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DEFORMATTONS OF REFLEXIVE
SHEAVES OF RANK 2 ON IPE

In this paper we study deformations of reflexive sheaves of rank 2

on P =1P2 where k is an algebraically closed field of any cha-

1
racteristic. Tet F be a reflexive sheaf with a section SEEHO(Q)z
HO(Hﬂgj whose corresponding scheme of zeros is a curve C in 1P,
Moreover let M = M(cq,cg,c5) be the (coarse) moduli space of stable
reflexive sheaves with Chern classes ¢,,C, and Cz0 The study of
how the deformations of CCIP correspond to the deformations of

the reflexive sheaf F leadSto a nice relationship befween the

local ring OH30 of the Hilbert scheme H = H(d,g) of curves of
degree 4 and arithmetic genus g at CcCIP and the corresponding
local ring OM,E of M at F. In this paper we consider some
examples where we use this relationship. In particular we prove

that the moduli spaces M(0,13,74) and M(-1,14,88) contain gene-

rically non--reduced components.

I would like to thank Olav Arnfinn Taudal and Stein Arild Streomme

for discussions and comments.,

1. Deformations of a reflexive sheaf with a section.

If Defy 1is the . local deformation funcfor of F  defined on

B

the category 1 of local artinian k-algebras with residue field k,

then it is well known that Ext] (E,F) is the tangent space of
P

Defyp and that Exts (F,F) contains the obstructions of deforma-
Nin

tion., See [H3]. To deform the pair (F,s) we consider the functor

DefF s

=1

1 —> Sets
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defined by
°r
— —— [¥79) U ™
Dei‘g’s(R) = {OPR > _E_‘RIEREDefE(R) and sp & 1, = s}/
where IPy =TP % Spec(R) and where e tk7k is the identity. Two

deformations (ER,SR) and (E',sﬁ) are equivalent if there exist

isomorphisms Op = Op_» ER => Ff, and a commutative diagram

R R
3
R
0 —_— R
o [ v
SR

such that gRﬁh'% =‘%§gqu° In fact we also identify the given

iy
1
pair (F,s) with any (F',s') where S'ESHO(EQE ) if they fit

together into such a commutative diagram.

Proposition 1.1. (i) The tangent space of Defy, o 1is
Ly

/l

ExtOIP (;gc(c,l),pf_) where L. = ker(OIP-—> OC), and

Extg (;C(cq),g) contains the obstructions of deformations,
r

(ii) The natural

Q2 Defgas _ Defg

is a smooth morphism of functors on 1 provided
#l(r) = 0

By the correspondence [H3, 4.1] there is a curve C = (S)OEEE’

and an exact sequence

2
E:10 > Op== E —> ;;C(c,]) —= 0
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associated to (F,s). The condition Hq(g) = 0 1is therefore

equivalent to

' (Ig(eq)) = 0

Proof of (i). Using (L2, §2] or [K1,1.2] we know that there is

a spectral sequence

et d q
o) Ext1(r,F) Ext (Op, 019)1
EP3% - Lin P 1 U‘N - X
\ Tt (0 ) J

!
converging to some group A(°) where .f-‘x/1 18 the tangent space

of Defyp , and AZ contains the obstructions of deformation.
,LD

Since Epéq = 0 for pz2, we have an exact séquence

O > E/‘éq“,‘ NS\ S .Eoéq wi> 0

Moreover

Ext1(0p ,0p) = 0 for >0 and Ext%(0p, F) = H(E) for any g,
and this gives

Eoéq - xero? and Eqéq = cokerad for qa>0 .

Observe also that

Hom(F,I') Hom(Omy Os) |
120 . lim(q) o ™ B L= coker o

2 T a’ ~J '

. Hom(OIP,_E_‘_) |

because Hom(Op, Op) ¢ Hom(E,F). We therefore have an exact

sequence

0 —= cokeraqdq—¢>Aq-—>~k&raq—b 0

for any q>0. Combining with the long exact seguence
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o 1

- Hom(E,E) %> HO(F) —> Ext ' (L,(c,),F) &> Bxt (F,1)

ol 2 2 2 6 42

> H(F) = Ext“(Iy(c,),F) $=> Ext(F,F) %> H(E) ->
deduced from the short exact sequence

S
0 ~> Op-=> F -> I4(c,) == O,

we find isomorphisms

A9 = Extq(lc(cq),g) for q>0,

(i1) ILet 8 -—> R be a morphism in 1 whose kernel (7 is a

k-module via R ->> k, let s,:0, == F, be a deformation of
* R :[E)R "_R
8:0p=>F %o R, and let Fg be a deformation of Fp to 5.

To prove the smoothness of ¢, we must find a morphism =g,

IS

: O — B

such that SSé%31R = Sp, 1.e. we must prove that SREEHO(ER) is
contained in the image of -HO(ES) —> HO(ER)G Since

0= F® 6l—> Fq => Fp = 0

is exact and since Hq(g) = 0 by assumption, we see that

HO(ES) - HO(ER) is surjective and we are done.

Remark 1.2. In the exact sequence (*) of this proof, $1 is the

tangent map of ¢ De:t‘“F”S —> Defy  and ©° maps 'obstruc-
tions to obstructions”. 1In fact ¢ is a morphism of
principal homogeneous spaces via wqo Using this it is in
general rather easy to prove the smoothness of © directly
from the surjectivity of mq and the injectivity of w2,

This gives another proof of (1.1.1ii) .,
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2. The relationship between the deformations of a reflexive sheaf

with a section and the deformations of the corresponding curve.

Let F, s€H(F) and I = I, = ker(0p—> 0y) De as in the pre-

ceding section, and let Defy : 1 -» Sets be the deformation functor

of the 0., -Module I. Then there is a natural map

P

T g —_ DefI

—— Py

y ¢ Def

defined by

i’(.F.‘.R’SR) = vaR ® (O]P('"C'i) @k R®)

where Mp = cokersp. If Hilby:1l —> Sets 1is the local Hilbert

functor at Cc< P, we have also a natural map

Hilb, —> Def

C L

of functors on 1. Recall that C is locally Cohen Macaulay and

equidimensional {H3, 4.17.

Proposition 2.4, (i) The natural morphism

Hiib,., — DefI

-

C
is an isomorphism of functors.
(i) If H(F(~%)) = O, then

g :DefF,s wc’DefI

is a smooth morphism of functors on 1.

Observe also that

H(B(-4)) & BN (Ly(0q-4))

and moreover by duality that
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2 1 v
EXtO]P (;C(C/})’O]P) = H (“];_C(Cq*”)) o
Proof of (i) If Ny = HomOI)(;,OO) is the normal bundle of C
in P, we proved in [K1,2.27 that

H (W) & Ext:g;(;,_z_) for i = 0,1

as a consequence of the fact that the projective dimension of

the ~Module I dis 1, from which the conclusion of (i) is

Op
easy to understand. We will, however, give a direct proof,.

To construct the inverse of HilbO(R) =>-DefI(R), let M, be a

deformation of I +to R. Observe that there is an exact Se-

quence
(*) 0 ~>E~> B 0p(eny) => I => 0
B & 5 I

T
where L dis a vector bundle on P of rank r., AE is therefore

invertible, and we can identify it with OI,(dq) where d,=-In,.

If P = ®CHP("ni)’ then there is a complex

(**) E —> P -~ (A.E.) V(d,i) - (AE)V(dﬂ) = OIP

and it is well known that the maps P Lo 1c0p and P - Op
deduced from (*) and (**) respectively are equal up Lo a unit
of k. We can assume eguality. Now since mﬁ, is a lifting of

I to R, there is a map

r+1
frilp = i?'q Op (-n;3) > I

such that fp® 1 =f:P > 1. By Nakayama's lemma, fp is

surjective. MNoreover if Ep = kerf, , we easily see that Ep®pk=E
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and -E‘-R is R-flat., It follows that ER is a locally free

O]P ~Module of rank 1 satisfying

R
T

Furthermore there is a complex

~ Ly NN
Bp = Bp = (nBp) (a9) = (AEp) ' (dy) = O

which proves the existence of an O]P ~linear map
R

which reduces to the natural inclusion ;I;gOIP via (m)@‘Rk . It
is easy to see that o 3is injective, that cokeru is R-flat
and that cokera®Rk = OG" We therefore have a deformation

GR c ]?R of CcP . Finally to see that the inverse
of Hile(R) - DefI(R) is well-defined, let B8 : My = My, and
o' @My P, be mO]PI;:Linear maps such that B®R 1, is the
identity on I and a'®p1,  is the natural inclusion [SR.

> 0

(We do not assume o'8 =a). We claim that Ima' = Ima ., In fact
aince
Exté]P (0g,0p) = O for i = 0,1,

we have
k = Hom, (O ,0.)== Hom., (I,0,) -
O]P PP OI’ L |

We deduce that the map

R = Hom (0

0., )—~> Hom (My, 0y )
Op P’ P Op ‘=R

R R R
induced by o, is surjective, Hence

a's8 = ro



for some 1 €R, and since a'ﬁﬁbﬂk = aQ91k is the natural inclu-

sion L&O0p, T is a unit and we are done.

(ii) Let S -+ R, O and s,:0,, —> P, be as in the proof of
R :PR =R
(1.1 ii). Moreover let My = cokersy, and let MNMNg be a defor-

mation of M, %o 5. To prove smoothness we must find a deforma-

tion

with cokernel Mg such that 886%313 = 8p. By theory of exten-

sions it is sufficient to prove that the map

1 g
Ext (Me,Coy ) —> Ext (M., ,0p )
O]PS =57 Pg Op —R"Pp

R

induced by (~)®SIE is surjective. Modulo isomorphisms we refind

this map in the long exact sequence

) » Bxt” (Mg, 0 ) = Ext™ (g, 0p ® OL).

— H /] - | /!
an (y_s,olps® L) -» Ext (M.,O0 Py Pq

Pq

2

2 ~
&g OL) = ExtO]P (L5(c),0p) @ OU= 0 by

Since Extg, (gs, Op
Pq S
asgsumption, we are done.

Remark 2.2, The short exact sequence

£:0 —» Olfﬁi>-§ —> lc(cﬂ) ~=> 0O

induces a long exact sequence

1

5 1 - 1 Y 1 -
Extojp(;c(c,l),olp) ExtO]P(;C(c,i),_ﬁ_‘) > ExtOP(_:gG,_J;C)

Ext® (L.(c.),0m) = Exte (L.(c,) F)-—‘ﬁ—>Ext2 (T.,,T.) -
0ptEcle1):0p 0p Eater)sL op'Eerdo
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A

where ¢ ' 1s the tangent map of ¢ or more generally, ¢ is
a map of principal homogeneous spaces via q:q and \?;2 maps
"obstructions to obstructions". As remarked in (1.2), the
smoothness of ¢ follows therefore from the surjectivity

of ' and the injectivity of {°.
Remark 2.%. Let &bo the extension
. S — -

: 1L —> Sets be the functor dJdefined by

c

-
r l(CREI’R)E Hilb,(R) and &g e;{
! ‘_//‘\J

3
~

1 .
Ext (;CR(C,}),OIPR) satisfies

) £ Sp ke = §
Two deformations (CR,gR) and (Gé,%é) are equivalent if
CR = CR &Py and if there is a commutative diagram
Eé:O-=—>OIP —> Fp R(cq)_>o
L l o
gLt 0 ~> OJP —> Fp R(c,l)-—>o ,

both reducing to the extension & via (-) ®Rk . In the
same way we identify the given (C,&) with any (C',8')
provided C = C' and &' = uf for some unit weEk”, UNote
that we may in this definition of equivalence replace the
identity 1 on ~I;CR(C/1) by any OIPR linear map. See
[Ma 2, 6.17 and recall H"m(_.cu.c) = k., Now there is a for-
getful map

o : Daf —> Def

C,¢ F,s
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and usiog (2.11) ve immediately have an inverse of 0.

Hence o is an isomorphism. Observe thal we might construct
the inverse of o(R) for Re€obl by considering the in..
vertible shoaf detF, on Pp. See [Ma1, 4.2} or [G,4.1],

In fact if (Fp,sp)

2
1:ABp-> det Tp = O]PR(C")

is given, there is an }PR a morphism

and a complex
s if(=) s,
R R-

which after the tensorization (m)éﬁtk is exact. Hence

S

wI-{m> F. ~> coker SR - 0

0 ~> 0 R

Pp

is exact, cokersy is R-flat and coker sy “> thﬁcﬂ),

and putting this together, we can find an inverse of «(R).
One should compare the isomorphism of o with [H3, 4.1}
which implies that there is a bijection between the set of
pairs (F,s) and the set of (C,€) moduls equivalence under
certain conditions on the pairs. Thinking of these families
of pairs as moduli spaces, [H3, 4.,1] establishes a bijection
on the k-points of these spaces while the isomorphism of «

takes care of the scheme structure as well.

To be more precise we claim that there is a qQuasiprojective
scheme D parametrizing equivalent pairs (C,§) where

1) C is an equidimensional Cohen Macaulay curve and where

2) the extension £:0 ~>0,->F - Lo(ey) => 0 is

iz
such that F 1is & stable reflexive sheaf,
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Moreover there are projection morphisms

D T.} H(d,g)

¢*) p)
M(cq,ca,c5)

defined by p(gK,sK) = B, and q(CK,gK) = Cp for a geometric

K-point (C corresponding to (¥y,s,), such that the fibers

of p and. q are smooth connected schemes, Furthermore, p 1is

smooth at (I, ,SK) provided Hq(EK) =0, and g is smooth at

. 1
(Cgy8g) provided H (;CK(04—4)) = 0.
1)
To indicate why let 8Bch/k be the category of locally

noetherian k-schemes and let D: Sch/k ~> Sets be the functor

defined by
Cséigggig)(S), L is invertible on S and |

/‘
B € Ext (I-CS(C’E)’ Opya ® -I-'S) such that

D(8) = {(Cq,La,8a)
B8 TS CS>%38pec(K) satisfies (1) and E4®K £ O

| for any geometric X-point of S |

Two deformations (Cg,Lg,bq) and (cé,gé,gé) are equivalent if
GS = Gé and if there is an isomorphism 7 : Lg —c—gé whose in-
duced morphism Exiq(lc (04),¢) maps &g onto §éo Now if
S
UcH(d,g) 1is the open set of equidimensional Cohen Macaulay
curves and if CpPxU > U is the restricting of the uni-
1
versal curve to U, one may prove that E = Ext (ECU(CW)’OENH)

is a coherent Op.; -Module, flat over U. By [EGA,ITI,7.7.6]

P
there is a unique coherent OU-Module Q such that

1) TFor good ideas of this construction, see the appendix [E,8],
some of which appears in [S,M,8].
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E%U@,B_) =, (E®R)

for any quasicoberent Oy-lodule R. If P(Q) = Proj(Syn(Q))
is the projective fiber over U defined by §, we can use

[EGA IT,4.2.3] to prove that
E(“‘) = MOI’k(—,IP(_@)) @

Now let DcP(Q) be the open set whose k-points
are (C,8), £:0-~»> Op->F —> I,(cy) = 0 , wvhere F is a
stable reflexive sheaf. Then we have a diagram (*) where the
existence of the morphism p follows from the definition [Ma1, 5.5]
of the moduli space M = M(cq,cg,ca)° Moreover since IP(g) re-
presents the functor B, the fiber of q:D —> H(d,g) at a
K-point CpCP, of H(d,g) is just DN P(Ext (ECK(%)’OIPK)V)
where (-)" = Hom(-,K). Moreover if we think of the fiber of
at a geometric K-point Fp of M as those sections SEEHO(EK)
where (s)o is a curve, we understand that the fiber is an open
subscheme of the linear space ]P(HO(EK)V)° In particular the

geometric fibers of p and q are smooth and connected.

Finally the smoothness of p and ¢q at (C,%) follows from
(1.11ii) and (2.1ii) provided we know that the morphism
p* :OMaE-v> OD,(Q,S) induced by p:D - M makes a commubative
diagram
. ])(-3f£,S z'Mor(GD,(E,S),—)
9| o ¢ Morn{p*,~)

~ A
Defg m-Mor(OM,E,m)

of horisontal isomorphisms on 1. In fact the commutativity from
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the definition of a moduli space [Ma1, 5.51 while the construction
of M dimplies the lower horizontal isomorphism. See [Ma2, 6.4]
A
from which we immediately have that the morphism Defy - Mor(QOy p,-)
—_— 1=

is smooth, and since the morphism induces an isomorphism of tangent

spaces, bobth isomorphic %o Ext“(g,g), it must be an isomorphism.

A
Remark 2.%4. In particular the smoothness of Defy —> Mor(Oﬂ F,—)
2

which is a consequence of the smoothness of the morphism

treated in [Ma2, 6.47], implies that Oy
k==

local ring if and only if Defy 1s a smooth functor on 1.

is a regular

%, Non-reduced components of the moduli scheme M(qu92L95)°

One knows that the Hilbert scheme H(d,g) 1is not always reduced.

2.1
In fact if g ig the largest number satisfying g < dE;F, we

proved in [K1,3.2.101 that H(d,g) is non~-reduced for every d>14,
and we explicitely described a non-reduced component in terms of

the Picard group of a smooth general cubic surface.

Fxample %.1. (Mumford [M1]) . PFor ad = 14, we have

2
g = Q?fi = 24, and there is an open irreducible subscheme

UCH(14,24) of smooth connected curves whose closure U = W

makes a non-reduced component, such that for any (CcP)e U,

RO (v)) {O for wv=2

1 v)) =

=0 1 for v=3%

DI (v)) =0 for v (3,45, \
0O for w4

n'(0y(v)) = |

1 for wv=3%.



VI

Bee [K1,(3.2.4) and (3.1.3)]. 1In fact with C<P in U,
there is a global complete intersection of two surfaces of
degree % and © whose corresponding linked curve is a dis-

Joint union of two coniques.
Now et CcC P be a smooth connected curve satisfying
(*Y HUL.(c,)) =0, H'(I(c,~4)) =0 and H (0,(c,~4)) £ O
=CN oM =Cr71 B cr1

_ . .0 1
for some integer c¢,, let $¢€H (wcg4mcq)) = Ext (;0(01)30 )} be
non-trivial, and let (®,s), s €H°(F), correspond to (C,&) via
the usual correspondence., Then F is reflexive, and it is stable
(resp. semistable) if and only if ¢, >0 (resp. cquo) and C
is not contained in any surface of degree <%c, (resp. <%c,).
See [H3, 4.2]. Combining (1.1) and (2.1) with (2.4) in case ¥
is stable, we find that OM 7 is non-reduced iff OH o is non-

| il b

reduced,

Example 3.2, Let (Cc) € H(M4,24) bhelong to the set U of

(%3.1) and let c, be an integer satisfying (*), i.e. 01:52

or ¢, = 6.

(i) TLet c, = 6. By virtue of (1.1) and (2.1) the hull of
DefF is non-reduced, Moreover F is semistable with Chern
classes (01’02’65) = (6,14,18), and the normalized sheaf

P(-3) has Chern classes (ehrepsez) = (0,5,18),

(ii) Tet ¢y = 2. The corresponding reflexive sheaf is stable
and must belong to at least one non-reduced component of

M(2,1%,74), i.e. of M(0,13,74),

(iii) With ¢, =1 we find at least one non-reduced

component of M(1,14,88) = M(-1,14,88).
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Combining the discussion after (2.%) and in particular the
irreducibility of the morphism g with the irreducibility
of the set U of (3.1), we see that we obtain precisely one
non-reduced component of M(0,13,74) and M(-1,14,88) in

this way.

We will give one more example of a non-~reduced component and in-

clude a discussion to better understand (1.1) and (2.1). In fact
recall [K1,2.3.6] that if an equidimensional Cohen Macaulay curve
(Cc®) ¢ H(d,g) 1is contained in a complete intersection V(EQ,EQ)

of two surfaces of degree £y = degﬁH and f2 = degE‘E2 with

Hq(gc(fi)) -0 and H“(;C(fi»4)) -0

for i = 1,2, and if (C' <¢P) e H' = H(a',g') is the linked curve,
then OH ¢ is reduced iff Oy' o is reduced. ©Since any curve

k] 9 . .
(CCP)e U of (3.1) is contained in a complete intersection
V(gh,ge) of two surfaces of degree f, = f, = 6, the linked curves
C' ¢ must belong to at least one (and one may prove to exactly

one) non-reduced componentq)ngH(22,56) of dimension &8&8. BSee

[K1,2.%.9]. One may see that W contains smooth connected curves.,
Moreover using the fact that w (4ﬁfqu2) and wgu(4nfq=f2) are
the sheaves of ideals which define the closed subschemes
O'g;V(gh,Fg) and OfEV(gh,EQ) respectively, one proves easily
that

BO(Zg0 (#)) = 0, H'(L;. () = 0 for v (3,4,5) and H'(0g (5))£0.

See [8,P] and [K1,2.%.%],

1) Tho condition H(Ly(f,-4)) = O implies also that the linked
curves C'c P form an open subset of H',
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Bxample %.%. Let (C CTP)€ WCH(22,56) be as above with C'

smooth and connected. If ¢, is chosen among 1<c,=<9,
then <3:5]P define8 a stable reflexive sheaf El and in
fact a vector bundle if Cq = 9 by the usual correspondence.
Using (1.1) and (2.1) we find that F' Dbelongs to a non-
reduced component of M(cq,cg,ca) for the choices 1L§01.f2
or ¢y = 6. In particular there exists a non-reduced com-
ponent of M(6,22,66) = M(0,13,66). Morecover we obtain pre-
cisely one non-reduced component in this way if we make use
of the discussion after (2.3%), If cq =9, we find a re-
flexive sheaf I' €M(9,22,0), and the normalized one is
B'(~5) €M(--1,2,0), but we can not conclude that M(-1,2,0)
is non-reduced, even though H(22,56) 1is, because the con-
dition H'(I (cy~4)) = 0 of (2.1.ii) is not satisfied., In
fact one knows that M(-1,2,0) is a smooth scheme. See

{1,8] or [8,M,8].

As a starting point of these final considerations, we will suppose
as known that there is an open smooth connected subscheme
UﬁEEM(_1,2,0) of stable reflexive sheaves I for which there
exists a global scction SEEHO(E(2)) whose corresponding scheme
of zero's C' = (s), is a disjoint union of two coniques. lMore-
over dimUy = 11. 1In fact [H,S] proves even more. We then have

an exact sequence

0 > Op~—> E(2) = Ly (3) =0

P

for K¢ Uy

Hl(lca(v)) is essily found in case C  consists of two dilsjoint

and since the dimension of The cohomology groups
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coniques, we get
n%(E(1)) = 1%(Z, (2)) = 1

and .
1 for v = -1,1

hq(g(v)) -0 (T, (v1)) = 42 for v =0
0 for v £ {-1,0,1].

2
Op
with the Hilbert scheme may prove our assumptions on UM by first

By dimUy = 1, Ext; (F,F) = 0. (The reader who is more familier
proving that there is an open smooth connected subscheme UggH(#,-ﬂ)
of disjoint coniques ¢' and that dim U = 16. This is in fact

a very special case of [K1,(%.1.10i)l. See also [K1,(3.1.4) and
(2.%.18)7, With ¢, = 3, we have H (I ,(01)) = H (;C,(cqnﬁ)) = 0,
and by the discussion after (2.%), there exists an open smooth

connected subscheme of M(3,4,0) €%>M(m1,230) defined by

i

Uy = i(p(q“q(U))), Moreover dimUy = 11 because dimﬁ%ﬁi-ho(g(E))

dim U + ho(wo,(ﬂmcq)) ).

Fix an integer v>1, and let U(v) be the subset of H(4,g)
obtained by varying EﬁEUMEEM(-1,2,O) and by varying the sections
E;EHo(gﬁv)) so that C = (S)O is a curve, i.e. let U(v) =
q(p_q(UM)) and regard Uy as a subscheme of M(c,,05,0) with

cq = 2v-1, ¢y = 2mv+v2, d =c, and g ="1+%c, (e =4).

Recall that p and q are projection morphisms

D 2> H(4,g)

| »

M(cq,c2,0)
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For (CcP) € U(v), there is an exact sequence
O —=> Op —> Flv) — _;C(zv-’i) —> 0

some g‘_(v)EUM., Now (1.1.ii) and (2.14ii) apply for v =2 and
all v>6, and it follows that H(d,g) is smooth at any (CcP)
in the open subset U(v)cH(d,g). Moreover by the irreducibility
of p, U(v) 1is an open smooth connected subscheme of H(d,g).

Furthermore

aimU(v) = 4d+zv (v-5)(2v-5) for v>6

(resp = 44 for v = 2) which asymptotically is ~ 4@+%55/2 for
v>>0, To find the dimension of U(v), we use the fact that p
and q are smooth morphisms of relative dimension h°%(F(v)) -1

and ho(wc(i.t-c,]))—-’i respectively. This gives

dim UM+hO(§‘_(v)) = dimU(V) + ho(wc(#—c,]))

for v =2 and v>6, and since ho(wc(ii—c,])) = hq(OG(c,l-‘ll-)) =

for v>6 (resp., =2 for v = 2), we get
dinU(v) = 10+ n°E(v)) for v>6

(resp. = 9+ho(§‘_(v)) for v = 2). The reader may verify that
ROE(W)) = XEB(W) = 2(v-1)(2v+3)(v44) = 43+ Z(v-5)(2v-5)v - 10

for any v22, and the conclusion follows.

We will now discuss the cases 3<v <5 where we can not guarantee
the smoothness of ¢ since (2.1.1ii) does not apply. If v =5,
then the closure of U(5) in H(22,56) makes a non-reduced com-
ponent by (%.3), For v = 3 or 4, we claim that H(d,g) is smooth

along U(v) and the codimension
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dim¥ - ainU(v) = b (Ly(e,-4)) = h' (@(-4))

where W is the irreducible component of H{(d,g) which contains
U(v). To see this it suffices to prove Hq(gc) = 0 and
Exte(lc(cq),gﬁv)) = 0 for any (CcP)¢€ U(v) because these con-
ditions imply that the scheme D and H(d,g) are non-singular

at any (C,%) with §€5H0(w0(4—cq)) and (CcP) € H(d,g) respec-
tively., See (1.11i) . Moreover if these "obstruction groups"

vanish, we find

dimW - 3im U(v) = din¥W ~ dim q"’(U(v))x ho(gc) - dimExt/‘(;_C(c,}), F(v))

- 01 (L (eqm4))

where dimU(v) = dhanq(U(v)) because of ho(wc(4—cq)) =1,

and where the equality to the right follows from the long exact
sequence of (2.2). Now to prove Extg(gc(cq),g(v)) = 0 we use

the Iong exact sequence (*) in the proof of (1.1.1i) combined with
Hq(g(v)) = 0 and EXtE(EJE) = 0, and to prove Hﬂ(gc) = 0 we use
the long exact sequence of (2.2) combined with Extz(gc(cq),gﬂv))zzo
and  Ext”(Ly(c,),0p) 2 HO(Iy(eq-40)Y = BOE(v-4))" = 0 for

Vv =3 or v =4, and we are done.

Computing numbers, we find for v = 3 that U(3) is a locally
closed subset of H(8,5) of codimension 1, and any smooth con-
nected curve (Cc ) €U(3) is a canonical curve, i.e. W & OC(’l)o
For v = 4, U(4) is of codimension 2 in H(14,22) and

Wy & 00(2) for any (CCSP) € UH),
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