ISBN 82-553-0478-9
Mathematics
No. 3
February 3
1982

## DEGENERATIONS OF COMPLETE

TWISTED CUBICS
by
Ragni Piene
Inst. of Math., University of Oslo

1. Introduction

Let $C \subset \mathbb{P}^{3}$ be a twisted cubic curve. Denote by $\Gamma$ chrass ( 1,3 ) its tangent curve (curve of tangent lines) and by $C^{\not \subset}<\mathscr{P}^{3}$ its dual curve (curve of osculating planes). The curve $\Gamma$ is rational normal, of degree 4 , while $C^{*}$ is again a twisted cubic. The triple ( $C, \mathrm{r}_{\mathrm{c}}, \mathrm{C}^{*}$ ) is called a (non degenerate) complete twisted cubic. By a degeneration of it we mean a triple ( $\bar{C}, \stackrel{\Gamma}{\Gamma}, \vec{C}^{*}$ ), where $\bar{C}$ (resp. $\bar{\Gamma}$, resp. $\mathrm{C}^{*}$ ) is a flat speciallzation of $C$ (resp. F, resp. $C^{*}$ ). Thus we work with Hilbert schemes rather than Chow schemes: let $H$ denote the irreducible component of $H\left\{b^{3 n+1}\left(\mathbb{R}^{3}\right)\right.$ containing, the twisted cubies, $H$ the correspondinp component of $H A 1 b^{3 n+1}\left(\mathbb{R}^{3}\right)$, and $a$ the component of Hilb ${ }^{4 n+1}($ (arass $(1,3))$ containing the tangent curves or twisted cubics. The space of complete twisted cubics is the closure $? \mathrm{C} . \mathrm{H} \times \mathrm{o} \times \mathrm{I}$ of the set of non degenerate complete twisted cubics.

In this paper we show how to obtain Schubert's 11 first order degenerations ( $[\mathrm{s}]$, pp.164..166) of complete twisted cubjes, viewed as elements of $H \times G \times H$, "Via projections", i.e., by constructing l-djmensional families of curves on various kinds of cones. In particular, we describe the ideals of the degenerated curves. A similar study was done by Alfuncid [A], who viewed the degenerations as cycles (rather than flat specializations), and who gave equations for the complexes of lines assoctated to the degenerated cycles by usinf the theory of complete collineations.

An ultimate goal in the study of degenerations of complete thisted cubics, is of course to verify schubert's results in the enunerative theory of twisted cubics. As long as one, as Schubert does, restricts oneself to only fripose conditions that involve points, tanrents, and osculating planes (and not secants, chords, osculating lines, ...), the space $m$ is a compactification of the space of twisted cubics that contains enough information. In other words, one would like to describe the Chow ring of $T$ in tems of cycles corresponding to degenerate complete
twisted cubics, and in tems of cycles representing the various schubert conditions. One approach would be to study the Chow ring of il and the blow-up map $m \rightarrow H$. In a foint work with ifschael Schlessinger we prove that the 12-dimensional schene $H$ is in fact srooth, and, noreover, that, il intersects the other ( 15 -dinensional) component $\mathrm{H}^{\prime}$ of Hilb ${ }^{3 \mathrm{n}+1}\left(\mathrm{a}^{3}\right)$ transversally along an 11...dimensional Jocus ( $\mathrm{H}^{\prime}$ contains plane cubic curves union a point in $\mathbb{T}^{3}$, and $H \cap H^{\prime}$ consists of plane, cubics with an embedded point) This result, together with further investications of the map $\mathrm{I} \rightarrow \mathrm{H}$, will be the subject of a fortheonins paper.

Acknowledgments. This work was begun while the author was a visitor of the Department of liatbenatios, Unjversjidade Federal de Permabuco, in March/April 1981. Many thanks are due to Prof. I. Vainsencher for eonversations that started the work, and to CHPq for its financial support.

## 2. Defenerations via projections

Since all twisted cubics are projectively equivalent, we shall flx one, $\mathrm{C} \subset \mathbb{P}^{3}=\mathbb{P}_{\mathrm{k}}^{3} \quad(\mathrm{~K}$ algebraically closed field of characteristic 0 ), given by the ideal

$$
I=\left(X_{0} X_{2}-X_{1}^{2}, X_{1} X_{3}-x_{2}^{2}, X_{0} X_{3}-x_{1} x_{2}\right)
$$

Hence $C$ has a parameter fom

$$
X_{0}=u^{3}, X_{1}=u^{2} v, X_{2}=u v^{2}, X_{3}=v^{3} .
$$

The tangent curve $\Gamma$ of 0 , vjewed as a curve in $\mathbb{R}^{5}$ via the Plücker enbeddinf oif $\operatorname{crass}(1,3)$, has a parameter form $\left(t=\frac{v}{u}\right)$ given by the $2-m$ nors of

$$
\left(\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2}
\end{array}\right)
$$

hence by

$$
\begin{aligned}
& Y_{0}=v^{4}, Y_{1}=2 u v^{3}, Y_{2}=u^{2} v^{2} \\
& Y_{3}=3 u^{2} v^{2}, Y_{4}=2 u^{3} v, Y_{5}=u^{4} .
\end{aligned}
$$

The ideal of $r$ in $p^{5}$ is

$$
\begin{aligned}
J= & \left(Y_{3}-3 Y_{2}, 4 Y_{0} Y_{2}-Y_{1}^{2}, Y_{0} Y_{4}-Y_{1} Y_{2}, Y_{1} Y_{4}-4 Y_{2}^{2}, 4 Y_{0} Y_{5} \cdots Y_{1} Y_{4},\right. \\
& \left.Y_{1} Y_{5}-Y_{2} Y_{4}, 4 Y_{2} Y_{5}-Y_{4}^{2}\right) .
\end{aligned}
$$

The dual curve o.c $^{*}{ }^{3}$ has a paraneter form given by the 3 -minors of

$$
\left(\begin{array}{llll}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 1 & 3 t
\end{array}\right)
$$

hence by

$$
\stackrel{y}{x}_{x_{0}}=v^{3}, \stackrel{x_{x}}{x_{1}}=3 u v^{2}, \stackrel{y}{x}_{2}=3 u^{2} v, \stackrel{y}{x}_{3}=u^{3} .
$$

Since $\Gamma$ is also equal to the tangent curve of $C^{*}$ (under the canonical isomorphisn (rass (lines in $\mathbb{p}^{3}$ ) $\cong$ Grass(lines in ${ }^{3}$ )) and $C$ is the dual curve of $C^{*}$ (see e.g. [P],\$5), any type of degeneration ( $\bar{C}, \bar{\Gamma}, \bar{C}^{*}$ ) gives another type - called the dual degeneration - by readinc the triple backwards.

Let $A G P^{3}$ be a linear space, and choose a
complement $B \subset P^{3}$ of $A$. By projectine $C$ onto $B$ from the vertex $A$ we obtain a dereneration of $C$ : we construct a family $\left\{\mathrm{C}_{\mathrm{a}}\right\}$ of twisted cubics, contained in the cone of the above projection, over Spec $k[a]-\{0\}$. Thts faraily has a unique extension to a flat family over Spec $k[a]$, and the "limit curve" $C_{0}$ is thus a flat specialization of $C=C_{1}$ (see also [It], p .259 , for the case $A=$ a point). Note that interchanging the roles of $A$ and $B$ gives a linit curve equal to the curve $C_{\infty}$ obtained in the similar way by letting $a \rightarrow \infty$, and $G_{\infty}$ has the dual degeneration type of $C_{0}$. The type of degeneration obtajned depends of course on the dimension and position of $A$ and $B$ wor.t. $C$.

To find generators for the ideals of the derenerated curves, for chosen $A$ and $B$, we start by writing down $a$ paraneter form of $C_{a}, a \neq 0$. (It is often convenjent to introduce new coordinates at this point.) Then we determine enourh generators for the ideal If of Ga, so that they specialize $(a=0)$ to generators for the ldeal $I_{0}$ of $C_{0}$. (Whenever $C_{0}$ acquires an embedded point, it turns out that a cubic generator is needed in addition to
the (three standard) quadratic ones.)
'he parameter form of $C_{a}, a * 0$, sives a parameter form of $\Gamma_{\xi}$, its tangent curve. As above we find generators for the ideal $J_{a}$ of $\Gamma_{a}$ that specialize to Generators for $J_{0}$.

Similarly, one could work out the fdeal of $C_{0}^{*}$ However, by a duality argunent it is clear that $C_{0}$ will have the degeneration type obtained (tron $C$ ) by inter... changing the roles of $A$ and $B$. That is, $C_{0}^{*}$ will be of the same type as $\sigma_{c}$, or, the degeneration type of $C^{*}$ is equal to the dual degeneration type of $C$. For example, consider the degeneration type $\lambda: A$ is a (general) point, $B$ a (general) plane. When $C$ degenerates along the cone over it, with vertex $A$, onto the plane F , its osculating planes degenerate towards the plane $B$. In $\widetilde{\mathbb{T}}^{3}$, this means that $\mathrm{C}_{\mathrm{a}}^{*}$ degenerates on the cone with vortex the plane $\check{A} \subset \ddot{\mathbb{P}}^{3}$ tovards the point $\check{B} t \mathscr{P}^{3}$. This degeneration type we call $\lambda^{\prime}$; in general, we shall denote the dual degeneration by a "prime" in this way.

## 3. Schubert's 11 derenerations

We noy give a list of Schubert's 11 types of degenerations, in his order and using his nanes for then. $\lambda \quad A=$ general point (not on $C$, not on any tangent)
$B=$ general plane (not osculating, not containing, any tangent)

Make $A=(0,1,0,1), B: X_{3}+X_{1}=0$, and new coordinates:

$$
X_{0}^{1}=X_{2}+X_{0}, X_{1}^{1}=X_{3}+X_{1}, X_{2}^{1}=X_{2}-X_{0}, X_{3}^{1}=X_{3}-X_{1} .
$$

Then $C_{a}$, a $\# 0$, is given by

$$
\begin{aligned}
X_{0}^{1}= & u v^{2}+u^{3}, X_{1}^{1}=a v^{3}+a u^{2} v, X_{2}^{1}=u v^{2}-u^{3}, X_{3}^{1}=v^{3}-u^{2} v \\
I_{a}= & \left(a^{2}\left(X_{0}^{1}-x_{2}^{1}\right)\left(X_{0}^{1}+X_{2}^{1}\right) \cdots\left(X_{1}-a X_{3}^{1}\right)^{2},\right. \\
& x_{1}^{2}-a^{2} x_{3}^{1}-a^{2}\left(X_{0}^{1}+x_{2}^{1}\right)^{2},-x_{1}^{1} X_{2}^{1}+a X_{0}^{1} X_{3}^{1}, \\
& \left.\left(x_{0}^{1}-x_{2}^{1}\right)\left(X_{1}^{1}+x_{3}^{1}\right)^{2} \cdots a^{2}\left(x_{0}^{1}+x_{2}^{1}\right)^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
I_{0}= & \left(X_{1}^{1}, X_{1}^{1} X_{3}^{1}, X_{1} X_{2}, X_{3}^{1}\left(X_{0}^{1}-X_{2}^{1}\right)-X_{2}^{2}\left(X_{0}+X_{2}^{1}\right)\right) \\
= & \left(\left(X_{3}+X_{1}\right)^{2},\left(X_{3}+X_{1}\right)\left(X_{3}-X_{1}\right),\left(X_{3}+X_{1}\right)\left(X_{2}-X_{0}\right),\right. \\
& \left.X_{0}\left(X_{3}-X_{1}\right)^{2}-X_{2}\left(X_{2}-X_{0}\right)^{2}\right)
\end{aligned}
$$

Hence: $C_{0}$ is a plane nodal cubic with a nonplanar embedded point at the node.
$\lambda^{\prime} \quad A=$ general plane
$B=$ general point
Take $A: X_{3}+X_{1}=0, B=(0,1,0,1)$ and coordinates as for $\lambda$.

$$
\begin{aligned}
I_{a}= & \left(\left(X_{0}^{1}-X_{2}^{1}\right)\left(X_{0}^{\prime}+X_{2}^{1}\right)-\left(a X_{1}^{1}-X_{3}^{\prime}\right)^{2}, a^{2} X_{1}^{2}-X_{3}^{1} \cdots\left(X_{0}^{1}+X_{2}^{1}\right)^{2},\right. \\
& \left.X_{0}^{1} X_{3}^{\prime} \cdots A_{1}^{\prime} X_{2}^{\prime}\right) \\
I_{0}= & \left(X_{0}^{1}{ }^{2}-X_{2}^{\prime}{ }_{2}^{2} X_{3}^{1}, X_{3}^{1}{ }^{2}+\left(X_{0}^{\prime}+X_{2}^{\prime}\right)^{2}, X_{0}^{\prime} X_{3}^{\prime}\right) \\
= & \left(4 X_{0} X_{2}-\left(X_{3}-X_{1}\right)^{2}, X_{2}\left(X_{2}+X_{0}\right),\left(X_{3}-X_{1}\right)\left(X_{2}+X_{0}\right)\right)
\end{aligned}
$$

Hence: $C_{0}$ is the union of three skew lines through the point $(0,1,0,1)$.

To find the degenerated tangent curve $\Gamma_{0}$ of $\lambda$ (or of $\left.\lambda^{\prime}\right):$
$r_{a}$ is given (in coordinates $Y_{0}^{\prime}, \ldots, Y_{5}^{1}$ on $\mathbb{P}^{5}$ corres. ponding to $X_{0}^{1}, \ldots, X_{3}^{1}$ on $\mathbb{T}^{3}$ ) on paraneter forn

$$
\begin{aligned}
Y_{0}^{1}= & v^{4}-2 u^{2} v^{2}+u^{4}, Y_{1}^{1}=4 a u v^{3}, Y_{2}^{1}=-a v^{4}+4 a u^{2} v^{2}+a u^{4}, \\
Y_{3}^{1}= & v^{4}+4 u^{2} v^{2}-u^{4}, Y_{4}^{1}=4 u^{3} v, Y_{5}^{1}=a v^{4}+2 a u^{2} v^{2}+a u^{4} . \\
J_{0}= & \left(Y_{2}^{\prime}-2 Y_{5}^{1}, Y_{1}^{2}, Y_{1}^{1} Y_{5}^{1}, Y_{5}^{2}, 12 Y_{3}^{1} Y_{5}^{1}-7 Y_{1}^{1} Y_{4}, 7 Y_{0}^{1} Y_{5}^{1}+11 Y_{3}^{1} Y_{5}^{1},\right. \\
& Y_{0}^{1} Y_{1}^{1}-2 Y_{1}^{1} Y_{5}^{\prime}-Y_{1}^{1} Y_{3}^{1},\left(4\left(Y_{0}^{1}-Y_{3}^{1}\right)^{2}+12 Y_{3}^{\prime}\left(Y_{0}^{1}-Y_{3}^{1}\right)-3 Y_{4}^{2}\right)^{2} \\
& \left.-\left(5 Y_{0}^{1}+4 Y_{3}^{1}\right)^{2}\left(\left(Y_{0}^{1}-Y_{3}^{1}\right)^{2}+3 Y_{4}^{2}\right)\right) .
\end{aligned}
$$

Hence: $r_{0}$ is a plane tricuspidal quartic, with embedded points at the cusps.

K $\quad A=$ pojnt on a tangent, not on $C$
$B=$ plane contalning a tanment, not osculating.
Take $A=(0,1,0,0), B: X_{1}=0$. Then $C a, a * 0$, is given by $x_{0}=u^{3}, x_{1}=a u^{2} v, x_{2}=u v^{2}, x_{3}=v^{3}$,

$$
\begin{aligned}
& I_{a}=\left(a^{2} X_{0} X_{2}{-X_{1}^{2}}_{1}, X_{1} X_{3}-a X_{2}^{2}, a X_{0} X_{3}-X_{1} X_{2}, X_{0} X_{3}^{2}-X_{2}^{3}\right) . \\
& I_{0}=\left(X_{1}^{2}, X_{1} X_{2}, X_{1} X_{3}, X_{0} X_{3}^{2} \cdots X_{2}^{3} \text { ? }\right) .
\end{aligned}
$$

Hence: $C_{0}$ is a cuspidal cubic, in the plane $X_{1}=0$, with a nonplanar embedded point at the cusp.

$$
\begin{aligned}
x^{\prime} \quad A & =\text { plane containing a tangent, not osculating. } \\
B & =\text { point on targent, not on } C . \\
I_{a} & =\left(X_{0} X_{2}-a^{2} X_{1}^{2}, a X_{1} X_{3}-X_{2}^{2}, X_{0} X_{3} \cdots X_{1} X_{2}\right) . \\
I_{0} & =\left(X_{0} X_{2}, X_{2}^{2}, X_{0} X_{3}\right) .
\end{aligned}
$$

Hence: $C_{0}$ is the union of the line $X_{2}=X_{3}=0$ with the double line $X_{0}=K_{2}=0$ (doubled on a quadratic cone with vertex $(0,1,0,0))$.

The tangent curve $r^{\prime}$ a of $k$ (or $k^{\prime}$ ) is given by

$$
\begin{aligned}
& Y_{0}=v^{4}, Y_{1}=2 a u v^{3}, Y_{2}=a u^{2} v^{2}, \\
& Y_{3}=3 u^{2} v^{2}, Y_{4}=2 u^{3} v_{,} Y_{5}=a v^{4} . \\
& J_{0}=\left(Y_{2}, Y_{1}^{2}, Y_{1} Y_{3}, Y_{1} Y_{4}, Y_{1} Y_{5}, Y_{0} Y_{5}, Y_{2} Y_{5}, 27 Y_{0} Y_{4}^{2}-4 Y_{3}^{3}\right) .
\end{aligned}
$$

Hence: $r_{0}$ is a cuspidal cubic, in the plane $Y_{1}=Y_{2}=Y_{r}=0$, with a nonplanar ermbedded point at the cusp ( $1,0,0,0,0,0$ ) (this point corresponds to the flex tangent of $O_{0}$ ), union the line $Y_{0}=Y_{1}=Y_{2}=Y_{3}=0$, intersecting the cubic in its flex ( $0,0,0,0,1,0$ ) (corresponding to the cusp tangent of $C_{0}$ ).
$\omega$

$$
\begin{aligned}
& A=\text { point on } C \\
& B=\text { osculating plane } \\
& \text { Wake } A=(0,0,0,1), B: X_{3}=0 . \\
& C_{a,}=0, \text { is Given by } \\
& X_{0}=u^{3}, X_{1}=u^{2} v, X_{2}=u v^{2}, X_{3}=a v^{3}, \\
& I_{a}=\left(X_{0} X_{2}-X_{1}^{2}, X_{1} X_{3}-a X_{2}^{2}, X_{0} X_{3}-a X_{1} X_{2}\right) . \\
& I_{0}=\left(X_{0} X_{2}-X_{1}^{2}, X_{0} X_{3}, X_{1} X_{3}\right) .
\end{aligned}
$$

Hence: $C_{0}$ is the union of a conic, in the plane $X_{3}=0$, utth the line $x_{0}=x_{1}=0$ 。
$\omega^{\prime} \quad A=$ osculating plane
$B=$ point on $C$

$$
\begin{aligned}
& I_{a}=\left(Y_{0} X_{2}-X_{1}^{2}, a X_{1} X_{3}-X_{2}^{2}, a X_{0} X_{3}-X_{1} X_{2}\right) . \\
& I_{0}=\left(X_{0} X_{2}-X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right) .
\end{aligned}
$$

Hence: $C_{0}$ is the triple lino $X_{1}=X_{2}=0$ (tripled on a quadratic cone with vertex ( $0,0,0,1$ )).

The tangent curve $\Gamma_{a}$ of $\omega$ (or w') is fiven by

$$
\begin{aligned}
& Y_{0}=a v^{4}, Y_{1}=2 a^{3}, Y_{2}: u^{2} v^{2}, Y_{3}=3 a u^{2} v^{2}, \\
& Y_{4}=2 u^{3} v, Y_{5}=u^{4} . \\
& J_{0}=\left(Y_{3}, Y_{1}^{2}, Y_{1} Y_{1}, Y_{1} Y_{5}, Y_{0} Y_{5}, Y_{0} Y_{4}-Y_{1} Y_{2}, 4 Y_{2} Y_{5}-Y_{4}^{2}\right) .
\end{aligned}
$$

Hence: $\Gamma_{0}$ is the union of a conic, in the plane $Y_{0}=Y_{1}=Y_{3}=0$, with the double line $y_{1}=Y_{3}=Y_{1}=Y_{5}=0$.
$\theta$ To obtain this degeneration, we choose $\Lambda$ to be a "line -plane " ( $\mathrm{L}, \mathrm{U}$ ), s.t. for some $\mathrm{x} \in \mathrm{C}, \mathrm{x} \in \mathrm{I}, \mathrm{C} \mathrm{U}$, $\operatorname{tg}_{\mathrm{x}} \subset \mathrm{U}, \mathrm{L} \neq \mathrm{tg}, \mathrm{U}$ not osculating - and B a "point-line" ( $P, L^{\prime}$ ), s.t. for sone $x \in C, L^{\prime}<\operatorname{osc}_{x}$, $\{P\}=L^{\prime} \therefore t_{f}, x \neq P, P \neq G$. Then we form a 2-dimensional family $\{\mathrm{C}, \mathrm{b}, \mathrm{b}$, where the parameter a corresponds to projecting $C$ from $U$ to $P$, and $b$ to projecting from $I$ to $\mathrm{J} \mathrm{A}^{\prime}$. Taking $\mathrm{a}=\mathrm{b}$ we obtain a 1~dinonsional farily $\{\mathrm{C}$ a, a $\}$ 。
Fake $L: X_{1} \cdot x_{3}=X_{2}=0, U: X_{2}=0$ and $L^{\prime}: X_{0}=X_{1}+X_{3}=0$, $P=(0,0,1,0)$. In nev coordinates $X_{0}, X_{1}=X_{1}-X_{3}$, $x_{2}, x_{3}^{1}=X_{1}+X_{3}, a_{a, b}$ is given by $X_{0}=a b u^{3}$, $x_{1}=a u^{2} v-a v^{3}, x_{2}=u v^{2}, x_{3}^{1}=a b u^{2} v+a b v^{3}$

$$
\begin{aligned}
& I_{a, b}=\left(4 a b X_{0} X_{2}-\left(X_{3}^{1}+b X_{f}^{1}\right)^{2},\left(X_{3}+b X_{p}\right)\left(X_{3}^{1}-b X_{1}\right)-4 a^{2} b^{2} X_{2}^{2},\right. \\
& \left.X_{0}\left(X_{3}^{1}-b X_{1}^{\prime}\right) \cdots a\left(X_{9}+b X_{1}^{1}\right) X_{2}, X_{0}\left(X_{3}^{\prime}-b X_{1}^{\prime}\right)^{2}-4 a^{3} b^{3} X_{2}^{3}\right) .
\end{aligned}
$$

By letting $a=h$, retritine the cencrators, and letting $a=0$, we obtain
$I_{0}=\left(X_{0}\left(x_{1}+x_{3}\right),\left(X_{1} \cdots x_{3}\right)\left(X_{1}+x_{3}\right),\left(X_{1}+x_{3}\right)^{2}, X_{0}\left(\left(x_{1} \cdots x_{3}\right)^{2} \cdots x_{0} x_{2}\right)\right)$.

Hence: $C_{0}$ is the unjon of a conic, in the plane $K_{1}+X_{3}=0$, with its tangent line at $(0,0,1,0)$, and with that point as a nomplanar embedded point.
$\theta^{\prime} \quad A=$ "point-line"
$B=$ "line-plane".
$I_{a, b}=\left(4 b X_{0} X_{2}-a\left(b X_{3}^{1}+X_{1}^{1}\right)^{2}, a^{2}\left(b X_{3}^{1}+X_{1}\right)\left(b X_{3}^{1}-X_{1}^{1}\right)\right.$ $\left.-4 X_{2}^{2}, a b X_{0}\left(b X_{3}^{1} \cdots X_{1}^{1}\right)-\left(b X_{3}^{i}+X_{j}\right) X_{2}\right)$.

Taking $a=b$ and $a=0$ gives

$$
I_{0}=\left(4 X_{0} X_{2}-\left(X_{1}-X_{3}\right)^{2},\left(X_{1}-X_{3}\right) X_{2}, X_{2}^{2}\right)
$$

Hence: $C_{0}$ is the line $X_{1} \cdots X_{3}=X_{2}=0$ tripled on a quadratic cone with vertex ( $1,0,1,0$ ).
The tangent curve $\Gamma_{a}$ of $\theta$ (or $\theta^{\prime}$ ) (for $a=b$ ) is given by

$$
\begin{aligned}
& Y_{0}^{1}=a v^{4} \cdots a u^{2} v^{2}, Y_{i}^{\prime}=4 a^{2} u v^{3}, Y_{2}^{\prime}=v^{4}+u^{2} v^{2}, \\
& Y_{3}^{\prime}=3 a^{3} u^{2} v^{2}+a^{3} u^{4}, Y_{4}=2 a u^{3} v, Y_{5}^{\prime}=-3 a^{2} u^{2} v^{2}+a^{2} u^{4} . \\
& J_{0}=\left(Y_{3}^{1}, Y_{0}^{\prime} Y_{1}^{1}, Y_{1}^{2}, Y_{1}^{Y} Y_{4}, Y_{1}^{Y} Y_{5}^{\prime}, Y_{0}^{\prime} Y_{5}^{1}, 4 Y_{2}^{1} Y_{5}^{\prime} Y_{0}^{2} \cdots Y_{4}^{2}\right) .
\end{aligned}
$$

Hence: $r_{0}$ is the union of a conic, in the plane $Y_{0}^{\prime}=Y_{1}^{\prime}=Y_{3}^{1}=0$, With the two lines $Y_{j}^{1}=Y_{3}^{1}=Y_{5}^{1}=$ $=Y_{0}^{2}+\left.Y\right|^{2}=0$, with the comon point of intersection, ( $0,0,1,0,0,0)$, as an embedded point (this point corresnonds to the line - tangent to the conic - of $C_{0}$ ).
$\delta \quad A=a \operatorname{line}, n o t$ contained in any osculatinc plane, and intersectine $C$ in exactly one point.
$B=a$ line, not intersecting $C$, contained in exactly one osculating plane.

Take $A: X_{0}=X_{2}=X_{1}=0, P: X_{0}+X_{2}=X_{3}=0$ and chance coordinates: $X_{0}^{1}=X_{0}-X_{2}, X_{1}, X_{2}=X_{0}+X_{2}, X_{3}$. When $C_{a}$ js given by

$$
\begin{aligned}
x_{0}^{1}= & u^{3}-u v^{2}, X_{1}=u^{2} v, X_{2}^{1}=a u^{3}+a u v^{2}, X_{3}=a v^{3} \\
I_{a}= & \left(X_{2}^{2} a_{0}^{2} X_{0}^{2}-4 a^{2} X_{1}^{2}, 4 a x_{1}^{\prime}, X_{3}-\left(X_{2}^{1}-a X_{0}^{\prime}\right)^{2},\right. \\
& \left.\left(X_{2}^{i}+a X_{0}^{1}\right) X_{3}-a X_{1}\left(X_{2}^{1}-a X_{0}^{1}\right)\right) .
\end{aligned}
$$

By changing the generators, we see

$$
I_{0}=\left(\left(X_{0}+X_{2}\right)^{2},\left(X_{0}+X_{2}\right) X_{3}, X_{0}^{2}-X_{2}^{2}-2 x_{1} X_{3}\right)
$$

Hence: $C_{0}$ is the union of the line $X_{0}+X_{2}=X_{1}=0$ with the double line $X_{0}+X_{2}=X_{3}=0$, and is contained in a smooth quadric.
$\delta^{\prime} \quad I_{a}=\left(a^{2} X_{2}^{2}-x_{0}^{2}-4 X_{7}^{2}, 4 a X_{1} X_{3}-\left(a X_{2}^{1}-X_{0}^{8}\right)^{2}\right.$,

$$
\left.a\left(a X_{2}^{i}+X_{0}^{\prime}\right) x_{3}-X_{1}\left(a X_{2}^{\prime}-X_{0}^{j}\right)\right)
$$

$$
I_{0}=\left(\left(X_{0}-X_{2}\right)^{2},\left(X_{0}-X_{2}\right) X_{1}, X_{1}^{2}\right)=\left(X_{0}-X_{2}, X_{1}\right)^{2}
$$

Hence: $G_{0}$ is the triple line ${ }_{X_{0}}{ }^{-X_{2}}=X_{1}=0$ (tripled by taking its 2 nd order neighbourhood in $\mathbb{P}^{3}$ ).

The tangent curve $\Gamma_{a}$ for $\delta$ (or $\delta^{\prime}$ ) is given by

$$
\begin{aligned}
Y_{0}^{\prime}= & a^{2} v^{4}+3 a^{2} u^{2} v^{2}, Y_{1}^{\prime}=2 a u v^{3}, Y_{2}^{\prime}=a u^{2} v^{2} \cdots a u^{4}, \\
Y_{3}^{\prime}= & -a v^{4}+3 a u^{2} v^{2}, Y_{4}=4 a u^{3} v, Y_{5}^{\prime}=u^{2} v^{2}+u^{4}, \\
J_{0}= & \left(Y_{0}^{\prime}, Y_{j}^{\prime}\left(2 Y_{1}^{\prime}+Y_{4}^{\prime}\right), Y_{2}^{\prime}\left(2 Y_{1}+Y_{4}^{\prime}\right), Y_{4}\left(2 Y_{1}^{\prime}+Y_{4}^{\prime}\right),\right. \\
& \left.Y_{2}^{\prime}{ }^{2}+Y_{1}^{2}, Y_{4}^{\prime}\left(Y_{3}^{\prime}-2 Y_{2}^{\prime}\right), Y_{2}^{\prime}\left(Y_{j}^{\prime}-2 Y_{2}^{\prime}\right)\right)
\end{aligned}
$$

Hence: $\Gamma_{0}$ is the union of the two lines

$$
\begin{aligned}
& Y_{0}^{\prime}=2 Y_{1}^{\prime}+Y_{4}=Y_{3}^{1}-2 Y_{2}^{\prime}=Y_{1}^{\prime}+Y_{2}^{\prime 2}=0 \text {, with the double } \\
& \text { line } Y_{0}^{\prime}=Y_{1}^{\prime}=Y_{2}^{1}=Y_{4}=0 .
\end{aligned}
$$

$\eta \quad A=$ seneral line, i.e. $A \cap G=\varnothing$, A not contained in an osculating plane $B=$ general line (same conditions as for $\Lambda$, since these are selfwrual!)

Take $n: X_{0}-X_{3}=X_{1}+X_{2}=0, B: \quad x_{0}+X_{3}=X_{1}-X_{2}=0$, and change coordinates:

$$
X_{0}^{1}=X_{0}-x_{3}, X_{1}^{1}=X_{1}-X_{2}, X_{2}^{1}=X_{1}+X_{2}, X_{3}^{1}=X_{0}+X_{3} \text {, Then }
$$

$\mathrm{C}_{\mathrm{a}}$ is given by

$$
\begin{aligned}
& x_{0}^{1}=u^{3}-v^{3}, X_{1}^{1}=a u^{2} v-a u v^{2}, X_{2}^{1}=u^{2} v+u v^{2}, \\
& X_{3}^{\prime}=a u^{3}+a v^{3} .
\end{aligned}
$$

$$
\begin{aligned}
I_{a}= & \left(\left(a X_{0}^{1}+X_{3}^{1}\right)\left(a X_{2}^{\prime} X_{j}^{\prime}\right)-\left(X_{1}^{1}+a X_{2}^{1}\right)^{2},\left(X_{1}+a X_{2}^{\prime}\right)\left(X_{3}^{1}-a X_{0}^{1}\right)\right. \\
& \left.-\left(a X_{2}^{\prime}-X_{1}^{\prime}\right)^{2}, X_{3}^{\prime}-a^{2} X_{0}^{1}-a^{2} X_{2}^{1}+X_{1}^{2}\right) \\
I_{0}= & \left(X_{1}^{2}, X_{j} X_{3}^{1}, X_{3}^{2}\right)=\left(X_{1}-X_{2}, X_{0}+X_{3}\right)^{2}
\end{aligned}
$$

Hence: $C_{0}$ is the tripled line $X_{1} \cdot x_{2}=X_{0}+X_{3}=0$ (tripled as in $8^{\prime}$ ).
$\eta^{\prime}$ is of the same type as $\eta$, since the conditions on $\mathrm{A}, \mathrm{B}$ are self dual.

The tangent curve $\Gamma_{a}$ of $\eta$ is tiven by

$$
\begin{aligned}
& V_{0}^{1}=a v^{4}+2 e u v^{3}-2 a u^{3} v m a u^{4} \\
& y_{j}=-a^{2} v^{4}+2 a^{2} u v^{3}+2 a^{2} u^{3} v \cdots a^{2} u^{4} \\
& Y_{2}^{\prime}=2 a u^{2} v^{2} \\
& Y_{3}^{\prime}=6 a u^{2} v^{2} \\
& X_{4}=v^{4}+2 u v^{3}+2 u^{3} v+u^{4} \\
& Y_{5}^{1}=-a v^{4}+2 a u v^{3}-2 a u^{3} v+a u^{4} . \\
& J_{0}=\left(Y_{3}^{\prime}-3 Y_{2}^{\prime}, Y_{0}^{\prime} Y_{1}^{\prime}, Y_{1}^{2}, Y_{1}^{\prime} Y_{2}^{\prime}, Y_{1}^{\prime} Y_{5}^{\prime}, Y_{0}^{\prime} Y_{5}^{\prime}-Y_{1}^{\prime} Y_{4}+3 Y_{2}^{\prime}{ }^{2},\right. \\
& \text { IY' } \left.Y_{4}-6 Y_{0}^{8} Y_{5}^{\prime}+3 Y_{0}^{\prime 2}-Y_{5}^{1}{ }^{2}\right)
\end{aligned}
$$

Hence: $\Gamma_{0}$ is the union of four lines in the three. space $Y_{3}^{1} \cdot 3 Y_{2}^{\prime}=Y=0$, with an embedded point (sticking out of that space) at their comm point of intersection.

Renark: By choosing other A's and B's we can obtain further types of derenerations. For exarple, consider the degeneration obtained by taking $A=$ a chord of $C, B=$ an axis of $C$ (i.e., the intersection of two osculating planes). Then $C_{0}$ is the union of three skew lines, neeting in 2 points, whereas its dual is a triple line (2nd order nohd. of a line in $\stackrel{\rightharpoonup}{r}^{3}$ ). The tangent curve $\Gamma_{0}$ is the union of two double lines.

On the next pare, we rive a figure showing schubert's 11 degenerate complete twister cubics. Each trinle should also be read backwards!

$\Gamma$
$C^{*}$
0

$\lambda$
Q -


4. Some remarks on H and $T$

Let $T_{\lambda}, T_{k}, \ldots$ denote the closure of the set of points in $T$ corresponding to degenerations of type $\lambda, k, \ldots$, and let $H_{\lambda}, H_{k}, \ldots$ denote the similarly defined sets in $H$. That the degenerations $\lambda, k, \ldots$ are of first order, neans that $\mathrm{P}_{\lambda}, \mathrm{T}_{\mathrm{K}}, \ldots$ are of codirension 1 in T : this is easily seen to be true by counting the parameters of each of the corresponding figures. Only $H_{\lambda}$ and $H_{w}$ are of codjmension 1 in $H$, so the (birational) projection map $\pi:\{H$ blows up the other sets $H_{k}, H_{\lambda}, \ldots$. For example, $H_{k}$ has codimension 2 (there are $\infty^{10}$ plane cuspidal cubics in $p^{3}$ ), and for a given C $\quad H_{k}, \pi^{-1}(\mathrm{C})=$ $\left\{\begin{array}{l}\left(\overline{\mathrm{C}}, \overline{\mathrm{F}}, \overline{\mathrm{C}}^{*}\right) ; \overline{\bar{\Gamma}}=\text { a (uniquely determined) cuspidal } \\ \text { cubje unfon a line through the flex }\end{array}\right\}$ Since "a line through the flex" corresponds to "a plane containing the cusp tangent of $\bar{C}$ ", we see that din $\pi^{-1}(\mathrm{C})=1$ 。

The set $H_{n}\left(=H_{\delta}\right)$ has the largest codimension, namely 8; all derenerations without an embedded point: specjajize to these. In this case, $\pi^{-1}(\mathrm{C})$ has dimension 7: the tangent curve is determined by choosing 4 pointplanes through the line Gred, which satisfy one relation between the cross-ratios (of the points and planes) (see e.g. [A],p.206, or recall that the four concurrent lines $\bar{\Gamma}_{\text {red }} \operatorname{span}$ only a $p^{3}$ ).

Let $H$ denote the nomal sheaf of $\mathbb{C} \in H_{n}$ in $\mathbb{P}^{3}$. One can prove e. 0 . by taking a presentation of the ideal of C , that $\mathrm{din}_{\mathrm{H}} \mathrm{H}^{( }(\mathrm{H}, \overline{\mathrm{C}})=12$. It follows that H is smooth at $\mathbb{C}$, since din $\mathrm{fi}=12$, and hence all points of $H_{\lambda} H^{\prime}$ (ioe., those corresponding to Cohen-Macaulay curves, i.e., curves without an embedded point) are snooth on $H$.

Now consider $H_{\lambda}$. Any point in it can be specialized to one corresponding to a plane triple line with a nonplanar embedded point, e.g. \{iven hy the ideal $\left(X_{1} X_{3}, X_{2} X_{3}, X_{3}^{2}, X_{1}^{3}\right)$. In the work with ${ }^{3}$. Schlessinger, cited in the introduction, we prove that such a point is srooth on II, and hence that $H$ is smooth.

Remark: The results din $H^{0}(N, C)=12$ if $C \in H_{\eta}$, and din $H^{0}(N, C)=16$ if $\bar{C}$ is a plane triple line with embedded point, have also been obtained by Joe Harris; he also gives a list of possible degeneration types of a curve $C \in H$ (private communication).

As a final comment, let us mention an advantage of working with Hilbert schenes rather than Chow schenes: the existence of universal fanilies of curves, which allows the following way of expressins Schubert's various conditions as cycles on $T$. Janely, let

denote the universal families (pulled back to from $H$, (f, II respectively). The condition, denoted $v$ by
Schubert, for a curve $C$ to intorsect a given line $L$, is then represented by the cycle $\mathrm{T}_{v}=p_{*}(C \cap I, x)$; the condition, Schubert's $\rho$, that the curve touches a given plane $U$, by $T_{\rho}=a_{*}\left(e^{\prime} n \sigma_{1,1} \times T\right)$, where $\sigma_{1,1}$ is the 2-plane in Grass $(1,3)$ of lines in $U$, and so on. We plan to return to the question of determining the relations between these cycles and the cycles ${\underset{I}{\lambda}}^{T}, \mathbb{T}_{\kappa}, \ldots$ - and to a study of the Chow ring of ?.

## Bibliocraphy

[A] A.R. Alcuneid, "Analytical ddegeneration of complete twisted cubics", Proc. Cambridge Phil.Soc. 52(1956), 202.-208.
[H] R, Hartshorne, Algebraje Geonetry. New York-Ilejdelberg - Eerlin, Springer-Verlag 1977.
[P] R. Piene, "Humerical characters of a curve in projective n-space". In Real and complex sincularities, Oslo 1976. Ed. P. Ilolmo Groningen: Sijthofe and Noordhoff 1978 ; pp. $175-495$.
[s] H. Schubert, Kalkül der abrählenden Geometrie. B.G. Tcubner, Leipzig 1879 . (lew edition: Springer. Verlag, 1979.)

