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A note on hit·\lier· oFd<;:p duu..L _ _yarietieu, with u.rt 

ap:Ql icati.l>n t:o ,;crol.ls • 

1. Int~oduction. 

• Ragni Piene 

v 
'l'he dual va.riety XV c JP11 of a variety X<: Y is the cloroure 

of the set of hyporplanea containing the tangent space to X at 
v 

some smooth point. We define the m.-§_ual ~~t;r X~ c Y of X 

as the closure of the 8et of hyperplanes conta.ining an m-th 

. X i . XV XV "" ll osculatJ.ng space to , n partJ.eular, 1 .. • nore genera. Y, 

if G = Grassa+1 (V) denote•> the Grassmann variety of a.-ropaoes 

in lP(V) "' lPn , we can define m-th osculating spaces of a variety 

X c G, using the sheaves of prilH:ipal parts, and hence its m-dual 

variety X~cGrassa+1 (Vv) us tho closure of the set of (n-a-"1)

spaces containing an ro-th o;.;culating space to X. ThiB is of 

course closely related to Pol1l 's ~ociat~ yarieti~~ ([Pohl]). 

vie show, in Prop. 1, a 1veak bidua1 i ty resu~ t for m-duals: 

one always has X c (XV) v and oqualitv hold:; tuider a dimen"ion 
m m' " 

hypothesis, which L> alway.· ,;ati.ofied in the r:;la .. c~ical ::a:se. 

It if; natural to ask for tho degree of in terms of 

characters of X" Sin co we are working with "modifie<l" bw1dles 

of principal partu, thia can be done - at least in principle~ - as 

in the clussical case (see e.g. [P2], (U]). 

Here we only deal explicitly with the case of a sc~roll 

(i.e., a ruled, non.,.developable surface) XcJP(V),or, equi

valently, a curve CcGrass2 (V). In general, a scroll has 2nd 

osc.ulating spaceu of dimension 4. v vie give a formula for deg x2. 

Partially supported by the Nor~egian Research Cow1cil for Science 
and the Humanities. 
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In the C!J.Ue JP(V) c JP5 , we call the strict dual of ---- X. 

If d . x* 2 t' x* x** = X holds. 1.m "' , .wn is also a scro 11 and . 

Moreover, the dual variety x'' (the normal bundle of X) is equal 

to the o:Jculating developable' of * X , and the dual plane of a 

tangent plane to X is the tangent plane to x* at the corre

sponding point. Hence we get, for scrolls in JP5, a complete 

"' parallell to the duality existing between a curve C c: JP::;>, i tB strict 
* v 3 qual curve 0 c Jl? , and their developables (see e. g. [p 1], § 5; 

[P 3), Remark 1 on p. 111). 

Scrolls are examples of surfaces with "too small" osculating 

spaces of higher order, hence are "of type t" in the terminology 

of Corrado Segre. I am grateful to Gianni Sacchiero for bringing 

these - in particular the scrolls and their strict duals - to 

my attention • 

.ih_Higher <2.£SLer dual vari.e t i. es. 

Fix the following notations: 

V is an (n+i )-dimensional vector space over an algebr·aically 

closed field k of characteristic o, G is the Grassmann variety 

Grassa+'l(V) consisting of (a+1)-quotients of V, (identified with 

a-dimensional linear sub spaces of JP(V)), and V G"' Q. is the \illi

versal (a-r1 )-quotient on G. 

For each integer m there is a natural homomorphism 

where ~(Q.) denotes the bundle of principal pe.rts of order m 

of Q. (see (P 1), § 6). 
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Let Xc G be a 8ubvariety, of dimension r, and set E "' Qlr. 

The 1·estriction of am, compo:.HJd with the natural map 

P~(Q)\x~~(J;;), gives a homoruorphi8m 

A point x EX :is called ~-gular.:. g x is smooth and if am(x) 

is surjective; if these points are dunse in X, v1e .say that X is 

generically m-regular. At each · m-.regular point x EX there is 

a Well-defined !!t:lt. Q_§CUlatine;_ SJ?8.CEl 1 of dimension (a+'l) cr:m) ·~ '1, 

defined by am(x). Hence a generically m-regular X has an ~ 

associated variet;y: X(m) c Grass (V), def;i.ned as the closure 
. (a+'l)(r+m) · 

of the set of the m-th osculating 

define the m-dual K.§l.!:i.~Y X~ c G v 

m 
spaces (see (Pohl], §IV). We 

~ Grass ~(VV) ~ Grass a(V) a+, n-

to be the closure of the set of (n-a-'1)-spaces containing an m-th 

osculating space. 

E.'ven if X is nowhere m-I·egular, we can define m-th oscu-· 

lating spaces: let U c X be an open dense smooth subschema such 

that Ku :: Ker(am) lu is a sub·-bundle of Vu, or, equivalently, 

such that Im(am) is a bundle. If Im(am) "' s + '1, then each 

point :x:EU has an m-th osculating space, of dimension s,. 

defined by aro(x). 'l'he ~al varie!X_ x;;;cGv of. X is the 

closure of the set of (n--a-1 )-spaces containing the ro-th oscu-

lating .spaces. Let :Kc: G X Gv be the closure of 

Grassa+/1 (~)c:Grassa+'1(v&) "'UxGvl then X~"' p:r2 (i). Let 

(X~)~ c G x Gv denote the corresponding variety constructed 

for ~' so that (~)~ .. pr1 ((~)~). 
The following proposition gives a weak b:i.duality for m-dua,l 

varieties 1 generalizing the cla.ssical biduality for projectiYe · 

varietieG (see [K]). 
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'¥ 
particular, if X 

and Xc: (X~)~. In 

~ dim(X~)~), then 
. ( v v 

X = ~)m holds. 

"" v~ 
(a" 0, m .. 1), dim X .. dim(:lC ) = n-'l 

always. A:.n example where the equality does not hold: X c JP6 a 

generically 2-regular surface contained in a hyper·plane H. 

Then X~ "' (H} E JP6 and (~)~ .,. H. 

fr2of: ·It suffices to show the inclusion ¥c: (X~) v on an open 

dense of' X. Let p : X- X and q t X~~ denote the projections. 

Consider a point 
M v 

(x,y) EXcGxG such that xEU,. y is in the 
. v 

corresponding Vcxm, and q is sraooth at (x,y). Let F denote 

the restriction of the universal (a+'l)-quotient of Vvv to ~, 
G 

and consider the following diagram (restricted to p - 1u h 

.. 
P E 

To show that (x, y) E (~) v amounts to showing that the composi

tion q*pmv(l!') ""p"E is zel'O (locally at (x,y)). The map 
xm 

* v • m.( ') q F ~ p Px E , and hence also 

composition * v • q 1!' ... v~ ... p E is zero, we obtain, by "differentif.l:ting" 
X 

(i.e. applying the differential operators of order < m,. corre-

sponding to ~, to this composition), that plll(q*l!')v ... p"E is 
X . ! 

T.ero. Since q*plllv(F) .... ~(q*F) is locally split at . (x,y),, w.e 
~ X 



- 5 -

obtain that q*pffi (F)~ p•E iu zero at (x,y). (This is th0 S8.)lle 

~ as tho (J.L'gument u:Jed for curve:; in JJ?n, au in (p 1], § 5.) 

Suppose X itJ generieally m-regular. Then 
N 

If rk Ku;;: a+1, then X is defined and 

has dimenBio11 r·+ (a+1)(n-a-(a+1)(r:m)). Set rv = dimX~. If 

~ is also generically m-regular, then biduality holds if and 

v 
r- (a+1 )2(Nm) = r v- (a+1/ct' +m) • . m m only if 

This is possibie only if a .. 0 and m = 1 (the classical case), 

or if r ~ r v. In fact, wllen rk Ku > a+1 1 X~ is ruled, and hence 

Sh<;fuld not be generically m-regulur. Note that the surjections 

Pi(E) ~ Pi-\E) give a sequence of inclutJions 

v v v_ v x " x1 ::l x2 ;:) ••• ::l ~ ::> • • • , 

ru1d that one could, instead 

-o.f X, construct an X in the product of all tne Grass-
1, 2' ••• 

mannians. 

As in the catJe of clas.;ical duaJ ity, there is an invariance 

of m-duals under sections and projections: Suppose W c V is a 

subspace, dim W 2: a+1. For X c G ~ Grass a+'l (V), consider ·the 

project; ion 

X ----> Grass a+'l (W) corresponding to WG ~ E. 

If the center of projeetion JP(V/W) is reasonable (i.e., if most 

of the a-spaces corresponding to ppints of X are projected to 

a-spaces in JP(W)), this map is .rationa.l, and we de.rwte by X the 

closure of its image. From the functorial properties o.f the 

sheaves of principal parts, we get; 
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Propo>;Hiq~: The m-.dual of a projection is the corresponding 

section of the m-dual, i.e., 

(The proof is similar to the one in the classical (a= 0) 

cas~: See (P2] , p.269, and observe that the genericity assump

tion made there is um1eceBsary.) 

The degree of Xc: G is its degree in JP(Aa+1 V) via the Plucke 

embedding. Thus we have deg X .. c1 (E)r n [X], and d~g ~ " 

c 1 (F)rv ()(X~]. Whenever we can e:x:press F (or q*F) in terms 

v of kno1m bundles, we get an expression for deg Xht• When X is 

generically m-regular, F is determined by ~(E) and the 

singularities of am; hence we get, at least in principle, an 

expression for deg X~ in terms of the degree of X and its Chern 

classes (or rather, th<:J Chern classes of a desingula.rization of X) 

and the various singularities of X and am. The very simplest 

case occurs when X is smooth and m-regular, 

v v ( * )r ( v)r and r = r. Then deg Xm = c 1 q F = c1 K 

r+m n-a. = (a+1)( m ) 

.. c1 (~(E) )r • 

(For formulas in the classical case, see [P2], [U]; see also (Pohl] 

for associated varieties). 

In the case of curves, formulas exist.: Let. XC:JP(V) be a 

curve spanning JP(V). Then X is generically m-regular, for 

m < n and we have associated curves xCm) c Grass (V) and 
- ' m+1 

corresponding oscula~ing developa.b~ Ym c JP(V) • We also have 
v v m-dual varieties Xm c JP(V ) - these are nothing but the osculating 

developables y* .-. of the strict ~ cur-ve i* "" xCn-'1) c JP(Vv) ,· n-m-, 

and they are also.equal to the du<l:l o.r the 9SCUlating developables 

of x. More precisely, for each m we have 

~ * (Ym...:1)v. .. y "' n-·m-1 
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The fh·st equa.li ~y followc; f1'om the duality of <:ertain exact 

sequences on X and x* (!Jee (P1], ?.2), the second holds 

because the tuugent space~ to Ym-i are the m-th osculating 

spaces to X. Thus we have formulas 

m-1 
deg~ .. (m+1)(d+m(g-1))- E (m-i)k., 

. l. . 
l.=O 

where d ,. deg X, g " (geometric) genu1; of X, and ki is the 

i-th stationary index of X ((P1], 3,2). 

2. Dual varieties of a scroll. 

Let Xc G be as in ti1e preceding section. If m is such 

that X ... X is birational, i.e., 'if there is a uniquely determined 

m-th osculating (n-a-1 )-:cpace to X at x for most points 

we shall call x* " ~ the d.D.s:i S!.lli!.l ~ety of X. 

xEX 

For example, if C c Y is a r.;urve spanning :aJl , then 

' 

C* - cv 
- n-1· 

then x* "' 

If X c ]?6 is a . .;urfac:tl whidl i;, ger,erically 2-regular, 
v6 

L~ c ]? is the ::; trict dual. 

An example of surface;; that are nowhere 2-regular (C. Segre 

called them "of type ~"), are the ruled surfaces: s<.:rolls, 

developables, and cones. The theory of duals ·of developables and 

cones reduces to that of curves in projective space; let us now 

look at the scrolls. By definition, a scroll Xc JP(V) is a ruled 

surface such that the tangent planes to X along a (general) 

generator are non-constant. Suppose 1 c X · i.s a generator, 

x E 1. The 2nd osculating Bpace to X at x, defined by 

a 2 : VX .. Pi( 1), is the space spanned by the tangent planes to X 

along l (this gives a JP3) and the 2nd osculating space to 
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a curve on X at x. If X is not contained in a JP3, one 

expect this space to be of dimension 4; if X is not contained 

It in a JP , one expects these 4-spaces to vary along l, so that 

X~ has dimension 2. We shall now generalize to scrolls in JP5 

the duality results for curves in JP3([P 1), (P 3]) : Let C c JP3..., JPC\' 
v 

be a (non planar) curve, and let c* c lP3 denote its strict dual. 
v 

The dual C v c ]1?3 :Ls the normal bundle to C and the tangent 

developable of c*, and similarly for (C*)v. Moreover, the dua.l 

line of a tangent line to C is the tangent line to c* at the 

corresponding point -

cC 1 )cGrass2 (V) and 

in other words, the 

c*(1 )cGrass
2

(VV)., 

associated curves 

Grass2 (V) are equal. 

fropos:j._E_ion 3: Let XCJP(V)"' JP5 be a scroll which admits a 

strict dual x" "' X~, and assume dim x* "' 2. 'J.'hen x* is a 

scroll. The dual XvcJP(Vv), the normal bundle of X, is equal 

• to the tangent developable of X , and vice versa. Moreover, 

the dual plane of a tangent plane to X is the tangent plane 

to x• at the 

ated varieties 

equal. 

corresponding point -

xC1 )cGrass
3

(v) and 

in other words 9 the 

x*('l) c Grass
3

(vv) 

associ-

are 

Proof: Let x' be 

Im(a2) 

a modification of X and of x*. such that 

Im(a1 ) and • admit quotient bundles P1 and P1 

rank 3. Then K=ker(Vx•~P1 ) a,nd K*=ker(v~.~P:j) 

bundles of rank 3, and the sequences o-K-Vx• ~p1 ... o 

of 

are 

end 

are dual to each other; as in the proof of 

Prop. '1, one shows that 

( 1V '1 V 
of a. ) : Px• ( 1 ) -· V X* 

(generically on X1
) 

with a 1 : Vx .... P:i('l) 

the composition 

is zero; since 

and a 1 both have rank 3, the re:o;ult follows. In particular 
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the existenee of the exuet :c;equence 

.. v 1 
0 -> (P,1) -> VX, -> P -> 0 

,;J1owD that the tangent plane;; to :x:* are the <lual planes of the 

X X•• tungent planeD to ; hence if X ia a scroll, so is The 

other Dtatoments also follow directly from that exact sequence. 

Thera is still another parallell to the curve case 1 nQ.lllely 

to the fact that the strict dual curve 
• v 3 

0 c]? is a cuspidal. 

e?g~ of the dual variety 
v ov c JP3 3 of a curve 0 c JP • 

5 X* Proposition 4! If X c JP is a scroll, then its strict dual 
v 

is a "cuspi<lal edge" of the dual variety Xv c JP5 • 

Proof: Assurne X is smooth, and I" c JP3 a generic projection. 

Scrolls with ordint\ry 
v v3 

singularil:ien in JP3 are nurnerj_cally self-

dual , so X c JP has a finite 

ing to the pinch point:,; or X. 
je(;tion, a pinch point of X 

i.e., when L intersects the 

along a generatoi·. But then 

• is necessarily a point in X 

number of pinch points, correspond

If L c JP5 is the centre of pro-

occurs 11hen L 

spanned by 

and this JP.3 
v ' 

and al sq in JP7 

inter,::ect£; a tangent, 

tr,e t: ... gent planes 

span '-' JP4 which 
v 

"' L v c JP5. Since 
. v 3 

"' XV fl JP , it follows that the "rQ.lllified sine;ularities" of 
b 

are precisely the points of X • If X is not assumed smooth, 

there might be other "cuspidal edges" 1 as in the case of curves, 

where inflectionary tangents are cuspidal edges on the developable. 
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In order to compute the degree of * X , it is convenient to 

consider X as a curve CcG"' Gra.ss2 (v). Consider a
1 

1 V0 ""'P6(:l<:), 

where E is the restriction of the universal 2-quot;.ient of V 

on G. The subspa.ces of V defined by a 1 can be interpreted 

by choosing, 1oca.lly, a trivialization of E, corresponding to 

two curve sections of X. Hence a 1 defines, at a generator 

1 E 0 of X, the space spanned by 1 and the tangent to the 

curves at the points of intersection with 1; hence it is equal 

to tl1e space spanned by the tangent planes to X along 1. 

Since X is a scroll, this space has dimension 3, so C is 

generically 

Grass"(Vv) 
L. 

1-regular. It .follows tha~ o* "' 0~ C: Grass11_(V) = 

is the strict; dual of C (and c* .. 0 ( 1 ), the 1st 

associated curve of 0). • If X 
,, 

is a scroll, then 0 is 

generically 1-regular, and o•• " 0 (by Prop,'1). !-1oreover, 

the 2nd osculat;Jng spaces to X along a gener·ator l are just 

the It--spaces containing the 3-<>paee spanned by the tangent 

planes. In other words, o* is equal to x* considered as a 

cut.'ve in Gra.ss2 (Vv ). 'l'huu we have proved; 

c: 
;proQ.?_sition 2,: If XcJP(V) .. JP7 js a scroll such that x* is 

a scroll, then 

'J'he next propcsition gives a formula for the degree of' x*. 
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r-
f1::2poBH Lon 6: Let; xc JP(V) ~ JP7 be a scroll of' de[!;:L'ec d rutd 

genuu g 1 rutd uuppoue x• c JP(V") L; a scroll. 'rhon 

• degX = <'(d+2g-2) .... k, 

where k i<; the sLatiorW.I'v iudex of 0 c Gra:'<D2 (V). 

Let 
I 

v 1 C ... C denote the normalizat;i.on, then, by def'ini-

tion, 
·j 

k = lg(Ookerv0 , ... p 0 ,(v*E)). By trivi.alizing E on<;l sees 

that an ordinary cusp of 0 counts tl~ice in k ( which checks 

with (Ed go] § 349). Or, k i:J the number· ( eount ed properly) of 

sing'llJl.£. genEatort; of X ([Polll ], p.208). 

Corollarz: 1'he utatimw.l'Y ind,o,x k* of c* is given by 

k* = 5(d + 2(2g-2))- 2k. 

!J:'oof: On c' , PJ(E) aclmit:J a 4-lJUotient, namely 

P1 = Irn(v0 .... pJ,(v*E)). !knet:: degX~ = dego• = c1 (P1 ) = 
c1 (PJ. (v•E))- k = 2(dt-2g-2)- k. 'l'r,,; c·or·oL1ttc,y follo•:;,, from the 

duality x** = X of Prop. '• J "' rk-15 X= :?(d* +2[.-2)- k*. 

Note that it: X hns no ': ingulur gen<rra~ or.3 (k~ = 0), then 

k* = 3(d + 2(2g-2)), and ben<~e x* has nu :>ingc;lar generator:o 

i.f and only if d "' d* ~ 4, t; = 0. (Such scroll~; ure linearly 
,. 

normal in JP::>.) 

We shall now looK at r<ome other appr·oaehes to the degree 

* of X • 

Because of the 

" of X is equal to 

following 

( * y deg X ) , 

developable of X (Pr·op.3), 

(classical) propoaition, tbe degree 

hence to the degree of the tangent 
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Proposil~ion 'Z.: Let Xc: JP(V) ~ JPn be a ucroll, XV c: JP(Vv) its 

dual. Then: 

f:r.~: The classical proof goet;; like this: project X. to a 

"' (' ) ~ 3 '" X '"t ,..._. v - XV n .,, (V lu) 1 scroll ..~~.c:JPW "JP with d=deg..~~. .. deg • .~:1en A- "' rw 
'ff'V V so deg A = deg X holds. 

deg yV"' if{rP L, H tg. to X) 

.. deg X. Note that X and 

If L c JP(W) is a general line 1 

= if(H :::> L U Ill generator of X) "' it L n X 

y_V are in fact ~1. considered as 

curves in Grass2(W) = Grads2(Wv). 

For a "mode1·n 11 proof, one reduces to the case tnat X c: JP(V) 

is smooth, say X = JP( E)~ C. Then 

which, by standard exact sE:quen-~es, reduces to 

From the exact GequE:n<:oe ;_>;iven in tile proof of Prop. 3 

we obtain (uuing [P2], § 2): 

dee;x* "'deg(X*)V = c 2 (P~) = c 1 CP1 )2 - c 2 (P1 ) 

2 v 2 =c1 (P1 ) -dfJgX =c1 (P1 ) -d. 

Suppose X = JP(E) ~ C is smooth. Then X' .. X and P 1 = P;i:C 1) 1 

so we get 

In. the general case, X ·is the image of a umooth Y 2 JP(E) -• 0, 

and x' is a blow-up of Y. Then c1 (P1 )., c 1 CP;i:•(1))- [Rl, 
( 

~There R is tbe rpmification divisor of X ... X, and we obtain 
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the ear'lier formula, bu~ with k e:x:preuned "in termu of" H. 

Two other approacheD have. been collllllurti.cated to me by 

I. Vainsencher and F. Ronga, respectively. 

1. (Vainsencher) 

r:; 
Let X c JP(V) ';;:; JP/ be a umooth scroll, 

Y = JP(N(-1)) = ((x,H)!Htg. to X at x)c:JP(V) xlP(Vv), 

and set Z = ((x,H) E YIHn X,. lxU D with D singular at x}. 

Then x"' = pr2 (Z). One shows that Z is the zeros of a 

section of a certain rank 2 bundle on Y; since the class 

of Y in X x JP(Vv) is the 3rd Chern claas of a rank 3 

bundle, this gives the class of z in 
v 

X x JP(V ) as a 5th 

Chern class, and allown us to compute degx• = 2(d+2g-2), 

provided dim x* "' 2. 

2. (Ronga) 

Assume Xc JP(V) as above. Now one interprets Z as a modi

fj.ed £2 •2 (a.gain by "forgetting" the generators of X) 

of the projection map XxJP(Vv) -• JP(Vv). By computing ali 

the normal bundles in sight, one gets an expression for the 

class of z in 
v 

X x JP(V ) , which allows one to compute 

degx*"' 2(d+2g-2). 
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