x) \leq \alpha$, then we can find $\gamma \leq G(\alpha)$ such that $\varphi(x,\Gamma_x^{\gamma+1})$ holds.

proof. Fix x and let γ be minimal such that $\phi(x, \Gamma_X^{\gamma+1})$ and choose $y \in \Gamma_X^{\gamma+1} - \Gamma_X^{\gamma}$. Let p denote the ordinal norm function on Γ_X^{∞} induced by Γ_X . Then we have $p(y) = \gamma$. Assume that y_0, \dots, y_{n-1} is a sequence from Γ_X^{∞} such that $y_0 = y$ and $p(y_i) < p(y_{i-1})$ for $1 \le i \le n$.

We shall construct a model for T_n using TC(x) as the domain, x for x, Γ_x^{∞} for y, \leq_x for y and y_0, \dots, y_{n-1} for x for x and x for x and x does not extended to a model for T_n^* since T_n^* is a conservative extension of T_n and we do not change the domain. For x is a let x be a since x is the interpretation of x be an extending x be a such that it is inconsistent with the construction based on extensions of x.

If $\alpha=\mathrm{rank}(\mathbf{x})$, then $\mathrm{rank}(\mathbf{e_i})<\alpha$ by our choice of domain as $\mathrm{TC}(\mathbf{x})$) and so $\sigma\in S_\alpha$. By induction on $\mathrm{p}(y_{n-1})$ we can show that $\mathrm{p}(y_{n-1})\leq \|\sigma\|_{S_\alpha}$. The induction is trivial by the above remark on the consistency-considerations and, hence, the lemma follows. The theorem follows from the lemma.

Remark. The theory T in the proof asserts that x is a relation on a transitive set y; $\langle Y,P\rangle$ is the prewellordering induced by Γ over x and there is no $z\in\Gamma_X^\infty$ satisfying φ . If T' is a primitive recursive theory in the language of set theory, then the same proof gives:

Corollary 4.4. Let Γ , φ and τ_{x} be as above. If

 $\forall x(x \models T' \Rightarrow \exists \gamma < \tau_x \, \phi(x, \, \Gamma_x^{\gamma+1})) \text{ then there is an } E\text{--recursive function } G \text{ such that}$

$$\forall x(x \models T' \Rightarrow \exists \gamma \leq \min\{\tau_x, G(\operatorname{rank}(x))\} \varphi(x, \Gamma_x^{\gamma+1}))$$

Examples of such theories are:

- (i) x is transitive, infinite and closed under finite subsets;
- (ii) x is rudimentarily closed.

Now if x is transitive, infinite and closed under finite subsets, then we have a notation system for the next admissible (HYP(x)) and that notation system is defined by a monotone inductive definition. If $\exists y \in \text{HYP}(x) \phi(x,y)$, then there is a Δ_0 formula ϕ' such that $\phi'(x,\Gamma_X^Y)$ for the least γ such that $\exists y \in L_{\nu}[x]\phi(x,y)$ where Γ defines that notation system.

Using this we have proven the following theorem of J. Van de Wiele:

Corollary 4.5. (Van de Wiele) Let $F: V \longrightarrow V$ be uniformly Σ_1 -definable and total over all admissible sets, then F is E-recursive.

proof follows immediately from the theorem and the above remarks on the inductive generation of HYP(x).

Note that we actually show that F is computable in a weaker system than E-recursion, since we use elementary functions together with the operator which computes the height of a well-founded relation.

References

- Girard, J.-Y., n_2^1 -Logic, Part I: Dilators, Annals of Math. Logic, 198?, to appear.
- Griffor, E.R., E-Recursively Enumerable Degrees, Ph.D.Thesis M.I.T., 1980.
- Harrington, L., and D.B. MacQueen, Selection in Abstract Recursion, JSL 41, 1976, pp. 153-158.
- Kirousis, L., On Abstract Recursion Theory and Recursion in the Universe of Sets, Ph.D. Thesis-UCLA, 1978.
- Masseron, M., Majoration des Fonctions wto-recursives par des we-Echelles primitives-recursives, Thèse de Troisième Cycle, Université Paris Nord, 1980.
- Moschovakis, Y.N., Hyperanalytic Predicates, TAMS 129, 1967, pp. 249-282.
- Normann, D., Set Recursion, in <u>Generalized Recursion Theory II</u>, J.-E. Fenstad, R.O. Gandy and G.E. Sacks (Eds.), North Holland, 1978, pp. 303-320.
- Normann, D., A Note on Reflection, Math. Scand. 45, 1979, pp. 5-12.
- Sacks, G.E., The k-section of a Type n Object, Amer. Journal of Math. 99, 1977, pp. 901-917.
- _______, Post's Problem, Absoluteness and Recursion in Finite Types, The Kleene Symposium, J. Barwise, H.J. Keisler and K.Kunen (Eds.), North Holland, 1980, pp. 181-202.
- ______, The limits of recursive enumerability, to appear.
- _____, and E.R. Griffor, E-Recursion Theory, Harward University Preprint, 1980.
- Slaman, T., Aspects of E-Recursion, Ph.D. Thesis Harvard University, 1981.
- Van de Wiele, J., Dilatateurs récursifs et Récursivités Géneralisées, Thèse de Troisième Cycle, Université Paris VII, 1981.